955 lines
33 KiB
C++
955 lines
33 KiB
C++
/*
|
|
* Copyright (C) 2014 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include <functional>
|
|
|
|
#include "arch/instruction_set.h"
|
|
#include "arch/arm/instruction_set_features_arm.h"
|
|
#include "arch/arm/registers_arm.h"
|
|
#include "arch/arm64/instruction_set_features_arm64.h"
|
|
#include "arch/mips/instruction_set_features_mips.h"
|
|
#include "arch/mips/registers_mips.h"
|
|
#include "arch/mips64/instruction_set_features_mips64.h"
|
|
#include "arch/mips64/registers_mips64.h"
|
|
#include "arch/x86/instruction_set_features_x86.h"
|
|
#include "arch/x86/registers_x86.h"
|
|
#include "arch/x86_64/instruction_set_features_x86_64.h"
|
|
#include "base/macros.h"
|
|
#include "builder.h"
|
|
#include "code_generator_arm.h"
|
|
#include "code_generator_arm64.h"
|
|
#include "code_generator_mips.h"
|
|
#include "code_generator_mips64.h"
|
|
#include "code_generator_x86.h"
|
|
#include "code_generator_x86_64.h"
|
|
#include "code_simulator_container.h"
|
|
#include "common_compiler_test.h"
|
|
#include "dex_file.h"
|
|
#include "dex_instruction.h"
|
|
#include "driver/compiler_options.h"
|
|
#include "graph_checker.h"
|
|
#include "nodes.h"
|
|
#include "optimizing_unit_test.h"
|
|
#include "prepare_for_register_allocation.h"
|
|
#include "register_allocator.h"
|
|
#include "ssa_liveness_analysis.h"
|
|
#include "utils.h"
|
|
#include "utils/arm/managed_register_arm.h"
|
|
#include "utils/mips/managed_register_mips.h"
|
|
#include "utils/mips64/managed_register_mips64.h"
|
|
#include "utils/x86/managed_register_x86.h"
|
|
|
|
#include "gtest/gtest.h"
|
|
|
|
namespace art {
|
|
|
|
// Provide our own codegen, that ensures the C calling conventions
|
|
// are preserved. Currently, ART and C do not match as R4 is caller-save
|
|
// in ART, and callee-save in C. Alternatively, we could use or write
|
|
// the stub that saves and restores all registers, but it is easier
|
|
// to just overwrite the code generator.
|
|
class TestCodeGeneratorARM : public arm::CodeGeneratorARM {
|
|
public:
|
|
TestCodeGeneratorARM(HGraph* graph,
|
|
const ArmInstructionSetFeatures& isa_features,
|
|
const CompilerOptions& compiler_options)
|
|
: arm::CodeGeneratorARM(graph, isa_features, compiler_options) {
|
|
AddAllocatedRegister(Location::RegisterLocation(arm::R6));
|
|
AddAllocatedRegister(Location::RegisterLocation(arm::R7));
|
|
}
|
|
|
|
void SetupBlockedRegisters() const OVERRIDE {
|
|
arm::CodeGeneratorARM::SetupBlockedRegisters();
|
|
blocked_core_registers_[arm::R4] = true;
|
|
blocked_core_registers_[arm::R6] = false;
|
|
blocked_core_registers_[arm::R7] = false;
|
|
// Makes pair R6-R7 available.
|
|
blocked_register_pairs_[arm::R6_R7] = false;
|
|
}
|
|
};
|
|
|
|
class TestCodeGeneratorX86 : public x86::CodeGeneratorX86 {
|
|
public:
|
|
TestCodeGeneratorX86(HGraph* graph,
|
|
const X86InstructionSetFeatures& isa_features,
|
|
const CompilerOptions& compiler_options)
|
|
: x86::CodeGeneratorX86(graph, isa_features, compiler_options) {
|
|
// Save edi, we need it for getting enough registers for long multiplication.
|
|
AddAllocatedRegister(Location::RegisterLocation(x86::EDI));
|
|
}
|
|
|
|
void SetupBlockedRegisters() const OVERRIDE {
|
|
x86::CodeGeneratorX86::SetupBlockedRegisters();
|
|
// ebx is a callee-save register in C, but caller-save for ART.
|
|
blocked_core_registers_[x86::EBX] = true;
|
|
blocked_register_pairs_[x86::EAX_EBX] = true;
|
|
blocked_register_pairs_[x86::EDX_EBX] = true;
|
|
blocked_register_pairs_[x86::ECX_EBX] = true;
|
|
blocked_register_pairs_[x86::EBX_EDI] = true;
|
|
|
|
// Make edi available.
|
|
blocked_core_registers_[x86::EDI] = false;
|
|
blocked_register_pairs_[x86::ECX_EDI] = false;
|
|
}
|
|
};
|
|
|
|
class InternalCodeAllocator : public CodeAllocator {
|
|
public:
|
|
InternalCodeAllocator() : size_(0) { }
|
|
|
|
virtual uint8_t* Allocate(size_t size) {
|
|
size_ = size;
|
|
memory_.reset(new uint8_t[size]);
|
|
return memory_.get();
|
|
}
|
|
|
|
size_t GetSize() const { return size_; }
|
|
uint8_t* GetMemory() const { return memory_.get(); }
|
|
|
|
private:
|
|
size_t size_;
|
|
std::unique_ptr<uint8_t[]> memory_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(InternalCodeAllocator);
|
|
};
|
|
|
|
static bool CanExecuteOnHardware(InstructionSet target_isa) {
|
|
return (target_isa == kRuntimeISA)
|
|
// Handle the special case of ARM, with two instructions sets (ARM32 and Thumb-2).
|
|
|| (kRuntimeISA == kArm && target_isa == kThumb2);
|
|
}
|
|
|
|
static bool CanExecute(InstructionSet target_isa) {
|
|
CodeSimulatorContainer simulator(target_isa);
|
|
return CanExecuteOnHardware(target_isa) || simulator.CanSimulate();
|
|
}
|
|
|
|
template <typename Expected>
|
|
static Expected SimulatorExecute(CodeSimulator* simulator, Expected (*f)());
|
|
|
|
template <>
|
|
bool SimulatorExecute<bool>(CodeSimulator* simulator, bool (*f)()) {
|
|
simulator->RunFrom(reinterpret_cast<intptr_t>(f));
|
|
return simulator->GetCReturnBool();
|
|
}
|
|
|
|
template <>
|
|
int32_t SimulatorExecute<int32_t>(CodeSimulator* simulator, int32_t (*f)()) {
|
|
simulator->RunFrom(reinterpret_cast<intptr_t>(f));
|
|
return simulator->GetCReturnInt32();
|
|
}
|
|
|
|
template <>
|
|
int64_t SimulatorExecute<int64_t>(CodeSimulator* simulator, int64_t (*f)()) {
|
|
simulator->RunFrom(reinterpret_cast<intptr_t>(f));
|
|
return simulator->GetCReturnInt64();
|
|
}
|
|
|
|
template <typename Expected>
|
|
static void VerifyGeneratedCode(InstructionSet target_isa,
|
|
Expected (*f)(),
|
|
bool has_result,
|
|
Expected expected) {
|
|
ASSERT_TRUE(CanExecute(target_isa)) << "Target isa is not executable.";
|
|
|
|
// Verify on simulator.
|
|
CodeSimulatorContainer simulator(target_isa);
|
|
if (simulator.CanSimulate()) {
|
|
Expected result = SimulatorExecute<Expected>(simulator.Get(), f);
|
|
if (has_result) {
|
|
ASSERT_EQ(expected, result);
|
|
}
|
|
}
|
|
|
|
// Verify on hardware.
|
|
if (CanExecuteOnHardware(target_isa)) {
|
|
Expected result = f();
|
|
if (has_result) {
|
|
ASSERT_EQ(expected, result);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename Expected>
|
|
static void Run(const InternalCodeAllocator& allocator,
|
|
const CodeGenerator& codegen,
|
|
bool has_result,
|
|
Expected expected) {
|
|
InstructionSet target_isa = codegen.GetInstructionSet();
|
|
|
|
typedef Expected (*fptr)();
|
|
CommonCompilerTest::MakeExecutable(allocator.GetMemory(), allocator.GetSize());
|
|
fptr f = reinterpret_cast<fptr>(allocator.GetMemory());
|
|
if (target_isa == kThumb2) {
|
|
// For thumb we need the bottom bit set.
|
|
f = reinterpret_cast<fptr>(reinterpret_cast<uintptr_t>(f) + 1);
|
|
}
|
|
VerifyGeneratedCode(target_isa, f, has_result, expected);
|
|
}
|
|
|
|
template <typename Expected>
|
|
static void RunCode(CodeGenerator* codegen,
|
|
HGraph* graph,
|
|
std::function<void(HGraph*)> hook_before_codegen,
|
|
bool has_result,
|
|
Expected expected) {
|
|
GraphChecker graph_checker(graph);
|
|
graph_checker.Run();
|
|
if (!graph_checker.IsValid()) {
|
|
for (auto error : graph_checker.GetErrors()) {
|
|
std::cout << error << std::endl;
|
|
}
|
|
}
|
|
ASSERT_TRUE(graph_checker.IsValid());
|
|
|
|
SsaLivenessAnalysis liveness(graph, codegen);
|
|
|
|
PrepareForRegisterAllocation(graph).Run();
|
|
liveness.Analyze();
|
|
RegisterAllocator(graph->GetArena(), codegen, liveness).AllocateRegisters();
|
|
hook_before_codegen(graph);
|
|
|
|
InternalCodeAllocator allocator;
|
|
codegen->Compile(&allocator);
|
|
Run(allocator, *codegen, has_result, expected);
|
|
}
|
|
|
|
template <typename Expected>
|
|
static void RunCode(InstructionSet target_isa,
|
|
HGraph* graph,
|
|
std::function<void(HGraph*)> hook_before_codegen,
|
|
bool has_result,
|
|
Expected expected) {
|
|
CompilerOptions compiler_options;
|
|
if (target_isa == kArm || target_isa == kThumb2) {
|
|
std::unique_ptr<const ArmInstructionSetFeatures> features_arm(
|
|
ArmInstructionSetFeatures::FromCppDefines());
|
|
TestCodeGeneratorARM codegenARM(graph, *features_arm.get(), compiler_options);
|
|
RunCode(&codegenARM, graph, hook_before_codegen, has_result, expected);
|
|
} else if (target_isa == kArm64) {
|
|
std::unique_ptr<const Arm64InstructionSetFeatures> features_arm64(
|
|
Arm64InstructionSetFeatures::FromCppDefines());
|
|
arm64::CodeGeneratorARM64 codegenARM64(graph, *features_arm64.get(), compiler_options);
|
|
RunCode(&codegenARM64, graph, hook_before_codegen, has_result, expected);
|
|
} else if (target_isa == kX86) {
|
|
std::unique_ptr<const X86InstructionSetFeatures> features_x86(
|
|
X86InstructionSetFeatures::FromCppDefines());
|
|
x86::CodeGeneratorX86 codegenX86(graph, *features_x86.get(), compiler_options);
|
|
RunCode(&codegenX86, graph, hook_before_codegen, has_result, expected);
|
|
} else if (target_isa == kX86_64) {
|
|
std::unique_ptr<const X86_64InstructionSetFeatures> features_x86_64(
|
|
X86_64InstructionSetFeatures::FromCppDefines());
|
|
x86_64::CodeGeneratorX86_64 codegenX86_64(graph, *features_x86_64.get(), compiler_options);
|
|
RunCode(&codegenX86_64, graph, hook_before_codegen, has_result, expected);
|
|
} else if (target_isa == kMips) {
|
|
std::unique_ptr<const MipsInstructionSetFeatures> features_mips(
|
|
MipsInstructionSetFeatures::FromCppDefines());
|
|
mips::CodeGeneratorMIPS codegenMIPS(graph, *features_mips.get(), compiler_options);
|
|
RunCode(&codegenMIPS, graph, hook_before_codegen, has_result, expected);
|
|
} else if (target_isa == kMips64) {
|
|
std::unique_ptr<const Mips64InstructionSetFeatures> features_mips64(
|
|
Mips64InstructionSetFeatures::FromCppDefines());
|
|
mips64::CodeGeneratorMIPS64 codegenMIPS64(graph, *features_mips64.get(), compiler_options);
|
|
RunCode(&codegenMIPS64, graph, hook_before_codegen, has_result, expected);
|
|
}
|
|
}
|
|
|
|
static ::std::vector<InstructionSet> GetTargetISAs() {
|
|
::std::vector<InstructionSet> v;
|
|
// Add all ISAs that are executable on hardware or on simulator.
|
|
const ::std::vector<InstructionSet> executable_isa_candidates = {
|
|
kArm,
|
|
kArm64,
|
|
kThumb2,
|
|
kX86,
|
|
kX86_64,
|
|
kMips,
|
|
kMips64
|
|
};
|
|
|
|
for (auto target_isa : executable_isa_candidates) {
|
|
if (CanExecute(target_isa)) {
|
|
v.push_back(target_isa);
|
|
}
|
|
}
|
|
|
|
return v;
|
|
}
|
|
|
|
static void TestCode(const uint16_t* data,
|
|
bool has_result = false,
|
|
int32_t expected = 0) {
|
|
for (InstructionSet target_isa : GetTargetISAs()) {
|
|
ArenaPool pool;
|
|
ArenaAllocator arena(&pool);
|
|
HGraph* graph = CreateCFG(&arena, data);
|
|
// Remove suspend checks, they cannot be executed in this context.
|
|
RemoveSuspendChecks(graph);
|
|
RunCode(target_isa, graph, [](HGraph*) {}, has_result, expected);
|
|
}
|
|
}
|
|
|
|
static void TestCodeLong(const uint16_t* data,
|
|
bool has_result,
|
|
int64_t expected) {
|
|
for (InstructionSet target_isa : GetTargetISAs()) {
|
|
ArenaPool pool;
|
|
ArenaAllocator arena(&pool);
|
|
HGraph* graph = CreateCFG(&arena, data, Primitive::kPrimLong);
|
|
// Remove suspend checks, they cannot be executed in this context.
|
|
RemoveSuspendChecks(graph);
|
|
RunCode(target_isa, graph, [](HGraph*) {}, has_result, expected);
|
|
}
|
|
}
|
|
|
|
class CodegenTest : public CommonCompilerTest {};
|
|
|
|
TEST_F(CodegenTest, ReturnVoid) {
|
|
const uint16_t data[] = ZERO_REGISTER_CODE_ITEM(Instruction::RETURN_VOID);
|
|
TestCode(data);
|
|
}
|
|
|
|
TEST_F(CodegenTest, CFG1) {
|
|
const uint16_t data[] = ZERO_REGISTER_CODE_ITEM(
|
|
Instruction::GOTO | 0x100,
|
|
Instruction::RETURN_VOID);
|
|
|
|
TestCode(data);
|
|
}
|
|
|
|
TEST_F(CodegenTest, CFG2) {
|
|
const uint16_t data[] = ZERO_REGISTER_CODE_ITEM(
|
|
Instruction::GOTO | 0x100,
|
|
Instruction::GOTO | 0x100,
|
|
Instruction::RETURN_VOID);
|
|
|
|
TestCode(data);
|
|
}
|
|
|
|
TEST_F(CodegenTest, CFG3) {
|
|
const uint16_t data1[] = ZERO_REGISTER_CODE_ITEM(
|
|
Instruction::GOTO | 0x200,
|
|
Instruction::RETURN_VOID,
|
|
Instruction::GOTO | 0xFF00);
|
|
|
|
TestCode(data1);
|
|
|
|
const uint16_t data2[] = ZERO_REGISTER_CODE_ITEM(
|
|
Instruction::GOTO_16, 3,
|
|
Instruction::RETURN_VOID,
|
|
Instruction::GOTO_16, 0xFFFF);
|
|
|
|
TestCode(data2);
|
|
|
|
const uint16_t data3[] = ZERO_REGISTER_CODE_ITEM(
|
|
Instruction::GOTO_32, 4, 0,
|
|
Instruction::RETURN_VOID,
|
|
Instruction::GOTO_32, 0xFFFF, 0xFFFF);
|
|
|
|
TestCode(data3);
|
|
}
|
|
|
|
TEST_F(CodegenTest, CFG4) {
|
|
const uint16_t data[] = ZERO_REGISTER_CODE_ITEM(
|
|
Instruction::RETURN_VOID,
|
|
Instruction::GOTO | 0x100,
|
|
Instruction::GOTO | 0xFE00);
|
|
|
|
TestCode(data);
|
|
}
|
|
|
|
TEST_F(CodegenTest, CFG5) {
|
|
const uint16_t data[] = ONE_REGISTER_CODE_ITEM(
|
|
Instruction::CONST_4 | 0 | 0,
|
|
Instruction::IF_EQ, 3,
|
|
Instruction::GOTO | 0x100,
|
|
Instruction::RETURN_VOID);
|
|
|
|
TestCode(data);
|
|
}
|
|
|
|
TEST_F(CodegenTest, IntConstant) {
|
|
const uint16_t data[] = ONE_REGISTER_CODE_ITEM(
|
|
Instruction::CONST_4 | 0 | 0,
|
|
Instruction::RETURN_VOID);
|
|
|
|
TestCode(data);
|
|
}
|
|
|
|
TEST_F(CodegenTest, Return1) {
|
|
const uint16_t data[] = ONE_REGISTER_CODE_ITEM(
|
|
Instruction::CONST_4 | 0 | 0,
|
|
Instruction::RETURN | 0);
|
|
|
|
TestCode(data, true, 0);
|
|
}
|
|
|
|
TEST_F(CodegenTest, Return2) {
|
|
const uint16_t data[] = TWO_REGISTERS_CODE_ITEM(
|
|
Instruction::CONST_4 | 0 | 0,
|
|
Instruction::CONST_4 | 0 | 1 << 8,
|
|
Instruction::RETURN | 1 << 8);
|
|
|
|
TestCode(data, true, 0);
|
|
}
|
|
|
|
TEST_F(CodegenTest, Return3) {
|
|
const uint16_t data[] = TWO_REGISTERS_CODE_ITEM(
|
|
Instruction::CONST_4 | 0 | 0,
|
|
Instruction::CONST_4 | 1 << 8 | 1 << 12,
|
|
Instruction::RETURN | 1 << 8);
|
|
|
|
TestCode(data, true, 1);
|
|
}
|
|
|
|
TEST_F(CodegenTest, ReturnIf1) {
|
|
const uint16_t data[] = TWO_REGISTERS_CODE_ITEM(
|
|
Instruction::CONST_4 | 0 | 0,
|
|
Instruction::CONST_4 | 1 << 8 | 1 << 12,
|
|
Instruction::IF_EQ, 3,
|
|
Instruction::RETURN | 0 << 8,
|
|
Instruction::RETURN | 1 << 8);
|
|
|
|
TestCode(data, true, 1);
|
|
}
|
|
|
|
TEST_F(CodegenTest, ReturnIf2) {
|
|
const uint16_t data[] = TWO_REGISTERS_CODE_ITEM(
|
|
Instruction::CONST_4 | 0 | 0,
|
|
Instruction::CONST_4 | 1 << 8 | 1 << 12,
|
|
Instruction::IF_EQ | 0 << 4 | 1 << 8, 3,
|
|
Instruction::RETURN | 0 << 8,
|
|
Instruction::RETURN | 1 << 8);
|
|
|
|
TestCode(data, true, 0);
|
|
}
|
|
|
|
// Exercise bit-wise (one's complement) not-int instruction.
|
|
#define NOT_INT_TEST(TEST_NAME, INPUT, EXPECTED_OUTPUT) \
|
|
TEST_F(CodegenTest, TEST_NAME) { \
|
|
const int32_t input = INPUT; \
|
|
const uint16_t input_lo = Low16Bits(input); \
|
|
const uint16_t input_hi = High16Bits(input); \
|
|
const uint16_t data[] = TWO_REGISTERS_CODE_ITEM( \
|
|
Instruction::CONST | 0 << 8, input_lo, input_hi, \
|
|
Instruction::NOT_INT | 1 << 8 | 0 << 12 , \
|
|
Instruction::RETURN | 1 << 8); \
|
|
\
|
|
TestCode(data, true, EXPECTED_OUTPUT); \
|
|
}
|
|
|
|
NOT_INT_TEST(ReturnNotIntMinus2, -2, 1)
|
|
NOT_INT_TEST(ReturnNotIntMinus1, -1, 0)
|
|
NOT_INT_TEST(ReturnNotInt0, 0, -1)
|
|
NOT_INT_TEST(ReturnNotInt1, 1, -2)
|
|
NOT_INT_TEST(ReturnNotIntINT32_MIN, -2147483648, 2147483647) // (2^31) - 1
|
|
NOT_INT_TEST(ReturnNotIntINT32_MINPlus1, -2147483647, 2147483646) // (2^31) - 2
|
|
NOT_INT_TEST(ReturnNotIntINT32_MAXMinus1, 2147483646, -2147483647) // -(2^31) - 1
|
|
NOT_INT_TEST(ReturnNotIntINT32_MAX, 2147483647, -2147483648) // -(2^31)
|
|
|
|
#undef NOT_INT_TEST
|
|
|
|
// Exercise bit-wise (one's complement) not-long instruction.
|
|
#define NOT_LONG_TEST(TEST_NAME, INPUT, EXPECTED_OUTPUT) \
|
|
TEST_F(CodegenTest, TEST_NAME) { \
|
|
const int64_t input = INPUT; \
|
|
const uint16_t word0 = Low16Bits(Low32Bits(input)); /* LSW. */ \
|
|
const uint16_t word1 = High16Bits(Low32Bits(input)); \
|
|
const uint16_t word2 = Low16Bits(High32Bits(input)); \
|
|
const uint16_t word3 = High16Bits(High32Bits(input)); /* MSW. */ \
|
|
const uint16_t data[] = FOUR_REGISTERS_CODE_ITEM( \
|
|
Instruction::CONST_WIDE | 0 << 8, word0, word1, word2, word3, \
|
|
Instruction::NOT_LONG | 2 << 8 | 0 << 12, \
|
|
Instruction::RETURN_WIDE | 2 << 8); \
|
|
\
|
|
TestCodeLong(data, true, EXPECTED_OUTPUT); \
|
|
}
|
|
|
|
NOT_LONG_TEST(ReturnNotLongMinus2, INT64_C(-2), INT64_C(1))
|
|
NOT_LONG_TEST(ReturnNotLongMinus1, INT64_C(-1), INT64_C(0))
|
|
NOT_LONG_TEST(ReturnNotLong0, INT64_C(0), INT64_C(-1))
|
|
NOT_LONG_TEST(ReturnNotLong1, INT64_C(1), INT64_C(-2))
|
|
|
|
NOT_LONG_TEST(ReturnNotLongINT32_MIN,
|
|
INT64_C(-2147483648),
|
|
INT64_C(2147483647)) // (2^31) - 1
|
|
NOT_LONG_TEST(ReturnNotLongINT32_MINPlus1,
|
|
INT64_C(-2147483647),
|
|
INT64_C(2147483646)) // (2^31) - 2
|
|
NOT_LONG_TEST(ReturnNotLongINT32_MAXMinus1,
|
|
INT64_C(2147483646),
|
|
INT64_C(-2147483647)) // -(2^31) - 1
|
|
NOT_LONG_TEST(ReturnNotLongINT32_MAX,
|
|
INT64_C(2147483647),
|
|
INT64_C(-2147483648)) // -(2^31)
|
|
|
|
// Note that the C++ compiler won't accept
|
|
// INT64_C(-9223372036854775808) (that is, INT64_MIN) as a valid
|
|
// int64_t literal, so we use INT64_C(-9223372036854775807)-1 instead.
|
|
NOT_LONG_TEST(ReturnNotINT64_MIN,
|
|
INT64_C(-9223372036854775807)-1,
|
|
INT64_C(9223372036854775807)); // (2^63) - 1
|
|
NOT_LONG_TEST(ReturnNotINT64_MINPlus1,
|
|
INT64_C(-9223372036854775807),
|
|
INT64_C(9223372036854775806)); // (2^63) - 2
|
|
NOT_LONG_TEST(ReturnNotLongINT64_MAXMinus1,
|
|
INT64_C(9223372036854775806),
|
|
INT64_C(-9223372036854775807)); // -(2^63) - 1
|
|
NOT_LONG_TEST(ReturnNotLongINT64_MAX,
|
|
INT64_C(9223372036854775807),
|
|
INT64_C(-9223372036854775807)-1); // -(2^63)
|
|
|
|
#undef NOT_LONG_TEST
|
|
|
|
TEST_F(CodegenTest, IntToLongOfLongToInt) {
|
|
const int64_t input = INT64_C(4294967296); // 2^32
|
|
const uint16_t word0 = Low16Bits(Low32Bits(input)); // LSW.
|
|
const uint16_t word1 = High16Bits(Low32Bits(input));
|
|
const uint16_t word2 = Low16Bits(High32Bits(input));
|
|
const uint16_t word3 = High16Bits(High32Bits(input)); // MSW.
|
|
const uint16_t data[] = FIVE_REGISTERS_CODE_ITEM(
|
|
Instruction::CONST_WIDE | 0 << 8, word0, word1, word2, word3,
|
|
Instruction::CONST_WIDE | 2 << 8, 1, 0, 0, 0,
|
|
Instruction::ADD_LONG | 0, 0 << 8 | 2, // v0 <- 2^32 + 1
|
|
Instruction::LONG_TO_INT | 4 << 8 | 0 << 12,
|
|
Instruction::INT_TO_LONG | 2 << 8 | 4 << 12,
|
|
Instruction::RETURN_WIDE | 2 << 8);
|
|
|
|
TestCodeLong(data, true, 1);
|
|
}
|
|
|
|
TEST_F(CodegenTest, ReturnAdd1) {
|
|
const uint16_t data[] = TWO_REGISTERS_CODE_ITEM(
|
|
Instruction::CONST_4 | 3 << 12 | 0,
|
|
Instruction::CONST_4 | 4 << 12 | 1 << 8,
|
|
Instruction::ADD_INT, 1 << 8 | 0,
|
|
Instruction::RETURN);
|
|
|
|
TestCode(data, true, 7);
|
|
}
|
|
|
|
TEST_F(CodegenTest, ReturnAdd2) {
|
|
const uint16_t data[] = TWO_REGISTERS_CODE_ITEM(
|
|
Instruction::CONST_4 | 3 << 12 | 0,
|
|
Instruction::CONST_4 | 4 << 12 | 1 << 8,
|
|
Instruction::ADD_INT_2ADDR | 1 << 12,
|
|
Instruction::RETURN);
|
|
|
|
TestCode(data, true, 7);
|
|
}
|
|
|
|
TEST_F(CodegenTest, ReturnAdd3) {
|
|
const uint16_t data[] = ONE_REGISTER_CODE_ITEM(
|
|
Instruction::CONST_4 | 4 << 12 | 0 << 8,
|
|
Instruction::ADD_INT_LIT8, 3 << 8 | 0,
|
|
Instruction::RETURN);
|
|
|
|
TestCode(data, true, 7);
|
|
}
|
|
|
|
TEST_F(CodegenTest, ReturnAdd4) {
|
|
const uint16_t data[] = ONE_REGISTER_CODE_ITEM(
|
|
Instruction::CONST_4 | 4 << 12 | 0 << 8,
|
|
Instruction::ADD_INT_LIT16, 3,
|
|
Instruction::RETURN);
|
|
|
|
TestCode(data, true, 7);
|
|
}
|
|
|
|
TEST_F(CodegenTest, ReturnMulInt) {
|
|
const uint16_t data[] = TWO_REGISTERS_CODE_ITEM(
|
|
Instruction::CONST_4 | 3 << 12 | 0,
|
|
Instruction::CONST_4 | 4 << 12 | 1 << 8,
|
|
Instruction::MUL_INT, 1 << 8 | 0,
|
|
Instruction::RETURN);
|
|
|
|
TestCode(data, true, 12);
|
|
}
|
|
|
|
TEST_F(CodegenTest, ReturnMulInt2addr) {
|
|
const uint16_t data[] = TWO_REGISTERS_CODE_ITEM(
|
|
Instruction::CONST_4 | 3 << 12 | 0,
|
|
Instruction::CONST_4 | 4 << 12 | 1 << 8,
|
|
Instruction::MUL_INT_2ADDR | 1 << 12,
|
|
Instruction::RETURN);
|
|
|
|
TestCode(data, true, 12);
|
|
}
|
|
|
|
TEST_F(CodegenTest, ReturnMulLong) {
|
|
const uint16_t data[] = FOUR_REGISTERS_CODE_ITEM(
|
|
Instruction::CONST_WIDE | 0 << 8, 3, 0, 0, 0,
|
|
Instruction::CONST_WIDE | 2 << 8, 4, 0, 0, 0,
|
|
Instruction::MUL_LONG, 2 << 8 | 0,
|
|
Instruction::RETURN_WIDE);
|
|
|
|
TestCodeLong(data, true, 12);
|
|
}
|
|
|
|
TEST_F(CodegenTest, ReturnMulLong2addr) {
|
|
const uint16_t data[] = FOUR_REGISTERS_CODE_ITEM(
|
|
Instruction::CONST_WIDE | 0 << 8, 3, 0, 0, 0,
|
|
Instruction::CONST_WIDE | 2 << 8, 4, 0, 0, 0,
|
|
Instruction::MUL_LONG_2ADDR | 2 << 12,
|
|
Instruction::RETURN_WIDE);
|
|
|
|
TestCodeLong(data, true, 12);
|
|
}
|
|
|
|
TEST_F(CodegenTest, ReturnMulIntLit8) {
|
|
const uint16_t data[] = ONE_REGISTER_CODE_ITEM(
|
|
Instruction::CONST_4 | 4 << 12 | 0 << 8,
|
|
Instruction::MUL_INT_LIT8, 3 << 8 | 0,
|
|
Instruction::RETURN);
|
|
|
|
TestCode(data, true, 12);
|
|
}
|
|
|
|
TEST_F(CodegenTest, ReturnMulIntLit16) {
|
|
const uint16_t data[] = ONE_REGISTER_CODE_ITEM(
|
|
Instruction::CONST_4 | 4 << 12 | 0 << 8,
|
|
Instruction::MUL_INT_LIT16, 3,
|
|
Instruction::RETURN);
|
|
|
|
TestCode(data, true, 12);
|
|
}
|
|
|
|
TEST_F(CodegenTest, NonMaterializedCondition) {
|
|
for (InstructionSet target_isa : GetTargetISAs()) {
|
|
ArenaPool pool;
|
|
ArenaAllocator allocator(&pool);
|
|
|
|
HGraph* graph = CreateGraph(&allocator);
|
|
|
|
HBasicBlock* entry = new (&allocator) HBasicBlock(graph);
|
|
graph->AddBlock(entry);
|
|
graph->SetEntryBlock(entry);
|
|
entry->AddInstruction(new (&allocator) HGoto());
|
|
|
|
HBasicBlock* first_block = new (&allocator) HBasicBlock(graph);
|
|
graph->AddBlock(first_block);
|
|
entry->AddSuccessor(first_block);
|
|
HIntConstant* constant0 = graph->GetIntConstant(0);
|
|
HIntConstant* constant1 = graph->GetIntConstant(1);
|
|
HEqual* equal = new (&allocator) HEqual(constant0, constant0);
|
|
first_block->AddInstruction(equal);
|
|
first_block->AddInstruction(new (&allocator) HIf(equal));
|
|
|
|
HBasicBlock* then_block = new (&allocator) HBasicBlock(graph);
|
|
HBasicBlock* else_block = new (&allocator) HBasicBlock(graph);
|
|
HBasicBlock* exit_block = new (&allocator) HBasicBlock(graph);
|
|
graph->SetExitBlock(exit_block);
|
|
|
|
graph->AddBlock(then_block);
|
|
graph->AddBlock(else_block);
|
|
graph->AddBlock(exit_block);
|
|
first_block->AddSuccessor(then_block);
|
|
first_block->AddSuccessor(else_block);
|
|
then_block->AddSuccessor(exit_block);
|
|
else_block->AddSuccessor(exit_block);
|
|
|
|
exit_block->AddInstruction(new (&allocator) HExit());
|
|
then_block->AddInstruction(new (&allocator) HReturn(constant0));
|
|
else_block->AddInstruction(new (&allocator) HReturn(constant1));
|
|
|
|
ASSERT_FALSE(equal->IsEmittedAtUseSite());
|
|
graph->BuildDominatorTree();
|
|
PrepareForRegisterAllocation(graph).Run();
|
|
ASSERT_TRUE(equal->IsEmittedAtUseSite());
|
|
|
|
auto hook_before_codegen = [](HGraph* graph_in) {
|
|
HBasicBlock* block = graph_in->GetEntryBlock()->GetSuccessors()[0];
|
|
HParallelMove* move = new (graph_in->GetArena()) HParallelMove(graph_in->GetArena());
|
|
block->InsertInstructionBefore(move, block->GetLastInstruction());
|
|
};
|
|
|
|
RunCode(target_isa, graph, hook_before_codegen, true, 0);
|
|
}
|
|
}
|
|
|
|
TEST_F(CodegenTest, MaterializedCondition1) {
|
|
for (InstructionSet target_isa : GetTargetISAs()) {
|
|
// Check that condition are materialized correctly. A materialized condition
|
|
// should yield `1` if it evaluated to true, and `0` otherwise.
|
|
// We force the materialization of comparisons for different combinations of
|
|
|
|
// inputs and check the results.
|
|
|
|
int lhs[] = {1, 2, -1, 2, 0xabc};
|
|
int rhs[] = {2, 1, 2, -1, 0xabc};
|
|
|
|
for (size_t i = 0; i < arraysize(lhs); i++) {
|
|
ArenaPool pool;
|
|
ArenaAllocator allocator(&pool);
|
|
HGraph* graph = CreateGraph(&allocator);
|
|
|
|
HBasicBlock* entry_block = new (&allocator) HBasicBlock(graph);
|
|
graph->AddBlock(entry_block);
|
|
graph->SetEntryBlock(entry_block);
|
|
entry_block->AddInstruction(new (&allocator) HGoto());
|
|
HBasicBlock* code_block = new (&allocator) HBasicBlock(graph);
|
|
graph->AddBlock(code_block);
|
|
HBasicBlock* exit_block = new (&allocator) HBasicBlock(graph);
|
|
graph->AddBlock(exit_block);
|
|
exit_block->AddInstruction(new (&allocator) HExit());
|
|
|
|
entry_block->AddSuccessor(code_block);
|
|
code_block->AddSuccessor(exit_block);
|
|
graph->SetExitBlock(exit_block);
|
|
|
|
HIntConstant* cst_lhs = graph->GetIntConstant(lhs[i]);
|
|
HIntConstant* cst_rhs = graph->GetIntConstant(rhs[i]);
|
|
HLessThan cmp_lt(cst_lhs, cst_rhs);
|
|
code_block->AddInstruction(&cmp_lt);
|
|
HReturn ret(&cmp_lt);
|
|
code_block->AddInstruction(&ret);
|
|
|
|
graph->BuildDominatorTree();
|
|
auto hook_before_codegen = [](HGraph* graph_in) {
|
|
HBasicBlock* block = graph_in->GetEntryBlock()->GetSuccessors()[0];
|
|
HParallelMove* move = new (graph_in->GetArena()) HParallelMove(graph_in->GetArena());
|
|
block->InsertInstructionBefore(move, block->GetLastInstruction());
|
|
};
|
|
RunCode(target_isa, graph, hook_before_codegen, true, lhs[i] < rhs[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_F(CodegenTest, MaterializedCondition2) {
|
|
for (InstructionSet target_isa : GetTargetISAs()) {
|
|
// Check that HIf correctly interprets a materialized condition.
|
|
// We force the materialization of comparisons for different combinations of
|
|
// inputs. An HIf takes the materialized combination as input and returns a
|
|
// value that we verify.
|
|
|
|
int lhs[] = {1, 2, -1, 2, 0xabc};
|
|
int rhs[] = {2, 1, 2, -1, 0xabc};
|
|
|
|
|
|
for (size_t i = 0; i < arraysize(lhs); i++) {
|
|
ArenaPool pool;
|
|
ArenaAllocator allocator(&pool);
|
|
HGraph* graph = CreateGraph(&allocator);
|
|
|
|
HBasicBlock* entry_block = new (&allocator) HBasicBlock(graph);
|
|
graph->AddBlock(entry_block);
|
|
graph->SetEntryBlock(entry_block);
|
|
entry_block->AddInstruction(new (&allocator) HGoto());
|
|
|
|
HBasicBlock* if_block = new (&allocator) HBasicBlock(graph);
|
|
graph->AddBlock(if_block);
|
|
HBasicBlock* if_true_block = new (&allocator) HBasicBlock(graph);
|
|
graph->AddBlock(if_true_block);
|
|
HBasicBlock* if_false_block = new (&allocator) HBasicBlock(graph);
|
|
graph->AddBlock(if_false_block);
|
|
HBasicBlock* exit_block = new (&allocator) HBasicBlock(graph);
|
|
graph->AddBlock(exit_block);
|
|
exit_block->AddInstruction(new (&allocator) HExit());
|
|
|
|
graph->SetEntryBlock(entry_block);
|
|
entry_block->AddSuccessor(if_block);
|
|
if_block->AddSuccessor(if_true_block);
|
|
if_block->AddSuccessor(if_false_block);
|
|
if_true_block->AddSuccessor(exit_block);
|
|
if_false_block->AddSuccessor(exit_block);
|
|
graph->SetExitBlock(exit_block);
|
|
|
|
HIntConstant* cst_lhs = graph->GetIntConstant(lhs[i]);
|
|
HIntConstant* cst_rhs = graph->GetIntConstant(rhs[i]);
|
|
HLessThan cmp_lt(cst_lhs, cst_rhs);
|
|
if_block->AddInstruction(&cmp_lt);
|
|
// We insert a dummy instruction to separate the HIf from the HLessThan
|
|
// and force the materialization of the condition.
|
|
HMemoryBarrier force_materialization(MemBarrierKind::kAnyAny, 0);
|
|
if_block->AddInstruction(&force_materialization);
|
|
HIf if_lt(&cmp_lt);
|
|
if_block->AddInstruction(&if_lt);
|
|
|
|
HIntConstant* cst_lt = graph->GetIntConstant(1);
|
|
HReturn ret_lt(cst_lt);
|
|
if_true_block->AddInstruction(&ret_lt);
|
|
HIntConstant* cst_ge = graph->GetIntConstant(0);
|
|
HReturn ret_ge(cst_ge);
|
|
if_false_block->AddInstruction(&ret_ge);
|
|
|
|
graph->BuildDominatorTree();
|
|
auto hook_before_codegen = [](HGraph* graph_in) {
|
|
HBasicBlock* block = graph_in->GetEntryBlock()->GetSuccessors()[0];
|
|
HParallelMove* move = new (graph_in->GetArena()) HParallelMove(graph_in->GetArena());
|
|
block->InsertInstructionBefore(move, block->GetLastInstruction());
|
|
};
|
|
RunCode(target_isa, graph, hook_before_codegen, true, lhs[i] < rhs[i]);
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_F(CodegenTest, ReturnDivIntLit8) {
|
|
const uint16_t data[] = ONE_REGISTER_CODE_ITEM(
|
|
Instruction::CONST_4 | 4 << 12 | 0 << 8,
|
|
Instruction::DIV_INT_LIT8, 3 << 8 | 0,
|
|
Instruction::RETURN);
|
|
|
|
TestCode(data, true, 1);
|
|
}
|
|
|
|
TEST_F(CodegenTest, ReturnDivInt2Addr) {
|
|
const uint16_t data[] = TWO_REGISTERS_CODE_ITEM(
|
|
Instruction::CONST_4 | 4 << 12 | 0,
|
|
Instruction::CONST_4 | 2 << 12 | 1 << 8,
|
|
Instruction::DIV_INT_2ADDR | 1 << 12,
|
|
Instruction::RETURN);
|
|
|
|
TestCode(data, true, 2);
|
|
}
|
|
|
|
// Helper method.
|
|
static void TestComparison(IfCondition condition,
|
|
int64_t i,
|
|
int64_t j,
|
|
Primitive::Type type,
|
|
const InstructionSet target_isa) {
|
|
ArenaPool pool;
|
|
ArenaAllocator allocator(&pool);
|
|
HGraph* graph = CreateGraph(&allocator);
|
|
|
|
HBasicBlock* entry_block = new (&allocator) HBasicBlock(graph);
|
|
graph->AddBlock(entry_block);
|
|
graph->SetEntryBlock(entry_block);
|
|
entry_block->AddInstruction(new (&allocator) HGoto());
|
|
|
|
HBasicBlock* block = new (&allocator) HBasicBlock(graph);
|
|
graph->AddBlock(block);
|
|
|
|
HBasicBlock* exit_block = new (&allocator) HBasicBlock(graph);
|
|
graph->AddBlock(exit_block);
|
|
graph->SetExitBlock(exit_block);
|
|
exit_block->AddInstruction(new (&allocator) HExit());
|
|
|
|
entry_block->AddSuccessor(block);
|
|
block->AddSuccessor(exit_block);
|
|
|
|
HInstruction* op1;
|
|
HInstruction* op2;
|
|
if (type == Primitive::kPrimInt) {
|
|
op1 = graph->GetIntConstant(i);
|
|
op2 = graph->GetIntConstant(j);
|
|
} else {
|
|
DCHECK_EQ(type, Primitive::kPrimLong);
|
|
op1 = graph->GetLongConstant(i);
|
|
op2 = graph->GetLongConstant(j);
|
|
}
|
|
|
|
HInstruction* comparison = nullptr;
|
|
bool expected_result = false;
|
|
const uint64_t x = i;
|
|
const uint64_t y = j;
|
|
switch (condition) {
|
|
case kCondEQ:
|
|
comparison = new (&allocator) HEqual(op1, op2);
|
|
expected_result = (i == j);
|
|
break;
|
|
case kCondNE:
|
|
comparison = new (&allocator) HNotEqual(op1, op2);
|
|
expected_result = (i != j);
|
|
break;
|
|
case kCondLT:
|
|
comparison = new (&allocator) HLessThan(op1, op2);
|
|
expected_result = (i < j);
|
|
break;
|
|
case kCondLE:
|
|
comparison = new (&allocator) HLessThanOrEqual(op1, op2);
|
|
expected_result = (i <= j);
|
|
break;
|
|
case kCondGT:
|
|
comparison = new (&allocator) HGreaterThan(op1, op2);
|
|
expected_result = (i > j);
|
|
break;
|
|
case kCondGE:
|
|
comparison = new (&allocator) HGreaterThanOrEqual(op1, op2);
|
|
expected_result = (i >= j);
|
|
break;
|
|
case kCondB:
|
|
comparison = new (&allocator) HBelow(op1, op2);
|
|
expected_result = (x < y);
|
|
break;
|
|
case kCondBE:
|
|
comparison = new (&allocator) HBelowOrEqual(op1, op2);
|
|
expected_result = (x <= y);
|
|
break;
|
|
case kCondA:
|
|
comparison = new (&allocator) HAbove(op1, op2);
|
|
expected_result = (x > y);
|
|
break;
|
|
case kCondAE:
|
|
comparison = new (&allocator) HAboveOrEqual(op1, op2);
|
|
expected_result = (x >= y);
|
|
break;
|
|
}
|
|
block->AddInstruction(comparison);
|
|
block->AddInstruction(new (&allocator) HReturn(comparison));
|
|
|
|
graph->BuildDominatorTree();
|
|
RunCode(target_isa, graph, [](HGraph*) {}, true, expected_result);
|
|
}
|
|
|
|
TEST_F(CodegenTest, ComparisonsInt) {
|
|
for (InstructionSet target_isa : GetTargetISAs()) {
|
|
for (int64_t i = -1; i <= 1; i++) {
|
|
for (int64_t j = -1; j <= 1; j++) {
|
|
TestComparison(kCondEQ, i, j, Primitive::kPrimInt, target_isa);
|
|
TestComparison(kCondNE, i, j, Primitive::kPrimInt, target_isa);
|
|
TestComparison(kCondLT, i, j, Primitive::kPrimInt, target_isa);
|
|
TestComparison(kCondLE, i, j, Primitive::kPrimInt, target_isa);
|
|
TestComparison(kCondGT, i, j, Primitive::kPrimInt, target_isa);
|
|
TestComparison(kCondGE, i, j, Primitive::kPrimInt, target_isa);
|
|
TestComparison(kCondB, i, j, Primitive::kPrimInt, target_isa);
|
|
TestComparison(kCondBE, i, j, Primitive::kPrimInt, target_isa);
|
|
TestComparison(kCondA, i, j, Primitive::kPrimInt, target_isa);
|
|
TestComparison(kCondAE, i, j, Primitive::kPrimInt, target_isa);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
TEST_F(CodegenTest, ComparisonsLong) {
|
|
// TODO: make MIPS work for long
|
|
if (kRuntimeISA == kMips || kRuntimeISA == kMips64) {
|
|
return;
|
|
}
|
|
|
|
for (InstructionSet target_isa : GetTargetISAs()) {
|
|
if (target_isa == kMips || target_isa == kMips64) {
|
|
continue;
|
|
}
|
|
|
|
for (int64_t i = -1; i <= 1; i++) {
|
|
for (int64_t j = -1; j <= 1; j++) {
|
|
TestComparison(kCondEQ, i, j, Primitive::kPrimLong, target_isa);
|
|
TestComparison(kCondNE, i, j, Primitive::kPrimLong, target_isa);
|
|
TestComparison(kCondLT, i, j, Primitive::kPrimLong, target_isa);
|
|
TestComparison(kCondLE, i, j, Primitive::kPrimLong, target_isa);
|
|
TestComparison(kCondGT, i, j, Primitive::kPrimLong, target_isa);
|
|
TestComparison(kCondGE, i, j, Primitive::kPrimLong, target_isa);
|
|
TestComparison(kCondB, i, j, Primitive::kPrimLong, target_isa);
|
|
TestComparison(kCondBE, i, j, Primitive::kPrimLong, target_isa);
|
|
TestComparison(kCondA, i, j, Primitive::kPrimLong, target_isa);
|
|
TestComparison(kCondAE, i, j, Primitive::kPrimLong, target_isa);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace art
|