1518 lines
38 KiB
C
1518 lines
38 KiB
C
/*
|
|
* This file is part of ltrace.
|
|
* Copyright (C) 2007,2011,2012,2013,2014 Petr Machata, Red Hat Inc.
|
|
* Copyright (C) 2010 Joe Damato
|
|
* Copyright (C) 1998,2002,2003,2004,2008,2009 Juan Cespedes
|
|
* Copyright (C) 2006 Ian Wienand
|
|
*
|
|
* This program is free software; you can redistribute it and/or
|
|
* modify it under the terms of the GNU General Public License as
|
|
* published by the Free Software Foundation; either version 2 of the
|
|
* License, or (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
|
|
* 02110-1301 USA
|
|
*/
|
|
|
|
#include "config.h"
|
|
|
|
#include <asm/unistd.h>
|
|
#include <assert.h>
|
|
#include <errno.h>
|
|
#include <gelf.h>
|
|
#include <inttypes.h>
|
|
#include <stdbool.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <sys/types.h>
|
|
#include <sys/wait.h>
|
|
#include <unistd.h>
|
|
|
|
#ifdef HAVE_LIBSELINUX
|
|
# include <selinux/selinux.h>
|
|
#endif
|
|
|
|
#include "linux-gnu/trace-defs.h"
|
|
#include "linux-gnu/trace.h"
|
|
#include "backend.h"
|
|
#include "breakpoint.h"
|
|
#include "debug.h"
|
|
#include "events.h"
|
|
#include "fetch.h"
|
|
#include "ltrace-elf.h"
|
|
#include "options.h"
|
|
#include "proc.h"
|
|
#include "prototype.h"
|
|
#include "ptrace.h"
|
|
#include "type.h"
|
|
#include "value.h"
|
|
|
|
void
|
|
trace_fail_warning(pid_t pid)
|
|
{
|
|
/* This was adapted from GDB. */
|
|
#ifdef HAVE_LIBSELINUX
|
|
static int checked = 0;
|
|
if (checked)
|
|
return;
|
|
checked = 1;
|
|
|
|
/* -1 is returned for errors, 0 if it has no effect, 1 if
|
|
* PTRACE_ATTACH is forbidden. */
|
|
if (security_get_boolean_active("deny_ptrace") == 1)
|
|
fprintf(stderr,
|
|
"The SELinux boolean 'deny_ptrace' is enabled, which may prevent ltrace from\n"
|
|
"tracing other processes. You can disable this process attach protection by\n"
|
|
"issuing 'setsebool deny_ptrace=0' in the superuser context.\n");
|
|
#endif /* HAVE_LIBSELINUX */
|
|
}
|
|
|
|
void
|
|
trace_me(void)
|
|
{
|
|
debug(DEBUG_PROCESS, "trace_me: pid=%d", getpid());
|
|
if (ptrace(PTRACE_TRACEME, 0, 0, 0) < 0) {
|
|
perror("PTRACE_TRACEME");
|
|
trace_fail_warning(getpid());
|
|
exit(1);
|
|
}
|
|
}
|
|
|
|
/* There's a (hopefully) brief period of time after the child process
|
|
* forks when we can't trace it yet. Here we wait for kernel to
|
|
* prepare the process. */
|
|
int
|
|
wait_for_proc(pid_t pid)
|
|
{
|
|
/* man ptrace: PTRACE_ATTACH attaches to the process specified
|
|
in pid. The child is sent a SIGSTOP, but will not
|
|
necessarily have stopped by the completion of this call;
|
|
use wait() to wait for the child to stop. */
|
|
if (waitpid(pid, NULL, __WALL) != pid) {
|
|
perror ("trace_pid: waitpid");
|
|
return -1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
trace_pid(pid_t pid)
|
|
{
|
|
debug(DEBUG_PROCESS, "trace_pid: pid=%d", pid);
|
|
/* This shouldn't emit error messages, as there are legitimate
|
|
* reasons that the PID can't be attached: like it may have
|
|
* already ended. */
|
|
if (ptrace(PTRACE_ATTACH, pid, 0, 0) < 0)
|
|
return -1;
|
|
|
|
return wait_for_proc(pid);
|
|
}
|
|
|
|
void
|
|
trace_set_options(struct process *proc)
|
|
{
|
|
if (proc->tracesysgood & 0x80)
|
|
return;
|
|
|
|
pid_t pid = proc->pid;
|
|
debug(DEBUG_PROCESS, "trace_set_options: pid=%d", pid);
|
|
|
|
long options = PTRACE_O_TRACESYSGOOD | PTRACE_O_TRACEFORK |
|
|
PTRACE_O_TRACEVFORK | PTRACE_O_TRACECLONE |
|
|
PTRACE_O_TRACEEXEC;
|
|
if (ptrace(PTRACE_SETOPTIONS, pid, 0, (void *)options) < 0 &&
|
|
ptrace(PTRACE_OLDSETOPTIONS, pid, 0, (void *)options) < 0) {
|
|
perror("PTRACE_SETOPTIONS");
|
|
return;
|
|
}
|
|
proc->tracesysgood |= 0x80;
|
|
}
|
|
|
|
void
|
|
untrace_pid(pid_t pid) {
|
|
debug(DEBUG_PROCESS, "untrace_pid: pid=%d", pid);
|
|
ptrace(PTRACE_DETACH, pid, 0, 0);
|
|
}
|
|
|
|
void
|
|
continue_after_signal(pid_t pid, int signum)
|
|
{
|
|
debug(DEBUG_PROCESS, "continue_after_signal: pid=%d, signum=%d",
|
|
pid, signum);
|
|
ptrace(PTRACE_SYSCALL, pid, 0, (void *)(uintptr_t)signum);
|
|
}
|
|
|
|
static enum ecb_status
|
|
event_for_pid(Event *event, void *data)
|
|
{
|
|
if (event->proc != NULL && event->proc->pid == (pid_t)(uintptr_t)data)
|
|
return ECB_YIELD;
|
|
return ECB_CONT;
|
|
}
|
|
|
|
static int
|
|
have_events_for(pid_t pid)
|
|
{
|
|
return each_qd_event(event_for_pid, (void *)(uintptr_t)pid) != NULL;
|
|
}
|
|
|
|
void
|
|
continue_process(pid_t pid)
|
|
{
|
|
debug(DEBUG_PROCESS, "continue_process: pid=%d", pid);
|
|
|
|
/* Only really continue the process if there are no events in
|
|
the queue for this process. Otherwise just wait for the
|
|
other events to arrive. */
|
|
if (!have_events_for(pid))
|
|
/* We always trace syscalls to control fork(),
|
|
* clone(), execve()... */
|
|
ptrace(PTRACE_SYSCALL, pid, 0, 0);
|
|
else
|
|
debug(DEBUG_PROCESS,
|
|
"putting off the continue, events in que.");
|
|
}
|
|
|
|
static struct pid_task *
|
|
get_task_info(struct pid_set *pids, pid_t pid)
|
|
{
|
|
assert(pid != 0);
|
|
size_t i;
|
|
for (i = 0; i < pids->count; ++i)
|
|
if (pids->tasks[i].pid == pid)
|
|
return &pids->tasks[i];
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static struct pid_task *
|
|
add_task_info(struct pid_set *pids, pid_t pid)
|
|
{
|
|
if (pids->count == pids->alloc) {
|
|
size_t ns = (2 * pids->alloc) ?: 4;
|
|
struct pid_task *n = realloc(pids->tasks,
|
|
sizeof(*pids->tasks) * ns);
|
|
if (n == NULL)
|
|
return NULL;
|
|
pids->tasks = n;
|
|
pids->alloc = ns;
|
|
}
|
|
struct pid_task * task_info = &pids->tasks[pids->count++];
|
|
memset(task_info, 0, sizeof(*task_info));
|
|
task_info->pid = pid;
|
|
return task_info;
|
|
}
|
|
|
|
static enum callback_status
|
|
task_stopped(struct process *task, void *data)
|
|
{
|
|
enum process_status st = process_status(task->pid);
|
|
if (data != NULL)
|
|
*(enum process_status *)data = st;
|
|
|
|
/* If the task is already stopped, don't worry about it.
|
|
* Likewise if it managed to become a zombie or terminate in
|
|
* the meantime. This can happen when the whole thread group
|
|
* is terminating. */
|
|
switch (st) {
|
|
case PS_INVALID:
|
|
case PS_TRACING_STOP:
|
|
case PS_ZOMBIE:
|
|
return CBS_CONT;
|
|
case PS_SLEEPING:
|
|
case PS_STOP:
|
|
case PS_OTHER:
|
|
return CBS_STOP;
|
|
}
|
|
|
|
abort ();
|
|
}
|
|
|
|
/* Task is blocked if it's stopped, or if it's a vfork parent. */
|
|
static enum callback_status
|
|
task_blocked(struct process *task, void *data)
|
|
{
|
|
struct pid_set *pids = data;
|
|
struct pid_task *task_info = get_task_info(pids, task->pid);
|
|
if (task_info != NULL
|
|
&& task_info->vforked)
|
|
return CBS_CONT;
|
|
|
|
return task_stopped(task, NULL);
|
|
}
|
|
|
|
static Event *process_vfork_on_event(struct event_handler *super, Event *event);
|
|
|
|
static enum callback_status
|
|
task_vforked(struct process *task, void *data)
|
|
{
|
|
if (task->event_handler != NULL
|
|
&& task->event_handler->on_event == &process_vfork_on_event)
|
|
return CBS_STOP;
|
|
return CBS_CONT;
|
|
}
|
|
|
|
static int
|
|
is_vfork_parent(struct process *task)
|
|
{
|
|
return each_task(task->leader, NULL, &task_vforked, NULL) != NULL;
|
|
}
|
|
|
|
static enum callback_status
|
|
send_sigstop(struct process *task, void *data)
|
|
{
|
|
struct process *leader = task->leader;
|
|
struct pid_set *pids = data;
|
|
|
|
/* Look for pre-existing task record, or add new. */
|
|
struct pid_task *task_info = get_task_info(pids, task->pid);
|
|
if (task_info == NULL)
|
|
task_info = add_task_info(pids, task->pid);
|
|
if (task_info == NULL) {
|
|
perror("send_sigstop: add_task_info");
|
|
destroy_event_handler(leader);
|
|
/* Signal failure upwards. */
|
|
return CBS_STOP;
|
|
}
|
|
|
|
/* This task still has not been attached to. It should be
|
|
stopped by the kernel. */
|
|
if (task->state == STATE_BEING_CREATED)
|
|
return CBS_CONT;
|
|
|
|
/* Don't bother sending SIGSTOP if we are already stopped, or
|
|
* if we sent the SIGSTOP already, which happens when we are
|
|
* handling "onexit" and inherited the handler from breakpoint
|
|
* re-enablement. */
|
|
enum process_status st;
|
|
if (task_stopped(task, &st) == CBS_CONT)
|
|
return CBS_CONT;
|
|
if (task_info->sigstopped) {
|
|
if (!task_info->delivered)
|
|
return CBS_CONT;
|
|
task_info->delivered = 0;
|
|
}
|
|
|
|
/* Also don't attempt to stop the process if it's a parent of
|
|
* vforked process. We set up event handler specially to hint
|
|
* us. In that case parent is in D state, which we use to
|
|
* weed out unnecessary looping. */
|
|
if (st == PS_SLEEPING
|
|
&& is_vfork_parent(task)) {
|
|
task_info->vforked = 1;
|
|
return CBS_CONT;
|
|
}
|
|
|
|
if (task_kill(task->pid, SIGSTOP) >= 0) {
|
|
debug(DEBUG_PROCESS, "send SIGSTOP to %d", task->pid);
|
|
task_info->sigstopped = 1;
|
|
} else
|
|
fprintf(stderr,
|
|
"Warning: couldn't send SIGSTOP to %d\n", task->pid);
|
|
|
|
return CBS_CONT;
|
|
}
|
|
|
|
/* On certain kernels, detaching right after a singlestep causes the
|
|
tracee to be killed with a SIGTRAP (that even though the singlestep
|
|
was properly caught by waitpid. The ugly workaround is to put a
|
|
breakpoint where IP points and let the process continue. After
|
|
this the breakpoint can be retracted and the process detached. */
|
|
static void
|
|
ugly_workaround(struct process *proc)
|
|
{
|
|
arch_addr_t ip = get_instruction_pointer(proc);
|
|
struct breakpoint *found;
|
|
if (DICT_FIND_VAL(proc->leader->breakpoints, &ip, &found) < 0) {
|
|
insert_breakpoint_at(proc, ip, NULL);
|
|
} else {
|
|
assert(found != NULL);
|
|
enable_breakpoint(proc, found);
|
|
}
|
|
ptrace(PTRACE_CONT, proc->pid, 0, 0);
|
|
}
|
|
|
|
static void
|
|
process_stopping_done(struct process_stopping_handler *self,
|
|
struct process *leader)
|
|
{
|
|
debug(DEBUG_PROCESS, "process stopping done %d",
|
|
self->task_enabling_breakpoint->pid);
|
|
|
|
if (!self->exiting) {
|
|
size_t i;
|
|
for (i = 0; i < self->pids.count; ++i)
|
|
if (self->pids.tasks[i].pid != 0
|
|
&& (self->pids.tasks[i].delivered
|
|
|| self->pids.tasks[i].sysret))
|
|
continue_process(self->pids.tasks[i].pid);
|
|
continue_process(self->task_enabling_breakpoint->pid);
|
|
}
|
|
|
|
if (self->exiting) {
|
|
ugly_workaround:
|
|
self->state = PSH_UGLY_WORKAROUND;
|
|
ugly_workaround(self->task_enabling_breakpoint);
|
|
} else {
|
|
switch ((self->ugly_workaround_p)(self)) {
|
|
case CBS_FAIL:
|
|
/* xxx handle me */
|
|
case CBS_STOP:
|
|
break;
|
|
case CBS_CONT:
|
|
goto ugly_workaround;
|
|
}
|
|
destroy_event_handler(leader);
|
|
}
|
|
}
|
|
|
|
/* Before we detach, we need to make sure that task's IP is on the
|
|
* edge of an instruction. So for tasks that have a breakpoint event
|
|
* in the queue, we adjust the instruction pointer, just like
|
|
* continue_after_breakpoint does. */
|
|
static enum ecb_status
|
|
undo_breakpoint(Event *event, void *data)
|
|
{
|
|
if (event != NULL
|
|
&& event->proc->leader == data
|
|
&& event->type == EVENT_BREAKPOINT)
|
|
set_instruction_pointer(event->proc, event->e_un.brk_addr);
|
|
return ECB_CONT;
|
|
}
|
|
|
|
static enum callback_status
|
|
untrace_task(struct process *task, void *data)
|
|
{
|
|
if (task != data)
|
|
untrace_pid(task->pid);
|
|
return CBS_CONT;
|
|
}
|
|
|
|
static enum callback_status
|
|
remove_task(struct process *task, void *data)
|
|
{
|
|
/* Don't untrace leader just yet. */
|
|
if (task != data)
|
|
remove_process(task);
|
|
return CBS_CONT;
|
|
}
|
|
|
|
static enum callback_status
|
|
retract_breakpoint_cb(struct process *proc, struct breakpoint *bp, void *data)
|
|
{
|
|
breakpoint_on_retract(bp, proc);
|
|
return CBS_CONT;
|
|
}
|
|
|
|
static void
|
|
detach_process(struct process *leader)
|
|
{
|
|
each_qd_event(&undo_breakpoint, leader);
|
|
disable_all_breakpoints(leader);
|
|
proc_each_breakpoint(leader, NULL, retract_breakpoint_cb, NULL);
|
|
|
|
/* Now untrace the process, if it was attached to by -p. */
|
|
struct opt_p_t *it;
|
|
for (it = opt_p; it != NULL; it = it->next) {
|
|
struct process *proc = pid2proc(it->pid);
|
|
if (proc == NULL)
|
|
continue;
|
|
if (proc->leader == leader) {
|
|
each_task(leader, NULL, &untrace_task, NULL);
|
|
break;
|
|
}
|
|
}
|
|
each_task(leader, NULL, &remove_task, leader);
|
|
destroy_event_handler(leader);
|
|
remove_task(leader, NULL);
|
|
}
|
|
|
|
static void
|
|
handle_stopping_event(struct pid_task *task_info, Event **eventp)
|
|
{
|
|
/* Mark all events, so that we know whom to SIGCONT later. */
|
|
if (task_info != NULL)
|
|
task_info->got_event = 1;
|
|
|
|
Event *event = *eventp;
|
|
|
|
/* In every state, sink SIGSTOP events for tasks that it was
|
|
* sent to. */
|
|
if (task_info != NULL
|
|
&& event->type == EVENT_SIGNAL
|
|
&& event->e_un.signum == SIGSTOP) {
|
|
debug(DEBUG_PROCESS, "SIGSTOP delivered to %d", task_info->pid);
|
|
if (task_info->sigstopped
|
|
&& !task_info->delivered) {
|
|
task_info->delivered = 1;
|
|
*eventp = NULL; // sink the event
|
|
} else
|
|
fprintf(stderr, "suspicious: %d got SIGSTOP, but "
|
|
"sigstopped=%d and delivered=%d\n",
|
|
task_info->pid, task_info->sigstopped,
|
|
task_info->delivered);
|
|
}
|
|
}
|
|
|
|
/* Some SIGSTOPs may have not been delivered to their respective tasks
|
|
* yet. They are still in the queue. If we have seen an event for
|
|
* that process, continue it, so that the SIGSTOP can be delivered and
|
|
* caught by ltrace. We don't mind that the process is after
|
|
* breakpoint (and therefore potentially doesn't have aligned IP),
|
|
* because the signal will be delivered without the process actually
|
|
* starting. */
|
|
static void
|
|
continue_for_sigstop_delivery(struct pid_set *pids)
|
|
{
|
|
size_t i;
|
|
for (i = 0; i < pids->count; ++i) {
|
|
if (pids->tasks[i].pid != 0
|
|
&& pids->tasks[i].sigstopped
|
|
&& !pids->tasks[i].delivered
|
|
&& pids->tasks[i].got_event) {
|
|
debug(DEBUG_PROCESS, "continue %d for SIGSTOP delivery",
|
|
pids->tasks[i].pid);
|
|
ptrace(PTRACE_SYSCALL, pids->tasks[i].pid, 0, 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int
|
|
event_exit_p(Event *event)
|
|
{
|
|
return event != NULL && (event->type == EVENT_EXIT
|
|
|| event->type == EVENT_EXIT_SIGNAL);
|
|
}
|
|
|
|
static int
|
|
event_exit_or_none_p(Event *event)
|
|
{
|
|
return event == NULL || event_exit_p(event)
|
|
|| event->type == EVENT_NONE;
|
|
}
|
|
|
|
static int
|
|
await_sigstop_delivery(struct pid_set *pids, struct pid_task *task_info,
|
|
Event *event)
|
|
{
|
|
/* If we still didn't get our SIGSTOP, continue the process
|
|
* and carry on. */
|
|
if (event != NULL && !event_exit_or_none_p(event)
|
|
&& task_info != NULL && task_info->sigstopped) {
|
|
debug(DEBUG_PROCESS, "continue %d for SIGSTOP delivery",
|
|
task_info->pid);
|
|
/* We should get the signal the first thing
|
|
* after this, so it should be OK to continue
|
|
* even if we are over a breakpoint. */
|
|
ptrace(PTRACE_SYSCALL, task_info->pid, 0, 0);
|
|
|
|
} else {
|
|
/* If all SIGSTOPs were delivered, uninstall the
|
|
* handler and continue everyone. */
|
|
/* XXX I suspect that we should check tasks that are
|
|
* still around. Is things are now, there should be a
|
|
* race between waiting for everyone to stop and one
|
|
* of the tasks exiting. */
|
|
int all_clear = 1;
|
|
size_t i;
|
|
for (i = 0; i < pids->count; ++i)
|
|
if (pids->tasks[i].pid != 0
|
|
&& pids->tasks[i].sigstopped
|
|
&& !pids->tasks[i].delivered) {
|
|
all_clear = 0;
|
|
break;
|
|
}
|
|
return all_clear;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
all_stops_accountable(struct pid_set *pids)
|
|
{
|
|
size_t i;
|
|
for (i = 0; i < pids->count; ++i)
|
|
if (pids->tasks[i].pid != 0
|
|
&& !pids->tasks[i].got_event
|
|
&& !have_events_for(pids->tasks[i].pid))
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
#ifndef ARCH_HAVE_SW_SINGLESTEP
|
|
enum sw_singlestep_status
|
|
arch_sw_singlestep(struct process *proc, struct breakpoint *bp,
|
|
int (*add_cb)(arch_addr_t, struct sw_singlestep_data *),
|
|
struct sw_singlestep_data *data)
|
|
{
|
|
return SWS_HW;
|
|
}
|
|
#endif
|
|
|
|
static Event *process_stopping_on_event(struct event_handler *super,
|
|
Event *event);
|
|
|
|
static void
|
|
remove_sw_breakpoints(struct process *proc)
|
|
{
|
|
struct process_stopping_handler *self
|
|
= (void *)proc->leader->event_handler;
|
|
assert(self != NULL);
|
|
assert(self->super.on_event == process_stopping_on_event);
|
|
|
|
int ct = sizeof(self->sws_bps) / sizeof(*self->sws_bps);
|
|
int i;
|
|
for (i = 0; i < ct; ++i)
|
|
if (self->sws_bps[i] != NULL) {
|
|
delete_breakpoint_at(proc, self->sws_bps[i]->addr);
|
|
self->sws_bps[i] = NULL;
|
|
}
|
|
}
|
|
|
|
static void
|
|
sw_singlestep_bp_on_hit(struct breakpoint *bp, struct process *proc)
|
|
{
|
|
remove_sw_breakpoints(proc);
|
|
}
|
|
|
|
struct sw_singlestep_data {
|
|
struct process_stopping_handler *self;
|
|
};
|
|
|
|
static int
|
|
sw_singlestep_add_bp(arch_addr_t addr, struct sw_singlestep_data *data)
|
|
{
|
|
struct process_stopping_handler *self = data->self;
|
|
struct process *proc = self->task_enabling_breakpoint;
|
|
|
|
int ct = sizeof(self->sws_bps) / sizeof(*self->sws_bps);
|
|
int i;
|
|
for (i = 0; i < ct; ++i)
|
|
if (self->sws_bps[i] == NULL) {
|
|
static struct bp_callbacks cbs = {
|
|
.on_hit = sw_singlestep_bp_on_hit,
|
|
};
|
|
struct breakpoint *bp
|
|
= insert_breakpoint_at(proc, addr, NULL);
|
|
breakpoint_set_callbacks(bp, &cbs);
|
|
self->sws_bps[i] = bp;
|
|
return 0;
|
|
}
|
|
|
|
assert(!"Too many sw singlestep breakpoints!");
|
|
abort();
|
|
}
|
|
|
|
static int
|
|
singlestep(struct process_stopping_handler *self)
|
|
{
|
|
size_t i;
|
|
for (i = 0; i < sizeof(self->sws_bps) / sizeof(*self->sws_bps); ++i)
|
|
self->sws_bps[i] = NULL;
|
|
|
|
struct sw_singlestep_data data = { self };
|
|
switch (arch_sw_singlestep(self->task_enabling_breakpoint,
|
|
self->breakpoint_being_enabled,
|
|
&sw_singlestep_add_bp, &data)) {
|
|
case SWS_HW:
|
|
/* Otherwise do the default action: singlestep. */
|
|
debug(1, "PTRACE_SINGLESTEP");
|
|
if (ptrace(PTRACE_SINGLESTEP,
|
|
self->task_enabling_breakpoint->pid, 0, 0)) {
|
|
perror("PTRACE_SINGLESTEP");
|
|
return -1;
|
|
}
|
|
return 0;
|
|
|
|
case SWS_OK:
|
|
return 0;
|
|
|
|
case SWS_FAIL:
|
|
return -1;
|
|
}
|
|
abort();
|
|
}
|
|
|
|
static void
|
|
post_singlestep(struct process_stopping_handler *self,
|
|
struct Event **eventp)
|
|
{
|
|
continue_for_sigstop_delivery(&self->pids);
|
|
|
|
if (*eventp != NULL && (*eventp)->type == EVENT_BREAKPOINT)
|
|
*eventp = NULL; // handled
|
|
|
|
struct process *proc = self->task_enabling_breakpoint;
|
|
|
|
remove_sw_breakpoints(proc);
|
|
self->breakpoint_being_enabled = NULL;
|
|
}
|
|
|
|
static void
|
|
singlestep_error(struct process_stopping_handler *self)
|
|
{
|
|
struct process *teb = self->task_enabling_breakpoint;
|
|
struct breakpoint *sbp = self->breakpoint_being_enabled;
|
|
fprintf(stderr, "%d couldn't continue when handling %s (%p) at %p\n",
|
|
teb->pid, breakpoint_name(sbp), sbp->addr,
|
|
get_instruction_pointer(teb));
|
|
delete_breakpoint_at(teb->leader, sbp->addr);
|
|
}
|
|
|
|
static void
|
|
pt_continue(struct process_stopping_handler *self)
|
|
{
|
|
struct process *teb = self->task_enabling_breakpoint;
|
|
debug(1, "PTRACE_CONT");
|
|
ptrace(PTRACE_CONT, teb->pid, 0, 0);
|
|
}
|
|
|
|
static void
|
|
pt_singlestep(struct process_stopping_handler *self)
|
|
{
|
|
if (singlestep(self) < 0)
|
|
singlestep_error(self);
|
|
}
|
|
|
|
static void
|
|
disable_and(struct process_stopping_handler *self,
|
|
void (*do_this)(struct process_stopping_handler *self))
|
|
{
|
|
struct process *teb = self->task_enabling_breakpoint;
|
|
debug(DEBUG_PROCESS, "all stopped, now singlestep/cont %d", teb->pid);
|
|
if (self->breakpoint_being_enabled->enabled)
|
|
disable_breakpoint(teb, self->breakpoint_being_enabled);
|
|
(do_this)(self);
|
|
self->state = PSH_SINGLESTEP;
|
|
}
|
|
|
|
void
|
|
linux_ptrace_disable_and_singlestep(struct process_stopping_handler *self)
|
|
{
|
|
disable_and(self, &pt_singlestep);
|
|
}
|
|
|
|
void
|
|
linux_ptrace_disable_and_continue(struct process_stopping_handler *self)
|
|
{
|
|
disable_and(self, &pt_continue);
|
|
}
|
|
|
|
/* This event handler is installed when we are in the process of
|
|
* stopping the whole thread group to do the pointer re-enablement for
|
|
* one of the threads. We pump all events to the queue for later
|
|
* processing while we wait for all the threads to stop. When this
|
|
* happens, we let the re-enablement thread to PTRACE_SINGLESTEP,
|
|
* re-enable, and continue everyone. */
|
|
static Event *
|
|
process_stopping_on_event(struct event_handler *super, Event *event)
|
|
{
|
|
struct process_stopping_handler *self = (void *)super;
|
|
struct process *task = event->proc;
|
|
struct process *leader = task->leader;
|
|
struct process *teb = self->task_enabling_breakpoint;
|
|
|
|
debug(DEBUG_PROCESS,
|
|
"process_stopping_on_event: pid %d; event type %d; state %d",
|
|
task->pid, event->type, self->state);
|
|
|
|
struct pid_task *task_info = get_task_info(&self->pids, task->pid);
|
|
if (task_info == NULL)
|
|
fprintf(stderr, "new task??? %d\n", task->pid);
|
|
handle_stopping_event(task_info, &event);
|
|
|
|
int state = self->state;
|
|
int event_to_queue = !event_exit_or_none_p(event);
|
|
|
|
/* Deactivate the entry if the task exits. */
|
|
if (event_exit_p(event) && task_info != NULL)
|
|
task_info->pid = 0;
|
|
|
|
/* Always handle sysrets. Whether sysret occurred and what
|
|
* sys it rets from may need to be determined based on process
|
|
* stack, so we need to keep that in sync with reality. Note
|
|
* that we don't continue the process after the sysret is
|
|
* handled. See continue_after_syscall. */
|
|
if (event != NULL && event->type == EVENT_SYSRET) {
|
|
debug(1, "%d LT_EV_SYSRET", event->proc->pid);
|
|
event_to_queue = 0;
|
|
if (task_info != NULL)
|
|
task_info->sysret = 1;
|
|
}
|
|
|
|
switch (state) {
|
|
case PSH_STOPPING:
|
|
/* If everyone is stopped, singlestep. */
|
|
if (each_task(leader, NULL, &task_blocked,
|
|
&self->pids) == NULL) {
|
|
(self->on_all_stopped)(self);
|
|
state = self->state;
|
|
}
|
|
break;
|
|
|
|
case PSH_SINGLESTEP:
|
|
/* In singlestep state, breakpoint signifies that we
|
|
* have now stepped, and can re-enable the breakpoint. */
|
|
if (event != NULL && task == teb) {
|
|
|
|
/* If this was caused by a real breakpoint, as
|
|
* opposed to a singlestep, assume that it's
|
|
* an artificial breakpoint installed for some
|
|
* reason for the re-enablement. In that case
|
|
* handle it. */
|
|
if (event->type == EVENT_BREAKPOINT) {
|
|
arch_addr_t ip
|
|
= get_instruction_pointer(task);
|
|
struct breakpoint *other
|
|
= address2bpstruct(leader, ip);
|
|
if (other != NULL)
|
|
breakpoint_on_hit(other, task);
|
|
}
|
|
|
|
/* If we got SIGNAL instead of BREAKPOINT,
|
|
* then this is not singlestep at all. */
|
|
if (event->type == EVENT_SIGNAL) {
|
|
do_singlestep:
|
|
if (singlestep(self) < 0) {
|
|
singlestep_error(self);
|
|
post_singlestep(self, &event);
|
|
goto psh_sinking;
|
|
}
|
|
break;
|
|
} else {
|
|
switch ((self->keep_stepping_p)(self)) {
|
|
case CBS_FAIL:
|
|
/* XXX handle me */
|
|
case CBS_STOP:
|
|
break;
|
|
case CBS_CONT:
|
|
/* Sink singlestep event. */
|
|
if (event->type == EVENT_BREAKPOINT)
|
|
event = NULL;
|
|
goto do_singlestep;
|
|
}
|
|
}
|
|
|
|
/* Re-enable the breakpoint that we are
|
|
* stepping over. */
|
|
struct breakpoint *sbp = self->breakpoint_being_enabled;
|
|
if (sbp->enabled)
|
|
enable_breakpoint(teb, sbp);
|
|
|
|
post_singlestep(self, &event);
|
|
goto psh_sinking;
|
|
}
|
|
break;
|
|
|
|
psh_sinking:
|
|
state = self->state = PSH_SINKING;
|
|
/* Fall through. */
|
|
case PSH_SINKING:
|
|
if (await_sigstop_delivery(&self->pids, task_info, event))
|
|
process_stopping_done(self, leader);
|
|
break;
|
|
|
|
case PSH_UGLY_WORKAROUND:
|
|
if (event == NULL)
|
|
break;
|
|
if (event->type == EVENT_BREAKPOINT) {
|
|
undo_breakpoint(event, leader);
|
|
if (task == teb)
|
|
self->task_enabling_breakpoint = NULL;
|
|
}
|
|
if (self->task_enabling_breakpoint == NULL
|
|
&& all_stops_accountable(&self->pids)) {
|
|
undo_breakpoint(event, leader);
|
|
detach_process(leader);
|
|
event = NULL; // handled
|
|
}
|
|
}
|
|
|
|
if (event != NULL && event_to_queue) {
|
|
enque_event(event);
|
|
event = NULL; // sink the event
|
|
}
|
|
|
|
return event;
|
|
}
|
|
|
|
static void
|
|
process_stopping_destroy(struct event_handler *super)
|
|
{
|
|
struct process_stopping_handler *self = (void *)super;
|
|
free(self->pids.tasks);
|
|
}
|
|
|
|
static enum callback_status
|
|
no(struct process_stopping_handler *self)
|
|
{
|
|
return CBS_STOP;
|
|
}
|
|
|
|
int
|
|
process_install_stopping_handler(struct process *proc, struct breakpoint *sbp,
|
|
void (*as)(struct process_stopping_handler *),
|
|
enum callback_status (*ks)
|
|
(struct process_stopping_handler *),
|
|
enum callback_status (*uw)
|
|
(struct process_stopping_handler *))
|
|
{
|
|
debug(DEBUG_FUNCTION,
|
|
"process_install_stopping_handler: pid=%d", proc->pid);
|
|
|
|
struct process_stopping_handler *handler = calloc(sizeof(*handler), 1);
|
|
if (handler == NULL)
|
|
return -1;
|
|
|
|
if (as == NULL)
|
|
as = &linux_ptrace_disable_and_singlestep;
|
|
if (ks == NULL)
|
|
ks = &no;
|
|
if (uw == NULL)
|
|
uw = &no;
|
|
|
|
handler->super.on_event = process_stopping_on_event;
|
|
handler->super.destroy = process_stopping_destroy;
|
|
handler->task_enabling_breakpoint = proc;
|
|
handler->breakpoint_being_enabled = sbp;
|
|
handler->on_all_stopped = as;
|
|
handler->keep_stepping_p = ks;
|
|
handler->ugly_workaround_p = uw;
|
|
|
|
install_event_handler(proc->leader, &handler->super);
|
|
|
|
if (each_task(proc->leader, NULL, &send_sigstop,
|
|
&handler->pids) != NULL) {
|
|
destroy_event_handler(proc);
|
|
return -1;
|
|
}
|
|
|
|
/* And deliver the first fake event, in case all the
|
|
* conditions are already fulfilled. */
|
|
Event ev = {
|
|
.type = EVENT_NONE,
|
|
.proc = proc,
|
|
};
|
|
process_stopping_on_event(&handler->super, &ev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
continue_after_breakpoint(struct process *proc, struct breakpoint *sbp)
|
|
{
|
|
debug(DEBUG_PROCESS,
|
|
"continue_after_breakpoint: pid=%d, addr=%p",
|
|
proc->pid, sbp->addr);
|
|
|
|
set_instruction_pointer(proc, sbp->addr);
|
|
|
|
if (sbp->enabled == 0) {
|
|
continue_process(proc->pid);
|
|
} else if (process_install_stopping_handler
|
|
(proc, sbp, NULL, NULL, NULL) < 0) {
|
|
perror("process_stopping_handler_create");
|
|
/* Carry on not bothering to re-enable. */
|
|
continue_process(proc->pid);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Ltrace exit. When we are about to exit, we have to go through all
|
|
* the processes, stop them all, remove all the breakpoints, and then
|
|
* detach the processes that we attached to using -p. If we left the
|
|
* other tasks running, they might hit stray return breakpoints and
|
|
* produce artifacts, so we better stop everyone, even if it's a bit
|
|
* of extra work.
|
|
*/
|
|
struct ltrace_exiting_handler
|
|
{
|
|
struct event_handler super;
|
|
struct pid_set pids;
|
|
};
|
|
|
|
static Event *
|
|
ltrace_exiting_on_event(struct event_handler *super, Event *event)
|
|
{
|
|
struct ltrace_exiting_handler *self = (void *)super;
|
|
struct process *task = event->proc;
|
|
struct process *leader = task->leader;
|
|
|
|
debug(DEBUG_PROCESS,
|
|
"ltrace_exiting_on_event: pid %d; event type %d",
|
|
task->pid, event->type);
|
|
|
|
struct pid_task *task_info = get_task_info(&self->pids, task->pid);
|
|
handle_stopping_event(task_info, &event);
|
|
|
|
if (event != NULL && event->type == EVENT_BREAKPOINT)
|
|
undo_breakpoint(event, leader);
|
|
|
|
if (await_sigstop_delivery(&self->pids, task_info, event)
|
|
&& all_stops_accountable(&self->pids))
|
|
detach_process(leader);
|
|
|
|
/* Sink all non-exit events. We are about to exit, so we
|
|
* don't bother with queuing them. */
|
|
if (event_exit_or_none_p(event))
|
|
return event;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static void
|
|
ltrace_exiting_destroy(struct event_handler *super)
|
|
{
|
|
struct ltrace_exiting_handler *self = (void *)super;
|
|
free(self->pids.tasks);
|
|
}
|
|
|
|
static int
|
|
ltrace_exiting_install_handler(struct process *proc)
|
|
{
|
|
/* Only install to leader. */
|
|
if (proc->leader != proc)
|
|
return 0;
|
|
|
|
/* Perhaps we are already installed, if the user passed
|
|
* several -p options that are tasks of one process. */
|
|
if (proc->event_handler != NULL
|
|
&& proc->event_handler->on_event == <race_exiting_on_event)
|
|
return 0;
|
|
|
|
/* If stopping handler is already present, let it do the
|
|
* work. */
|
|
if (proc->event_handler != NULL) {
|
|
assert(proc->event_handler->on_event
|
|
== &process_stopping_on_event);
|
|
struct process_stopping_handler *other
|
|
= (void *)proc->event_handler;
|
|
other->exiting = 1;
|
|
return 0;
|
|
}
|
|
|
|
struct ltrace_exiting_handler *handler
|
|
= calloc(sizeof(*handler), 1);
|
|
if (handler == NULL) {
|
|
perror("malloc exiting handler");
|
|
fatal:
|
|
/* XXXXXXXXXXXXXXXXXXX fixme */
|
|
return -1;
|
|
}
|
|
|
|
handler->super.on_event = ltrace_exiting_on_event;
|
|
handler->super.destroy = ltrace_exiting_destroy;
|
|
install_event_handler(proc->leader, &handler->super);
|
|
|
|
if (each_task(proc->leader, NULL, &send_sigstop,
|
|
&handler->pids) != NULL)
|
|
goto fatal;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* When the traced process vforks, it's suspended until the child
|
|
* process calls _exit or exec*. In the meantime, the two share the
|
|
* address space.
|
|
*
|
|
* The child process should only ever call _exit or exec*, but we
|
|
* can't count on that (it's not the role of ltrace to policy, but to
|
|
* observe). In any case, we will _at least_ have to deal with
|
|
* removal of vfork return breakpoint (which we have to smuggle back
|
|
* in, so that the parent can see it, too), and introduction of exec*
|
|
* return breakpoint. Since we already have both breakpoint actions
|
|
* to deal with, we might as well support it all.
|
|
*
|
|
* The gist is that we pretend that the child is in a thread group
|
|
* with its parent, and handle it as a multi-threaded case, with the
|
|
* exception that we know that the parent is blocked, and don't
|
|
* attempt to stop it. When the child execs, we undo the setup.
|
|
*/
|
|
|
|
struct process_vfork_handler
|
|
{
|
|
struct event_handler super;
|
|
int vfork_bp_refd:1;
|
|
};
|
|
|
|
static Event *
|
|
process_vfork_on_event(struct event_handler *super, Event *event)
|
|
{
|
|
debug(DEBUG_PROCESS,
|
|
"process_vfork_on_event: pid %d; event type %d",
|
|
event->proc->pid, event->type);
|
|
|
|
struct process_vfork_handler *self = (void *)super;
|
|
struct process *proc = event->proc;
|
|
assert(self != NULL);
|
|
|
|
switch (event->type) {
|
|
case EVENT_BREAKPOINT:
|
|
/* We turn on the vfork return breakpoint (which
|
|
* should be the one that we have tripped over just
|
|
* now) one extra time, so that the vfork parent hits
|
|
* it as well. */
|
|
if (!self->vfork_bp_refd) {
|
|
struct breakpoint *sbp = NULL;
|
|
DICT_FIND_VAL(proc->leader->breakpoints,
|
|
&event->e_un.brk_addr, &sbp);
|
|
assert(sbp != NULL);
|
|
breakpoint_turn_on(sbp, proc->leader);
|
|
self->vfork_bp_refd = 1;
|
|
}
|
|
break;
|
|
|
|
case EVENT_EXIT:
|
|
case EVENT_EXIT_SIGNAL:
|
|
case EVENT_EXEC:
|
|
/* Remove the leader that we artificially set up
|
|
* earlier. */
|
|
change_process_leader(proc, proc);
|
|
destroy_event_handler(proc);
|
|
continue_process(proc->parent->pid);
|
|
|
|
default:
|
|
;
|
|
}
|
|
|
|
return event;
|
|
}
|
|
|
|
void
|
|
continue_after_vfork(struct process *proc)
|
|
{
|
|
debug(DEBUG_PROCESS, "continue_after_vfork: pid=%d", proc->pid);
|
|
struct process_vfork_handler *handler = calloc(sizeof(*handler), 1);
|
|
if (handler == NULL) {
|
|
perror("malloc vfork handler");
|
|
/* Carry on not bothering to treat the process as
|
|
* necessary. */
|
|
continue_process(proc->parent->pid);
|
|
return;
|
|
}
|
|
|
|
/* We must set up custom event handler, so that we see
|
|
* exec/exit events for the task itself. */
|
|
handler->super.on_event = process_vfork_on_event;
|
|
install_event_handler(proc, &handler->super);
|
|
|
|
/* Make sure that the child is sole thread. */
|
|
assert(proc->leader == proc);
|
|
assert(proc->next == NULL || proc->next->leader != proc);
|
|
|
|
/* Make sure that the child's parent is properly set up. */
|
|
assert(proc->parent != NULL);
|
|
assert(proc->parent->leader != NULL);
|
|
|
|
change_process_leader(proc, proc->parent->leader);
|
|
}
|
|
|
|
static int
|
|
is_mid_stopping(struct process *proc)
|
|
{
|
|
return proc != NULL
|
|
&& proc->event_handler != NULL
|
|
&& proc->event_handler->on_event == &process_stopping_on_event;
|
|
}
|
|
|
|
void
|
|
continue_after_syscall(struct process *proc, int sysnum, int ret_p)
|
|
{
|
|
/* Don't continue if we are mid-stopping. */
|
|
if (ret_p && (is_mid_stopping(proc) || is_mid_stopping(proc->leader))) {
|
|
debug(DEBUG_PROCESS,
|
|
"continue_after_syscall: don't continue %d",
|
|
proc->pid);
|
|
return;
|
|
}
|
|
continue_process(proc->pid);
|
|
}
|
|
|
|
void
|
|
continue_after_exec(struct process *proc)
|
|
{
|
|
continue_process(proc->pid);
|
|
|
|
/* After the exec, we expect to hit the first executable
|
|
* instruction.
|
|
*
|
|
* XXX TODO It would be nice to have this removed, but then we
|
|
* need to do that also for initial call to wait_for_proc in
|
|
* execute_program. In that case we could generate a
|
|
* EVENT_FIRST event or something, or maybe this could somehow
|
|
* be rolled into EVENT_NEW. */
|
|
wait_for_proc(proc->pid);
|
|
continue_process(proc->pid);
|
|
}
|
|
|
|
/* If ltrace gets SIGINT, the processes directly or indirectly run by
|
|
* ltrace get it too. We just have to wait long enough for the signal
|
|
* to be delivered and the process terminated, which we notice and
|
|
* exit ltrace, too. So there's not much we need to do there. We
|
|
* want to keep tracing those processes as usual, in case they just
|
|
* SIG_IGN the SIGINT to do their shutdown etc.
|
|
*
|
|
* For processes ran on the background, we want to install an exit
|
|
* handler that stops all the threads, removes all breakpoints, and
|
|
* detaches.
|
|
*/
|
|
void
|
|
os_ltrace_exiting(void)
|
|
{
|
|
struct opt_p_t *it;
|
|
for (it = opt_p; it != NULL; it = it->next) {
|
|
struct process *proc = pid2proc(it->pid);
|
|
if (proc == NULL || proc->leader == NULL)
|
|
continue;
|
|
if (ltrace_exiting_install_handler(proc->leader) < 0)
|
|
fprintf(stderr,
|
|
"Couldn't install exiting handler for %d.\n",
|
|
proc->pid);
|
|
}
|
|
}
|
|
|
|
int
|
|
os_ltrace_exiting_sighandler(void)
|
|
{
|
|
extern int linux_in_waitpid;
|
|
if (linux_in_waitpid) {
|
|
os_ltrace_exiting();
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
size_t
|
|
umovebytes(struct process *proc, arch_addr_t addr, void *buf, size_t len)
|
|
{
|
|
|
|
union {
|
|
long a;
|
|
char c[sizeof(long)];
|
|
} a;
|
|
int started = 0;
|
|
size_t offset = 0, bytes_read = 0;
|
|
|
|
while (offset < len) {
|
|
a.a = ptrace(PTRACE_PEEKTEXT, proc->pid, addr + offset, 0);
|
|
if (a.a == -1 && errno) {
|
|
if (started && errno == EIO)
|
|
return bytes_read;
|
|
else
|
|
return -1;
|
|
}
|
|
started = 1;
|
|
|
|
if (len - offset >= sizeof(long)) {
|
|
memcpy(buf + offset, &a.c[0], sizeof(long));
|
|
bytes_read += sizeof(long);
|
|
}
|
|
else {
|
|
memcpy(buf + offset, &a.c[0], len - offset);
|
|
bytes_read += (len - offset);
|
|
}
|
|
offset += sizeof(long);
|
|
}
|
|
|
|
return bytes_read;
|
|
}
|
|
|
|
struct irelative_name_data_t {
|
|
GElf_Addr addr;
|
|
const char *found_name;
|
|
};
|
|
|
|
static enum callback_status
|
|
irelative_name_cb(GElf_Sym *symbol, const char *name, void *d)
|
|
{
|
|
struct irelative_name_data_t *data = d;
|
|
|
|
if (symbol->st_value == data->addr) {
|
|
bool is_ifunc = false;
|
|
#ifdef STT_GNU_IFUNC
|
|
is_ifunc = GELF_ST_TYPE(symbol->st_info) == STT_GNU_IFUNC;
|
|
#endif
|
|
data->found_name = name;
|
|
|
|
/* Keep looking, unless we found the actual IFUNC
|
|
* symbol. What we matched may have been a symbol
|
|
* denoting the resolver function, which would have
|
|
* the same address. */
|
|
return CBS_STOP_IF(is_ifunc);
|
|
}
|
|
|
|
return CBS_CONT;
|
|
}
|
|
|
|
char *
|
|
linux_elf_find_irelative_name(struct ltelf *lte, GElf_Addr addr)
|
|
{
|
|
struct irelative_name_data_t data = { addr, NULL };
|
|
if (addr != 0
|
|
&& elf_each_symbol(lte, 0,
|
|
irelative_name_cb, &data).status < 0)
|
|
return NULL;
|
|
|
|
const char *name;
|
|
if (data.found_name != NULL) {
|
|
name = data.found_name;
|
|
} else {
|
|
#define NAME "IREL."
|
|
/* NAME\0 + 0x + digits. */
|
|
char *tmp_name = alloca(sizeof NAME + 2 + 16);
|
|
sprintf(tmp_name, NAME "%#" PRIx64, (uint64_t) addr);
|
|
name = tmp_name;
|
|
#undef NAME
|
|
}
|
|
|
|
return strdup(name);
|
|
}
|
|
|
|
enum plt_status
|
|
linux_elf_add_plt_entry_irelative(struct process *proc, struct ltelf *lte,
|
|
GElf_Rela *rela, size_t ndx,
|
|
struct library_symbol **ret)
|
|
|
|
{
|
|
char *name = linux_elf_find_irelative_name(lte, rela->r_addend);
|
|
int i = default_elf_add_plt_entry(proc, lte, name, rela, ndx, ret);
|
|
free(name);
|
|
return i < 0 ? PLT_FAIL : PLT_OK;
|
|
}
|
|
|
|
struct prototype *
|
|
linux_IFUNC_prototype(void)
|
|
{
|
|
static struct prototype ret;
|
|
if (ret.return_info == NULL) {
|
|
prototype_init(&ret);
|
|
ret.return_info = type_get_voidptr();
|
|
ret.own_return_info = 0;
|
|
}
|
|
return &ret;
|
|
}
|
|
|
|
int
|
|
os_library_symbol_init(struct library_symbol *libsym)
|
|
{
|
|
libsym->os = (struct os_library_symbol_data){};
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
os_library_symbol_destroy(struct library_symbol *libsym)
|
|
{
|
|
}
|
|
|
|
int
|
|
os_library_symbol_clone(struct library_symbol *retp,
|
|
struct library_symbol *libsym)
|
|
{
|
|
retp->os = libsym->os;
|
|
return 0;
|
|
}
|
|
|
|
char *
|
|
linux_append_IFUNC_to_name(const char *name)
|
|
{
|
|
#define S ".IFUNC"
|
|
char *tmp_name = malloc(strlen(name) + sizeof S);
|
|
if (tmp_name == NULL)
|
|
return NULL;
|
|
sprintf(tmp_name, "%s%s", name, S);
|
|
#undef S
|
|
return tmp_name;
|
|
}
|
|
|
|
enum plt_status
|
|
os_elf_add_func_entry(struct process *proc, struct ltelf *lte,
|
|
const GElf_Sym *sym,
|
|
arch_addr_t addr, const char *name,
|
|
struct library_symbol **ret)
|
|
{
|
|
if (GELF_ST_TYPE(sym->st_info) == STT_FUNC)
|
|
return PLT_DEFAULT;
|
|
|
|
bool ifunc = false;
|
|
#ifdef STT_GNU_IFUNC
|
|
ifunc = GELF_ST_TYPE(sym->st_info) == STT_GNU_IFUNC;
|
|
#endif
|
|
|
|
if (ifunc) {
|
|
char *tmp_name = linux_append_IFUNC_to_name(name);
|
|
struct library_symbol *tmp = malloc(sizeof *tmp);
|
|
if (tmp_name == NULL || tmp == NULL) {
|
|
fail:
|
|
free(tmp_name);
|
|
free(tmp);
|
|
return PLT_FAIL;
|
|
}
|
|
|
|
if (library_symbol_init(tmp, addr, tmp_name, 1,
|
|
LS_TOPLT_NONE) < 0)
|
|
goto fail;
|
|
tmp->proto = linux_IFUNC_prototype();
|
|
tmp->os.is_ifunc = 1;
|
|
|
|
*ret = tmp;
|
|
return PLT_OK;
|
|
}
|
|
|
|
*ret = NULL;
|
|
return PLT_OK;
|
|
}
|
|
|
|
static enum callback_status
|
|
libsym_at_address(struct library_symbol *libsym, void *addrp)
|
|
{
|
|
arch_addr_t addr = *(arch_addr_t *)addrp;
|
|
return CBS_STOP_IF(addr == libsym->enter_addr);
|
|
}
|
|
|
|
static void
|
|
ifunc_ret_hit(struct breakpoint *bp, struct process *proc)
|
|
{
|
|
struct fetch_context *fetch = fetch_arg_init(LT_TOF_FUNCTION, proc,
|
|
type_get_voidptr());
|
|
if (fetch == NULL)
|
|
return;
|
|
|
|
struct breakpoint *nbp = NULL;
|
|
int own_libsym = 0;
|
|
struct library_symbol *libsym = NULL;
|
|
|
|
struct value value;
|
|
value_init(&value, proc, NULL, type_get_voidptr(), 0);
|
|
size_t sz = value_size(&value, NULL);
|
|
union {
|
|
uint64_t u64;
|
|
uint32_t u32;
|
|
arch_addr_t a;
|
|
} u;
|
|
|
|
if (fetch_retval(fetch, LT_TOF_FUNCTIONR, proc,
|
|
value.type, &value) < 0
|
|
|| sz > 8 /* Captures failure as well. */
|
|
|| value_extract_buf(&value, (void *) &u, NULL) < 0) {
|
|
fail:
|
|
fprintf(stderr,
|
|
"Couldn't trace the function "
|
|
"indicated by IFUNC resolver.\n");
|
|
goto done;
|
|
}
|
|
|
|
assert(sz == 4 || sz == 8);
|
|
/* XXX double casts below: */
|
|
if (sz == 4)
|
|
u.a = (arch_addr_t)(uintptr_t)u.u32;
|
|
else
|
|
u.a = (arch_addr_t)(uintptr_t)u.u64;
|
|
if (arch_translate_address_dyn(proc, u.a, &u.a) < 0) {
|
|
fprintf(stderr, "Couldn't OPD-translate the address returned"
|
|
" by the IFUNC resolver.\n");
|
|
goto done;
|
|
}
|
|
|
|
assert(bp->os.ret_libsym != NULL);
|
|
|
|
struct library *lib = bp->os.ret_libsym->lib;
|
|
assert(lib != NULL);
|
|
|
|
/* Look if we already have a symbol with this address.
|
|
* Otherwise create a new one. */
|
|
libsym = library_each_symbol(lib, NULL, libsym_at_address, &u.a);
|
|
if (libsym == NULL) {
|
|
libsym = malloc(sizeof *libsym);
|
|
char *name = strdup(bp->os.ret_libsym->name);
|
|
|
|
if (libsym == NULL
|
|
|| name == NULL
|
|
|| library_symbol_init(libsym, u.a, name, 1,
|
|
LS_TOPLT_NONE) < 0) {
|
|
free(libsym);
|
|
free(name);
|
|
goto fail;
|
|
}
|
|
|
|
/* Snip the .IFUNC token. */
|
|
*strrchr(name, '.') = 0;
|
|
|
|
own_libsym = 1;
|
|
library_add_symbol(lib, libsym);
|
|
}
|
|
|
|
nbp = malloc(sizeof *bp);
|
|
if (nbp == NULL || breakpoint_init(nbp, proc, u.a, libsym) < 0)
|
|
goto fail;
|
|
|
|
/* If there already is a breakpoint at that address, that is
|
|
* suspicious, but whatever. */
|
|
struct breakpoint *pre_bp = insert_breakpoint(proc, nbp);
|
|
if (pre_bp == NULL)
|
|
goto fail;
|
|
if (pre_bp == nbp) {
|
|
/* PROC took our breakpoint, so these resources are
|
|
* not ours anymore. */
|
|
nbp = NULL;
|
|
own_libsym = 0;
|
|
}
|
|
|
|
done:
|
|
free(nbp);
|
|
if (own_libsym) {
|
|
library_symbol_destroy(libsym);
|
|
free(libsym);
|
|
}
|
|
fetch_arg_done(fetch);
|
|
}
|
|
|
|
static int
|
|
create_ifunc_ret_bp(struct breakpoint **ret,
|
|
struct breakpoint *bp, struct process *proc)
|
|
{
|
|
*ret = create_default_return_bp(proc);
|
|
if (*ret == NULL)
|
|
return -1;
|
|
static struct bp_callbacks cbs = {
|
|
.on_hit = ifunc_ret_hit,
|
|
};
|
|
breakpoint_set_callbacks(*ret, &cbs);
|
|
|
|
(*ret)->os.ret_libsym = bp->libsym;
|
|
|
|
return 0;
|
|
}
|
|
|
|
int
|
|
os_breakpoint_init(struct process *proc, struct breakpoint *bp)
|
|
{
|
|
if (bp->libsym != NULL && bp->libsym->os.is_ifunc) {
|
|
static struct bp_callbacks cbs = {
|
|
.get_return_bp = create_ifunc_ret_bp,
|
|
};
|
|
breakpoint_set_callbacks(bp, &cbs);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void
|
|
os_breakpoint_destroy(struct breakpoint *bp)
|
|
{
|
|
}
|
|
|
|
int
|
|
os_breakpoint_clone(struct breakpoint *retp, struct breakpoint *bp)
|
|
{
|
|
return 0;
|
|
}
|