836 lines
29 KiB
C++
836 lines
29 KiB
C++
/*
|
|
* Copyright (C) 2011 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#ifndef ART_RUNTIME_STACK_H_
|
|
#define ART_RUNTIME_STACK_H_
|
|
|
|
#include <stdint.h>
|
|
#include <string>
|
|
|
|
#include "arch/instruction_set.h"
|
|
#include "base/macros.h"
|
|
#include "base/mutex.h"
|
|
#include "dex_file.h"
|
|
#include "gc_root.h"
|
|
#include "mirror/object_reference.h"
|
|
#include "quick/quick_method_frame_info.h"
|
|
#include "read_barrier.h"
|
|
#include "verify_object.h"
|
|
|
|
namespace art {
|
|
|
|
namespace mirror {
|
|
class Object;
|
|
} // namespace mirror
|
|
|
|
class ArtMethod;
|
|
class Context;
|
|
class HandleScope;
|
|
class InlineInfo;
|
|
class OatQuickMethodHeader;
|
|
class ScopedObjectAccess;
|
|
class ShadowFrame;
|
|
class StackVisitor;
|
|
class Thread;
|
|
|
|
// The kind of vreg being accessed in calls to Set/GetVReg.
|
|
enum VRegKind {
|
|
kReferenceVReg,
|
|
kIntVReg,
|
|
kFloatVReg,
|
|
kLongLoVReg,
|
|
kLongHiVReg,
|
|
kDoubleLoVReg,
|
|
kDoubleHiVReg,
|
|
kConstant,
|
|
kImpreciseConstant,
|
|
kUndefined,
|
|
};
|
|
std::ostream& operator<<(std::ostream& os, const VRegKind& rhs);
|
|
|
|
// A reference from the shadow stack to a MirrorType object within the Java heap.
|
|
template<class MirrorType>
|
|
class MANAGED StackReference : public mirror::CompressedReference<MirrorType> {
|
|
};
|
|
|
|
// Forward declaration. Just calls the destructor.
|
|
struct ShadowFrameDeleter;
|
|
using ShadowFrameAllocaUniquePtr = std::unique_ptr<ShadowFrame, ShadowFrameDeleter>;
|
|
|
|
// Counting locks by storing object pointers into a vector. Duplicate entries mark recursive locks.
|
|
// The vector will be visited with the ShadowFrame during GC (so all the locked-on objects are
|
|
// thread roots).
|
|
// Note: implementation is split so that the call sites may be optimized to no-ops in case no
|
|
// lock counting is necessary. The actual implementation is in the cc file to avoid
|
|
// dependencies.
|
|
class LockCountData {
|
|
public:
|
|
// Add the given object to the list of monitors, that is, objects that have been locked. This
|
|
// will not throw (but be skipped if there is an exception pending on entry).
|
|
void AddMonitor(Thread* self, mirror::Object* obj) SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
// Try to remove the given object from the monitor list, indicating an unlock operation.
|
|
// This will throw an IllegalMonitorStateException (clearing any already pending exception), in
|
|
// case that there wasn't a lock recorded for the object.
|
|
void RemoveMonitorOrThrow(Thread* self,
|
|
const mirror::Object* obj) SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
// Check whether all acquired monitors have been released. This will potentially throw an
|
|
// IllegalMonitorStateException, clearing any already pending exception. Returns true if the
|
|
// check shows that everything is OK wrt/ lock counting, false otherwise.
|
|
bool CheckAllMonitorsReleasedOrThrow(Thread* self) SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
template <typename T, typename... Args>
|
|
void VisitMonitors(T visitor, Args&&... args) SHARED_REQUIRES(Locks::mutator_lock_) {
|
|
if (monitors_ != nullptr) {
|
|
// Visitors may change the Object*. Be careful with the foreach loop.
|
|
for (mirror::Object*& obj : *monitors_) {
|
|
visitor(/* inout */ &obj, std::forward<Args>(args)...);
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
// Stores references to the locked-on objects. As noted, this should be visited during thread
|
|
// marking.
|
|
std::unique_ptr<std::vector<mirror::Object*>> monitors_;
|
|
};
|
|
|
|
// ShadowFrame has 2 possible layouts:
|
|
// - interpreter - separate VRegs and reference arrays. References are in the reference array.
|
|
// - JNI - just VRegs, but where every VReg holds a reference.
|
|
class ShadowFrame {
|
|
public:
|
|
// Compute size of ShadowFrame in bytes assuming it has a reference array.
|
|
static size_t ComputeSize(uint32_t num_vregs) {
|
|
return sizeof(ShadowFrame) + (sizeof(uint32_t) * num_vregs) +
|
|
(sizeof(StackReference<mirror::Object>) * num_vregs);
|
|
}
|
|
|
|
// Create ShadowFrame in heap for deoptimization.
|
|
static ShadowFrame* CreateDeoptimizedFrame(uint32_t num_vregs, ShadowFrame* link,
|
|
ArtMethod* method, uint32_t dex_pc) {
|
|
uint8_t* memory = new uint8_t[ComputeSize(num_vregs)];
|
|
return CreateShadowFrameImpl(num_vregs, link, method, dex_pc, memory);
|
|
}
|
|
|
|
// Delete a ShadowFrame allocated on the heap for deoptimization.
|
|
static void DeleteDeoptimizedFrame(ShadowFrame* sf) {
|
|
sf->~ShadowFrame(); // Explicitly destruct.
|
|
uint8_t* memory = reinterpret_cast<uint8_t*>(sf);
|
|
delete[] memory;
|
|
}
|
|
|
|
// Create a shadow frame in a fresh alloca. This needs to be in the context of the caller.
|
|
// Inlining doesn't work, the compiler will still undo the alloca. So this needs to be a macro.
|
|
#define CREATE_SHADOW_FRAME(num_vregs, link, method, dex_pc) ({ \
|
|
size_t frame_size = ShadowFrame::ComputeSize(num_vregs); \
|
|
void* alloca_mem = alloca(frame_size); \
|
|
ShadowFrameAllocaUniquePtr( \
|
|
ShadowFrame::CreateShadowFrameImpl((num_vregs), (link), (method), (dex_pc), \
|
|
(alloca_mem))); \
|
|
})
|
|
|
|
~ShadowFrame() {}
|
|
|
|
// TODO(iam): Clean references array up since they're always there,
|
|
// we don't need to do conditionals.
|
|
bool HasReferenceArray() const {
|
|
return true;
|
|
}
|
|
|
|
uint32_t NumberOfVRegs() const {
|
|
return number_of_vregs_;
|
|
}
|
|
|
|
uint32_t GetDexPC() const {
|
|
return (dex_pc_ptr_ == nullptr) ? dex_pc_ : dex_pc_ptr_ - code_item_->insns_;
|
|
}
|
|
|
|
int16_t GetCachedHotnessCountdown() const {
|
|
return cached_hotness_countdown_;
|
|
}
|
|
|
|
void SetCachedHotnessCountdown(int16_t cached_hotness_countdown) {
|
|
cached_hotness_countdown_ = cached_hotness_countdown;
|
|
}
|
|
|
|
int16_t GetHotnessCountdown() const {
|
|
return hotness_countdown_;
|
|
}
|
|
|
|
void SetHotnessCountdown(int16_t hotness_countdown) {
|
|
hotness_countdown_ = hotness_countdown;
|
|
}
|
|
|
|
void SetDexPC(uint32_t dex_pc) {
|
|
dex_pc_ = dex_pc;
|
|
dex_pc_ptr_ = nullptr;
|
|
}
|
|
|
|
ShadowFrame* GetLink() const {
|
|
return link_;
|
|
}
|
|
|
|
void SetLink(ShadowFrame* frame) {
|
|
DCHECK_NE(this, frame);
|
|
link_ = frame;
|
|
}
|
|
|
|
int32_t GetVReg(size_t i) const {
|
|
DCHECK_LT(i, NumberOfVRegs());
|
|
const uint32_t* vreg = &vregs_[i];
|
|
return *reinterpret_cast<const int32_t*>(vreg);
|
|
}
|
|
|
|
uint32_t* GetVRegAddr(size_t i) {
|
|
return &vregs_[i];
|
|
}
|
|
|
|
uint32_t* GetShadowRefAddr(size_t i) {
|
|
DCHECK(HasReferenceArray());
|
|
DCHECK_LT(i, NumberOfVRegs());
|
|
return &vregs_[i + NumberOfVRegs()];
|
|
}
|
|
|
|
void SetCodeItem(const DexFile::CodeItem* code_item) {
|
|
code_item_ = code_item;
|
|
}
|
|
|
|
float GetVRegFloat(size_t i) const {
|
|
DCHECK_LT(i, NumberOfVRegs());
|
|
// NOTE: Strict-aliasing?
|
|
const uint32_t* vreg = &vregs_[i];
|
|
return *reinterpret_cast<const float*>(vreg);
|
|
}
|
|
|
|
int64_t GetVRegLong(size_t i) const {
|
|
DCHECK_LT(i, NumberOfVRegs());
|
|
const uint32_t* vreg = &vregs_[i];
|
|
// Alignment attribute required for GCC 4.8
|
|
typedef const int64_t unaligned_int64 __attribute__ ((aligned (4)));
|
|
return *reinterpret_cast<unaligned_int64*>(vreg);
|
|
}
|
|
|
|
double GetVRegDouble(size_t i) const {
|
|
DCHECK_LT(i, NumberOfVRegs());
|
|
const uint32_t* vreg = &vregs_[i];
|
|
// Alignment attribute required for GCC 4.8
|
|
typedef const double unaligned_double __attribute__ ((aligned (4)));
|
|
return *reinterpret_cast<unaligned_double*>(vreg);
|
|
}
|
|
|
|
// Look up the reference given its virtual register number.
|
|
// If this returns non-null then this does not mean the vreg is currently a reference
|
|
// on non-moving collectors. Check that the raw reg with GetVReg is equal to this if not certain.
|
|
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
|
|
mirror::Object* GetVRegReference(size_t i) const SHARED_REQUIRES(Locks::mutator_lock_) {
|
|
DCHECK_LT(i, NumberOfVRegs());
|
|
mirror::Object* ref;
|
|
if (HasReferenceArray()) {
|
|
ref = References()[i].AsMirrorPtr();
|
|
} else {
|
|
const uint32_t* vreg_ptr = &vregs_[i];
|
|
ref = reinterpret_cast<const StackReference<mirror::Object>*>(vreg_ptr)->AsMirrorPtr();
|
|
}
|
|
if (kUseReadBarrier) {
|
|
ReadBarrier::AssertToSpaceInvariant(ref);
|
|
}
|
|
if (kVerifyFlags & kVerifyReads) {
|
|
VerifyObject(ref);
|
|
}
|
|
return ref;
|
|
}
|
|
|
|
// Get view of vregs as range of consecutive arguments starting at i.
|
|
uint32_t* GetVRegArgs(size_t i) {
|
|
return &vregs_[i];
|
|
}
|
|
|
|
void SetVReg(size_t i, int32_t val) {
|
|
DCHECK_LT(i, NumberOfVRegs());
|
|
uint32_t* vreg = &vregs_[i];
|
|
*reinterpret_cast<int32_t*>(vreg) = val;
|
|
// This is needed for moving collectors since these can update the vreg references if they
|
|
// happen to agree with references in the reference array.
|
|
if (kMovingCollector && HasReferenceArray()) {
|
|
References()[i].Clear();
|
|
}
|
|
}
|
|
|
|
void SetVRegFloat(size_t i, float val) {
|
|
DCHECK_LT(i, NumberOfVRegs());
|
|
uint32_t* vreg = &vregs_[i];
|
|
*reinterpret_cast<float*>(vreg) = val;
|
|
// This is needed for moving collectors since these can update the vreg references if they
|
|
// happen to agree with references in the reference array.
|
|
if (kMovingCollector && HasReferenceArray()) {
|
|
References()[i].Clear();
|
|
}
|
|
}
|
|
|
|
void SetVRegLong(size_t i, int64_t val) {
|
|
DCHECK_LT(i, NumberOfVRegs());
|
|
uint32_t* vreg = &vregs_[i];
|
|
// Alignment attribute required for GCC 4.8
|
|
typedef int64_t unaligned_int64 __attribute__ ((aligned (4)));
|
|
*reinterpret_cast<unaligned_int64*>(vreg) = val;
|
|
// This is needed for moving collectors since these can update the vreg references if they
|
|
// happen to agree with references in the reference array.
|
|
if (kMovingCollector && HasReferenceArray()) {
|
|
References()[i].Clear();
|
|
References()[i + 1].Clear();
|
|
}
|
|
}
|
|
|
|
void SetVRegDouble(size_t i, double val) {
|
|
DCHECK_LT(i, NumberOfVRegs());
|
|
uint32_t* vreg = &vregs_[i];
|
|
// Alignment attribute required for GCC 4.8
|
|
typedef double unaligned_double __attribute__ ((aligned (4)));
|
|
*reinterpret_cast<unaligned_double*>(vreg) = val;
|
|
// This is needed for moving collectors since these can update the vreg references if they
|
|
// happen to agree with references in the reference array.
|
|
if (kMovingCollector && HasReferenceArray()) {
|
|
References()[i].Clear();
|
|
References()[i + 1].Clear();
|
|
}
|
|
}
|
|
|
|
template<VerifyObjectFlags kVerifyFlags = kDefaultVerifyFlags>
|
|
void SetVRegReference(size_t i, mirror::Object* val) SHARED_REQUIRES(Locks::mutator_lock_) {
|
|
DCHECK_LT(i, NumberOfVRegs());
|
|
if (kVerifyFlags & kVerifyWrites) {
|
|
VerifyObject(val);
|
|
}
|
|
if (kUseReadBarrier) {
|
|
ReadBarrier::AssertToSpaceInvariant(val);
|
|
}
|
|
uint32_t* vreg = &vregs_[i];
|
|
reinterpret_cast<StackReference<mirror::Object>*>(vreg)->Assign(val);
|
|
if (HasReferenceArray()) {
|
|
References()[i].Assign(val);
|
|
}
|
|
}
|
|
|
|
ArtMethod* GetMethod() const SHARED_REQUIRES(Locks::mutator_lock_) {
|
|
DCHECK(method_ != nullptr);
|
|
return method_;
|
|
}
|
|
|
|
mirror::Object* GetThisObject() const SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
mirror::Object* GetThisObject(uint16_t num_ins) const SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
bool Contains(StackReference<mirror::Object>* shadow_frame_entry_obj) const {
|
|
if (HasReferenceArray()) {
|
|
return ((&References()[0] <= shadow_frame_entry_obj) &&
|
|
(shadow_frame_entry_obj <= (&References()[NumberOfVRegs() - 1])));
|
|
} else {
|
|
uint32_t* shadow_frame_entry = reinterpret_cast<uint32_t*>(shadow_frame_entry_obj);
|
|
return ((&vregs_[0] <= shadow_frame_entry) &&
|
|
(shadow_frame_entry <= (&vregs_[NumberOfVRegs() - 1])));
|
|
}
|
|
}
|
|
|
|
LockCountData& GetLockCountData() {
|
|
return lock_count_data_;
|
|
}
|
|
|
|
static size_t LockCountDataOffset() {
|
|
return OFFSETOF_MEMBER(ShadowFrame, lock_count_data_);
|
|
}
|
|
|
|
static size_t LinkOffset() {
|
|
return OFFSETOF_MEMBER(ShadowFrame, link_);
|
|
}
|
|
|
|
static size_t MethodOffset() {
|
|
return OFFSETOF_MEMBER(ShadowFrame, method_);
|
|
}
|
|
|
|
static size_t DexPCOffset() {
|
|
return OFFSETOF_MEMBER(ShadowFrame, dex_pc_);
|
|
}
|
|
|
|
static size_t NumberOfVRegsOffset() {
|
|
return OFFSETOF_MEMBER(ShadowFrame, number_of_vregs_);
|
|
}
|
|
|
|
static size_t VRegsOffset() {
|
|
return OFFSETOF_MEMBER(ShadowFrame, vregs_);
|
|
}
|
|
|
|
static size_t ResultRegisterOffset() {
|
|
return OFFSETOF_MEMBER(ShadowFrame, result_register_);
|
|
}
|
|
|
|
static size_t DexPCPtrOffset() {
|
|
return OFFSETOF_MEMBER(ShadowFrame, dex_pc_ptr_);
|
|
}
|
|
|
|
static size_t CodeItemOffset() {
|
|
return OFFSETOF_MEMBER(ShadowFrame, code_item_);
|
|
}
|
|
|
|
static size_t CachedHotnessCountdownOffset() {
|
|
return OFFSETOF_MEMBER(ShadowFrame, cached_hotness_countdown_);
|
|
}
|
|
|
|
static size_t HotnessCountdownOffset() {
|
|
return OFFSETOF_MEMBER(ShadowFrame, hotness_countdown_);
|
|
}
|
|
|
|
// Create ShadowFrame for interpreter using provided memory.
|
|
static ShadowFrame* CreateShadowFrameImpl(uint32_t num_vregs,
|
|
ShadowFrame* link,
|
|
ArtMethod* method,
|
|
uint32_t dex_pc,
|
|
void* memory) {
|
|
return new (memory) ShadowFrame(num_vregs, link, method, dex_pc, true);
|
|
}
|
|
|
|
const uint16_t* GetDexPCPtr() {
|
|
return dex_pc_ptr_;
|
|
}
|
|
|
|
JValue* GetResultRegister() {
|
|
return result_register_;
|
|
}
|
|
|
|
private:
|
|
ShadowFrame(uint32_t num_vregs, ShadowFrame* link, ArtMethod* method,
|
|
uint32_t dex_pc, bool has_reference_array)
|
|
: link_(link), method_(method), result_register_(nullptr), dex_pc_ptr_(nullptr),
|
|
code_item_(nullptr), number_of_vregs_(num_vregs), dex_pc_(dex_pc) {
|
|
// TODO(iam): Remove this parameter, it's an an artifact of portable removal
|
|
DCHECK(has_reference_array);
|
|
if (has_reference_array) {
|
|
memset(vregs_, 0, num_vregs * (sizeof(uint32_t) + sizeof(StackReference<mirror::Object>)));
|
|
} else {
|
|
memset(vregs_, 0, num_vregs * sizeof(uint32_t));
|
|
}
|
|
}
|
|
|
|
const StackReference<mirror::Object>* References() const {
|
|
DCHECK(HasReferenceArray());
|
|
const uint32_t* vreg_end = &vregs_[NumberOfVRegs()];
|
|
return reinterpret_cast<const StackReference<mirror::Object>*>(vreg_end);
|
|
}
|
|
|
|
StackReference<mirror::Object>* References() {
|
|
return const_cast<StackReference<mirror::Object>*>(
|
|
const_cast<const ShadowFrame*>(this)->References());
|
|
}
|
|
|
|
// Link to previous shadow frame or null.
|
|
ShadowFrame* link_;
|
|
ArtMethod* method_;
|
|
JValue* result_register_;
|
|
const uint16_t* dex_pc_ptr_;
|
|
const DexFile::CodeItem* code_item_;
|
|
LockCountData lock_count_data_; // This may contain GC roots when lock counting is active.
|
|
const uint32_t number_of_vregs_;
|
|
uint32_t dex_pc_;
|
|
int16_t cached_hotness_countdown_;
|
|
int16_t hotness_countdown_;
|
|
|
|
// This is a two-part array:
|
|
// - [0..number_of_vregs) holds the raw virtual registers, and each element here is always 4
|
|
// bytes.
|
|
// - [number_of_vregs..number_of_vregs*2) holds only reference registers. Each element here is
|
|
// ptr-sized.
|
|
// In other words when a primitive is stored in vX, the second (reference) part of the array will
|
|
// be null. When a reference is stored in vX, the second (reference) part of the array will be a
|
|
// copy of vX.
|
|
uint32_t vregs_[0];
|
|
|
|
DISALLOW_IMPLICIT_CONSTRUCTORS(ShadowFrame);
|
|
};
|
|
|
|
struct ShadowFrameDeleter {
|
|
inline void operator()(ShadowFrame* frame) {
|
|
if (frame != nullptr) {
|
|
frame->~ShadowFrame();
|
|
}
|
|
}
|
|
};
|
|
|
|
class JavaFrameRootInfo : public RootInfo {
|
|
public:
|
|
JavaFrameRootInfo(uint32_t thread_id, const StackVisitor* stack_visitor, size_t vreg)
|
|
: RootInfo(kRootJavaFrame, thread_id), stack_visitor_(stack_visitor), vreg_(vreg) {
|
|
}
|
|
virtual void Describe(std::ostream& os) const OVERRIDE
|
|
SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
private:
|
|
const StackVisitor* const stack_visitor_;
|
|
const size_t vreg_;
|
|
};
|
|
|
|
// The managed stack is used to record fragments of managed code stacks. Managed code stacks
|
|
// may either be shadow frames or lists of frames using fixed frame sizes. Transition records are
|
|
// necessary for transitions between code using different frame layouts and transitions into native
|
|
// code.
|
|
class PACKED(4) ManagedStack {
|
|
public:
|
|
ManagedStack()
|
|
: top_quick_frame_(nullptr), link_(nullptr), top_shadow_frame_(nullptr) {}
|
|
|
|
void PushManagedStackFragment(ManagedStack* fragment) {
|
|
// Copy this top fragment into given fragment.
|
|
memcpy(fragment, this, sizeof(ManagedStack));
|
|
// Clear this fragment, which has become the top.
|
|
memset(this, 0, sizeof(ManagedStack));
|
|
// Link our top fragment onto the given fragment.
|
|
link_ = fragment;
|
|
}
|
|
|
|
void PopManagedStackFragment(const ManagedStack& fragment) {
|
|
DCHECK(&fragment == link_);
|
|
// Copy this given fragment back to the top.
|
|
memcpy(this, &fragment, sizeof(ManagedStack));
|
|
}
|
|
|
|
ManagedStack* GetLink() const {
|
|
return link_;
|
|
}
|
|
|
|
ArtMethod** GetTopQuickFrame() const {
|
|
return top_quick_frame_;
|
|
}
|
|
|
|
void SetTopQuickFrame(ArtMethod** top) {
|
|
DCHECK(top_shadow_frame_ == nullptr);
|
|
top_quick_frame_ = top;
|
|
}
|
|
|
|
static size_t TopQuickFrameOffset() {
|
|
return OFFSETOF_MEMBER(ManagedStack, top_quick_frame_);
|
|
}
|
|
|
|
ShadowFrame* PushShadowFrame(ShadowFrame* new_top_frame) {
|
|
DCHECK(top_quick_frame_ == nullptr);
|
|
ShadowFrame* old_frame = top_shadow_frame_;
|
|
top_shadow_frame_ = new_top_frame;
|
|
new_top_frame->SetLink(old_frame);
|
|
return old_frame;
|
|
}
|
|
|
|
ShadowFrame* PopShadowFrame() {
|
|
DCHECK(top_quick_frame_ == nullptr);
|
|
CHECK(top_shadow_frame_ != nullptr);
|
|
ShadowFrame* frame = top_shadow_frame_;
|
|
top_shadow_frame_ = frame->GetLink();
|
|
return frame;
|
|
}
|
|
|
|
ShadowFrame* GetTopShadowFrame() const {
|
|
return top_shadow_frame_;
|
|
}
|
|
|
|
void SetTopShadowFrame(ShadowFrame* top) {
|
|
DCHECK(top_quick_frame_ == nullptr);
|
|
top_shadow_frame_ = top;
|
|
}
|
|
|
|
static size_t TopShadowFrameOffset() {
|
|
return OFFSETOF_MEMBER(ManagedStack, top_shadow_frame_);
|
|
}
|
|
|
|
size_t NumJniShadowFrameReferences() const SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
bool ShadowFramesContain(StackReference<mirror::Object>* shadow_frame_entry) const;
|
|
|
|
private:
|
|
ArtMethod** top_quick_frame_;
|
|
ManagedStack* link_;
|
|
ShadowFrame* top_shadow_frame_;
|
|
};
|
|
|
|
class StackVisitor {
|
|
public:
|
|
// This enum defines a flag to control whether inlined frames are included
|
|
// when walking the stack.
|
|
enum class StackWalkKind {
|
|
kIncludeInlinedFrames,
|
|
kIncludeInlinedFramesNoResolve,
|
|
kSkipInlinedFrames,
|
|
};
|
|
|
|
protected:
|
|
StackVisitor(Thread* thread, Context* context, StackWalkKind walk_kind)
|
|
SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
bool GetRegisterIfAccessible(uint32_t reg, VRegKind kind, uint32_t* val) const
|
|
SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
public:
|
|
virtual ~StackVisitor() {}
|
|
|
|
// Return 'true' if we should continue to visit more frames, 'false' to stop.
|
|
virtual bool VisitFrame() SHARED_REQUIRES(Locks::mutator_lock_) = 0;
|
|
|
|
void WalkStack(bool include_transitions = false)
|
|
SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
Thread* GetThread() const {
|
|
return thread_;
|
|
}
|
|
|
|
ArtMethod* GetMethod() const SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
ArtMethod* GetOuterMethod() const {
|
|
return *GetCurrentQuickFrame();
|
|
}
|
|
|
|
bool IsShadowFrame() const {
|
|
return cur_shadow_frame_ != nullptr;
|
|
}
|
|
|
|
uint32_t GetDexPc(bool abort_on_failure = true) const SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
mirror::Object* GetThisObject() const SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
size_t GetNativePcOffset() const SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
// Returns the height of the stack in the managed stack frames, including transitions.
|
|
size_t GetFrameHeight() SHARED_REQUIRES(Locks::mutator_lock_) {
|
|
return GetNumFrames() - cur_depth_ - 1;
|
|
}
|
|
|
|
// Returns a frame ID for JDWP use, starting from 1.
|
|
size_t GetFrameId() SHARED_REQUIRES(Locks::mutator_lock_) {
|
|
return GetFrameHeight() + 1;
|
|
}
|
|
|
|
size_t GetNumFrames() SHARED_REQUIRES(Locks::mutator_lock_) {
|
|
if (num_frames_ == 0) {
|
|
num_frames_ = ComputeNumFrames(thread_, walk_kind_);
|
|
}
|
|
return num_frames_;
|
|
}
|
|
|
|
size_t GetFrameDepth() SHARED_REQUIRES(Locks::mutator_lock_) {
|
|
return cur_depth_;
|
|
}
|
|
|
|
// Get the method and dex pc immediately after the one that's currently being visited.
|
|
bool GetNextMethodAndDexPc(ArtMethod** next_method, uint32_t* next_dex_pc)
|
|
SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
bool GetVReg(ArtMethod* m, uint16_t vreg, VRegKind kind, uint32_t* val) const
|
|
SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
bool GetVRegPair(ArtMethod* m, uint16_t vreg, VRegKind kind_lo, VRegKind kind_hi,
|
|
uint64_t* val) const
|
|
SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
// Values will be set in debugger shadow frames. Debugger will make sure deoptimization
|
|
// is triggered to make the values effective.
|
|
bool SetVReg(ArtMethod* m, uint16_t vreg, uint32_t new_value, VRegKind kind)
|
|
SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
// Values will be set in debugger shadow frames. Debugger will make sure deoptimization
|
|
// is triggered to make the values effective.
|
|
bool SetVRegPair(ArtMethod* m,
|
|
uint16_t vreg,
|
|
uint64_t new_value,
|
|
VRegKind kind_lo,
|
|
VRegKind kind_hi)
|
|
SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
uintptr_t* GetGPRAddress(uint32_t reg) const;
|
|
|
|
// This is a fast-path for getting/setting values in a quick frame.
|
|
uint32_t* GetVRegAddrFromQuickCode(ArtMethod** cur_quick_frame,
|
|
const DexFile::CodeItem* code_item,
|
|
uint32_t core_spills, uint32_t fp_spills, size_t frame_size,
|
|
uint16_t vreg) const {
|
|
int offset = GetVRegOffsetFromQuickCode(
|
|
code_item, core_spills, fp_spills, frame_size, vreg, kRuntimeISA);
|
|
DCHECK_EQ(cur_quick_frame, GetCurrentQuickFrame());
|
|
uint8_t* vreg_addr = reinterpret_cast<uint8_t*>(cur_quick_frame) + offset;
|
|
return reinterpret_cast<uint32_t*>(vreg_addr);
|
|
}
|
|
|
|
uintptr_t GetReturnPc() const SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
void SetReturnPc(uintptr_t new_ret_pc) SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
/*
|
|
* Return sp-relative offset for a Dalvik virtual register, compiler
|
|
* spill or Method* in bytes using Method*.
|
|
* Note that (reg == -1) denotes an invalid Dalvik register. For the
|
|
* positive values, the Dalvik registers come first, followed by the
|
|
* Method*, followed by other special temporaries if any, followed by
|
|
* regular compiler temporary. As of now we only have the Method* as
|
|
* as a special compiler temporary.
|
|
* A compiler temporary can be thought of as a virtual register that
|
|
* does not exist in the dex but holds intermediate values to help
|
|
* optimizations and code generation. A special compiler temporary is
|
|
* one whose location in frame is well known while non-special ones
|
|
* do not have a requirement on location in frame as long as code
|
|
* generator itself knows how to access them.
|
|
*
|
|
* +-------------------------------+
|
|
* | IN[ins-1] | {Note: resides in caller's frame}
|
|
* | . |
|
|
* | IN[0] |
|
|
* | caller's ArtMethod | ... ArtMethod*
|
|
* +===============================+ {Note: start of callee's frame}
|
|
* | core callee-save spill | {variable sized}
|
|
* +-------------------------------+
|
|
* | fp callee-save spill |
|
|
* +-------------------------------+
|
|
* | filler word | {For compatibility, if V[locals-1] used as wide
|
|
* +-------------------------------+
|
|
* | V[locals-1] |
|
|
* | V[locals-2] |
|
|
* | . |
|
|
* | . | ... (reg == 2)
|
|
* | V[1] | ... (reg == 1)
|
|
* | V[0] | ... (reg == 0) <---- "locals_start"
|
|
* +-------------------------------+
|
|
* | stack alignment padding | {0 to (kStackAlignWords-1) of padding}
|
|
* +-------------------------------+
|
|
* | Compiler temp region | ... (reg >= max_num_special_temps)
|
|
* | . |
|
|
* | . |
|
|
* | V[max_num_special_temps + 1] |
|
|
* | V[max_num_special_temps + 0] |
|
|
* +-------------------------------+
|
|
* | OUT[outs-1] |
|
|
* | OUT[outs-2] |
|
|
* | . |
|
|
* | OUT[0] |
|
|
* | ArtMethod* | ... (reg == num_total_code_regs == special_temp_value) <<== sp, 16-byte aligned
|
|
* +===============================+
|
|
*/
|
|
static int GetVRegOffsetFromQuickCode(const DexFile::CodeItem* code_item,
|
|
uint32_t core_spills, uint32_t fp_spills,
|
|
size_t frame_size, int reg, InstructionSet isa);
|
|
|
|
static int GetOutVROffset(uint16_t out_num, InstructionSet isa) {
|
|
// According to stack model, the first out is above the Method referernce.
|
|
return InstructionSetPointerSize(isa) + out_num * sizeof(uint32_t);
|
|
}
|
|
|
|
bool IsInInlinedFrame() const {
|
|
return current_inlining_depth_ != 0;
|
|
}
|
|
|
|
size_t GetCurrentInliningDepth() const {
|
|
return current_inlining_depth_;
|
|
}
|
|
|
|
uintptr_t GetCurrentQuickFramePc() const {
|
|
return cur_quick_frame_pc_;
|
|
}
|
|
|
|
ArtMethod** GetCurrentQuickFrame() const {
|
|
return cur_quick_frame_;
|
|
}
|
|
|
|
ShadowFrame* GetCurrentShadowFrame() const {
|
|
return cur_shadow_frame_;
|
|
}
|
|
|
|
bool IsCurrentFrameInInterpreter() const {
|
|
return cur_shadow_frame_ != nullptr;
|
|
}
|
|
|
|
HandleScope* GetCurrentHandleScope(size_t pointer_size) const {
|
|
ArtMethod** sp = GetCurrentQuickFrame();
|
|
// Skip ArtMethod*; handle scope comes next;
|
|
return reinterpret_cast<HandleScope*>(reinterpret_cast<uintptr_t>(sp) + pointer_size);
|
|
}
|
|
|
|
std::string DescribeLocation() const SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
static size_t ComputeNumFrames(Thread* thread, StackWalkKind walk_kind)
|
|
SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
static void DescribeStack(Thread* thread) SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
const OatQuickMethodHeader* GetCurrentOatQuickMethodHeader() const {
|
|
return cur_oat_quick_method_header_;
|
|
}
|
|
|
|
QuickMethodFrameInfo GetCurrentQuickFrameInfo() const SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
private:
|
|
// Private constructor known in the case that num_frames_ has already been computed.
|
|
StackVisitor(Thread* thread, Context* context, StackWalkKind walk_kind, size_t num_frames)
|
|
SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
bool IsAccessibleRegister(uint32_t reg, bool is_float) const {
|
|
return is_float ? IsAccessibleFPR(reg) : IsAccessibleGPR(reg);
|
|
}
|
|
uintptr_t GetRegister(uint32_t reg, bool is_float) const {
|
|
DCHECK(IsAccessibleRegister(reg, is_float));
|
|
return is_float ? GetFPR(reg) : GetGPR(reg);
|
|
}
|
|
|
|
bool IsAccessibleGPR(uint32_t reg) const;
|
|
uintptr_t GetGPR(uint32_t reg) const;
|
|
|
|
bool IsAccessibleFPR(uint32_t reg) const;
|
|
uintptr_t GetFPR(uint32_t reg) const;
|
|
|
|
bool GetVRegFromDebuggerShadowFrame(uint16_t vreg, VRegKind kind, uint32_t* val) const
|
|
SHARED_REQUIRES(Locks::mutator_lock_);
|
|
bool GetVRegFromOptimizedCode(ArtMethod* m, uint16_t vreg, VRegKind kind,
|
|
uint32_t* val) const
|
|
SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
bool GetVRegPairFromDebuggerShadowFrame(uint16_t vreg, VRegKind kind_lo, VRegKind kind_hi,
|
|
uint64_t* val) const
|
|
SHARED_REQUIRES(Locks::mutator_lock_);
|
|
bool GetVRegPairFromOptimizedCode(ArtMethod* m, uint16_t vreg,
|
|
VRegKind kind_lo, VRegKind kind_hi,
|
|
uint64_t* val) const
|
|
SHARED_REQUIRES(Locks::mutator_lock_);
|
|
bool GetRegisterPairIfAccessible(uint32_t reg_lo, uint32_t reg_hi, VRegKind kind_lo,
|
|
uint64_t* val) const
|
|
SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
void SanityCheckFrame() const SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
InlineInfo GetCurrentInlineInfo() const SHARED_REQUIRES(Locks::mutator_lock_);
|
|
|
|
Thread* const thread_;
|
|
const StackWalkKind walk_kind_;
|
|
ShadowFrame* cur_shadow_frame_;
|
|
ArtMethod** cur_quick_frame_;
|
|
uintptr_t cur_quick_frame_pc_;
|
|
const OatQuickMethodHeader* cur_oat_quick_method_header_;
|
|
// Lazily computed, number of frames in the stack.
|
|
size_t num_frames_;
|
|
// Depth of the frame we're currently at.
|
|
size_t cur_depth_;
|
|
// Current inlining depth of the method we are currently at.
|
|
// 0 if there is no inlined frame.
|
|
size_t current_inlining_depth_;
|
|
|
|
protected:
|
|
Context* const context_;
|
|
};
|
|
|
|
} // namespace art
|
|
|
|
#endif // ART_RUNTIME_STACK_H_
|