906 lines
32 KiB
Python
906 lines
32 KiB
Python
# Copyright 2013 The Android Open Source Project
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import matplotlib
|
|
matplotlib.use('Agg')
|
|
|
|
import its.error
|
|
import sys
|
|
from PIL import Image
|
|
import numpy
|
|
import math
|
|
import unittest
|
|
import cStringIO
|
|
import copy
|
|
import random
|
|
|
|
DEFAULT_YUV_TO_RGB_CCM = numpy.matrix([
|
|
[1.000, 0.000, 1.402],
|
|
[1.000, -0.344, -0.714],
|
|
[1.000, 1.772, 0.000]])
|
|
|
|
DEFAULT_YUV_OFFSETS = numpy.array([0, 128, 128])
|
|
|
|
DEFAULT_GAMMA_LUT = numpy.array(
|
|
[math.floor(65535 * math.pow(i/65535.0, 1/2.2) + 0.5)
|
|
for i in xrange(65536)])
|
|
|
|
DEFAULT_INVGAMMA_LUT = numpy.array(
|
|
[math.floor(65535 * math.pow(i/65535.0, 2.2) + 0.5)
|
|
for i in xrange(65536)])
|
|
|
|
MAX_LUT_SIZE = 65536
|
|
|
|
NUM_TRYS = 2
|
|
NUM_FRAMES = 4
|
|
|
|
|
|
def convert_capture_to_rgb_image(cap,
|
|
ccm_yuv_to_rgb=DEFAULT_YUV_TO_RGB_CCM,
|
|
yuv_off=DEFAULT_YUV_OFFSETS,
|
|
props=None):
|
|
"""Convert a captured image object to a RGB image.
|
|
|
|
Args:
|
|
cap: A capture object as returned by its.device.do_capture.
|
|
ccm_yuv_to_rgb: (Optional) the 3x3 CCM to convert from YUV to RGB.
|
|
yuv_off: (Optional) offsets to subtract from each of Y,U,V values.
|
|
props: (Optional) camera properties object (of static values);
|
|
required for processing raw images.
|
|
|
|
Returns:
|
|
RGB float-3 image array, with pixel values in [0.0, 1.0].
|
|
"""
|
|
w = cap["width"]
|
|
h = cap["height"]
|
|
if cap["format"] == "raw10":
|
|
assert(props is not None)
|
|
cap = unpack_raw10_capture(cap, props)
|
|
if cap["format"] == "raw12":
|
|
assert(props is not None)
|
|
cap = unpack_raw12_capture(cap, props)
|
|
if cap["format"] == "yuv":
|
|
y = cap["data"][0:w*h]
|
|
u = cap["data"][w*h:w*h*5/4]
|
|
v = cap["data"][w*h*5/4:w*h*6/4]
|
|
return convert_yuv420_planar_to_rgb_image(y, u, v, w, h)
|
|
elif cap["format"] == "jpeg":
|
|
return decompress_jpeg_to_rgb_image(cap["data"])
|
|
elif cap["format"] == "raw" or cap["format"] == "rawStats":
|
|
assert(props is not None)
|
|
r,gr,gb,b = convert_capture_to_planes(cap, props)
|
|
return convert_raw_to_rgb_image(r,gr,gb,b, props, cap["metadata"])
|
|
else:
|
|
raise its.error.Error('Invalid format %s' % (cap["format"]))
|
|
|
|
|
|
def unpack_rawstats_capture(cap):
|
|
"""Unpack a rawStats capture to the mean and variance images.
|
|
|
|
Args:
|
|
cap: A capture object as returned by its.device.do_capture.
|
|
|
|
Returns:
|
|
Tuple (mean_image var_image) of float-4 images, with non-normalized
|
|
pixel values computed from the RAW16 images on the device
|
|
"""
|
|
assert(cap["format"] == "rawStats")
|
|
w = cap["width"]
|
|
h = cap["height"]
|
|
img = numpy.ndarray(shape=(2*h*w*4,), dtype='<f', buffer=cap["data"])
|
|
analysis_image = img.reshape(2,h,w,4)
|
|
mean_image = analysis_image[0,:,:,:].reshape(h,w,4)
|
|
var_image = analysis_image[1,:,:,:].reshape(h,w,4)
|
|
return mean_image, var_image
|
|
|
|
|
|
def unpack_raw10_capture(cap, props):
|
|
"""Unpack a raw-10 capture to a raw-16 capture.
|
|
|
|
Args:
|
|
cap: A raw-10 capture object.
|
|
props: Camera properties object.
|
|
|
|
Returns:
|
|
New capture object with raw-16 data.
|
|
"""
|
|
# Data is packed as 4x10b pixels in 5 bytes, with the first 4 bytes holding
|
|
# the MSPs of the pixels, and the 5th byte holding 4x2b LSBs.
|
|
w,h = cap["width"], cap["height"]
|
|
if w % 4 != 0:
|
|
raise its.error.Error('Invalid raw-10 buffer width')
|
|
cap = copy.deepcopy(cap)
|
|
cap["data"] = unpack_raw10_image(cap["data"].reshape(h,w*5/4))
|
|
cap["format"] = "raw"
|
|
return cap
|
|
|
|
|
|
def unpack_raw10_image(img):
|
|
"""Unpack a raw-10 image to a raw-16 image.
|
|
|
|
Output image will have the 10 LSBs filled in each 16b word, and the 6 MSBs
|
|
will be set to zero.
|
|
|
|
Args:
|
|
img: A raw-10 image, as a uint8 numpy array.
|
|
|
|
Returns:
|
|
Image as a uint16 numpy array, with all row padding stripped.
|
|
"""
|
|
if img.shape[1] % 5 != 0:
|
|
raise its.error.Error('Invalid raw-10 buffer width')
|
|
w = img.shape[1]*4/5
|
|
h = img.shape[0]
|
|
# Cut out the 4x8b MSBs and shift to bits [9:2] in 16b words.
|
|
msbs = numpy.delete(img, numpy.s_[4::5], 1)
|
|
msbs = msbs.astype(numpy.uint16)
|
|
msbs = numpy.left_shift(msbs, 2)
|
|
msbs = msbs.reshape(h,w)
|
|
# Cut out the 4x2b LSBs and put each in bits [1:0] of their own 8b words.
|
|
lsbs = img[::, 4::5].reshape(h,w/4)
|
|
lsbs = numpy.right_shift(
|
|
numpy.packbits(numpy.unpackbits(lsbs).reshape(h,w/4,4,2),3), 6)
|
|
# Pair the LSB bits group to pixel 0 instead of pixel 3
|
|
lsbs = lsbs.reshape(h,w/4,4)[:,:,::-1]
|
|
lsbs = lsbs.reshape(h,w)
|
|
# Fuse the MSBs and LSBs back together
|
|
img16 = numpy.bitwise_or(msbs, lsbs).reshape(h,w)
|
|
return img16
|
|
|
|
|
|
def unpack_raw12_capture(cap, props):
|
|
"""Unpack a raw-12 capture to a raw-16 capture.
|
|
|
|
Args:
|
|
cap: A raw-12 capture object.
|
|
props: Camera properties object.
|
|
|
|
Returns:
|
|
New capture object with raw-16 data.
|
|
"""
|
|
# Data is packed as 4x10b pixels in 5 bytes, with the first 4 bytes holding
|
|
# the MSBs of the pixels, and the 5th byte holding 4x2b LSBs.
|
|
w,h = cap["width"], cap["height"]
|
|
if w % 2 != 0:
|
|
raise its.error.Error('Invalid raw-12 buffer width')
|
|
cap = copy.deepcopy(cap)
|
|
cap["data"] = unpack_raw12_image(cap["data"].reshape(h,w*3/2))
|
|
cap["format"] = "raw"
|
|
return cap
|
|
|
|
|
|
def unpack_raw12_image(img):
|
|
"""Unpack a raw-12 image to a raw-16 image.
|
|
|
|
Output image will have the 12 LSBs filled in each 16b word, and the 4 MSBs
|
|
will be set to zero.
|
|
|
|
Args:
|
|
img: A raw-12 image, as a uint8 numpy array.
|
|
|
|
Returns:
|
|
Image as a uint16 numpy array, with all row padding stripped.
|
|
"""
|
|
if img.shape[1] % 3 != 0:
|
|
raise its.error.Error('Invalid raw-12 buffer width')
|
|
w = img.shape[1]*2/3
|
|
h = img.shape[0]
|
|
# Cut out the 2x8b MSBs and shift to bits [11:4] in 16b words.
|
|
msbs = numpy.delete(img, numpy.s_[2::3], 1)
|
|
msbs = msbs.astype(numpy.uint16)
|
|
msbs = numpy.left_shift(msbs, 4)
|
|
msbs = msbs.reshape(h,w)
|
|
# Cut out the 2x4b LSBs and put each in bits [3:0] of their own 8b words.
|
|
lsbs = img[::, 2::3].reshape(h,w/2)
|
|
lsbs = numpy.right_shift(
|
|
numpy.packbits(numpy.unpackbits(lsbs).reshape(h,w/2,2,4),3), 4)
|
|
# Pair the LSB bits group to pixel 0 instead of pixel 1
|
|
lsbs = lsbs.reshape(h,w/2,2)[:,:,::-1]
|
|
lsbs = lsbs.reshape(h,w)
|
|
# Fuse the MSBs and LSBs back together
|
|
img16 = numpy.bitwise_or(msbs, lsbs).reshape(h,w)
|
|
return img16
|
|
|
|
|
|
def convert_capture_to_planes(cap, props=None):
|
|
"""Convert a captured image object to separate image planes.
|
|
|
|
Decompose an image into multiple images, corresponding to different planes.
|
|
|
|
For YUV420 captures ("yuv"):
|
|
Returns Y,U,V planes, where the Y plane is full-res and the U,V planes
|
|
are each 1/2 x 1/2 of the full res.
|
|
|
|
For Bayer captures ("raw", "raw10", "raw12", or "rawStats"):
|
|
Returns planes in the order R,Gr,Gb,B, regardless of the Bayer pattern
|
|
layout. For full-res raw images ("raw", "raw10", "raw12"), each plane
|
|
is 1/2 x 1/2 of the full res. For "rawStats" images, the mean image
|
|
is returned.
|
|
|
|
For JPEG captures ("jpeg"):
|
|
Returns R,G,B full-res planes.
|
|
|
|
Args:
|
|
cap: A capture object as returned by its.device.do_capture.
|
|
props: (Optional) camera properties object (of static values);
|
|
required for processing raw images.
|
|
|
|
Returns:
|
|
A tuple of float numpy arrays (one per plane), consisting of pixel
|
|
values in the range [0.0, 1.0].
|
|
"""
|
|
w = cap["width"]
|
|
h = cap["height"]
|
|
if cap["format"] == "raw10":
|
|
assert(props is not None)
|
|
cap = unpack_raw10_capture(cap, props)
|
|
if cap["format"] == "raw12":
|
|
assert(props is not None)
|
|
cap = unpack_raw12_capture(cap, props)
|
|
if cap["format"] == "yuv":
|
|
y = cap["data"][0:w*h]
|
|
u = cap["data"][w*h:w*h*5/4]
|
|
v = cap["data"][w*h*5/4:w*h*6/4]
|
|
return ((y.astype(numpy.float32) / 255.0).reshape(h, w, 1),
|
|
(u.astype(numpy.float32) / 255.0).reshape(h/2, w/2, 1),
|
|
(v.astype(numpy.float32) / 255.0).reshape(h/2, w/2, 1))
|
|
elif cap["format"] == "jpeg":
|
|
rgb = decompress_jpeg_to_rgb_image(cap["data"]).reshape(w*h*3)
|
|
return (rgb[::3].reshape(h,w,1),
|
|
rgb[1::3].reshape(h,w,1),
|
|
rgb[2::3].reshape(h,w,1))
|
|
elif cap["format"] == "raw":
|
|
assert(props is not None)
|
|
white_level = float(props['android.sensor.info.whiteLevel'])
|
|
img = numpy.ndarray(shape=(h*w,), dtype='<u2',
|
|
buffer=cap["data"][0:w*h*2])
|
|
img = img.astype(numpy.float32).reshape(h,w) / white_level
|
|
# Crop the raw image to the active array region.
|
|
if props.has_key("android.sensor.info.activeArraySize") \
|
|
and props["android.sensor.info.activeArraySize"] is not None \
|
|
and props.has_key("android.sensor.info.pixelArraySize") \
|
|
and props["android.sensor.info.pixelArraySize"] is not None:
|
|
# Note that the Rect class is defined such that the left,top values
|
|
# are "inside" while the right,bottom values are "outside"; that is,
|
|
# it's inclusive of the top,left sides only. So, the width is
|
|
# computed as right-left, rather than right-left+1, etc.
|
|
wfull = props["android.sensor.info.pixelArraySize"]["width"]
|
|
hfull = props["android.sensor.info.pixelArraySize"]["height"]
|
|
xcrop = props["android.sensor.info.activeArraySize"]["left"]
|
|
ycrop = props["android.sensor.info.activeArraySize"]["top"]
|
|
wcrop = props["android.sensor.info.activeArraySize"]["right"]-xcrop
|
|
hcrop = props["android.sensor.info.activeArraySize"]["bottom"]-ycrop
|
|
assert(wfull >= wcrop >= 0)
|
|
assert(hfull >= hcrop >= 0)
|
|
assert(wfull - wcrop >= xcrop >= 0)
|
|
assert(hfull - hcrop >= ycrop >= 0)
|
|
if w == wfull and h == hfull:
|
|
# Crop needed; extract the center region.
|
|
img = img[ycrop:ycrop+hcrop,xcrop:xcrop+wcrop]
|
|
w = wcrop
|
|
h = hcrop
|
|
elif w == wcrop and h == hcrop:
|
|
# No crop needed; image is already cropped to the active array.
|
|
None
|
|
else:
|
|
raise its.error.Error('Invalid image size metadata')
|
|
# Separate the image planes.
|
|
imgs = [img[::2].reshape(w*h/2)[::2].reshape(h/2,w/2,1),
|
|
img[::2].reshape(w*h/2)[1::2].reshape(h/2,w/2,1),
|
|
img[1::2].reshape(w*h/2)[::2].reshape(h/2,w/2,1),
|
|
img[1::2].reshape(w*h/2)[1::2].reshape(h/2,w/2,1)]
|
|
idxs = get_canonical_cfa_order(props)
|
|
return [imgs[i] for i in idxs]
|
|
elif cap["format"] == "rawStats":
|
|
assert(props is not None)
|
|
white_level = float(props['android.sensor.info.whiteLevel'])
|
|
mean_image, var_image = its.image.unpack_rawstats_capture(cap)
|
|
idxs = get_canonical_cfa_order(props)
|
|
return [mean_image[:,:,i] / white_level for i in idxs]
|
|
else:
|
|
raise its.error.Error('Invalid format %s' % (cap["format"]))
|
|
|
|
|
|
def get_canonical_cfa_order(props):
|
|
"""Returns a mapping from the Bayer 2x2 top-left grid in the CFA to
|
|
the standard order R,Gr,Gb,B.
|
|
|
|
Args:
|
|
props: Camera properties object.
|
|
|
|
Returns:
|
|
List of 4 integers, corresponding to the positions in the 2x2 top-
|
|
left Bayer grid of R,Gr,Gb,B, where the 2x2 grid is labeled as
|
|
0,1,2,3 in row major order.
|
|
"""
|
|
# Note that raw streams aren't croppable, so the cropRegion doesn't need
|
|
# to be considered when determining the top-left pixel color.
|
|
cfa_pat = props['android.sensor.info.colorFilterArrangement']
|
|
if cfa_pat == 0:
|
|
# RGGB
|
|
return [0,1,2,3]
|
|
elif cfa_pat == 1:
|
|
# GRBG
|
|
return [1,0,3,2]
|
|
elif cfa_pat == 2:
|
|
# GBRG
|
|
return [2,3,0,1]
|
|
elif cfa_pat == 3:
|
|
# BGGR
|
|
return [3,2,1,0]
|
|
else:
|
|
raise its.error.Error("Not supported")
|
|
|
|
|
|
def get_gains_in_canonical_order(props, gains):
|
|
"""Reorders the gains tuple to the canonical R,Gr,Gb,B order.
|
|
|
|
Args:
|
|
props: Camera properties object.
|
|
gains: List of 4 values, in R,G_even,G_odd,B order.
|
|
|
|
Returns:
|
|
List of gains values, in R,Gr,Gb,B order.
|
|
"""
|
|
cfa_pat = props['android.sensor.info.colorFilterArrangement']
|
|
if cfa_pat in [0,1]:
|
|
# RGGB or GRBG, so G_even is Gr
|
|
return gains
|
|
elif cfa_pat in [2,3]:
|
|
# GBRG or BGGR, so G_even is Gb
|
|
return [gains[0], gains[2], gains[1], gains[3]]
|
|
else:
|
|
raise its.error.Error("Not supported")
|
|
|
|
|
|
def convert_raw_to_rgb_image(r_plane, gr_plane, gb_plane, b_plane,
|
|
props, cap_res):
|
|
"""Convert a Bayer raw-16 image to an RGB image.
|
|
|
|
Includes some extremely rudimentary demosaicking and color processing
|
|
operations; the output of this function shouldn't be used for any image
|
|
quality analysis.
|
|
|
|
Args:
|
|
r_plane,gr_plane,gb_plane,b_plane: Numpy arrays for each color plane
|
|
in the Bayer image, with pixels in the [0.0, 1.0] range.
|
|
props: Camera properties object.
|
|
cap_res: Capture result (metadata) object.
|
|
|
|
Returns:
|
|
RGB float-3 image array, with pixel values in [0.0, 1.0]
|
|
"""
|
|
# Values required for the RAW to RGB conversion.
|
|
assert(props is not None)
|
|
white_level = float(props['android.sensor.info.whiteLevel'])
|
|
black_levels = props['android.sensor.blackLevelPattern']
|
|
gains = cap_res['android.colorCorrection.gains']
|
|
ccm = cap_res['android.colorCorrection.transform']
|
|
|
|
# Reorder black levels and gains to R,Gr,Gb,B, to match the order
|
|
# of the planes.
|
|
black_levels = [get_black_level(i,props,cap_res) for i in range(4)]
|
|
gains = get_gains_in_canonical_order(props, gains)
|
|
|
|
# Convert CCM from rational to float, as numpy arrays.
|
|
ccm = numpy.array(its.objects.rational_to_float(ccm)).reshape(3,3)
|
|
|
|
# Need to scale the image back to the full [0,1] range after subtracting
|
|
# the black level from each pixel.
|
|
scale = white_level / (white_level - max(black_levels))
|
|
|
|
# Three-channel black levels, normalized to [0,1] by white_level.
|
|
black_levels = numpy.array([b/white_level for b in [
|
|
black_levels[i] for i in [0,1,3]]])
|
|
|
|
# Three-channel gains.
|
|
gains = numpy.array([gains[i] for i in [0,1,3]])
|
|
|
|
h,w = r_plane.shape[:2]
|
|
img = numpy.dstack([r_plane,(gr_plane+gb_plane)/2.0,b_plane])
|
|
img = (((img.reshape(h,w,3) - black_levels) * scale) * gains).clip(0.0,1.0)
|
|
img = numpy.dot(img.reshape(w*h,3), ccm.T).reshape(h,w,3).clip(0.0,1.0)
|
|
return img
|
|
|
|
|
|
def get_black_level(chan, props, cap_res):
|
|
"""Return the black level to use for a given capture.
|
|
|
|
Uses a dynamic value from the capture result if available, else falls back
|
|
to the static global value in the camera characteristics.
|
|
|
|
Args:
|
|
chan: The channel index, in canonical order (R, Gr, Gb, B).
|
|
props: The camera properties object.
|
|
cap_res: A capture result object.
|
|
|
|
Returns:
|
|
The black level value for the specified channel.
|
|
"""
|
|
if (cap_res.has_key('android.sensor.dynamicBlackLevel') and
|
|
cap_res['android.sensor.dynamicBlackLevel'] is not None):
|
|
black_levels = cap_res['android.sensor.dynamicBlackLevel']
|
|
else:
|
|
black_levels = props['android.sensor.blackLevelPattern']
|
|
idxs = its.image.get_canonical_cfa_order(props)
|
|
ordered_black_levels = [black_levels[i] for i in idxs]
|
|
return ordered_black_levels[chan]
|
|
|
|
|
|
def convert_yuv420_planar_to_rgb_image(y_plane, u_plane, v_plane,
|
|
w, h,
|
|
ccm_yuv_to_rgb=DEFAULT_YUV_TO_RGB_CCM,
|
|
yuv_off=DEFAULT_YUV_OFFSETS):
|
|
"""Convert a YUV420 8-bit planar image to an RGB image.
|
|
|
|
Args:
|
|
y_plane: The packed 8-bit Y plane.
|
|
u_plane: The packed 8-bit U plane.
|
|
v_plane: The packed 8-bit V plane.
|
|
w: The width of the image.
|
|
h: The height of the image.
|
|
ccm_yuv_to_rgb: (Optional) the 3x3 CCM to convert from YUV to RGB.
|
|
yuv_off: (Optional) offsets to subtract from each of Y,U,V values.
|
|
|
|
Returns:
|
|
RGB float-3 image array, with pixel values in [0.0, 1.0].
|
|
"""
|
|
y = numpy.subtract(y_plane, yuv_off[0])
|
|
u = numpy.subtract(u_plane, yuv_off[1]).view(numpy.int8)
|
|
v = numpy.subtract(v_plane, yuv_off[2]).view(numpy.int8)
|
|
u = u.reshape(h/2, w/2).repeat(2, axis=1).repeat(2, axis=0)
|
|
v = v.reshape(h/2, w/2).repeat(2, axis=1).repeat(2, axis=0)
|
|
yuv = numpy.dstack([y, u.reshape(w*h), v.reshape(w*h)])
|
|
flt = numpy.empty([h, w, 3], dtype=numpy.float32)
|
|
flt.reshape(w*h*3)[:] = yuv.reshape(h*w*3)[:]
|
|
flt = numpy.dot(flt.reshape(w*h,3), ccm_yuv_to_rgb.T).clip(0, 255)
|
|
rgb = numpy.empty([h, w, 3], dtype=numpy.uint8)
|
|
rgb.reshape(w*h*3)[:] = flt.reshape(w*h*3)[:]
|
|
return rgb.astype(numpy.float32) / 255.0
|
|
|
|
|
|
def load_rgb_image(fname):
|
|
"""Load a standard image file (JPG, PNG, etc.).
|
|
|
|
Args:
|
|
fname: The path of the file to load.
|
|
|
|
Returns:
|
|
RGB float-3 image array, with pixel values in [0.0, 1.0].
|
|
"""
|
|
img = Image.open(fname)
|
|
w = img.size[0]
|
|
h = img.size[1]
|
|
a = numpy.array(img)
|
|
if len(a.shape) == 3 and a.shape[2] == 3:
|
|
# RGB
|
|
return a.reshape(h,w,3) / 255.0
|
|
elif len(a.shape) == 2 or len(a.shape) == 3 and a.shape[2] == 1:
|
|
# Greyscale; convert to RGB
|
|
return a.reshape(h*w).repeat(3).reshape(h,w,3) / 255.0
|
|
else:
|
|
raise its.error.Error('Unsupported image type')
|
|
|
|
|
|
def load_yuv420_to_rgb_image(yuv_fname,
|
|
w, h,
|
|
layout="planar",
|
|
ccm_yuv_to_rgb=DEFAULT_YUV_TO_RGB_CCM,
|
|
yuv_off=DEFAULT_YUV_OFFSETS):
|
|
"""Load a YUV420 image file, and return as an RGB image.
|
|
|
|
Supported layouts include "planar" and "nv21". The "yuv" formatted captures
|
|
returned from the device via do_capture are in the "planar" layout; other
|
|
layouts may only be needed for loading files from other sources.
|
|
|
|
Args:
|
|
yuv_fname: The path of the YUV420 file.
|
|
w: The width of the image.
|
|
h: The height of the image.
|
|
layout: (Optional) the layout of the YUV data (as a string).
|
|
ccm_yuv_to_rgb: (Optional) the 3x3 CCM to convert from YUV to RGB.
|
|
yuv_off: (Optional) offsets to subtract from each of Y,U,V values.
|
|
|
|
Returns:
|
|
RGB float-3 image array, with pixel values in [0.0, 1.0].
|
|
"""
|
|
with open(yuv_fname, "rb") as f:
|
|
if layout == "planar":
|
|
# Plane of Y, plane of V, plane of U.
|
|
y = numpy.fromfile(f, numpy.uint8, w*h, "")
|
|
v = numpy.fromfile(f, numpy.uint8, w*h/4, "")
|
|
u = numpy.fromfile(f, numpy.uint8, w*h/4, "")
|
|
elif layout == "nv21":
|
|
# Plane of Y, plane of interleaved VUVUVU...
|
|
y = numpy.fromfile(f, numpy.uint8, w*h, "")
|
|
vu = numpy.fromfile(f, numpy.uint8, w*h/2, "")
|
|
v = vu[0::2]
|
|
u = vu[1::2]
|
|
else:
|
|
raise its.error.Error('Unsupported image layout')
|
|
return convert_yuv420_planar_to_rgb_image(
|
|
y,u,v,w,h,ccm_yuv_to_rgb,yuv_off)
|
|
|
|
|
|
def load_yuv420_planar_to_yuv_planes(yuv_fname, w, h):
|
|
"""Load a YUV420 planar image file, and return Y, U, and V plane images.
|
|
|
|
Args:
|
|
yuv_fname: The path of the YUV420 file.
|
|
w: The width of the image.
|
|
h: The height of the image.
|
|
|
|
Returns:
|
|
Separate Y, U, and V images as float-1 Numpy arrays, pixels in [0,1].
|
|
Note that pixel (0,0,0) is not black, since U,V pixels are centered at
|
|
0.5, and also that the Y and U,V plane images returned are different
|
|
sizes (due to chroma subsampling in the YUV420 format).
|
|
"""
|
|
with open(yuv_fname, "rb") as f:
|
|
y = numpy.fromfile(f, numpy.uint8, w*h, "")
|
|
v = numpy.fromfile(f, numpy.uint8, w*h/4, "")
|
|
u = numpy.fromfile(f, numpy.uint8, w*h/4, "")
|
|
return ((y.astype(numpy.float32) / 255.0).reshape(h, w, 1),
|
|
(u.astype(numpy.float32) / 255.0).reshape(h/2, w/2, 1),
|
|
(v.astype(numpy.float32) / 255.0).reshape(h/2, w/2, 1))
|
|
|
|
|
|
def decompress_jpeg_to_rgb_image(jpeg_buffer):
|
|
"""Decompress a JPEG-compressed image, returning as an RGB image.
|
|
|
|
Args:
|
|
jpeg_buffer: The JPEG stream.
|
|
|
|
Returns:
|
|
A numpy array for the RGB image, with pixels in [0,1].
|
|
"""
|
|
img = Image.open(cStringIO.StringIO(jpeg_buffer))
|
|
w = img.size[0]
|
|
h = img.size[1]
|
|
return numpy.array(img).reshape(h,w,3) / 255.0
|
|
|
|
|
|
def apply_lut_to_image(img, lut):
|
|
"""Applies a LUT to every pixel in a float image array.
|
|
|
|
Internally converts to a 16b integer image, since the LUT can work with up
|
|
to 16b->16b mappings (i.e. values in the range [0,65535]). The lut can also
|
|
have fewer than 65536 entries, however it must be sized as a power of 2
|
|
(and for smaller luts, the scale must match the bitdepth).
|
|
|
|
For a 16b lut of 65536 entries, the operation performed is:
|
|
|
|
lut[r * 65535] / 65535 -> r'
|
|
lut[g * 65535] / 65535 -> g'
|
|
lut[b * 65535] / 65535 -> b'
|
|
|
|
For a 10b lut of 1024 entries, the operation becomes:
|
|
|
|
lut[r * 1023] / 1023 -> r'
|
|
lut[g * 1023] / 1023 -> g'
|
|
lut[b * 1023] / 1023 -> b'
|
|
|
|
Args:
|
|
img: Numpy float image array, with pixel values in [0,1].
|
|
lut: Numpy table encoding a LUT, mapping 16b integer values.
|
|
|
|
Returns:
|
|
Float image array after applying LUT to each pixel.
|
|
"""
|
|
n = len(lut)
|
|
if n <= 0 or n > MAX_LUT_SIZE or (n & (n - 1)) != 0:
|
|
raise its.error.Error('Invalid arg LUT size: %d' % (n))
|
|
m = float(n-1)
|
|
return (lut[(img * m).astype(numpy.uint16)] / m).astype(numpy.float32)
|
|
|
|
|
|
def apply_matrix_to_image(img, mat):
|
|
"""Multiplies a 3x3 matrix with each float-3 image pixel.
|
|
|
|
Each pixel is considered a column vector, and is left-multiplied by
|
|
the given matrix:
|
|
|
|
[ ] r r'
|
|
[ mat ] * g -> g'
|
|
[ ] b b'
|
|
|
|
Args:
|
|
img: Numpy float image array, with pixel values in [0,1].
|
|
mat: Numpy 3x3 matrix.
|
|
|
|
Returns:
|
|
The numpy float-3 image array resulting from the matrix mult.
|
|
"""
|
|
h = img.shape[0]
|
|
w = img.shape[1]
|
|
img2 = numpy.empty([h, w, 3], dtype=numpy.float32)
|
|
img2.reshape(w*h*3)[:] = (numpy.dot(img.reshape(h*w, 3), mat.T)
|
|
).reshape(w*h*3)[:]
|
|
return img2
|
|
|
|
|
|
def get_image_patch(img, xnorm, ynorm, wnorm, hnorm):
|
|
"""Get a patch (tile) of an image.
|
|
|
|
Args:
|
|
img: Numpy float image array, with pixel values in [0,1].
|
|
xnorm,ynorm,wnorm,hnorm: Normalized (in [0,1]) coords for the tile.
|
|
|
|
Returns:
|
|
Float image array of the patch.
|
|
"""
|
|
hfull = img.shape[0]
|
|
wfull = img.shape[1]
|
|
xtile = math.ceil(xnorm * wfull)
|
|
ytile = math.ceil(ynorm * hfull)
|
|
wtile = math.floor(wnorm * wfull)
|
|
htile = math.floor(hnorm * hfull)
|
|
return img[ytile:ytile+htile,xtile:xtile+wtile,:].copy()
|
|
|
|
|
|
def compute_image_means(img):
|
|
"""Calculate the mean of each color channel in the image.
|
|
|
|
Args:
|
|
img: Numpy float image array, with pixel values in [0,1].
|
|
|
|
Returns:
|
|
A list of mean values, one per color channel in the image.
|
|
"""
|
|
means = []
|
|
chans = img.shape[2]
|
|
for i in xrange(chans):
|
|
means.append(numpy.mean(img[:,:,i], dtype=numpy.float64))
|
|
return means
|
|
|
|
|
|
def compute_image_variances(img):
|
|
"""Calculate the variance of each color channel in the image.
|
|
|
|
Args:
|
|
img: Numpy float image array, with pixel values in [0,1].
|
|
|
|
Returns:
|
|
A list of mean values, one per color channel in the image.
|
|
"""
|
|
variances = []
|
|
chans = img.shape[2]
|
|
for i in xrange(chans):
|
|
variances.append(numpy.var(img[:,:,i], dtype=numpy.float64))
|
|
return variances
|
|
|
|
|
|
def compute_image_snrs(img):
|
|
"""Calculate the SNR (db) of each color channel in the image.
|
|
|
|
Args:
|
|
img: Numpy float image array, with pixel values in [0,1].
|
|
|
|
Returns:
|
|
A list of SNR value, one per color channel in the image.
|
|
"""
|
|
means = compute_image_means(img)
|
|
variances = compute_image_variances(img)
|
|
std_devs = [math.sqrt(v) for v in variances]
|
|
snr = [20 * math.log10(m/s) for m,s in zip(means, std_devs)]
|
|
return snr
|
|
|
|
|
|
def write_image(img, fname, apply_gamma=False):
|
|
"""Save a float-3 numpy array image to a file.
|
|
|
|
Supported formats: PNG, JPEG, and others; see PIL docs for more.
|
|
|
|
Image can be 3-channel, which is interpreted as RGB, or can be 1-channel,
|
|
which is greyscale.
|
|
|
|
Can optionally specify that the image should be gamma-encoded prior to
|
|
writing it out; this should be done if the image contains linear pixel
|
|
values, to make the image look "normal".
|
|
|
|
Args:
|
|
img: Numpy image array data.
|
|
fname: Path of file to save to; the extension specifies the format.
|
|
apply_gamma: (Optional) apply gamma to the image prior to writing it.
|
|
"""
|
|
if apply_gamma:
|
|
img = apply_lut_to_image(img, DEFAULT_GAMMA_LUT)
|
|
(h, w, chans) = img.shape
|
|
if chans == 3:
|
|
Image.fromarray((img * 255.0).astype(numpy.uint8), "RGB").save(fname)
|
|
elif chans == 1:
|
|
img3 = (img * 255.0).astype(numpy.uint8).repeat(3).reshape(h,w,3)
|
|
Image.fromarray(img3, "RGB").save(fname)
|
|
else:
|
|
raise its.error.Error('Unsupported image type')
|
|
|
|
|
|
def downscale_image(img, f):
|
|
"""Shrink an image by a given integer factor.
|
|
|
|
This function computes output pixel values by averaging over rectangular
|
|
regions of the input image; it doesn't skip or sample pixels, and all input
|
|
image pixels are evenly weighted.
|
|
|
|
If the downscaling factor doesn't cleanly divide the width and/or height,
|
|
then the remaining pixels on the right or bottom edge are discarded prior
|
|
to the downscaling.
|
|
|
|
Args:
|
|
img: The input image as an ndarray.
|
|
f: The downscaling factor, which should be an integer.
|
|
|
|
Returns:
|
|
The new (downscaled) image, as an ndarray.
|
|
"""
|
|
h,w,chans = img.shape
|
|
f = int(f)
|
|
assert(f >= 1)
|
|
h = (h/f)*f
|
|
w = (w/f)*f
|
|
img = img[0:h:,0:w:,::]
|
|
chs = []
|
|
for i in xrange(chans):
|
|
ch = img.reshape(h*w*chans)[i::chans].reshape(h,w)
|
|
ch = ch.reshape(h,w/f,f).mean(2).reshape(h,w/f)
|
|
ch = ch.T.reshape(w/f,h/f,f).mean(2).T.reshape(h/f,w/f)
|
|
chs.append(ch.reshape(h*w/(f*f)))
|
|
img = numpy.vstack(chs).T.reshape(h/f,w/f,chans)
|
|
return img
|
|
|
|
|
|
def compute_image_sharpness(img):
|
|
"""Calculate the sharpness of input image.
|
|
|
|
Args:
|
|
img: Numpy float RGB/luma image array, with pixel values in [0,1].
|
|
|
|
Returns:
|
|
A sharpness estimation value based on the average of gradient magnitude.
|
|
Larger value means the image is sharper.
|
|
"""
|
|
chans = img.shape[2]
|
|
assert(chans == 1 or chans == 3)
|
|
if (chans == 1):
|
|
luma = img[:, :, 0]
|
|
elif (chans == 3):
|
|
luma = 0.299 * img[:,:,0] + 0.587 * img[:,:,1] + 0.114 * img[:,:,2]
|
|
|
|
[gy, gx] = numpy.gradient(luma)
|
|
return numpy.average(numpy.sqrt(gy*gy + gx*gx))
|
|
|
|
def normalize_img(img):
|
|
"""Normalize the image values to between 0 and 1.
|
|
|
|
Args:
|
|
img: 2-D numpy array of image values
|
|
Returns:
|
|
Normalized image
|
|
"""
|
|
return (img - numpy.amin(img))/(numpy.amax(img) - numpy.amin(img))
|
|
|
|
def flip_mirror_img_per_argv(img):
|
|
"""Flip/mirror an image if "flip" or "mirror" is in argv
|
|
|
|
Args:
|
|
img: 2-D numpy array of image values
|
|
Returns:
|
|
Flip/mirrored image
|
|
"""
|
|
img_out = img
|
|
if "flip" in sys.argv:
|
|
img_out = numpy.flipud(img_out)
|
|
if "mirror" in sys.argv:
|
|
img_out = numpy.fliplr(img_out)
|
|
return img_out
|
|
|
|
def stationary_lens_cap(cam, req, fmt):
|
|
"""Take up to NUM_TRYS caps and save the 1st one with lens stationary.
|
|
|
|
Args:
|
|
cam: open device session
|
|
req: capture request
|
|
fmt: format for capture
|
|
|
|
Returns:
|
|
capture
|
|
"""
|
|
trys = 0
|
|
done = False
|
|
reqs = [req] * NUM_FRAMES
|
|
while not done:
|
|
print 'Waiting for lens to move to correct location...'
|
|
cap = cam.do_capture(reqs, fmt)
|
|
done = (cap[NUM_FRAMES-1]['metadata']['android.lens.state'] == 0)
|
|
print ' status: ', done
|
|
trys += 1
|
|
if trys == NUM_TRYS:
|
|
raise its.error.Error('Cannot settle lens after %d trys!' % trys)
|
|
return cap[NUM_FRAMES-1]
|
|
|
|
class __UnitTest(unittest.TestCase):
|
|
"""Run a suite of unit tests on this module.
|
|
"""
|
|
|
|
# TODO: Add more unit tests.
|
|
|
|
def test_apply_matrix_to_image(self):
|
|
"""Unit test for apply_matrix_to_image.
|
|
|
|
Test by using a canned set of values on a 1x1 pixel image.
|
|
|
|
[ 1 2 3 ] [ 0.1 ] [ 1.4 ]
|
|
[ 4 5 6 ] * [ 0.2 ] = [ 3.2 ]
|
|
[ 7 8 9 ] [ 0.3 ] [ 5.0 ]
|
|
mat x y
|
|
"""
|
|
mat = numpy.array([[1,2,3], [4,5,6], [7,8,9]])
|
|
x = numpy.array([0.1,0.2,0.3]).reshape(1,1,3)
|
|
y = apply_matrix_to_image(x, mat).reshape(3).tolist()
|
|
y_ref = [1.4,3.2,5.0]
|
|
passed = all([math.fabs(y[i] - y_ref[i]) < 0.001 for i in xrange(3)])
|
|
self.assertTrue(passed)
|
|
|
|
def test_apply_lut_to_image(self):
|
|
"""Unit test for apply_lut_to_image.
|
|
|
|
Test by using a canned set of values on a 1x1 pixel image. The LUT will
|
|
simply double the value of the index:
|
|
|
|
lut[x] = 2*x
|
|
"""
|
|
lut = numpy.array([2*i for i in xrange(65536)])
|
|
x = numpy.array([0.1,0.2,0.3]).reshape(1,1,3)
|
|
y = apply_lut_to_image(x, lut).reshape(3).tolist()
|
|
y_ref = [0.2,0.4,0.6]
|
|
passed = all([math.fabs(y[i] - y_ref[i]) < 0.001 for i in xrange(3)])
|
|
self.assertTrue(passed)
|
|
|
|
def test_unpack_raw10_image(self):
|
|
"""Unit test for unpack_raw10_image.
|
|
|
|
RAW10 bit packing format
|
|
bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
|
|
Byte 0: P0[9] P0[8] P0[7] P0[6] P0[5] P0[4] P0[3] P0[2]
|
|
Byte 1: P1[9] P1[8] P1[7] P1[6] P1[5] P1[4] P1[3] P1[2]
|
|
Byte 2: P2[9] P2[8] P2[7] P2[6] P2[5] P2[4] P2[3] P2[2]
|
|
Byte 3: P3[9] P3[8] P3[7] P3[6] P3[5] P3[4] P3[3] P3[2]
|
|
Byte 4: P3[1] P3[0] P2[1] P2[0] P1[1] P1[0] P0[1] P0[0]
|
|
"""
|
|
# test by using a random 4x4 10-bit image
|
|
H = 4
|
|
W = 4
|
|
check_list = random.sample(range(0, 1024), H*W)
|
|
img_check = numpy.array(check_list).reshape(H, W)
|
|
# pack bits
|
|
for row_start in range(0, len(check_list), W):
|
|
msbs = []
|
|
lsbs = ""
|
|
for pixel in range(W):
|
|
val = numpy.binary_repr(check_list[row_start+pixel], 10)
|
|
msbs.append(int(val[:8], base=2))
|
|
lsbs = val[8:] + lsbs
|
|
packed = msbs
|
|
packed.append(int(lsbs, base=2))
|
|
chunk_raw10 = numpy.array(packed, dtype="uint8").reshape(1, 5)
|
|
if row_start == 0:
|
|
img_raw10 = chunk_raw10
|
|
else:
|
|
img_raw10 = numpy.vstack((img_raw10, chunk_raw10))
|
|
# unpack and check against original
|
|
self.assertTrue(numpy.array_equal(unpack_raw10_image(img_raw10),
|
|
img_check))
|
|
|
|
if __name__ == "__main__":
|
|
unittest.main()
|