1600 lines
58 KiB
C++
1600 lines
58 KiB
C++
/*
|
|
* Copyright (C) 2011 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#ifndef ART_RUNTIME_THREAD_H_
|
|
#define ART_RUNTIME_THREAD_H_
|
|
|
|
#include <bitset>
|
|
#include <deque>
|
|
#include <iosfwd>
|
|
#include <list>
|
|
#include <memory>
|
|
#include <setjmp.h>
|
|
#include <string>
|
|
|
|
#include "arch/context.h"
|
|
#include "arch/instruction_set.h"
|
|
#include "atomic.h"
|
|
#include "base/macros.h"
|
|
#include "base/mutex.h"
|
|
#include "entrypoints/jni/jni_entrypoints.h"
|
|
#include "entrypoints/quick/quick_entrypoints.h"
|
|
#include "globals.h"
|
|
#include "handle_scope.h"
|
|
#include "instrumentation.h"
|
|
#include "jvalue.h"
|
|
#include "object_callbacks.h"
|
|
#include "offsets.h"
|
|
#include "runtime_stats.h"
|
|
#include "stack.h"
|
|
#include "thread_state.h"
|
|
|
|
class BacktraceMap;
|
|
|
|
namespace art {
|
|
|
|
namespace gc {
|
|
namespace accounting {
|
|
template<class T> class AtomicStack;
|
|
} // namespace accounting
|
|
namespace collector {
|
|
class SemiSpace;
|
|
} // namespace collector
|
|
} // namespace gc
|
|
|
|
namespace mirror {
|
|
class Array;
|
|
class Class;
|
|
class ClassLoader;
|
|
class Object;
|
|
template<class T> class ObjectArray;
|
|
template<class T> class PrimitiveArray;
|
|
typedef PrimitiveArray<int32_t> IntArray;
|
|
class StackTraceElement;
|
|
class String;
|
|
class Throwable;
|
|
} // namespace mirror
|
|
|
|
namespace verifier {
|
|
class MethodVerifier;
|
|
} // namespace verifier
|
|
|
|
class ArtMethod;
|
|
class BaseMutex;
|
|
class ClassLinker;
|
|
class Closure;
|
|
class Context;
|
|
struct DebugInvokeReq;
|
|
class DeoptimizationContextRecord;
|
|
class DexFile;
|
|
class FrameIdToShadowFrame;
|
|
class JavaVMExt;
|
|
struct JNIEnvExt;
|
|
class Monitor;
|
|
class Runtime;
|
|
class ScopedObjectAccessAlreadyRunnable;
|
|
class ShadowFrame;
|
|
class SingleStepControl;
|
|
class StackedShadowFrameRecord;
|
|
class Thread;
|
|
class ThreadList;
|
|
|
|
// Thread priorities. These must match the Thread.MIN_PRIORITY,
|
|
// Thread.NORM_PRIORITY, and Thread.MAX_PRIORITY constants.
|
|
enum ThreadPriority {
|
|
kMinThreadPriority = 1,
|
|
kNormThreadPriority = 5,
|
|
kMaxThreadPriority = 10,
|
|
};
|
|
|
|
enum ThreadFlag {
|
|
kSuspendRequest = 1, // If set implies that suspend_count_ > 0 and the Thread should enter the
|
|
// safepoint handler.
|
|
kCheckpointRequest = 2, // Request that the thread do some checkpoint work and then continue.
|
|
kActiveSuspendBarrier = 4 // Register that at least 1 suspend barrier needs to be passed.
|
|
};
|
|
|
|
enum class StackedShadowFrameType {
|
|
kShadowFrameUnderConstruction,
|
|
kDeoptimizationShadowFrame,
|
|
kSingleFrameDeoptimizationShadowFrame
|
|
};
|
|
|
|
// This should match RosAlloc::kNumThreadLocalSizeBrackets.
|
|
static constexpr size_t kNumRosAllocThreadLocalSizeBracketsInThread = 16;
|
|
|
|
// Thread's stack layout for implicit stack overflow checks:
|
|
//
|
|
// +---------------------+ <- highest address of stack memory
|
|
// | |
|
|
// . . <- SP
|
|
// | |
|
|
// | |
|
|
// +---------------------+ <- stack_end
|
|
// | |
|
|
// | Gap |
|
|
// | |
|
|
// +---------------------+ <- stack_begin
|
|
// | |
|
|
// | Protected region |
|
|
// | |
|
|
// +---------------------+ <- lowest address of stack memory
|
|
//
|
|
// The stack always grows down in memory. At the lowest address is a region of memory
|
|
// that is set mprotect(PROT_NONE). Any attempt to read/write to this region will
|
|
// result in a segmentation fault signal. At any point, the thread's SP will be somewhere
|
|
// between the stack_end and the highest address in stack memory. An implicit stack
|
|
// overflow check is a read of memory at a certain offset below the current SP (4K typically).
|
|
// If the thread's SP is below the stack_end address this will be a read into the protected
|
|
// region. If the SP is above the stack_end address, the thread is guaranteed to have
|
|
// at least 4K of space. Because stack overflow checks are only performed in generated code,
|
|
// if the thread makes a call out to a native function (through JNI), that native function
|
|
// might only have 4K of memory (if the SP is adjacent to stack_end).
|
|
|
|
class Thread {
|
|
public:
|
|
static const size_t kStackOverflowImplicitCheckSize;
|
|
|
|
// Creates a new native thread corresponding to the given managed peer.
|
|
// Used to implement Thread.start.
|
|
static void CreateNativeThread(JNIEnv* env, jobject peer, size_t stack_size, bool daemon);
|
|
|
|
// Attaches the calling native thread to the runtime, returning the new native peer.
|
|
// Used to implement JNI AttachCurrentThread and AttachCurrentThreadAsDaemon calls.
|
|
static Thread* Attach(const char* thread_name, bool as_daemon, jobject thread_group,
|
|
bool create_peer);
|
|
|
|
// Reset internal state of child thread after fork.
|
|
void InitAfterFork();
|
|
|
|
// Get the currently executing thread, frequently referred to as 'self'. This call has reasonably
|
|
// high cost and so we favor passing self around when possible.
|
|
// TODO: mark as PURE so the compiler may coalesce and remove?
|
|
static Thread* Current();
|
|
|
|
// On a runnable thread, check for pending thread suspension request and handle if pending.
|
|
void AllowThreadSuspension() SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
// Process pending thread suspension request and handle if pending.
|
|
void CheckSuspend() SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
static Thread* FromManagedThread(const ScopedObjectAccessAlreadyRunnable& ts,
|
|
mirror::Object* thread_peer)
|
|
REQUIRES(Locks::thread_list_lock_, !Locks::thread_suspend_count_lock_)
|
|
SHARED_REQUIRES(Locks::mutator_lock_);
|
|
static Thread* FromManagedThread(const ScopedObjectAccessAlreadyRunnable& ts, jobject thread)
|
|
REQUIRES(Locks::thread_list_lock_, !Locks::thread_suspend_count_lock_)
|
|
SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
// Translates 172 to pAllocArrayFromCode and so on.
|
|
template<size_t size_of_pointers>
|
|
static void DumpThreadOffset(std::ostream& os, uint32_t offset);
|
|
|
|
// Dumps a one-line summary of thread state (used for operator<<).
|
|
void ShortDump(std::ostream& os) const;
|
|
|
|
// Dumps the detailed thread state and the thread stack (used for SIGQUIT).
|
|
void Dump(std::ostream& os,
|
|
bool dump_native_stack = true,
|
|
BacktraceMap* backtrace_map = nullptr) const
|
|
REQUIRES(!Locks::thread_suspend_count_lock_)
|
|
SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
void DumpJavaStack(std::ostream& os) const
|
|
REQUIRES(!Locks::thread_suspend_count_lock_)
|
|
SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
// Dumps the SIGQUIT per-thread header. 'thread' can be null for a non-attached thread, in which
|
|
// case we use 'tid' to identify the thread, and we'll include as much information as we can.
|
|
static void DumpState(std::ostream& os, const Thread* thread, pid_t tid)
|
|
REQUIRES(!Locks::thread_suspend_count_lock_)
|
|
SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
ThreadState GetState() const {
|
|
DCHECK_GE(tls32_.state_and_flags.as_struct.state, kTerminated);
|
|
DCHECK_LE(tls32_.state_and_flags.as_struct.state, kSuspended);
|
|
return static_cast<ThreadState>(tls32_.state_and_flags.as_struct.state);
|
|
}
|
|
|
|
ThreadState SetState(ThreadState new_state);
|
|
|
|
int GetSuspendCount() const REQUIRES(Locks::thread_suspend_count_lock_) {
|
|
return tls32_.suspend_count;
|
|
}
|
|
|
|
int GetDebugSuspendCount() const REQUIRES(Locks::thread_suspend_count_lock_) {
|
|
return tls32_.debug_suspend_count;
|
|
}
|
|
|
|
bool IsSuspended() const {
|
|
union StateAndFlags state_and_flags;
|
|
state_and_flags.as_int = tls32_.state_and_flags.as_int;
|
|
return state_and_flags.as_struct.state != kRunnable &&
|
|
(state_and_flags.as_struct.flags & kSuspendRequest) != 0;
|
|
}
|
|
|
|
bool ModifySuspendCount(Thread* self, int delta, AtomicInteger* suspend_barrier, bool for_debugger)
|
|
REQUIRES(Locks::thread_suspend_count_lock_);
|
|
|
|
bool RequestCheckpoint(Closure* function)
|
|
REQUIRES(Locks::thread_suspend_count_lock_);
|
|
|
|
void SetFlipFunction(Closure* function);
|
|
Closure* GetFlipFunction();
|
|
|
|
gc::accounting::AtomicStack<mirror::Object>* GetThreadLocalMarkStack() {
|
|
CHECK(kUseReadBarrier);
|
|
return tlsPtr_.thread_local_mark_stack;
|
|
}
|
|
void SetThreadLocalMarkStack(gc::accounting::AtomicStack<mirror::Object>* stack) {
|
|
CHECK(kUseReadBarrier);
|
|
tlsPtr_.thread_local_mark_stack = stack;
|
|
}
|
|
|
|
// Called when thread detected that the thread_suspend_count_ was non-zero. Gives up share of
|
|
// mutator_lock_ and waits until it is resumed and thread_suspend_count_ is zero.
|
|
void FullSuspendCheck()
|
|
REQUIRES(!Locks::thread_suspend_count_lock_)
|
|
SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
// Transition from non-runnable to runnable state acquiring share on mutator_lock_.
|
|
ALWAYS_INLINE ThreadState TransitionFromSuspendedToRunnable()
|
|
REQUIRES(!Locks::thread_suspend_count_lock_)
|
|
SHARED_LOCK_FUNCTION(Locks::mutator_lock_);
|
|
|
|
// Transition from runnable into a state where mutator privileges are denied. Releases share of
|
|
// mutator lock.
|
|
ALWAYS_INLINE void TransitionFromRunnableToSuspended(ThreadState new_state)
|
|
REQUIRES(!Locks::thread_suspend_count_lock_, !Roles::uninterruptible_)
|
|
UNLOCK_FUNCTION(Locks::mutator_lock_);
|
|
|
|
// Once called thread suspension will cause an assertion failure.
|
|
const char* StartAssertNoThreadSuspension(const char* cause) ACQUIRE(Roles::uninterruptible_) {
|
|
Roles::uninterruptible_.Acquire(); // No-op.
|
|
if (kIsDebugBuild) {
|
|
CHECK(cause != nullptr);
|
|
const char* previous_cause = tlsPtr_.last_no_thread_suspension_cause;
|
|
tls32_.no_thread_suspension++;
|
|
tlsPtr_.last_no_thread_suspension_cause = cause;
|
|
return previous_cause;
|
|
} else {
|
|
return nullptr;
|
|
}
|
|
}
|
|
|
|
// End region where no thread suspension is expected.
|
|
void EndAssertNoThreadSuspension(const char* old_cause) RELEASE(Roles::uninterruptible_) {
|
|
if (kIsDebugBuild) {
|
|
CHECK(old_cause != nullptr || tls32_.no_thread_suspension == 1);
|
|
CHECK_GT(tls32_.no_thread_suspension, 0U);
|
|
tls32_.no_thread_suspension--;
|
|
tlsPtr_.last_no_thread_suspension_cause = old_cause;
|
|
}
|
|
Roles::uninterruptible_.Release(); // No-op.
|
|
}
|
|
|
|
void AssertThreadSuspensionIsAllowable(bool check_locks = true) const;
|
|
|
|
bool IsDaemon() const {
|
|
return tls32_.daemon;
|
|
}
|
|
|
|
size_t NumberOfHeldMutexes() const;
|
|
|
|
bool HoldsLock(mirror::Object*) const SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
/*
|
|
* Changes the priority of this thread to match that of the java.lang.Thread object.
|
|
*
|
|
* We map a priority value from 1-10 to Linux "nice" values, where lower
|
|
* numbers indicate higher priority.
|
|
*/
|
|
void SetNativePriority(int newPriority);
|
|
|
|
/*
|
|
* Returns the thread priority for the current thread by querying the system.
|
|
* This is useful when attaching a thread through JNI.
|
|
*
|
|
* Returns a value from 1 to 10 (compatible with java.lang.Thread values).
|
|
*/
|
|
static int GetNativePriority();
|
|
|
|
// Guaranteed to be non-zero.
|
|
uint32_t GetThreadId() const {
|
|
return tls32_.thin_lock_thread_id;
|
|
}
|
|
|
|
pid_t GetTid() const {
|
|
return tls32_.tid;
|
|
}
|
|
|
|
// Returns the java.lang.Thread's name, or null if this Thread* doesn't have a peer.
|
|
mirror::String* GetThreadName(const ScopedObjectAccessAlreadyRunnable& ts) const
|
|
SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
// Sets 'name' to the java.lang.Thread's name. This requires no transition to managed code,
|
|
// allocation, or locking.
|
|
void GetThreadName(std::string& name) const;
|
|
|
|
// Sets the thread's name.
|
|
void SetThreadName(const char* name) SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
// Returns the thread-specific CPU-time clock in microseconds or -1 if unavailable.
|
|
uint64_t GetCpuMicroTime() const;
|
|
|
|
mirror::Object* GetPeer() const SHARED_REQUIRES(Locks::mutator_lock_) {
|
|
CHECK(tlsPtr_.jpeer == nullptr);
|
|
return tlsPtr_.opeer;
|
|
}
|
|
|
|
bool HasPeer() const {
|
|
return tlsPtr_.jpeer != nullptr || tlsPtr_.opeer != nullptr;
|
|
}
|
|
|
|
RuntimeStats* GetStats() {
|
|
return &tls64_.stats;
|
|
}
|
|
|
|
bool IsStillStarting() const;
|
|
|
|
bool IsExceptionPending() const {
|
|
return tlsPtr_.exception != nullptr;
|
|
}
|
|
|
|
mirror::Throwable* GetException() const SHARED_REQUIRES(Locks::mutator_lock_) {
|
|
return tlsPtr_.exception;
|
|
}
|
|
|
|
void AssertPendingException() const;
|
|
void AssertPendingOOMException() const SHARED_REQUIRES(Locks::mutator_lock_);
|
|
void AssertNoPendingException() const;
|
|
void AssertNoPendingExceptionForNewException(const char* msg) const;
|
|
|
|
void SetException(mirror::Throwable* new_exception) SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
void ClearException() SHARED_REQUIRES(Locks::mutator_lock_) {
|
|
tlsPtr_.exception = nullptr;
|
|
}
|
|
|
|
// Find catch block and perform long jump to appropriate exception handle
|
|
NO_RETURN void QuickDeliverException() SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
Context* GetLongJumpContext();
|
|
void ReleaseLongJumpContext(Context* context) {
|
|
if (tlsPtr_.long_jump_context != nullptr) {
|
|
// Each QuickExceptionHandler gets a long jump context and uses
|
|
// it for doing the long jump, after finding catch blocks/doing deoptimization.
|
|
// Both finding catch blocks and deoptimization can trigger another
|
|
// exception such as a result of class loading. So there can be nested
|
|
// cases of exception handling and multiple contexts being used.
|
|
// ReleaseLongJumpContext tries to save the context in tlsPtr_.long_jump_context
|
|
// for reuse so there is no need to always allocate a new one each time when
|
|
// getting a context. Since we only keep one context for reuse, delete the
|
|
// existing one since the passed in context is yet to be used for longjump.
|
|
delete tlsPtr_.long_jump_context;
|
|
}
|
|
tlsPtr_.long_jump_context = context;
|
|
}
|
|
|
|
// Get the current method and dex pc. If there are errors in retrieving the dex pc, this will
|
|
// abort the runtime iff abort_on_error is true.
|
|
ArtMethod* GetCurrentMethod(uint32_t* dex_pc, bool abort_on_error = true) const
|
|
SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
// Returns whether the given exception was thrown by the current Java method being executed
|
|
// (Note that this includes native Java methods).
|
|
bool IsExceptionThrownByCurrentMethod(mirror::Throwable* exception) const
|
|
SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
void SetTopOfStack(ArtMethod** top_method) {
|
|
tlsPtr_.managed_stack.SetTopQuickFrame(top_method);
|
|
}
|
|
|
|
void SetTopOfShadowStack(ShadowFrame* top) {
|
|
tlsPtr_.managed_stack.SetTopShadowFrame(top);
|
|
}
|
|
|
|
bool HasManagedStack() const {
|
|
return (tlsPtr_.managed_stack.GetTopQuickFrame() != nullptr) ||
|
|
(tlsPtr_.managed_stack.GetTopShadowFrame() != nullptr);
|
|
}
|
|
|
|
// If 'msg' is null, no detail message is set.
|
|
void ThrowNewException(const char* exception_class_descriptor, const char* msg)
|
|
SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(!Roles::uninterruptible_);
|
|
|
|
// If 'msg' is null, no detail message is set. An exception must be pending, and will be
|
|
// used as the new exception's cause.
|
|
void ThrowNewWrappedException(const char* exception_class_descriptor, const char* msg)
|
|
SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(!Roles::uninterruptible_);
|
|
|
|
void ThrowNewExceptionF(const char* exception_class_descriptor, const char* fmt, ...)
|
|
__attribute__((format(printf, 3, 4)))
|
|
SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(!Roles::uninterruptible_);
|
|
|
|
void ThrowNewExceptionV(const char* exception_class_descriptor, const char* fmt, va_list ap)
|
|
SHARED_REQUIRES(Locks::mutator_lock_) REQUIRES(!Roles::uninterruptible_);
|
|
|
|
// OutOfMemoryError is special, because we need to pre-allocate an instance.
|
|
// Only the GC should call this.
|
|
void ThrowOutOfMemoryError(const char* msg) SHARED_REQUIRES(Locks::mutator_lock_)
|
|
REQUIRES(!Roles::uninterruptible_);
|
|
|
|
static void Startup();
|
|
static void FinishStartup();
|
|
static void Shutdown();
|
|
|
|
// JNI methods
|
|
JNIEnvExt* GetJniEnv() const {
|
|
return tlsPtr_.jni_env;
|
|
}
|
|
|
|
// Convert a jobject into a Object*
|
|
mirror::Object* DecodeJObject(jobject obj) const SHARED_REQUIRES(Locks::mutator_lock_);
|
|
// Checks if the weak global ref has been cleared by the GC without decoding it.
|
|
bool IsJWeakCleared(jweak obj) const SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
mirror::Object* GetMonitorEnterObject() const SHARED_REQUIRES(Locks::mutator_lock_) {
|
|
return tlsPtr_.monitor_enter_object;
|
|
}
|
|
|
|
void SetMonitorEnterObject(mirror::Object* obj) SHARED_REQUIRES(Locks::mutator_lock_) {
|
|
tlsPtr_.monitor_enter_object = obj;
|
|
}
|
|
|
|
// Implements java.lang.Thread.interrupted.
|
|
bool Interrupted() REQUIRES(!*wait_mutex_);
|
|
// Implements java.lang.Thread.isInterrupted.
|
|
bool IsInterrupted() REQUIRES(!*wait_mutex_);
|
|
bool IsInterruptedLocked() REQUIRES(wait_mutex_) {
|
|
return interrupted_;
|
|
}
|
|
void Interrupt(Thread* self) REQUIRES(!*wait_mutex_);
|
|
void SetInterruptedLocked(bool i) REQUIRES(wait_mutex_) {
|
|
interrupted_ = i;
|
|
}
|
|
void Notify() REQUIRES(!*wait_mutex_);
|
|
|
|
private:
|
|
void NotifyLocked(Thread* self) REQUIRES(wait_mutex_);
|
|
|
|
public:
|
|
Mutex* GetWaitMutex() const LOCK_RETURNED(wait_mutex_) {
|
|
return wait_mutex_;
|
|
}
|
|
|
|
ConditionVariable* GetWaitConditionVariable() const REQUIRES(wait_mutex_) {
|
|
return wait_cond_;
|
|
}
|
|
|
|
Monitor* GetWaitMonitor() const REQUIRES(wait_mutex_) {
|
|
return wait_monitor_;
|
|
}
|
|
|
|
void SetWaitMonitor(Monitor* mon) REQUIRES(wait_mutex_) {
|
|
wait_monitor_ = mon;
|
|
}
|
|
|
|
// Waiter link-list support.
|
|
Thread* GetWaitNext() const {
|
|
return tlsPtr_.wait_next;
|
|
}
|
|
|
|
void SetWaitNext(Thread* next) {
|
|
tlsPtr_.wait_next = next;
|
|
}
|
|
|
|
jobject GetClassLoaderOverride() {
|
|
return tlsPtr_.class_loader_override;
|
|
}
|
|
|
|
void SetClassLoaderOverride(jobject class_loader_override);
|
|
|
|
// Create the internal representation of a stack trace, that is more time
|
|
// and space efficient to compute than the StackTraceElement[].
|
|
template<bool kTransactionActive>
|
|
jobject CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const
|
|
SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
// Convert an internal stack trace representation (returned by CreateInternalStackTrace) to a
|
|
// StackTraceElement[]. If output_array is null, a new array is created, otherwise as many
|
|
// frames as will fit are written into the given array. If stack_depth is non-null, it's updated
|
|
// with the number of valid frames in the returned array.
|
|
static jobjectArray InternalStackTraceToStackTraceElementArray(
|
|
const ScopedObjectAccessAlreadyRunnable& soa, jobject internal,
|
|
jobjectArray output_array = nullptr, int* stack_depth = nullptr)
|
|
SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
bool HasDebuggerShadowFrames() const {
|
|
return tlsPtr_.frame_id_to_shadow_frame != nullptr;
|
|
}
|
|
|
|
void VisitRoots(RootVisitor* visitor) SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
ALWAYS_INLINE void VerifyStack() SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
//
|
|
// Offsets of various members of native Thread class, used by compiled code.
|
|
//
|
|
|
|
template<size_t pointer_size>
|
|
static ThreadOffset<pointer_size> ThinLockIdOffset() {
|
|
return ThreadOffset<pointer_size>(
|
|
OFFSETOF_MEMBER(Thread, tls32_) +
|
|
OFFSETOF_MEMBER(tls_32bit_sized_values, thin_lock_thread_id));
|
|
}
|
|
|
|
template<size_t pointer_size>
|
|
static ThreadOffset<pointer_size> ThreadFlagsOffset() {
|
|
return ThreadOffset<pointer_size>(
|
|
OFFSETOF_MEMBER(Thread, tls32_) +
|
|
OFFSETOF_MEMBER(tls_32bit_sized_values, state_and_flags));
|
|
}
|
|
|
|
template<size_t pointer_size>
|
|
static ThreadOffset<pointer_size> IsGcMarkingOffset() {
|
|
return ThreadOffset<pointer_size>(
|
|
OFFSETOF_MEMBER(Thread, tls32_) +
|
|
OFFSETOF_MEMBER(tls_32bit_sized_values, is_gc_marking));
|
|
}
|
|
|
|
// Deoptimize the Java stack.
|
|
void DeoptimizeWithDeoptimizationException(JValue* result) SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
private:
|
|
template<size_t pointer_size>
|
|
static ThreadOffset<pointer_size> ThreadOffsetFromTlsPtr(size_t tls_ptr_offset) {
|
|
size_t base = OFFSETOF_MEMBER(Thread, tlsPtr_);
|
|
size_t scale;
|
|
size_t shrink;
|
|
if (pointer_size == sizeof(void*)) {
|
|
scale = 1;
|
|
shrink = 1;
|
|
} else if (pointer_size > sizeof(void*)) {
|
|
scale = pointer_size / sizeof(void*);
|
|
shrink = 1;
|
|
} else {
|
|
DCHECK_GT(sizeof(void*), pointer_size);
|
|
scale = 1;
|
|
shrink = sizeof(void*) / pointer_size;
|
|
}
|
|
return ThreadOffset<pointer_size>(base + ((tls_ptr_offset * scale) / shrink));
|
|
}
|
|
|
|
public:
|
|
static uint32_t QuickEntryPointOffsetWithSize(size_t quick_entrypoint_offset,
|
|
size_t pointer_size) {
|
|
DCHECK(pointer_size == 4 || pointer_size == 8) << pointer_size;
|
|
if (pointer_size == 4) {
|
|
return QuickEntryPointOffset<4>(quick_entrypoint_offset).Uint32Value();
|
|
} else {
|
|
return QuickEntryPointOffset<8>(quick_entrypoint_offset).Uint32Value();
|
|
}
|
|
}
|
|
|
|
template<size_t pointer_size>
|
|
static ThreadOffset<pointer_size> QuickEntryPointOffset(size_t quick_entrypoint_offset) {
|
|
return ThreadOffsetFromTlsPtr<pointer_size>(
|
|
OFFSETOF_MEMBER(tls_ptr_sized_values, quick_entrypoints) + quick_entrypoint_offset);
|
|
}
|
|
|
|
template<size_t pointer_size>
|
|
static ThreadOffset<pointer_size> JniEntryPointOffset(size_t jni_entrypoint_offset) {
|
|
return ThreadOffsetFromTlsPtr<pointer_size>(
|
|
OFFSETOF_MEMBER(tls_ptr_sized_values, jni_entrypoints) + jni_entrypoint_offset);
|
|
}
|
|
|
|
template<size_t pointer_size>
|
|
static ThreadOffset<pointer_size> SelfOffset() {
|
|
return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, self));
|
|
}
|
|
|
|
template<size_t pointer_size>
|
|
static ThreadOffset<pointer_size> MterpCurrentIBaseOffset() {
|
|
return ThreadOffsetFromTlsPtr<pointer_size>(
|
|
OFFSETOF_MEMBER(tls_ptr_sized_values, mterp_current_ibase));
|
|
}
|
|
|
|
template<size_t pointer_size>
|
|
static ThreadOffset<pointer_size> MterpDefaultIBaseOffset() {
|
|
return ThreadOffsetFromTlsPtr<pointer_size>(
|
|
OFFSETOF_MEMBER(tls_ptr_sized_values, mterp_default_ibase));
|
|
}
|
|
|
|
template<size_t pointer_size>
|
|
static ThreadOffset<pointer_size> MterpAltIBaseOffset() {
|
|
return ThreadOffsetFromTlsPtr<pointer_size>(
|
|
OFFSETOF_MEMBER(tls_ptr_sized_values, mterp_alt_ibase));
|
|
}
|
|
|
|
template<size_t pointer_size>
|
|
static ThreadOffset<pointer_size> ExceptionOffset() {
|
|
return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, exception));
|
|
}
|
|
|
|
template<size_t pointer_size>
|
|
static ThreadOffset<pointer_size> PeerOffset() {
|
|
return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, opeer));
|
|
}
|
|
|
|
|
|
template<size_t pointer_size>
|
|
static ThreadOffset<pointer_size> CardTableOffset() {
|
|
return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, card_table));
|
|
}
|
|
|
|
template<size_t pointer_size>
|
|
static ThreadOffset<pointer_size> ThreadSuspendTriggerOffset() {
|
|
return ThreadOffsetFromTlsPtr<pointer_size>(
|
|
OFFSETOF_MEMBER(tls_ptr_sized_values, suspend_trigger));
|
|
}
|
|
|
|
template<size_t pointer_size>
|
|
static ThreadOffset<pointer_size> ThreadLocalPosOffset() {
|
|
return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, thread_local_pos));
|
|
}
|
|
|
|
template<size_t pointer_size>
|
|
static ThreadOffset<pointer_size> ThreadLocalEndOffset() {
|
|
return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, thread_local_end));
|
|
}
|
|
|
|
template<size_t pointer_size>
|
|
static ThreadOffset<pointer_size> ThreadLocalObjectsOffset() {
|
|
return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values, thread_local_objects));
|
|
}
|
|
|
|
template<size_t pointer_size>
|
|
static ThreadOffset<pointer_size> RosAllocRunsOffset() {
|
|
return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values,
|
|
rosalloc_runs));
|
|
}
|
|
|
|
template<size_t pointer_size>
|
|
static ThreadOffset<pointer_size> ThreadLocalAllocStackTopOffset() {
|
|
return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values,
|
|
thread_local_alloc_stack_top));
|
|
}
|
|
|
|
template<size_t pointer_size>
|
|
static ThreadOffset<pointer_size> ThreadLocalAllocStackEndOffset() {
|
|
return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values,
|
|
thread_local_alloc_stack_end));
|
|
}
|
|
|
|
// Size of stack less any space reserved for stack overflow
|
|
size_t GetStackSize() const {
|
|
return tlsPtr_.stack_size - (tlsPtr_.stack_end - tlsPtr_.stack_begin);
|
|
}
|
|
|
|
uint8_t* GetStackEndForInterpreter(bool implicit_overflow_check) const {
|
|
if (implicit_overflow_check) {
|
|
// The interpreter needs the extra overflow bytes that stack_end does
|
|
// not include.
|
|
return tlsPtr_.stack_end + GetStackOverflowReservedBytes(kRuntimeISA);
|
|
} else {
|
|
return tlsPtr_.stack_end;
|
|
}
|
|
}
|
|
|
|
uint8_t* GetStackEnd() const {
|
|
return tlsPtr_.stack_end;
|
|
}
|
|
|
|
// Set the stack end to that to be used during a stack overflow
|
|
void SetStackEndForStackOverflow() SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
// Set the stack end to that to be used during regular execution
|
|
void ResetDefaultStackEnd() {
|
|
// Our stacks grow down, so we want stack_end_ to be near there, but reserving enough room
|
|
// to throw a StackOverflowError.
|
|
tlsPtr_.stack_end = tlsPtr_.stack_begin + GetStackOverflowReservedBytes(kRuntimeISA);
|
|
}
|
|
|
|
// Install the protected region for implicit stack checks.
|
|
void InstallImplicitProtection();
|
|
|
|
bool IsHandlingStackOverflow() const {
|
|
return tlsPtr_.stack_end == tlsPtr_.stack_begin;
|
|
}
|
|
|
|
template<size_t pointer_size>
|
|
static ThreadOffset<pointer_size> StackEndOffset() {
|
|
return ThreadOffsetFromTlsPtr<pointer_size>(
|
|
OFFSETOF_MEMBER(tls_ptr_sized_values, stack_end));
|
|
}
|
|
|
|
template<size_t pointer_size>
|
|
static ThreadOffset<pointer_size> JniEnvOffset() {
|
|
return ThreadOffsetFromTlsPtr<pointer_size>(
|
|
OFFSETOF_MEMBER(tls_ptr_sized_values, jni_env));
|
|
}
|
|
|
|
template<size_t pointer_size>
|
|
static ThreadOffset<pointer_size> TopOfManagedStackOffset() {
|
|
return ThreadOffsetFromTlsPtr<pointer_size>(
|
|
OFFSETOF_MEMBER(tls_ptr_sized_values, managed_stack) +
|
|
ManagedStack::TopQuickFrameOffset());
|
|
}
|
|
|
|
const ManagedStack* GetManagedStack() const {
|
|
return &tlsPtr_.managed_stack;
|
|
}
|
|
|
|
// Linked list recording fragments of managed stack.
|
|
void PushManagedStackFragment(ManagedStack* fragment) {
|
|
tlsPtr_.managed_stack.PushManagedStackFragment(fragment);
|
|
}
|
|
void PopManagedStackFragment(const ManagedStack& fragment) {
|
|
tlsPtr_.managed_stack.PopManagedStackFragment(fragment);
|
|
}
|
|
|
|
ShadowFrame* PushShadowFrame(ShadowFrame* new_top_frame) {
|
|
return tlsPtr_.managed_stack.PushShadowFrame(new_top_frame);
|
|
}
|
|
|
|
ShadowFrame* PopShadowFrame() {
|
|
return tlsPtr_.managed_stack.PopShadowFrame();
|
|
}
|
|
|
|
template<size_t pointer_size>
|
|
static ThreadOffset<pointer_size> TopShadowFrameOffset() {
|
|
return ThreadOffsetFromTlsPtr<pointer_size>(
|
|
OFFSETOF_MEMBER(tls_ptr_sized_values, managed_stack) +
|
|
ManagedStack::TopShadowFrameOffset());
|
|
}
|
|
|
|
// Number of references allocated in JNI ShadowFrames on this thread.
|
|
size_t NumJniShadowFrameReferences() const SHARED_REQUIRES(Locks::mutator_lock_) {
|
|
return tlsPtr_.managed_stack.NumJniShadowFrameReferences();
|
|
}
|
|
|
|
// Number of references in handle scope on this thread.
|
|
size_t NumHandleReferences();
|
|
|
|
// Number of references allocated in handle scopes & JNI shadow frames on this thread.
|
|
size_t NumStackReferences() SHARED_REQUIRES(Locks::mutator_lock_) {
|
|
return NumHandleReferences() + NumJniShadowFrameReferences();
|
|
}
|
|
|
|
// Is the given obj in this thread's stack indirect reference table?
|
|
bool HandleScopeContains(jobject obj) const;
|
|
|
|
void HandleScopeVisitRoots(RootVisitor* visitor, uint32_t thread_id)
|
|
SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
HandleScope* GetTopHandleScope() {
|
|
return tlsPtr_.top_handle_scope;
|
|
}
|
|
|
|
void PushHandleScope(HandleScope* handle_scope) {
|
|
DCHECK_EQ(handle_scope->GetLink(), tlsPtr_.top_handle_scope);
|
|
tlsPtr_.top_handle_scope = handle_scope;
|
|
}
|
|
|
|
HandleScope* PopHandleScope() {
|
|
HandleScope* handle_scope = tlsPtr_.top_handle_scope;
|
|
DCHECK(handle_scope != nullptr);
|
|
tlsPtr_.top_handle_scope = tlsPtr_.top_handle_scope->GetLink();
|
|
return handle_scope;
|
|
}
|
|
|
|
template<size_t pointer_size>
|
|
static ThreadOffset<pointer_size> TopHandleScopeOffset() {
|
|
return ThreadOffsetFromTlsPtr<pointer_size>(OFFSETOF_MEMBER(tls_ptr_sized_values,
|
|
top_handle_scope));
|
|
}
|
|
|
|
DebugInvokeReq* GetInvokeReq() const {
|
|
return tlsPtr_.debug_invoke_req;
|
|
}
|
|
|
|
SingleStepControl* GetSingleStepControl() const {
|
|
return tlsPtr_.single_step_control;
|
|
}
|
|
|
|
// Indicates whether this thread is ready to invoke a method for debugging. This
|
|
// is only true if the thread has been suspended by a debug event.
|
|
bool IsReadyForDebugInvoke() const {
|
|
return tls32_.ready_for_debug_invoke;
|
|
}
|
|
|
|
void SetReadyForDebugInvoke(bool ready) {
|
|
tls32_.ready_for_debug_invoke = ready;
|
|
}
|
|
|
|
bool IsDebugMethodEntry() const {
|
|
return tls32_.debug_method_entry_;
|
|
}
|
|
|
|
void SetDebugMethodEntry() {
|
|
tls32_.debug_method_entry_ = true;
|
|
}
|
|
|
|
void ClearDebugMethodEntry() {
|
|
tls32_.debug_method_entry_ = false;
|
|
}
|
|
|
|
bool GetIsGcMarking() const {
|
|
CHECK(kUseReadBarrier);
|
|
return tls32_.is_gc_marking;
|
|
}
|
|
|
|
void SetIsGcMarking(bool is_marking) {
|
|
CHECK(kUseReadBarrier);
|
|
tls32_.is_gc_marking = is_marking;
|
|
}
|
|
|
|
bool GetWeakRefAccessEnabled() const {
|
|
CHECK(kUseReadBarrier);
|
|
return tls32_.weak_ref_access_enabled;
|
|
}
|
|
|
|
void SetWeakRefAccessEnabled(bool enabled) {
|
|
CHECK(kUseReadBarrier);
|
|
tls32_.weak_ref_access_enabled = enabled;
|
|
}
|
|
|
|
uint32_t GetDisableThreadFlipCount() const {
|
|
CHECK(kUseReadBarrier);
|
|
return tls32_.disable_thread_flip_count;
|
|
}
|
|
|
|
void IncrementDisableThreadFlipCount() {
|
|
CHECK(kUseReadBarrier);
|
|
++tls32_.disable_thread_flip_count;
|
|
}
|
|
|
|
void DecrementDisableThreadFlipCount() {
|
|
CHECK(kUseReadBarrier);
|
|
DCHECK_GT(tls32_.disable_thread_flip_count, 0U);
|
|
--tls32_.disable_thread_flip_count;
|
|
}
|
|
|
|
// Returns true if the thread is allowed to call into java.
|
|
bool CanCallIntoJava() const {
|
|
return can_call_into_java_;
|
|
}
|
|
|
|
void SetCanCallIntoJava(bool can_call_into_java) {
|
|
can_call_into_java_ = can_call_into_java;
|
|
}
|
|
|
|
// Activates single step control for debugging. The thread takes the
|
|
// ownership of the given SingleStepControl*. It is deleted by a call
|
|
// to DeactivateSingleStepControl or upon thread destruction.
|
|
void ActivateSingleStepControl(SingleStepControl* ssc);
|
|
|
|
// Deactivates single step control for debugging.
|
|
void DeactivateSingleStepControl();
|
|
|
|
// Sets debug invoke request for debugging. When the thread is resumed,
|
|
// it executes the method described by this request then sends the reply
|
|
// before suspending itself. The thread takes the ownership of the given
|
|
// DebugInvokeReq*. It is deleted by a call to ClearDebugInvokeReq.
|
|
void SetDebugInvokeReq(DebugInvokeReq* req);
|
|
|
|
// Clears debug invoke request for debugging. When the thread completes
|
|
// method invocation, it deletes its debug invoke request and suspends
|
|
// itself.
|
|
void ClearDebugInvokeReq();
|
|
|
|
// Returns the fake exception used to activate deoptimization.
|
|
static mirror::Throwable* GetDeoptimizationException() {
|
|
return reinterpret_cast<mirror::Throwable*>(-1);
|
|
}
|
|
|
|
// Currently deoptimization invokes verifier which can trigger class loading
|
|
// and execute Java code, so there might be nested deoptimizations happening.
|
|
// We need to save the ongoing deoptimization shadow frames and return
|
|
// values on stacks.
|
|
// 'from_code' denotes whether the deoptimization was explicitly made from
|
|
// compiled code.
|
|
void PushDeoptimizationContext(const JValue& return_value,
|
|
bool is_reference,
|
|
bool from_code,
|
|
mirror::Throwable* exception)
|
|
SHARED_REQUIRES(Locks::mutator_lock_);
|
|
void PopDeoptimizationContext(JValue* result, mirror::Throwable** exception, bool* from_code)
|
|
SHARED_REQUIRES(Locks::mutator_lock_);
|
|
void AssertHasDeoptimizationContext()
|
|
SHARED_REQUIRES(Locks::mutator_lock_);
|
|
void PushStackedShadowFrame(ShadowFrame* sf, StackedShadowFrameType type);
|
|
ShadowFrame* PopStackedShadowFrame(StackedShadowFrameType type, bool must_be_present = true);
|
|
|
|
// For debugger, find the shadow frame that corresponds to a frame id.
|
|
// Or return null if there is none.
|
|
ShadowFrame* FindDebuggerShadowFrame(size_t frame_id)
|
|
SHARED_REQUIRES(Locks::mutator_lock_);
|
|
// For debugger, find the bool array that keeps track of the updated vreg set
|
|
// for a frame id.
|
|
bool* GetUpdatedVRegFlags(size_t frame_id) SHARED_REQUIRES(Locks::mutator_lock_);
|
|
// For debugger, find the shadow frame that corresponds to a frame id. If
|
|
// one doesn't exist yet, create one and track it in frame_id_to_shadow_frame.
|
|
ShadowFrame* FindOrCreateDebuggerShadowFrame(size_t frame_id,
|
|
uint32_t num_vregs,
|
|
ArtMethod* method,
|
|
uint32_t dex_pc)
|
|
SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
// Delete the entry that maps from frame_id to shadow_frame.
|
|
void RemoveDebuggerShadowFrameMapping(size_t frame_id)
|
|
SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
std::deque<instrumentation::InstrumentationStackFrame>* GetInstrumentationStack() {
|
|
return tlsPtr_.instrumentation_stack;
|
|
}
|
|
|
|
std::vector<ArtMethod*>* GetStackTraceSample() const {
|
|
return tlsPtr_.stack_trace_sample;
|
|
}
|
|
|
|
void SetStackTraceSample(std::vector<ArtMethod*>* sample) {
|
|
tlsPtr_.stack_trace_sample = sample;
|
|
}
|
|
|
|
uint64_t GetTraceClockBase() const {
|
|
return tls64_.trace_clock_base;
|
|
}
|
|
|
|
void SetTraceClockBase(uint64_t clock_base) {
|
|
tls64_.trace_clock_base = clock_base;
|
|
}
|
|
|
|
BaseMutex* GetHeldMutex(LockLevel level) const {
|
|
return tlsPtr_.held_mutexes[level];
|
|
}
|
|
|
|
void SetHeldMutex(LockLevel level, BaseMutex* mutex) {
|
|
tlsPtr_.held_mutexes[level] = mutex;
|
|
}
|
|
|
|
void RunCheckpointFunction();
|
|
|
|
bool PassActiveSuspendBarriers(Thread* self)
|
|
REQUIRES(!Locks::thread_suspend_count_lock_);
|
|
|
|
void ClearSuspendBarrier(AtomicInteger* target)
|
|
REQUIRES(Locks::thread_suspend_count_lock_);
|
|
|
|
bool ReadFlag(ThreadFlag flag) const {
|
|
return (tls32_.state_and_flags.as_struct.flags & flag) != 0;
|
|
}
|
|
|
|
bool TestAllFlags() const {
|
|
return (tls32_.state_and_flags.as_struct.flags != 0);
|
|
}
|
|
|
|
void AtomicSetFlag(ThreadFlag flag) {
|
|
tls32_.state_and_flags.as_atomic_int.FetchAndOrSequentiallyConsistent(flag);
|
|
}
|
|
|
|
void AtomicClearFlag(ThreadFlag flag) {
|
|
tls32_.state_and_flags.as_atomic_int.FetchAndAndSequentiallyConsistent(-1 ^ flag);
|
|
}
|
|
|
|
void ResetQuickAllocEntryPointsForThread();
|
|
|
|
// Returns the remaining space in the TLAB.
|
|
size_t TlabSize() const;
|
|
// Doesn't check that there is room.
|
|
mirror::Object* AllocTlab(size_t bytes);
|
|
void SetTlab(uint8_t* start, uint8_t* end);
|
|
bool HasTlab() const;
|
|
uint8_t* GetTlabStart() {
|
|
return tlsPtr_.thread_local_start;
|
|
}
|
|
uint8_t* GetTlabPos() {
|
|
return tlsPtr_.thread_local_pos;
|
|
}
|
|
|
|
// Remove the suspend trigger for this thread by making the suspend_trigger_ TLS value
|
|
// equal to a valid pointer.
|
|
// TODO: does this need to atomic? I don't think so.
|
|
void RemoveSuspendTrigger() {
|
|
tlsPtr_.suspend_trigger = reinterpret_cast<uintptr_t*>(&tlsPtr_.suspend_trigger);
|
|
}
|
|
|
|
// Trigger a suspend check by making the suspend_trigger_ TLS value an invalid pointer.
|
|
// The next time a suspend check is done, it will load from the value at this address
|
|
// and trigger a SIGSEGV.
|
|
void TriggerSuspend() {
|
|
tlsPtr_.suspend_trigger = nullptr;
|
|
}
|
|
|
|
|
|
// Push an object onto the allocation stack.
|
|
bool PushOnThreadLocalAllocationStack(mirror::Object* obj)
|
|
SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
// Set the thread local allocation pointers to the given pointers.
|
|
void SetThreadLocalAllocationStack(StackReference<mirror::Object>* start,
|
|
StackReference<mirror::Object>* end);
|
|
|
|
// Resets the thread local allocation pointers.
|
|
void RevokeThreadLocalAllocationStack();
|
|
|
|
size_t GetThreadLocalBytesAllocated() const {
|
|
return tlsPtr_.thread_local_end - tlsPtr_.thread_local_start;
|
|
}
|
|
|
|
size_t GetThreadLocalObjectsAllocated() const {
|
|
return tlsPtr_.thread_local_objects;
|
|
}
|
|
|
|
void* GetRosAllocRun(size_t index) const {
|
|
return tlsPtr_.rosalloc_runs[index];
|
|
}
|
|
|
|
void SetRosAllocRun(size_t index, void* run) {
|
|
tlsPtr_.rosalloc_runs[index] = run;
|
|
}
|
|
|
|
bool ProtectStack(bool fatal_on_error = true);
|
|
bool UnprotectStack();
|
|
|
|
void SetMterpDefaultIBase(void* ibase) {
|
|
tlsPtr_.mterp_default_ibase = ibase;
|
|
}
|
|
|
|
void SetMterpCurrentIBase(void* ibase) {
|
|
tlsPtr_.mterp_current_ibase = ibase;
|
|
}
|
|
|
|
void SetMterpAltIBase(void* ibase) {
|
|
tlsPtr_.mterp_alt_ibase = ibase;
|
|
}
|
|
|
|
const void* GetMterpDefaultIBase() const {
|
|
return tlsPtr_.mterp_default_ibase;
|
|
}
|
|
|
|
const void* GetMterpCurrentIBase() const {
|
|
return tlsPtr_.mterp_current_ibase;
|
|
}
|
|
|
|
const void* GetMterpAltIBase() const {
|
|
return tlsPtr_.mterp_alt_ibase;
|
|
}
|
|
|
|
void NoteSignalBeingHandled() {
|
|
if (tls32_.handling_signal_) {
|
|
LOG(FATAL) << "Detected signal while processing a signal";
|
|
}
|
|
tls32_.handling_signal_ = true;
|
|
}
|
|
|
|
void NoteSignalHandlerDone() {
|
|
tls32_.handling_signal_ = false;
|
|
}
|
|
|
|
jmp_buf* GetNestedSignalState() {
|
|
return tlsPtr_.nested_signal_state;
|
|
}
|
|
|
|
bool IsSuspendedAtSuspendCheck() const {
|
|
return tls32_.suspended_at_suspend_check;
|
|
}
|
|
|
|
void PushVerifier(verifier::MethodVerifier* verifier);
|
|
void PopVerifier(verifier::MethodVerifier* verifier);
|
|
|
|
void InitStringEntryPoints();
|
|
|
|
void ModifyDebugDisallowReadBarrier(int8_t delta) {
|
|
debug_disallow_read_barrier_ += delta;
|
|
}
|
|
|
|
uint8_t GetDebugDisallowReadBarrierCount() const {
|
|
return debug_disallow_read_barrier_;
|
|
}
|
|
|
|
// Returns true if the current thread is the jit sensitive thread.
|
|
bool IsJitSensitiveThread() const {
|
|
return this == jit_sensitive_thread_;
|
|
}
|
|
|
|
// Returns true if StrictMode events are traced for the current thread.
|
|
static bool IsSensitiveThread() {
|
|
if (is_sensitive_thread_hook_ != nullptr) {
|
|
return (*is_sensitive_thread_hook_)();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
private:
|
|
explicit Thread(bool daemon);
|
|
~Thread() REQUIRES(!Locks::mutator_lock_, !Locks::thread_suspend_count_lock_);
|
|
void Destroy();
|
|
|
|
void CreatePeer(const char* name, bool as_daemon, jobject thread_group);
|
|
|
|
template<bool kTransactionActive>
|
|
void InitPeer(ScopedObjectAccess& soa, jboolean thread_is_daemon, jobject thread_group,
|
|
jobject thread_name, jint thread_priority)
|
|
SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
// Avoid use, callers should use SetState. Used only by SignalCatcher::HandleSigQuit, ~Thread and
|
|
// Dbg::Disconnected.
|
|
ThreadState SetStateUnsafe(ThreadState new_state) {
|
|
ThreadState old_state = GetState();
|
|
if (old_state == kRunnable && new_state != kRunnable) {
|
|
// Need to run pending checkpoint and suspend barriers. Run checkpoints in runnable state in
|
|
// case they need to use a ScopedObjectAccess. If we are holding the mutator lock and a SOA
|
|
// attempts to TransitionFromSuspendedToRunnable, it results in a deadlock.
|
|
TransitionToSuspendedAndRunCheckpoints(new_state);
|
|
// Since we transitioned to a suspended state, check the pass barrier requests.
|
|
PassActiveSuspendBarriers();
|
|
} else {
|
|
tls32_.state_and_flags.as_struct.state = new_state;
|
|
}
|
|
return old_state;
|
|
}
|
|
|
|
void VerifyStackImpl() SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
void DumpState(std::ostream& os) const SHARED_REQUIRES(Locks::mutator_lock_);
|
|
void DumpStack(std::ostream& os,
|
|
bool dump_native_stack = true,
|
|
BacktraceMap* backtrace_map = nullptr) const
|
|
REQUIRES(!Locks::thread_suspend_count_lock_)
|
|
SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
// Out-of-line conveniences for debugging in gdb.
|
|
static Thread* CurrentFromGdb(); // Like Thread::Current.
|
|
// Like Thread::Dump(std::cerr).
|
|
void DumpFromGdb() const SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
static void* CreateCallback(void* arg);
|
|
|
|
void HandleUncaughtExceptions(ScopedObjectAccess& soa)
|
|
SHARED_REQUIRES(Locks::mutator_lock_);
|
|
void RemoveFromThreadGroup(ScopedObjectAccess& soa) SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
// Initialize a thread.
|
|
//
|
|
// The third parameter is not mandatory. If given, the thread will use this JNIEnvExt. In case
|
|
// Init succeeds, this means the thread takes ownership of it. If Init fails, it is the caller's
|
|
// responsibility to destroy the given JNIEnvExt. If the parameter is null, Init will try to
|
|
// create a JNIEnvExt on its own (and potentially fail at that stage, indicated by a return value
|
|
// of false).
|
|
bool Init(ThreadList*, JavaVMExt*, JNIEnvExt* jni_env_ext = nullptr)
|
|
REQUIRES(Locks::runtime_shutdown_lock_);
|
|
void InitCardTable();
|
|
void InitCpu();
|
|
void CleanupCpu();
|
|
void InitTlsEntryPoints();
|
|
void InitTid();
|
|
void InitPthreadKeySelf();
|
|
bool InitStackHwm();
|
|
|
|
void SetUpAlternateSignalStack();
|
|
void TearDownAlternateSignalStack();
|
|
|
|
ALWAYS_INLINE void TransitionToSuspendedAndRunCheckpoints(ThreadState new_state)
|
|
REQUIRES(!Locks::thread_suspend_count_lock_, !Roles::uninterruptible_);
|
|
|
|
ALWAYS_INLINE void PassActiveSuspendBarriers()
|
|
REQUIRES(!Locks::thread_suspend_count_lock_, !Roles::uninterruptible_);
|
|
|
|
// Registers the current thread as the jit sensitive thread. Should be called just once.
|
|
static void SetJitSensitiveThread() {
|
|
if (jit_sensitive_thread_ == nullptr) {
|
|
jit_sensitive_thread_ = Thread::Current();
|
|
} else {
|
|
LOG(WARNING) << "Attempt to set the sensitive thread twice. Tid:"
|
|
<< Thread::Current()->GetTid();
|
|
}
|
|
}
|
|
|
|
static void SetSensitiveThreadHook(bool (*is_sensitive_thread_hook)()) {
|
|
is_sensitive_thread_hook_ = is_sensitive_thread_hook;
|
|
}
|
|
|
|
// 32 bits of atomically changed state and flags. Keeping as 32 bits allows and atomic CAS to
|
|
// change from being Suspended to Runnable without a suspend request occurring.
|
|
union PACKED(4) StateAndFlags {
|
|
StateAndFlags() {}
|
|
struct PACKED(4) {
|
|
// Bitfield of flag values. Must be changed atomically so that flag values aren't lost. See
|
|
// ThreadFlags for bit field meanings.
|
|
volatile uint16_t flags;
|
|
// Holds the ThreadState. May be changed non-atomically between Suspended (ie not Runnable)
|
|
// transitions. Changing to Runnable requires that the suspend_request be part of the atomic
|
|
// operation. If a thread is suspended and a suspend_request is present, a thread may not
|
|
// change to Runnable as a GC or other operation is in progress.
|
|
volatile uint16_t state;
|
|
} as_struct;
|
|
AtomicInteger as_atomic_int;
|
|
volatile int32_t as_int;
|
|
|
|
private:
|
|
// gcc does not handle struct with volatile member assignments correctly.
|
|
// See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47409
|
|
DISALLOW_COPY_AND_ASSIGN(StateAndFlags);
|
|
};
|
|
static_assert(sizeof(StateAndFlags) == sizeof(int32_t), "Weird state_and_flags size");
|
|
|
|
static void ThreadExitCallback(void* arg);
|
|
|
|
// Maximum number of checkpoint functions.
|
|
static constexpr uint32_t kMaxCheckpoints = 3;
|
|
|
|
// Maximum number of suspend barriers.
|
|
static constexpr uint32_t kMaxSuspendBarriers = 3;
|
|
|
|
// Has Thread::Startup been called?
|
|
static bool is_started_;
|
|
|
|
// TLS key used to retrieve the Thread*.
|
|
static pthread_key_t pthread_key_self_;
|
|
|
|
// Used to notify threads that they should attempt to resume, they will suspend again if
|
|
// their suspend count is > 0.
|
|
static ConditionVariable* resume_cond_ GUARDED_BY(Locks::thread_suspend_count_lock_);
|
|
|
|
// Hook passed by framework which returns true
|
|
// when StrictMode events are traced for the current thread.
|
|
static bool (*is_sensitive_thread_hook_)();
|
|
// Stores the jit sensitive thread (which for now is the UI thread).
|
|
static Thread* jit_sensitive_thread_;
|
|
|
|
/***********************************************************************************************/
|
|
// Thread local storage. Fields are grouped by size to enable 32 <-> 64 searching to account for
|
|
// pointer size differences. To encourage shorter encoding, more frequently used values appear
|
|
// first if possible.
|
|
/***********************************************************************************************/
|
|
|
|
struct PACKED(4) tls_32bit_sized_values {
|
|
// We have no control over the size of 'bool', but want our boolean fields
|
|
// to be 4-byte quantities.
|
|
typedef uint32_t bool32_t;
|
|
|
|
explicit tls_32bit_sized_values(bool is_daemon) :
|
|
suspend_count(0), debug_suspend_count(0), thin_lock_thread_id(0), tid(0),
|
|
daemon(is_daemon), throwing_OutOfMemoryError(false), no_thread_suspension(0),
|
|
thread_exit_check_count(0), handling_signal_(false),
|
|
suspended_at_suspend_check(false), ready_for_debug_invoke(false),
|
|
debug_method_entry_(false), is_gc_marking(false), weak_ref_access_enabled(true),
|
|
disable_thread_flip_count(0) {
|
|
}
|
|
|
|
union StateAndFlags state_and_flags;
|
|
static_assert(sizeof(union StateAndFlags) == sizeof(int32_t),
|
|
"Size of state_and_flags and int32 are different");
|
|
|
|
// A non-zero value is used to tell the current thread to enter a safe point
|
|
// at the next poll.
|
|
int suspend_count GUARDED_BY(Locks::thread_suspend_count_lock_);
|
|
|
|
// How much of 'suspend_count_' is by request of the debugger, used to set things right
|
|
// when the debugger detaches. Must be <= suspend_count_.
|
|
int debug_suspend_count GUARDED_BY(Locks::thread_suspend_count_lock_);
|
|
|
|
// Thin lock thread id. This is a small integer used by the thin lock implementation.
|
|
// This is not to be confused with the native thread's tid, nor is it the value returned
|
|
// by java.lang.Thread.getId --- this is a distinct value, used only for locking. One
|
|
// important difference between this id and the ids visible to managed code is that these
|
|
// ones get reused (to ensure that they fit in the number of bits available).
|
|
uint32_t thin_lock_thread_id;
|
|
|
|
// System thread id.
|
|
uint32_t tid;
|
|
|
|
// Is the thread a daemon?
|
|
const bool32_t daemon;
|
|
|
|
// A boolean telling us whether we're recursively throwing OOME.
|
|
bool32_t throwing_OutOfMemoryError;
|
|
|
|
// A positive value implies we're in a region where thread suspension isn't expected.
|
|
uint32_t no_thread_suspension;
|
|
|
|
// How many times has our pthread key's destructor been called?
|
|
uint32_t thread_exit_check_count;
|
|
|
|
// True if signal is being handled by this thread.
|
|
bool32_t handling_signal_;
|
|
|
|
// True if the thread is suspended in FullSuspendCheck(). This is
|
|
// used to distinguish runnable threads that are suspended due to
|
|
// a normal suspend check from other threads.
|
|
bool32_t suspended_at_suspend_check;
|
|
|
|
// True if the thread has been suspended by a debugger event. This is
|
|
// used to invoke method from the debugger which is only allowed when
|
|
// the thread is suspended by an event.
|
|
bool32_t ready_for_debug_invoke;
|
|
|
|
// True if the thread enters a method. This is used to detect method entry
|
|
// event for the debugger.
|
|
bool32_t debug_method_entry_;
|
|
|
|
// True if the GC is in the marking phase. This is used for the CC collector only. This is
|
|
// thread local so that we can simplify the logic to check for the fast path of read barriers of
|
|
// GC roots.
|
|
bool32_t is_gc_marking;
|
|
|
|
// True if the thread is allowed to access a weak ref (Reference::GetReferent() and system
|
|
// weaks) and to potentially mark an object alive/gray. This is used for concurrent reference
|
|
// processing of the CC collector only. This is thread local so that we can enable/disable weak
|
|
// ref access by using a checkpoint and avoid a race around the time weak ref access gets
|
|
// disabled and concurrent reference processing begins (if weak ref access is disabled during a
|
|
// pause, this is not an issue.) Other collectors use Runtime::DisallowNewSystemWeaks() and
|
|
// ReferenceProcessor::EnableSlowPath().
|
|
bool32_t weak_ref_access_enabled;
|
|
|
|
// A thread local version of Heap::disable_thread_flip_count_. This keeps track of how many
|
|
// levels of (nested) JNI critical sections the thread is in and is used to detect a nested JNI
|
|
// critical section enter.
|
|
uint32_t disable_thread_flip_count;
|
|
} tls32_;
|
|
|
|
struct PACKED(8) tls_64bit_sized_values {
|
|
tls_64bit_sized_values() : trace_clock_base(0) {
|
|
}
|
|
|
|
// The clock base used for tracing.
|
|
uint64_t trace_clock_base;
|
|
|
|
RuntimeStats stats;
|
|
} tls64_;
|
|
|
|
struct PACKED(sizeof(void*)) tls_ptr_sized_values {
|
|
tls_ptr_sized_values() : card_table(nullptr), exception(nullptr), stack_end(nullptr),
|
|
managed_stack(), suspend_trigger(nullptr), jni_env(nullptr), tmp_jni_env(nullptr),
|
|
self(nullptr), opeer(nullptr), jpeer(nullptr), stack_begin(nullptr), stack_size(0),
|
|
stack_trace_sample(nullptr), wait_next(nullptr), monitor_enter_object(nullptr),
|
|
top_handle_scope(nullptr), class_loader_override(nullptr), long_jump_context(nullptr),
|
|
instrumentation_stack(nullptr), debug_invoke_req(nullptr), single_step_control(nullptr),
|
|
stacked_shadow_frame_record(nullptr), deoptimization_context_stack(nullptr),
|
|
frame_id_to_shadow_frame(nullptr), name(nullptr), pthread_self(0),
|
|
last_no_thread_suspension_cause(nullptr), thread_local_objects(0),
|
|
thread_local_start(nullptr), thread_local_pos(nullptr), thread_local_end(nullptr),
|
|
mterp_current_ibase(nullptr), mterp_default_ibase(nullptr), mterp_alt_ibase(nullptr),
|
|
thread_local_alloc_stack_top(nullptr), thread_local_alloc_stack_end(nullptr),
|
|
nested_signal_state(nullptr), flip_function(nullptr), method_verifier(nullptr),
|
|
thread_local_mark_stack(nullptr) {
|
|
std::fill(held_mutexes, held_mutexes + kLockLevelCount, nullptr);
|
|
}
|
|
|
|
// The biased card table, see CardTable for details.
|
|
uint8_t* card_table;
|
|
|
|
// The pending exception or null.
|
|
mirror::Throwable* exception;
|
|
|
|
// The end of this thread's stack. This is the lowest safely-addressable address on the stack.
|
|
// We leave extra space so there's room for the code that throws StackOverflowError.
|
|
uint8_t* stack_end;
|
|
|
|
// The top of the managed stack often manipulated directly by compiler generated code.
|
|
ManagedStack managed_stack;
|
|
|
|
// In certain modes, setting this to 0 will trigger a SEGV and thus a suspend check. It is
|
|
// normally set to the address of itself.
|
|
uintptr_t* suspend_trigger;
|
|
|
|
// Every thread may have an associated JNI environment
|
|
JNIEnvExt* jni_env;
|
|
|
|
// Temporary storage to transfer a pre-allocated JNIEnvExt from the creating thread to the
|
|
// created thread.
|
|
JNIEnvExt* tmp_jni_env;
|
|
|
|
// Initialized to "this". On certain architectures (such as x86) reading off of Thread::Current
|
|
// is easy but getting the address of Thread::Current is hard. This field can be read off of
|
|
// Thread::Current to give the address.
|
|
Thread* self;
|
|
|
|
// Our managed peer (an instance of java.lang.Thread). The jobject version is used during thread
|
|
// start up, until the thread is registered and the local opeer_ is used.
|
|
mirror::Object* opeer;
|
|
jobject jpeer;
|
|
|
|
// The "lowest addressable byte" of the stack.
|
|
uint8_t* stack_begin;
|
|
|
|
// Size of the stack.
|
|
size_t stack_size;
|
|
|
|
// Pointer to previous stack trace captured by sampling profiler.
|
|
std::vector<ArtMethod*>* stack_trace_sample;
|
|
|
|
// The next thread in the wait set this thread is part of or null if not waiting.
|
|
Thread* wait_next;
|
|
|
|
// If we're blocked in MonitorEnter, this is the object we're trying to lock.
|
|
mirror::Object* monitor_enter_object;
|
|
|
|
// Top of linked list of handle scopes or null for none.
|
|
HandleScope* top_handle_scope;
|
|
|
|
// Needed to get the right ClassLoader in JNI_OnLoad, but also
|
|
// useful for testing.
|
|
jobject class_loader_override;
|
|
|
|
// Thread local, lazily allocated, long jump context. Used to deliver exceptions.
|
|
Context* long_jump_context;
|
|
|
|
// Additional stack used by method instrumentation to store method and return pc values.
|
|
// Stored as a pointer since std::deque is not PACKED.
|
|
std::deque<instrumentation::InstrumentationStackFrame>* instrumentation_stack;
|
|
|
|
// JDWP invoke-during-breakpoint support.
|
|
DebugInvokeReq* debug_invoke_req;
|
|
|
|
// JDWP single-stepping support.
|
|
SingleStepControl* single_step_control;
|
|
|
|
// For gc purpose, a shadow frame record stack that keeps track of:
|
|
// 1) shadow frames under construction.
|
|
// 2) deoptimization shadow frames.
|
|
StackedShadowFrameRecord* stacked_shadow_frame_record;
|
|
|
|
// Deoptimization return value record stack.
|
|
DeoptimizationContextRecord* deoptimization_context_stack;
|
|
|
|
// For debugger, a linked list that keeps the mapping from frame_id to shadow frame.
|
|
// Shadow frames may be created before deoptimization happens so that the debugger can
|
|
// set local values there first.
|
|
FrameIdToShadowFrame* frame_id_to_shadow_frame;
|
|
|
|
// A cached copy of the java.lang.Thread's name.
|
|
std::string* name;
|
|
|
|
// A cached pthread_t for the pthread underlying this Thread*.
|
|
pthread_t pthread_self;
|
|
|
|
// If no_thread_suspension_ is > 0, what is causing that assertion.
|
|
const char* last_no_thread_suspension_cause;
|
|
|
|
// Pending checkpoint function or null if non-pending. Installation guarding by
|
|
// Locks::thread_suspend_count_lock_.
|
|
Closure* checkpoint_functions[kMaxCheckpoints];
|
|
|
|
// Pending barriers that require passing or NULL if non-pending. Installation guarding by
|
|
// Locks::thread_suspend_count_lock_.
|
|
// They work effectively as art::Barrier, but implemented directly using AtomicInteger and futex
|
|
// to avoid additional cost of a mutex and a condition variable, as used in art::Barrier.
|
|
AtomicInteger* active_suspend_barriers[kMaxSuspendBarriers];
|
|
|
|
// Entrypoint function pointers.
|
|
// TODO: move this to more of a global offset table model to avoid per-thread duplication.
|
|
JniEntryPoints jni_entrypoints;
|
|
QuickEntryPoints quick_entrypoints;
|
|
|
|
// Thread-local allocation pointer.
|
|
size_t thread_local_objects;
|
|
uint8_t* thread_local_start;
|
|
// thread_local_pos and thread_local_end must be consecutive for ldrd and are 8 byte aligned for
|
|
// potentially better performance.
|
|
uint8_t* thread_local_pos;
|
|
uint8_t* thread_local_end;
|
|
|
|
// Mterp jump table bases.
|
|
void* mterp_current_ibase;
|
|
void* mterp_default_ibase;
|
|
void* mterp_alt_ibase;
|
|
|
|
// There are RosAlloc::kNumThreadLocalSizeBrackets thread-local size brackets per thread.
|
|
void* rosalloc_runs[kNumRosAllocThreadLocalSizeBracketsInThread];
|
|
|
|
// Thread-local allocation stack data/routines.
|
|
StackReference<mirror::Object>* thread_local_alloc_stack_top;
|
|
StackReference<mirror::Object>* thread_local_alloc_stack_end;
|
|
|
|
// Support for Mutex lock hierarchy bug detection.
|
|
BaseMutex* held_mutexes[kLockLevelCount];
|
|
|
|
// Recorded thread state for nested signals.
|
|
jmp_buf* nested_signal_state;
|
|
|
|
// The function used for thread flip.
|
|
Closure* flip_function;
|
|
|
|
// Current method verifier, used for root marking.
|
|
verifier::MethodVerifier* method_verifier;
|
|
|
|
// Thread-local mark stack for the concurrent copying collector.
|
|
gc::accounting::AtomicStack<mirror::Object>* thread_local_mark_stack;
|
|
} tlsPtr_;
|
|
|
|
// Guards the 'interrupted_' and 'wait_monitor_' members.
|
|
Mutex* wait_mutex_ DEFAULT_MUTEX_ACQUIRED_AFTER;
|
|
|
|
// Condition variable waited upon during a wait.
|
|
ConditionVariable* wait_cond_ GUARDED_BY(wait_mutex_);
|
|
// Pointer to the monitor lock we're currently waiting on or null if not waiting.
|
|
Monitor* wait_monitor_ GUARDED_BY(wait_mutex_);
|
|
|
|
// Thread "interrupted" status; stays raised until queried or thrown.
|
|
bool interrupted_ GUARDED_BY(wait_mutex_);
|
|
|
|
// Debug disable read barrier count, only is checked for debug builds and only in the runtime.
|
|
uint8_t debug_disallow_read_barrier_ = 0;
|
|
|
|
// True if the thread is allowed to call back into java (for e.g. during class resolution).
|
|
// By default this is true.
|
|
bool can_call_into_java_;
|
|
|
|
friend class Dbg; // For SetStateUnsafe.
|
|
friend class gc::collector::SemiSpace; // For getting stack traces.
|
|
friend class Runtime; // For CreatePeer.
|
|
friend class QuickExceptionHandler; // For dumping the stack.
|
|
friend class ScopedThreadStateChange;
|
|
friend class StubTest; // For accessing entrypoints.
|
|
friend class ThreadList; // For ~Thread and Destroy.
|
|
|
|
friend class EntrypointsOrderTest; // To test the order of tls entries.
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(Thread);
|
|
};
|
|
|
|
class SCOPED_CAPABILITY ScopedAssertNoThreadSuspension {
|
|
public:
|
|
ScopedAssertNoThreadSuspension(Thread* self, const char* cause) ACQUIRE(Roles::uninterruptible_)
|
|
: self_(self), old_cause_(self->StartAssertNoThreadSuspension(cause)) {
|
|
}
|
|
~ScopedAssertNoThreadSuspension() RELEASE(Roles::uninterruptible_) {
|
|
self_->EndAssertNoThreadSuspension(old_cause_);
|
|
}
|
|
Thread* Self() {
|
|
return self_;
|
|
}
|
|
|
|
private:
|
|
Thread* const self_;
|
|
const char* const old_cause_;
|
|
};
|
|
|
|
class ScopedStackedShadowFramePusher {
|
|
public:
|
|
ScopedStackedShadowFramePusher(Thread* self, ShadowFrame* sf, StackedShadowFrameType type)
|
|
: self_(self), type_(type) {
|
|
self_->PushStackedShadowFrame(sf, type);
|
|
}
|
|
~ScopedStackedShadowFramePusher() {
|
|
self_->PopStackedShadowFrame(type_);
|
|
}
|
|
|
|
private:
|
|
Thread* const self_;
|
|
const StackedShadowFrameType type_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(ScopedStackedShadowFramePusher);
|
|
};
|
|
|
|
// Only works for debug builds.
|
|
class ScopedDebugDisallowReadBarriers {
|
|
public:
|
|
explicit ScopedDebugDisallowReadBarriers(Thread* self) : self_(self) {
|
|
self_->ModifyDebugDisallowReadBarrier(1);
|
|
}
|
|
~ScopedDebugDisallowReadBarriers() {
|
|
self_->ModifyDebugDisallowReadBarrier(-1);
|
|
}
|
|
|
|
private:
|
|
Thread* const self_;
|
|
};
|
|
|
|
std::ostream& operator<<(std::ostream& os, const Thread& thread);
|
|
std::ostream& operator<<(std::ostream& os, const StackedShadowFrameType& thread);
|
|
|
|
} // namespace art
|
|
|
|
#endif // ART_RUNTIME_THREAD_H_
|