722 lines
23 KiB
C++
722 lines
23 KiB
C++
// Copyright (c) 2011 The Chromium Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
// This defines a set of argument wrappers and related factory methods that
|
|
// can be used specify the refcounting and reference semantics of arguments
|
|
// that are bound by the Bind() function in base/bind.h.
|
|
//
|
|
// It also defines a set of simple functions and utilities that people want
|
|
// when using Callback<> and Bind().
|
|
//
|
|
//
|
|
// ARGUMENT BINDING WRAPPERS
|
|
//
|
|
// The wrapper functions are base::Unretained(), base::Owned(), base::Passed(),
|
|
// base::ConstRef(), and base::IgnoreResult().
|
|
//
|
|
// Unretained() allows Bind() to bind a non-refcounted class, and to disable
|
|
// refcounting on arguments that are refcounted objects.
|
|
//
|
|
// Owned() transfers ownership of an object to the Callback resulting from
|
|
// bind; the object will be deleted when the Callback is deleted.
|
|
//
|
|
// Passed() is for transferring movable-but-not-copyable types (eg. scoped_ptr)
|
|
// through a Callback. Logically, this signifies a destructive transfer of
|
|
// the state of the argument into the target function. Invoking
|
|
// Callback::Run() twice on a Callback that was created with a Passed()
|
|
// argument will CHECK() because the first invocation would have already
|
|
// transferred ownership to the target function.
|
|
//
|
|
// ConstRef() allows binding a constant reference to an argument rather
|
|
// than a copy.
|
|
//
|
|
// IgnoreResult() is used to adapt a function or Callback with a return type to
|
|
// one with a void return. This is most useful if you have a function with,
|
|
// say, a pesky ignorable bool return that you want to use with PostTask or
|
|
// something else that expect a Callback with a void return.
|
|
//
|
|
// EXAMPLE OF Unretained():
|
|
//
|
|
// class Foo {
|
|
// public:
|
|
// void func() { cout << "Foo:f" << endl; }
|
|
// };
|
|
//
|
|
// // In some function somewhere.
|
|
// Foo foo;
|
|
// Closure foo_callback =
|
|
// Bind(&Foo::func, Unretained(&foo));
|
|
// foo_callback.Run(); // Prints "Foo:f".
|
|
//
|
|
// Without the Unretained() wrapper on |&foo|, the above call would fail
|
|
// to compile because Foo does not support the AddRef() and Release() methods.
|
|
//
|
|
//
|
|
// EXAMPLE OF Owned():
|
|
//
|
|
// void foo(int* arg) { cout << *arg << endl }
|
|
//
|
|
// int* pn = new int(1);
|
|
// Closure foo_callback = Bind(&foo, Owned(pn));
|
|
//
|
|
// foo_callback.Run(); // Prints "1"
|
|
// foo_callback.Run(); // Prints "1"
|
|
// *n = 2;
|
|
// foo_callback.Run(); // Prints "2"
|
|
//
|
|
// foo_callback.Reset(); // |pn| is deleted. Also will happen when
|
|
// // |foo_callback| goes out of scope.
|
|
//
|
|
// Without Owned(), someone would have to know to delete |pn| when the last
|
|
// reference to the Callback is deleted.
|
|
//
|
|
//
|
|
// EXAMPLE OF ConstRef():
|
|
//
|
|
// void foo(int arg) { cout << arg << endl }
|
|
//
|
|
// int n = 1;
|
|
// Closure no_ref = Bind(&foo, n);
|
|
// Closure has_ref = Bind(&foo, ConstRef(n));
|
|
//
|
|
// no_ref.Run(); // Prints "1"
|
|
// has_ref.Run(); // Prints "1"
|
|
//
|
|
// n = 2;
|
|
// no_ref.Run(); // Prints "1"
|
|
// has_ref.Run(); // Prints "2"
|
|
//
|
|
// Note that because ConstRef() takes a reference on |n|, |n| must outlive all
|
|
// its bound callbacks.
|
|
//
|
|
//
|
|
// EXAMPLE OF IgnoreResult():
|
|
//
|
|
// int DoSomething(int arg) { cout << arg << endl; }
|
|
//
|
|
// // Assign to a Callback with a void return type.
|
|
// Callback<void(int)> cb = Bind(IgnoreResult(&DoSomething));
|
|
// cb->Run(1); // Prints "1".
|
|
//
|
|
// // Prints "1" on |ml|.
|
|
// ml->PostTask(FROM_HERE, Bind(IgnoreResult(&DoSomething), 1);
|
|
//
|
|
//
|
|
// EXAMPLE OF Passed():
|
|
//
|
|
// void TakesOwnership(scoped_ptr<Foo> arg) { }
|
|
// scoped_ptr<Foo> CreateFoo() { return scoped_ptr<Foo>(new Foo()); }
|
|
//
|
|
// scoped_ptr<Foo> f(new Foo());
|
|
//
|
|
// // |cb| is given ownership of Foo(). |f| is now NULL.
|
|
// // You can use std::move(f) in place of &f, but it's more verbose.
|
|
// Closure cb = Bind(&TakesOwnership, Passed(&f));
|
|
//
|
|
// // Run was never called so |cb| still owns Foo() and deletes
|
|
// // it on Reset().
|
|
// cb.Reset();
|
|
//
|
|
// // |cb| is given a new Foo created by CreateFoo().
|
|
// cb = Bind(&TakesOwnership, Passed(CreateFoo()));
|
|
//
|
|
// // |arg| in TakesOwnership() is given ownership of Foo(). |cb|
|
|
// // no longer owns Foo() and, if reset, would not delete Foo().
|
|
// cb.Run(); // Foo() is now transferred to |arg| and deleted.
|
|
// cb.Run(); // This CHECK()s since Foo() already been used once.
|
|
//
|
|
// Passed() is particularly useful with PostTask() when you are transferring
|
|
// ownership of an argument into a task, but don't necessarily know if the
|
|
// task will always be executed. This can happen if the task is cancellable
|
|
// or if it is posted to a TaskRunner.
|
|
//
|
|
//
|
|
// SIMPLE FUNCTIONS AND UTILITIES.
|
|
//
|
|
// DoNothing() - Useful for creating a Closure that does nothing when called.
|
|
// DeletePointer<T>() - Useful for creating a Closure that will delete a
|
|
// pointer when invoked. Only use this when necessary.
|
|
// In most cases MessageLoop::DeleteSoon() is a better
|
|
// fit.
|
|
|
|
#ifndef BASE_BIND_HELPERS_H_
|
|
#define BASE_BIND_HELPERS_H_
|
|
|
|
#include <stddef.h>
|
|
|
|
#include <map>
|
|
#include <memory>
|
|
#include <type_traits>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "base/callback.h"
|
|
#include "base/memory/weak_ptr.h"
|
|
#include "base/template_util.h"
|
|
#include "build/build_config.h"
|
|
|
|
namespace base {
|
|
namespace internal {
|
|
|
|
// Use the Substitution Failure Is Not An Error (SFINAE) trick to inspect T
|
|
// for the existence of AddRef() and Release() functions of the correct
|
|
// signature.
|
|
//
|
|
// http://en.wikipedia.org/wiki/Substitution_failure_is_not_an_error
|
|
// http://stackoverflow.com/questions/257288/is-it-possible-to-write-a-c-template-to-check-for-a-functions-existence
|
|
// http://stackoverflow.com/questions/4358584/sfinae-approach-comparison
|
|
// http://stackoverflow.com/questions/1966362/sfinae-to-check-for-inherited-member-functions
|
|
//
|
|
// The last link in particular show the method used below.
|
|
//
|
|
// For SFINAE to work with inherited methods, we need to pull some extra tricks
|
|
// with multiple inheritance. In the more standard formulation, the overloads
|
|
// of Check would be:
|
|
//
|
|
// template <typename C>
|
|
// Yes NotTheCheckWeWant(Helper<&C::TargetFunc>*);
|
|
//
|
|
// template <typename C>
|
|
// No NotTheCheckWeWant(...);
|
|
//
|
|
// static const bool value = sizeof(NotTheCheckWeWant<T>(0)) == sizeof(Yes);
|
|
//
|
|
// The problem here is that template resolution will not match
|
|
// C::TargetFunc if TargetFunc does not exist directly in C. That is, if
|
|
// TargetFunc in inherited from an ancestor, &C::TargetFunc will not match,
|
|
// |value| will be false. This formulation only checks for whether or
|
|
// not TargetFunc exist directly in the class being introspected.
|
|
//
|
|
// To get around this, we play a dirty trick with multiple inheritance.
|
|
// First, We create a class BaseMixin that declares each function that we
|
|
// want to probe for. Then we create a class Base that inherits from both T
|
|
// (the class we wish to probe) and BaseMixin. Note that the function
|
|
// signature in BaseMixin does not need to match the signature of the function
|
|
// we are probing for; thus it's easiest to just use void().
|
|
//
|
|
// Now, if TargetFunc exists somewhere in T, then &Base::TargetFunc has an
|
|
// ambiguous resolution between BaseMixin and T. This lets us write the
|
|
// following:
|
|
//
|
|
// template <typename C>
|
|
// No GoodCheck(Helper<&C::TargetFunc>*);
|
|
//
|
|
// template <typename C>
|
|
// Yes GoodCheck(...);
|
|
//
|
|
// static const bool value = sizeof(GoodCheck<Base>(0)) == sizeof(Yes);
|
|
//
|
|
// Notice here that the variadic version of GoodCheck() returns Yes here
|
|
// instead of No like the previous one. Also notice that we calculate |value|
|
|
// by specializing GoodCheck() on Base instead of T.
|
|
//
|
|
// We've reversed the roles of the variadic, and Helper overloads.
|
|
// GoodCheck(Helper<&C::TargetFunc>*), when C = Base, fails to be a valid
|
|
// substitution if T::TargetFunc exists. Thus GoodCheck<Base>(0) will resolve
|
|
// to the variadic version if T has TargetFunc. If T::TargetFunc does not
|
|
// exist, then &C::TargetFunc is not ambiguous, and the overload resolution
|
|
// will prefer GoodCheck(Helper<&C::TargetFunc>*).
|
|
//
|
|
// This method of SFINAE will correctly probe for inherited names, but it cannot
|
|
// typecheck those names. It's still a good enough sanity check though.
|
|
//
|
|
// Works on gcc-4.2, gcc-4.4, and Visual Studio 2008.
|
|
//
|
|
// TODO(ajwong): Move to ref_counted.h or template_util.h when we've vetted
|
|
// this works well.
|
|
//
|
|
// TODO(ajwong): Make this check for Release() as well.
|
|
// See http://crbug.com/82038.
|
|
template <typename T>
|
|
class SupportsAddRefAndRelease {
|
|
using Yes = char[1];
|
|
using No = char[2];
|
|
|
|
struct BaseMixin {
|
|
void AddRef();
|
|
};
|
|
|
|
// MSVC warns when you try to use Base if T has a private destructor, the
|
|
// common pattern for refcounted types. It does this even though no attempt to
|
|
// instantiate Base is made. We disable the warning for this definition.
|
|
#if defined(OS_WIN)
|
|
#pragma warning(push)
|
|
#pragma warning(disable:4624)
|
|
#endif
|
|
struct Base : public T, public BaseMixin {
|
|
};
|
|
#if defined(OS_WIN)
|
|
#pragma warning(pop)
|
|
#endif
|
|
|
|
template <void(BaseMixin::*)()> struct Helper {};
|
|
|
|
template <typename C>
|
|
static No& Check(Helper<&C::AddRef>*);
|
|
|
|
template <typename >
|
|
static Yes& Check(...);
|
|
|
|
public:
|
|
enum { value = sizeof(Check<Base>(0)) == sizeof(Yes) };
|
|
};
|
|
|
|
// Helpers to assert that arguments of a recounted type are bound with a
|
|
// scoped_refptr.
|
|
template <bool IsClasstype, typename T>
|
|
struct UnsafeBindtoRefCountedArgHelper : false_type {
|
|
};
|
|
|
|
template <typename T>
|
|
struct UnsafeBindtoRefCountedArgHelper<true, T>
|
|
: integral_constant<bool, SupportsAddRefAndRelease<T>::value> {
|
|
};
|
|
|
|
template <typename T>
|
|
struct UnsafeBindtoRefCountedArg : false_type {
|
|
};
|
|
|
|
template <typename T>
|
|
struct UnsafeBindtoRefCountedArg<T*>
|
|
: UnsafeBindtoRefCountedArgHelper<is_class<T>::value, T> {
|
|
};
|
|
|
|
template <typename T>
|
|
class HasIsMethodTag {
|
|
using Yes = char[1];
|
|
using No = char[2];
|
|
|
|
template <typename U>
|
|
static Yes& Check(typename U::IsMethod*);
|
|
|
|
template <typename U>
|
|
static No& Check(...);
|
|
|
|
public:
|
|
enum { value = sizeof(Check<T>(0)) == sizeof(Yes) };
|
|
};
|
|
|
|
template <typename T>
|
|
class UnretainedWrapper {
|
|
public:
|
|
explicit UnretainedWrapper(T* o) : ptr_(o) {}
|
|
T* get() const { return ptr_; }
|
|
private:
|
|
T* ptr_;
|
|
};
|
|
|
|
template <typename T>
|
|
class ConstRefWrapper {
|
|
public:
|
|
explicit ConstRefWrapper(const T& o) : ptr_(&o) {}
|
|
const T& get() const { return *ptr_; }
|
|
private:
|
|
const T* ptr_;
|
|
};
|
|
|
|
template <typename T>
|
|
struct IgnoreResultHelper {
|
|
explicit IgnoreResultHelper(T functor) : functor_(functor) {}
|
|
|
|
T functor_;
|
|
};
|
|
|
|
template <typename T>
|
|
struct IgnoreResultHelper<Callback<T> > {
|
|
explicit IgnoreResultHelper(const Callback<T>& functor) : functor_(functor) {}
|
|
|
|
const Callback<T>& functor_;
|
|
};
|
|
|
|
// An alternate implementation is to avoid the destructive copy, and instead
|
|
// specialize ParamTraits<> for OwnedWrapper<> to change the StorageType to
|
|
// a class that is essentially a scoped_ptr<>.
|
|
//
|
|
// The current implementation has the benefit though of leaving ParamTraits<>
|
|
// fully in callback_internal.h as well as avoiding type conversions during
|
|
// storage.
|
|
template <typename T>
|
|
class OwnedWrapper {
|
|
public:
|
|
explicit OwnedWrapper(T* o) : ptr_(o) {}
|
|
~OwnedWrapper() { delete ptr_; }
|
|
T* get() const { return ptr_; }
|
|
OwnedWrapper(const OwnedWrapper& other) {
|
|
ptr_ = other.ptr_;
|
|
other.ptr_ = NULL;
|
|
}
|
|
|
|
private:
|
|
mutable T* ptr_;
|
|
};
|
|
|
|
// PassedWrapper is a copyable adapter for a scoper that ignores const.
|
|
//
|
|
// It is needed to get around the fact that Bind() takes a const reference to
|
|
// all its arguments. Because Bind() takes a const reference to avoid
|
|
// unnecessary copies, it is incompatible with movable-but-not-copyable
|
|
// types; doing a destructive "move" of the type into Bind() would violate
|
|
// the const correctness.
|
|
//
|
|
// This conundrum cannot be solved without either C++11 rvalue references or
|
|
// a O(2^n) blowup of Bind() templates to handle each combination of regular
|
|
// types and movable-but-not-copyable types. Thus we introduce a wrapper type
|
|
// that is copyable to transmit the correct type information down into
|
|
// BindState<>. Ignoring const in this type makes sense because it is only
|
|
// created when we are explicitly trying to do a destructive move.
|
|
//
|
|
// Two notes:
|
|
// 1) PassedWrapper supports any type that has a move constructor, however
|
|
// the type will need to be specifically whitelisted in order for it to be
|
|
// bound to a Callback. We guard this explicitly at the call of Passed()
|
|
// to make for clear errors. Things not given to Passed() will be forwarded
|
|
// and stored by value which will not work for general move-only types.
|
|
// 2) is_valid_ is distinct from NULL because it is valid to bind a "NULL"
|
|
// scoper to a Callback and allow the Callback to execute once.
|
|
template <typename T>
|
|
class PassedWrapper {
|
|
public:
|
|
explicit PassedWrapper(T&& scoper)
|
|
: is_valid_(true), scoper_(std::move(scoper)) {}
|
|
PassedWrapper(const PassedWrapper& other)
|
|
: is_valid_(other.is_valid_), scoper_(std::move(other.scoper_)) {}
|
|
T Pass() const {
|
|
CHECK(is_valid_);
|
|
is_valid_ = false;
|
|
return std::move(scoper_);
|
|
}
|
|
|
|
private:
|
|
mutable bool is_valid_;
|
|
mutable T scoper_;
|
|
};
|
|
|
|
// Specialize PassedWrapper for std::unique_ptr used by base::Passed().
|
|
// Use std::move() to transfer the data from one storage to another.
|
|
template <typename T, typename D>
|
|
class PassedWrapper<std::unique_ptr<T, D>> {
|
|
public:
|
|
explicit PassedWrapper(std::unique_ptr<T, D> scoper)
|
|
: is_valid_(true), scoper_(std::move(scoper)) {}
|
|
PassedWrapper(const PassedWrapper& other)
|
|
: is_valid_(other.is_valid_), scoper_(std::move(other.scoper_)) {}
|
|
|
|
std::unique_ptr<T, D> Pass() const {
|
|
CHECK(is_valid_);
|
|
is_valid_ = false;
|
|
return std::move(scoper_);
|
|
}
|
|
|
|
private:
|
|
mutable bool is_valid_;
|
|
mutable std::unique_ptr<T, D> scoper_;
|
|
};
|
|
|
|
// Specialize PassedWrapper for std::vector<std::unique_ptr<T>>.
|
|
template <typename T, typename D, typename A>
|
|
class PassedWrapper<std::vector<std::unique_ptr<T, D>, A>> {
|
|
public:
|
|
explicit PassedWrapper(std::vector<std::unique_ptr<T, D>, A> scoper)
|
|
: is_valid_(true), scoper_(std::move(scoper)) {}
|
|
PassedWrapper(const PassedWrapper& other)
|
|
: is_valid_(other.is_valid_), scoper_(std::move(other.scoper_)) {}
|
|
|
|
std::vector<std::unique_ptr<T, D>, A> Pass() const {
|
|
CHECK(is_valid_);
|
|
is_valid_ = false;
|
|
return std::move(scoper_);
|
|
}
|
|
|
|
private:
|
|
mutable bool is_valid_;
|
|
mutable std::vector<std::unique_ptr<T, D>, A> scoper_;
|
|
};
|
|
|
|
// Specialize PassedWrapper for std::map<K, std::unique_ptr<T>>.
|
|
template <typename K, typename T, typename D, typename C, typename A>
|
|
class PassedWrapper<std::map<K, std::unique_ptr<T, D>, C, A>> {
|
|
public:
|
|
explicit PassedWrapper(std::map<K, std::unique_ptr<T, D>, C, A> scoper)
|
|
: is_valid_(true), scoper_(std::move(scoper)) {}
|
|
PassedWrapper(const PassedWrapper& other)
|
|
: is_valid_(other.is_valid_), scoper_(std::move(other.scoper_)) {}
|
|
|
|
std::map<K, std::unique_ptr<T, D>, C, A> Pass() const {
|
|
CHECK(is_valid_);
|
|
is_valid_ = false;
|
|
return std::move(scoper_);
|
|
}
|
|
|
|
private:
|
|
mutable bool is_valid_;
|
|
mutable std::map<K, std::unique_ptr<T, D>, C, A> scoper_;
|
|
};
|
|
|
|
// Unwrap the stored parameters for the wrappers above.
|
|
template <typename T>
|
|
struct UnwrapTraits {
|
|
using ForwardType = const T&;
|
|
static ForwardType Unwrap(const T& o) { return o; }
|
|
};
|
|
|
|
template <typename T>
|
|
struct UnwrapTraits<UnretainedWrapper<T> > {
|
|
using ForwardType = T*;
|
|
static ForwardType Unwrap(UnretainedWrapper<T> unretained) {
|
|
return unretained.get();
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct UnwrapTraits<ConstRefWrapper<T> > {
|
|
using ForwardType = const T&;
|
|
static ForwardType Unwrap(ConstRefWrapper<T> const_ref) {
|
|
return const_ref.get();
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct UnwrapTraits<scoped_refptr<T> > {
|
|
using ForwardType = T*;
|
|
static ForwardType Unwrap(const scoped_refptr<T>& o) { return o.get(); }
|
|
};
|
|
|
|
template <typename T>
|
|
struct UnwrapTraits<WeakPtr<T> > {
|
|
using ForwardType = const WeakPtr<T>&;
|
|
static ForwardType Unwrap(const WeakPtr<T>& o) { return o; }
|
|
};
|
|
|
|
template <typename T>
|
|
struct UnwrapTraits<OwnedWrapper<T> > {
|
|
using ForwardType = T*;
|
|
static ForwardType Unwrap(const OwnedWrapper<T>& o) {
|
|
return o.get();
|
|
}
|
|
};
|
|
|
|
template <typename T>
|
|
struct UnwrapTraits<PassedWrapper<T> > {
|
|
using ForwardType = T;
|
|
static T Unwrap(PassedWrapper<T>& o) {
|
|
return o.Pass();
|
|
}
|
|
};
|
|
|
|
// Utility for handling different refcounting semantics in the Bind()
|
|
// function.
|
|
template <bool is_method, typename... T>
|
|
struct MaybeScopedRefPtr;
|
|
|
|
template <bool is_method>
|
|
struct MaybeScopedRefPtr<is_method> {
|
|
MaybeScopedRefPtr() {}
|
|
};
|
|
|
|
template <typename T, typename... Rest>
|
|
struct MaybeScopedRefPtr<false, T, Rest...> {
|
|
MaybeScopedRefPtr(const T&, const Rest&...) {}
|
|
};
|
|
|
|
template <typename T, size_t n, typename... Rest>
|
|
struct MaybeScopedRefPtr<false, T[n], Rest...> {
|
|
MaybeScopedRefPtr(const T*, const Rest&...) {}
|
|
};
|
|
|
|
template <typename T, typename... Rest>
|
|
struct MaybeScopedRefPtr<true, T, Rest...> {
|
|
MaybeScopedRefPtr(const T& /* o */, const Rest&...) {}
|
|
};
|
|
|
|
template <typename T, typename... Rest>
|
|
struct MaybeScopedRefPtr<true, T*, Rest...> {
|
|
MaybeScopedRefPtr(T* o, const Rest&...) : ref_(o) {}
|
|
scoped_refptr<T> ref_;
|
|
};
|
|
|
|
// No need to additionally AddRef() and Release() since we are storing a
|
|
// scoped_refptr<> inside the storage object already.
|
|
template <typename T, typename... Rest>
|
|
struct MaybeScopedRefPtr<true, scoped_refptr<T>, Rest...> {
|
|
MaybeScopedRefPtr(const scoped_refptr<T>&, const Rest&...) {}
|
|
};
|
|
|
|
template <typename T, typename... Rest>
|
|
struct MaybeScopedRefPtr<true, const T*, Rest...> {
|
|
MaybeScopedRefPtr(const T* o, const Rest&...) : ref_(o) {}
|
|
scoped_refptr<const T> ref_;
|
|
};
|
|
|
|
// IsWeakMethod is a helper that determine if we are binding a WeakPtr<> to a
|
|
// method. It is used internally by Bind() to select the correct
|
|
// InvokeHelper that will no-op itself in the event the WeakPtr<> for
|
|
// the target object is invalidated.
|
|
//
|
|
// The first argument should be the type of the object that will be received by
|
|
// the method.
|
|
template <bool IsMethod, typename... Args>
|
|
struct IsWeakMethod : public false_type {};
|
|
|
|
template <typename T, typename... Args>
|
|
struct IsWeakMethod<true, WeakPtr<T>, Args...> : public true_type {};
|
|
|
|
template <typename T, typename... Args>
|
|
struct IsWeakMethod<true, ConstRefWrapper<WeakPtr<T>>, Args...>
|
|
: public true_type {};
|
|
|
|
|
|
// Packs a list of types to hold them in a single type.
|
|
template <typename... Types>
|
|
struct TypeList {};
|
|
|
|
// Used for DropTypeListItem implementation.
|
|
template <size_t n, typename List>
|
|
struct DropTypeListItemImpl;
|
|
|
|
// Do not use enable_if and SFINAE here to avoid MSVC2013 compile failure.
|
|
template <size_t n, typename T, typename... List>
|
|
struct DropTypeListItemImpl<n, TypeList<T, List...>>
|
|
: DropTypeListItemImpl<n - 1, TypeList<List...>> {};
|
|
|
|
template <typename T, typename... List>
|
|
struct DropTypeListItemImpl<0, TypeList<T, List...>> {
|
|
using Type = TypeList<T, List...>;
|
|
};
|
|
|
|
template <>
|
|
struct DropTypeListItemImpl<0, TypeList<>> {
|
|
using Type = TypeList<>;
|
|
};
|
|
|
|
// A type-level function that drops |n| list item from given TypeList.
|
|
template <size_t n, typename List>
|
|
using DropTypeListItem = typename DropTypeListItemImpl<n, List>::Type;
|
|
|
|
// Used for TakeTypeListItem implementation.
|
|
template <size_t n, typename List, typename... Accum>
|
|
struct TakeTypeListItemImpl;
|
|
|
|
// Do not use enable_if and SFINAE here to avoid MSVC2013 compile failure.
|
|
template <size_t n, typename T, typename... List, typename... Accum>
|
|
struct TakeTypeListItemImpl<n, TypeList<T, List...>, Accum...>
|
|
: TakeTypeListItemImpl<n - 1, TypeList<List...>, Accum..., T> {};
|
|
|
|
template <typename T, typename... List, typename... Accum>
|
|
struct TakeTypeListItemImpl<0, TypeList<T, List...>, Accum...> {
|
|
using Type = TypeList<Accum...>;
|
|
};
|
|
|
|
template <typename... Accum>
|
|
struct TakeTypeListItemImpl<0, TypeList<>, Accum...> {
|
|
using Type = TypeList<Accum...>;
|
|
};
|
|
|
|
// A type-level function that takes first |n| list item from given TypeList.
|
|
// E.g. TakeTypeListItem<3, TypeList<A, B, C, D>> is evaluated to
|
|
// TypeList<A, B, C>.
|
|
template <size_t n, typename List>
|
|
using TakeTypeListItem = typename TakeTypeListItemImpl<n, List>::Type;
|
|
|
|
// Used for ConcatTypeLists implementation.
|
|
template <typename List1, typename List2>
|
|
struct ConcatTypeListsImpl;
|
|
|
|
template <typename... Types1, typename... Types2>
|
|
struct ConcatTypeListsImpl<TypeList<Types1...>, TypeList<Types2...>> {
|
|
using Type = TypeList<Types1..., Types2...>;
|
|
};
|
|
|
|
// A type-level function that concats two TypeLists.
|
|
template <typename List1, typename List2>
|
|
using ConcatTypeLists = typename ConcatTypeListsImpl<List1, List2>::Type;
|
|
|
|
// Used for MakeFunctionType implementation.
|
|
template <typename R, typename ArgList>
|
|
struct MakeFunctionTypeImpl;
|
|
|
|
template <typename R, typename... Args>
|
|
struct MakeFunctionTypeImpl<R, TypeList<Args...>> {
|
|
// MSVC 2013 doesn't support Type Alias of function types.
|
|
// Revisit this after we update it to newer version.
|
|
typedef R Type(Args...);
|
|
};
|
|
|
|
// A type-level function that constructs a function type that has |R| as its
|
|
// return type and has TypeLists items as its arguments.
|
|
template <typename R, typename ArgList>
|
|
using MakeFunctionType = typename MakeFunctionTypeImpl<R, ArgList>::Type;
|
|
|
|
// Used for ExtractArgs.
|
|
template <typename Signature>
|
|
struct ExtractArgsImpl;
|
|
|
|
template <typename R, typename... Args>
|
|
struct ExtractArgsImpl<R(Args...)> {
|
|
using Type = TypeList<Args...>;
|
|
};
|
|
|
|
// A type-level function that extracts function arguments into a TypeList.
|
|
// E.g. ExtractArgs<R(A, B, C)> is evaluated to TypeList<A, B, C>.
|
|
template <typename Signature>
|
|
using ExtractArgs = typename ExtractArgsImpl<Signature>::Type;
|
|
|
|
} // namespace internal
|
|
|
|
template <typename T>
|
|
static inline internal::UnretainedWrapper<T> Unretained(T* o) {
|
|
return internal::UnretainedWrapper<T>(o);
|
|
}
|
|
|
|
template <typename T>
|
|
static inline internal::ConstRefWrapper<T> ConstRef(const T& o) {
|
|
return internal::ConstRefWrapper<T>(o);
|
|
}
|
|
|
|
template <typename T>
|
|
static inline internal::OwnedWrapper<T> Owned(T* o) {
|
|
return internal::OwnedWrapper<T>(o);
|
|
}
|
|
|
|
// We offer 2 syntaxes for calling Passed(). The first takes an rvalue and
|
|
// is best suited for use with the return value of a function or other temporary
|
|
// rvalues. The second takes a pointer to the scoper and is just syntactic sugar
|
|
// to avoid having to write Passed(std::move(scoper)).
|
|
//
|
|
// Both versions of Passed() prevent T from being an lvalue reference. The first
|
|
// via use of enable_if, and the second takes a T* which will not bind to T&.
|
|
template <typename T,
|
|
typename std::enable_if<internal::IsMoveOnlyType<T>::value &&
|
|
!std::is_lvalue_reference<T>::value>::type* =
|
|
nullptr>
|
|
static inline internal::PassedWrapper<T> Passed(T&& scoper) {
|
|
return internal::PassedWrapper<T>(std::move(scoper));
|
|
}
|
|
template <typename T,
|
|
typename std::enable_if<internal::IsMoveOnlyType<T>::value>::type* =
|
|
nullptr>
|
|
static inline internal::PassedWrapper<T> Passed(T* scoper) {
|
|
return internal::PassedWrapper<T>(std::move(*scoper));
|
|
}
|
|
|
|
template <typename T>
|
|
static inline internal::IgnoreResultHelper<T> IgnoreResult(T data) {
|
|
return internal::IgnoreResultHelper<T>(data);
|
|
}
|
|
|
|
template <typename T>
|
|
static inline internal::IgnoreResultHelper<Callback<T> >
|
|
IgnoreResult(const Callback<T>& data) {
|
|
return internal::IgnoreResultHelper<Callback<T> >(data);
|
|
}
|
|
|
|
BASE_EXPORT void DoNothing();
|
|
|
|
template<typename T>
|
|
void DeletePointer(T* obj) {
|
|
delete obj;
|
|
}
|
|
|
|
} // namespace base
|
|
|
|
#endif // BASE_BIND_HELPERS_H_
|