from pydantic import BaseModel, Field from typing import List, Dict, Optional class PresetConfig(BaseModel): """API预设配置""" name: str = Field(..., description="预设名称(唯一标识)") api_base: str = Field(..., description="API基础地址") api_key: str = Field(..., description="API密钥") model_name: str = Field(..., description="模型名称") max_tokens: int = Field(2048, description="最大响应token数") temperature: float = Field(0.7, description="生成温度(0-2]") class ScopedConfig(BaseModel): """LLM Chat Plugin配置""" api_presets: List[PresetConfig] = Field(...,description="API预设列表(至少配置1个预设)") history_size: int = Field(20, description="LLM上下文消息保留数量") past_events_size : int = Field(10, description="触发回复时发送的群消息数量") request_timeout: int = Field(30, description="API请求超时时间(秒)") default_preset: str = Field("off", description="默认使用的预设名称") random_trigger_prob: float = Field(0.05, ge=0.0, le=1.0, description="随机触发概率(0-1]") storage_path: str = Field("data/llmchat_state.json", description="状态存储文件路径") default_prompt: str = Field("你的回答应该尽量简洁、幽默、可以使用一些语气词、颜文字。你应该拒绝回答任何政治相关的问题。", description="默认提示词") class Config(BaseModel): llmchat: ScopedConfig