7390 lines
288 KiB
C++
7390 lines
288 KiB
C++
/*
|
|
* Copyright (C) 2014 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "code_generator_x86.h"
|
|
|
|
#include "art_method.h"
|
|
#include "code_generator_utils.h"
|
|
#include "compiled_method.h"
|
|
#include "entrypoints/quick/quick_entrypoints.h"
|
|
#include "entrypoints/quick/quick_entrypoints_enum.h"
|
|
#include "gc/accounting/card_table.h"
|
|
#include "intrinsics.h"
|
|
#include "intrinsics_x86.h"
|
|
#include "mirror/array-inl.h"
|
|
#include "mirror/class-inl.h"
|
|
#include "thread.h"
|
|
#include "utils/assembler.h"
|
|
#include "utils/stack_checks.h"
|
|
#include "utils/x86/assembler_x86.h"
|
|
#include "utils/x86/managed_register_x86.h"
|
|
|
|
namespace art {
|
|
|
|
template<class MirrorType>
|
|
class GcRoot;
|
|
|
|
namespace x86 {
|
|
|
|
static constexpr int kCurrentMethodStackOffset = 0;
|
|
static constexpr Register kMethodRegisterArgument = EAX;
|
|
static constexpr Register kCoreCalleeSaves[] = { EBP, ESI, EDI };
|
|
|
|
static constexpr int kC2ConditionMask = 0x400;
|
|
|
|
static constexpr int kFakeReturnRegister = Register(8);
|
|
|
|
#define __ down_cast<X86Assembler*>(codegen->GetAssembler())->
|
|
#define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kX86WordSize, x).Int32Value()
|
|
|
|
class NullCheckSlowPathX86 : public SlowPathCode {
|
|
public:
|
|
explicit NullCheckSlowPathX86(HNullCheck* instruction) : SlowPathCode(instruction) {}
|
|
|
|
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
|
|
CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
|
|
__ Bind(GetEntryLabel());
|
|
if (instruction_->CanThrowIntoCatchBlock()) {
|
|
// Live registers will be restored in the catch block if caught.
|
|
SaveLiveRegisters(codegen, instruction_->GetLocations());
|
|
}
|
|
x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pThrowNullPointer),
|
|
instruction_,
|
|
instruction_->GetDexPc(),
|
|
this);
|
|
CheckEntrypointTypes<kQuickThrowNullPointer, void, void>();
|
|
}
|
|
|
|
bool IsFatal() const OVERRIDE { return true; }
|
|
|
|
const char* GetDescription() const OVERRIDE { return "NullCheckSlowPathX86"; }
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathX86);
|
|
};
|
|
|
|
class DivZeroCheckSlowPathX86 : public SlowPathCode {
|
|
public:
|
|
explicit DivZeroCheckSlowPathX86(HDivZeroCheck* instruction) : SlowPathCode(instruction) {}
|
|
|
|
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
|
|
CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
|
|
__ Bind(GetEntryLabel());
|
|
if (instruction_->CanThrowIntoCatchBlock()) {
|
|
// Live registers will be restored in the catch block if caught.
|
|
SaveLiveRegisters(codegen, instruction_->GetLocations());
|
|
}
|
|
x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pThrowDivZero),
|
|
instruction_,
|
|
instruction_->GetDexPc(),
|
|
this);
|
|
CheckEntrypointTypes<kQuickThrowDivZero, void, void>();
|
|
}
|
|
|
|
bool IsFatal() const OVERRIDE { return true; }
|
|
|
|
const char* GetDescription() const OVERRIDE { return "DivZeroCheckSlowPathX86"; }
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathX86);
|
|
};
|
|
|
|
class DivRemMinusOneSlowPathX86 : public SlowPathCode {
|
|
public:
|
|
DivRemMinusOneSlowPathX86(HInstruction* instruction, Register reg, bool is_div)
|
|
: SlowPathCode(instruction), reg_(reg), is_div_(is_div) {}
|
|
|
|
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
|
|
__ Bind(GetEntryLabel());
|
|
if (is_div_) {
|
|
__ negl(reg_);
|
|
} else {
|
|
__ movl(reg_, Immediate(0));
|
|
}
|
|
__ jmp(GetExitLabel());
|
|
}
|
|
|
|
const char* GetDescription() const OVERRIDE { return "DivRemMinusOneSlowPathX86"; }
|
|
|
|
private:
|
|
Register reg_;
|
|
bool is_div_;
|
|
DISALLOW_COPY_AND_ASSIGN(DivRemMinusOneSlowPathX86);
|
|
};
|
|
|
|
class BoundsCheckSlowPathX86 : public SlowPathCode {
|
|
public:
|
|
explicit BoundsCheckSlowPathX86(HBoundsCheck* instruction) : SlowPathCode(instruction) {}
|
|
|
|
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
|
|
LocationSummary* locations = instruction_->GetLocations();
|
|
CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
|
|
__ Bind(GetEntryLabel());
|
|
// We're moving two locations to locations that could overlap, so we need a parallel
|
|
// move resolver.
|
|
if (instruction_->CanThrowIntoCatchBlock()) {
|
|
// Live registers will be restored in the catch block if caught.
|
|
SaveLiveRegisters(codegen, instruction_->GetLocations());
|
|
}
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
x86_codegen->EmitParallelMoves(
|
|
locations->InAt(0),
|
|
Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
|
|
Primitive::kPrimInt,
|
|
locations->InAt(1),
|
|
Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
|
|
Primitive::kPrimInt);
|
|
x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pThrowArrayBounds),
|
|
instruction_,
|
|
instruction_->GetDexPc(),
|
|
this);
|
|
CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>();
|
|
}
|
|
|
|
bool IsFatal() const OVERRIDE { return true; }
|
|
|
|
const char* GetDescription() const OVERRIDE { return "BoundsCheckSlowPathX86"; }
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathX86);
|
|
};
|
|
|
|
class SuspendCheckSlowPathX86 : public SlowPathCode {
|
|
public:
|
|
SuspendCheckSlowPathX86(HSuspendCheck* instruction, HBasicBlock* successor)
|
|
: SlowPathCode(instruction), successor_(successor) {}
|
|
|
|
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
|
|
CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
|
|
__ Bind(GetEntryLabel());
|
|
SaveLiveRegisters(codegen, instruction_->GetLocations());
|
|
x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pTestSuspend),
|
|
instruction_,
|
|
instruction_->GetDexPc(),
|
|
this);
|
|
CheckEntrypointTypes<kQuickTestSuspend, void, void>();
|
|
RestoreLiveRegisters(codegen, instruction_->GetLocations());
|
|
if (successor_ == nullptr) {
|
|
__ jmp(GetReturnLabel());
|
|
} else {
|
|
__ jmp(x86_codegen->GetLabelOf(successor_));
|
|
}
|
|
}
|
|
|
|
Label* GetReturnLabel() {
|
|
DCHECK(successor_ == nullptr);
|
|
return &return_label_;
|
|
}
|
|
|
|
HBasicBlock* GetSuccessor() const {
|
|
return successor_;
|
|
}
|
|
|
|
const char* GetDescription() const OVERRIDE { return "SuspendCheckSlowPathX86"; }
|
|
|
|
private:
|
|
HBasicBlock* const successor_;
|
|
Label return_label_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathX86);
|
|
};
|
|
|
|
class LoadStringSlowPathX86 : public SlowPathCode {
|
|
public:
|
|
explicit LoadStringSlowPathX86(HLoadString* instruction): SlowPathCode(instruction) {}
|
|
|
|
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
|
|
LocationSummary* locations = instruction_->GetLocations();
|
|
DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
|
|
|
|
CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
|
|
__ Bind(GetEntryLabel());
|
|
SaveLiveRegisters(codegen, locations);
|
|
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
const uint32_t string_index = instruction_->AsLoadString()->GetStringIndex();
|
|
__ movl(calling_convention.GetRegisterAt(0), Immediate(string_index));
|
|
x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pResolveString),
|
|
instruction_,
|
|
instruction_->GetDexPc(),
|
|
this);
|
|
CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
|
|
x86_codegen->Move32(locations->Out(), Location::RegisterLocation(EAX));
|
|
RestoreLiveRegisters(codegen, locations);
|
|
|
|
__ jmp(GetExitLabel());
|
|
}
|
|
|
|
const char* GetDescription() const OVERRIDE { return "LoadStringSlowPathX86"; }
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathX86);
|
|
};
|
|
|
|
class LoadClassSlowPathX86 : public SlowPathCode {
|
|
public:
|
|
LoadClassSlowPathX86(HLoadClass* cls,
|
|
HInstruction* at,
|
|
uint32_t dex_pc,
|
|
bool do_clinit)
|
|
: SlowPathCode(at), cls_(cls), at_(at), dex_pc_(dex_pc), do_clinit_(do_clinit) {
|
|
DCHECK(at->IsLoadClass() || at->IsClinitCheck());
|
|
}
|
|
|
|
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
|
|
LocationSummary* locations = at_->GetLocations();
|
|
CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
|
|
__ Bind(GetEntryLabel());
|
|
SaveLiveRegisters(codegen, locations);
|
|
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
__ movl(calling_convention.GetRegisterAt(0), Immediate(cls_->GetTypeIndex()));
|
|
x86_codegen->InvokeRuntime(do_clinit_ ? QUICK_ENTRY_POINT(pInitializeStaticStorage)
|
|
: QUICK_ENTRY_POINT(pInitializeType),
|
|
at_, dex_pc_, this);
|
|
if (do_clinit_) {
|
|
CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, uint32_t>();
|
|
} else {
|
|
CheckEntrypointTypes<kQuickInitializeType, void*, uint32_t>();
|
|
}
|
|
|
|
// Move the class to the desired location.
|
|
Location out = locations->Out();
|
|
if (out.IsValid()) {
|
|
DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
|
|
x86_codegen->Move32(out, Location::RegisterLocation(EAX));
|
|
}
|
|
|
|
RestoreLiveRegisters(codegen, locations);
|
|
__ jmp(GetExitLabel());
|
|
}
|
|
|
|
const char* GetDescription() const OVERRIDE { return "LoadClassSlowPathX86"; }
|
|
|
|
private:
|
|
// The class this slow path will load.
|
|
HLoadClass* const cls_;
|
|
|
|
// The instruction where this slow path is happening.
|
|
// (Might be the load class or an initialization check).
|
|
HInstruction* const at_;
|
|
|
|
// The dex PC of `at_`.
|
|
const uint32_t dex_pc_;
|
|
|
|
// Whether to initialize the class.
|
|
const bool do_clinit_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathX86);
|
|
};
|
|
|
|
class TypeCheckSlowPathX86 : public SlowPathCode {
|
|
public:
|
|
TypeCheckSlowPathX86(HInstruction* instruction, bool is_fatal)
|
|
: SlowPathCode(instruction), is_fatal_(is_fatal) {}
|
|
|
|
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
|
|
LocationSummary* locations = instruction_->GetLocations();
|
|
Location object_class = instruction_->IsCheckCast() ? locations->GetTemp(0)
|
|
: locations->Out();
|
|
DCHECK(instruction_->IsCheckCast()
|
|
|| !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
|
|
|
|
CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
|
|
__ Bind(GetEntryLabel());
|
|
|
|
if (!is_fatal_) {
|
|
SaveLiveRegisters(codegen, locations);
|
|
}
|
|
|
|
// We're moving two locations to locations that could overlap, so we need a parallel
|
|
// move resolver.
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
x86_codegen->EmitParallelMoves(
|
|
locations->InAt(1),
|
|
Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
|
|
Primitive::kPrimNot,
|
|
object_class,
|
|
Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
|
|
Primitive::kPrimNot);
|
|
|
|
if (instruction_->IsInstanceOf()) {
|
|
x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pInstanceofNonTrivial),
|
|
instruction_,
|
|
instruction_->GetDexPc(),
|
|
this);
|
|
CheckEntrypointTypes<
|
|
kQuickInstanceofNonTrivial, uint32_t, const mirror::Class*, const mirror::Class*>();
|
|
} else {
|
|
DCHECK(instruction_->IsCheckCast());
|
|
x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pCheckCast),
|
|
instruction_,
|
|
instruction_->GetDexPc(),
|
|
this);
|
|
CheckEntrypointTypes<kQuickCheckCast, void, const mirror::Class*, const mirror::Class*>();
|
|
}
|
|
|
|
if (!is_fatal_) {
|
|
if (instruction_->IsInstanceOf()) {
|
|
x86_codegen->Move32(locations->Out(), Location::RegisterLocation(EAX));
|
|
}
|
|
RestoreLiveRegisters(codegen, locations);
|
|
|
|
__ jmp(GetExitLabel());
|
|
}
|
|
}
|
|
|
|
const char* GetDescription() const OVERRIDE { return "TypeCheckSlowPathX86"; }
|
|
bool IsFatal() const OVERRIDE { return is_fatal_; }
|
|
|
|
private:
|
|
const bool is_fatal_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathX86);
|
|
};
|
|
|
|
class DeoptimizationSlowPathX86 : public SlowPathCode {
|
|
public:
|
|
explicit DeoptimizationSlowPathX86(HDeoptimize* instruction)
|
|
: SlowPathCode(instruction) {}
|
|
|
|
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
|
|
CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
|
|
__ Bind(GetEntryLabel());
|
|
SaveLiveRegisters(codegen, instruction_->GetLocations());
|
|
x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pDeoptimize),
|
|
instruction_,
|
|
instruction_->GetDexPc(),
|
|
this);
|
|
CheckEntrypointTypes<kQuickDeoptimize, void, void>();
|
|
}
|
|
|
|
const char* GetDescription() const OVERRIDE { return "DeoptimizationSlowPathX86"; }
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathX86);
|
|
};
|
|
|
|
class ArraySetSlowPathX86 : public SlowPathCode {
|
|
public:
|
|
explicit ArraySetSlowPathX86(HInstruction* instruction) : SlowPathCode(instruction) {}
|
|
|
|
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
|
|
LocationSummary* locations = instruction_->GetLocations();
|
|
__ Bind(GetEntryLabel());
|
|
SaveLiveRegisters(codegen, locations);
|
|
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
HParallelMove parallel_move(codegen->GetGraph()->GetArena());
|
|
parallel_move.AddMove(
|
|
locations->InAt(0),
|
|
Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
|
|
Primitive::kPrimNot,
|
|
nullptr);
|
|
parallel_move.AddMove(
|
|
locations->InAt(1),
|
|
Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
|
|
Primitive::kPrimInt,
|
|
nullptr);
|
|
parallel_move.AddMove(
|
|
locations->InAt(2),
|
|
Location::RegisterLocation(calling_convention.GetRegisterAt(2)),
|
|
Primitive::kPrimNot,
|
|
nullptr);
|
|
codegen->GetMoveResolver()->EmitNativeCode(¶llel_move);
|
|
|
|
CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
|
|
x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pAputObject),
|
|
instruction_,
|
|
instruction_->GetDexPc(),
|
|
this);
|
|
CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>();
|
|
RestoreLiveRegisters(codegen, locations);
|
|
__ jmp(GetExitLabel());
|
|
}
|
|
|
|
const char* GetDescription() const OVERRIDE { return "ArraySetSlowPathX86"; }
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathX86);
|
|
};
|
|
|
|
// Slow path marking an object during a read barrier.
|
|
class ReadBarrierMarkSlowPathX86 : public SlowPathCode {
|
|
public:
|
|
ReadBarrierMarkSlowPathX86(HInstruction* instruction, Location out, Location obj)
|
|
: SlowPathCode(instruction), out_(out), obj_(obj) {
|
|
DCHECK(kEmitCompilerReadBarrier);
|
|
}
|
|
|
|
const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkSlowPathX86"; }
|
|
|
|
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
|
|
LocationSummary* locations = instruction_->GetLocations();
|
|
Register reg_out = out_.AsRegister<Register>();
|
|
DCHECK(locations->CanCall());
|
|
DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out));
|
|
DCHECK(instruction_->IsInstanceFieldGet() ||
|
|
instruction_->IsStaticFieldGet() ||
|
|
instruction_->IsArrayGet() ||
|
|
instruction_->IsLoadClass() ||
|
|
instruction_->IsLoadString() ||
|
|
instruction_->IsInstanceOf() ||
|
|
instruction_->IsCheckCast())
|
|
<< "Unexpected instruction in read barrier marking slow path: "
|
|
<< instruction_->DebugName();
|
|
|
|
__ Bind(GetEntryLabel());
|
|
SaveLiveRegisters(codegen, locations);
|
|
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
|
|
x86_codegen->Move32(Location::RegisterLocation(calling_convention.GetRegisterAt(0)), obj_);
|
|
x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pReadBarrierMark),
|
|
instruction_,
|
|
instruction_->GetDexPc(),
|
|
this);
|
|
CheckEntrypointTypes<kQuickReadBarrierMark, mirror::Object*, mirror::Object*>();
|
|
x86_codegen->Move32(out_, Location::RegisterLocation(EAX));
|
|
|
|
RestoreLiveRegisters(codegen, locations);
|
|
__ jmp(GetExitLabel());
|
|
}
|
|
|
|
private:
|
|
const Location out_;
|
|
const Location obj_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathX86);
|
|
};
|
|
|
|
// Slow path generating a read barrier for a heap reference.
|
|
class ReadBarrierForHeapReferenceSlowPathX86 : public SlowPathCode {
|
|
public:
|
|
ReadBarrierForHeapReferenceSlowPathX86(HInstruction* instruction,
|
|
Location out,
|
|
Location ref,
|
|
Location obj,
|
|
uint32_t offset,
|
|
Location index)
|
|
: SlowPathCode(instruction),
|
|
out_(out),
|
|
ref_(ref),
|
|
obj_(obj),
|
|
offset_(offset),
|
|
index_(index) {
|
|
DCHECK(kEmitCompilerReadBarrier);
|
|
// If `obj` is equal to `out` or `ref`, it means the initial object
|
|
// has been overwritten by (or after) the heap object reference load
|
|
// to be instrumented, e.g.:
|
|
//
|
|
// __ movl(out, Address(out, offset));
|
|
// codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset);
|
|
//
|
|
// In that case, we have lost the information about the original
|
|
// object, and the emitted read barrier cannot work properly.
|
|
DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out;
|
|
DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref;
|
|
}
|
|
|
|
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
|
|
CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
|
|
LocationSummary* locations = instruction_->GetLocations();
|
|
Register reg_out = out_.AsRegister<Register>();
|
|
DCHECK(locations->CanCall());
|
|
DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out));
|
|
DCHECK(!instruction_->IsInvoke() ||
|
|
(instruction_->IsInvokeStaticOrDirect() &&
|
|
instruction_->GetLocations()->Intrinsified()))
|
|
<< "Unexpected instruction in read barrier for heap reference slow path: "
|
|
<< instruction_->DebugName();
|
|
|
|
__ Bind(GetEntryLabel());
|
|
SaveLiveRegisters(codegen, locations);
|
|
|
|
// We may have to change the index's value, but as `index_` is a
|
|
// constant member (like other "inputs" of this slow path),
|
|
// introduce a copy of it, `index`.
|
|
Location index = index_;
|
|
if (index_.IsValid()) {
|
|
// Handle `index_` for HArrayGet and intrinsic UnsafeGetObject.
|
|
if (instruction_->IsArrayGet()) {
|
|
// Compute the actual memory offset and store it in `index`.
|
|
Register index_reg = index_.AsRegister<Register>();
|
|
DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_reg));
|
|
if (codegen->IsCoreCalleeSaveRegister(index_reg)) {
|
|
// We are about to change the value of `index_reg` (see the
|
|
// calls to art::x86::X86Assembler::shll and
|
|
// art::x86::X86Assembler::AddImmediate below), but it has
|
|
// not been saved by the previous call to
|
|
// art::SlowPathCode::SaveLiveRegisters, as it is a
|
|
// callee-save register --
|
|
// art::SlowPathCode::SaveLiveRegisters does not consider
|
|
// callee-save registers, as it has been designed with the
|
|
// assumption that callee-save registers are supposed to be
|
|
// handled by the called function. So, as a callee-save
|
|
// register, `index_reg` _would_ eventually be saved onto
|
|
// the stack, but it would be too late: we would have
|
|
// changed its value earlier. Therefore, we manually save
|
|
// it here into another freely available register,
|
|
// `free_reg`, chosen of course among the caller-save
|
|
// registers (as a callee-save `free_reg` register would
|
|
// exhibit the same problem).
|
|
//
|
|
// Note we could have requested a temporary register from
|
|
// the register allocator instead; but we prefer not to, as
|
|
// this is a slow path, and we know we can find a
|
|
// caller-save register that is available.
|
|
Register free_reg = FindAvailableCallerSaveRegister(codegen);
|
|
__ movl(free_reg, index_reg);
|
|
index_reg = free_reg;
|
|
index = Location::RegisterLocation(index_reg);
|
|
} else {
|
|
// The initial register stored in `index_` has already been
|
|
// saved in the call to art::SlowPathCode::SaveLiveRegisters
|
|
// (as it is not a callee-save register), so we can freely
|
|
// use it.
|
|
}
|
|
// Shifting the index value contained in `index_reg` by the scale
|
|
// factor (2) cannot overflow in practice, as the runtime is
|
|
// unable to allocate object arrays with a size larger than
|
|
// 2^26 - 1 (that is, 2^28 - 4 bytes).
|
|
__ shll(index_reg, Immediate(TIMES_4));
|
|
static_assert(
|
|
sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
|
|
"art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
|
|
__ AddImmediate(index_reg, Immediate(offset_));
|
|
} else {
|
|
DCHECK(instruction_->IsInvoke());
|
|
DCHECK(instruction_->GetLocations()->Intrinsified());
|
|
DCHECK((instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObject) ||
|
|
(instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile))
|
|
<< instruction_->AsInvoke()->GetIntrinsic();
|
|
DCHECK_EQ(offset_, 0U);
|
|
DCHECK(index_.IsRegisterPair());
|
|
// UnsafeGet's offset location is a register pair, the low
|
|
// part contains the correct offset.
|
|
index = index_.ToLow();
|
|
}
|
|
}
|
|
|
|
// We're moving two or three locations to locations that could
|
|
// overlap, so we need a parallel move resolver.
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
HParallelMove parallel_move(codegen->GetGraph()->GetArena());
|
|
parallel_move.AddMove(ref_,
|
|
Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
|
|
Primitive::kPrimNot,
|
|
nullptr);
|
|
parallel_move.AddMove(obj_,
|
|
Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
|
|
Primitive::kPrimNot,
|
|
nullptr);
|
|
if (index.IsValid()) {
|
|
parallel_move.AddMove(index,
|
|
Location::RegisterLocation(calling_convention.GetRegisterAt(2)),
|
|
Primitive::kPrimInt,
|
|
nullptr);
|
|
codegen->GetMoveResolver()->EmitNativeCode(¶llel_move);
|
|
} else {
|
|
codegen->GetMoveResolver()->EmitNativeCode(¶llel_move);
|
|
__ movl(calling_convention.GetRegisterAt(2), Immediate(offset_));
|
|
}
|
|
x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pReadBarrierSlow),
|
|
instruction_,
|
|
instruction_->GetDexPc(),
|
|
this);
|
|
CheckEntrypointTypes<
|
|
kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>();
|
|
x86_codegen->Move32(out_, Location::RegisterLocation(EAX));
|
|
|
|
RestoreLiveRegisters(codegen, locations);
|
|
__ jmp(GetExitLabel());
|
|
}
|
|
|
|
const char* GetDescription() const OVERRIDE { return "ReadBarrierForHeapReferenceSlowPathX86"; }
|
|
|
|
private:
|
|
Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) {
|
|
size_t ref = static_cast<int>(ref_.AsRegister<Register>());
|
|
size_t obj = static_cast<int>(obj_.AsRegister<Register>());
|
|
for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) {
|
|
if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) {
|
|
return static_cast<Register>(i);
|
|
}
|
|
}
|
|
// We shall never fail to find a free caller-save register, as
|
|
// there are more than two core caller-save registers on x86
|
|
// (meaning it is possible to find one which is different from
|
|
// `ref` and `obj`).
|
|
DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u);
|
|
LOG(FATAL) << "Could not find a free caller-save register";
|
|
UNREACHABLE();
|
|
}
|
|
|
|
const Location out_;
|
|
const Location ref_;
|
|
const Location obj_;
|
|
const uint32_t offset_;
|
|
// An additional location containing an index to an array.
|
|
// Only used for HArrayGet and the UnsafeGetObject &
|
|
// UnsafeGetObjectVolatile intrinsics.
|
|
const Location index_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathX86);
|
|
};
|
|
|
|
// Slow path generating a read barrier for a GC root.
|
|
class ReadBarrierForRootSlowPathX86 : public SlowPathCode {
|
|
public:
|
|
ReadBarrierForRootSlowPathX86(HInstruction* instruction, Location out, Location root)
|
|
: SlowPathCode(instruction), out_(out), root_(root) {
|
|
DCHECK(kEmitCompilerReadBarrier);
|
|
}
|
|
|
|
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
|
|
LocationSummary* locations = instruction_->GetLocations();
|
|
Register reg_out = out_.AsRegister<Register>();
|
|
DCHECK(locations->CanCall());
|
|
DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out));
|
|
DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString())
|
|
<< "Unexpected instruction in read barrier for GC root slow path: "
|
|
<< instruction_->DebugName();
|
|
|
|
__ Bind(GetEntryLabel());
|
|
SaveLiveRegisters(codegen, locations);
|
|
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
CodeGeneratorX86* x86_codegen = down_cast<CodeGeneratorX86*>(codegen);
|
|
x86_codegen->Move32(Location::RegisterLocation(calling_convention.GetRegisterAt(0)), root_);
|
|
x86_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pReadBarrierForRootSlow),
|
|
instruction_,
|
|
instruction_->GetDexPc(),
|
|
this);
|
|
CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>();
|
|
x86_codegen->Move32(out_, Location::RegisterLocation(EAX));
|
|
|
|
RestoreLiveRegisters(codegen, locations);
|
|
__ jmp(GetExitLabel());
|
|
}
|
|
|
|
const char* GetDescription() const OVERRIDE { return "ReadBarrierForRootSlowPathX86"; }
|
|
|
|
private:
|
|
const Location out_;
|
|
const Location root_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathX86);
|
|
};
|
|
|
|
#undef __
|
|
#define __ down_cast<X86Assembler*>(GetAssembler())->
|
|
|
|
inline Condition X86Condition(IfCondition cond) {
|
|
switch (cond) {
|
|
case kCondEQ: return kEqual;
|
|
case kCondNE: return kNotEqual;
|
|
case kCondLT: return kLess;
|
|
case kCondLE: return kLessEqual;
|
|
case kCondGT: return kGreater;
|
|
case kCondGE: return kGreaterEqual;
|
|
case kCondB: return kBelow;
|
|
case kCondBE: return kBelowEqual;
|
|
case kCondA: return kAbove;
|
|
case kCondAE: return kAboveEqual;
|
|
}
|
|
LOG(FATAL) << "Unreachable";
|
|
UNREACHABLE();
|
|
}
|
|
|
|
// Maps signed condition to unsigned condition and FP condition to x86 name.
|
|
inline Condition X86UnsignedOrFPCondition(IfCondition cond) {
|
|
switch (cond) {
|
|
case kCondEQ: return kEqual;
|
|
case kCondNE: return kNotEqual;
|
|
// Signed to unsigned, and FP to x86 name.
|
|
case kCondLT: return kBelow;
|
|
case kCondLE: return kBelowEqual;
|
|
case kCondGT: return kAbove;
|
|
case kCondGE: return kAboveEqual;
|
|
// Unsigned remain unchanged.
|
|
case kCondB: return kBelow;
|
|
case kCondBE: return kBelowEqual;
|
|
case kCondA: return kAbove;
|
|
case kCondAE: return kAboveEqual;
|
|
}
|
|
LOG(FATAL) << "Unreachable";
|
|
UNREACHABLE();
|
|
}
|
|
|
|
void CodeGeneratorX86::DumpCoreRegister(std::ostream& stream, int reg) const {
|
|
stream << Register(reg);
|
|
}
|
|
|
|
void CodeGeneratorX86::DumpFloatingPointRegister(std::ostream& stream, int reg) const {
|
|
stream << XmmRegister(reg);
|
|
}
|
|
|
|
size_t CodeGeneratorX86::SaveCoreRegister(size_t stack_index, uint32_t reg_id) {
|
|
__ movl(Address(ESP, stack_index), static_cast<Register>(reg_id));
|
|
return kX86WordSize;
|
|
}
|
|
|
|
size_t CodeGeneratorX86::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) {
|
|
__ movl(static_cast<Register>(reg_id), Address(ESP, stack_index));
|
|
return kX86WordSize;
|
|
}
|
|
|
|
size_t CodeGeneratorX86::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
|
|
__ movsd(Address(ESP, stack_index), XmmRegister(reg_id));
|
|
return GetFloatingPointSpillSlotSize();
|
|
}
|
|
|
|
size_t CodeGeneratorX86::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
|
|
__ movsd(XmmRegister(reg_id), Address(ESP, stack_index));
|
|
return GetFloatingPointSpillSlotSize();
|
|
}
|
|
|
|
void CodeGeneratorX86::InvokeRuntime(QuickEntrypointEnum entrypoint,
|
|
HInstruction* instruction,
|
|
uint32_t dex_pc,
|
|
SlowPathCode* slow_path) {
|
|
InvokeRuntime(GetThreadOffset<kX86WordSize>(entrypoint).Int32Value(),
|
|
instruction,
|
|
dex_pc,
|
|
slow_path);
|
|
}
|
|
|
|
void CodeGeneratorX86::InvokeRuntime(int32_t entry_point_offset,
|
|
HInstruction* instruction,
|
|
uint32_t dex_pc,
|
|
SlowPathCode* slow_path) {
|
|
ValidateInvokeRuntime(instruction, slow_path);
|
|
__ fs()->call(Address::Absolute(entry_point_offset));
|
|
RecordPcInfo(instruction, dex_pc, slow_path);
|
|
}
|
|
|
|
CodeGeneratorX86::CodeGeneratorX86(HGraph* graph,
|
|
const X86InstructionSetFeatures& isa_features,
|
|
const CompilerOptions& compiler_options,
|
|
OptimizingCompilerStats* stats)
|
|
: CodeGenerator(graph,
|
|
kNumberOfCpuRegisters,
|
|
kNumberOfXmmRegisters,
|
|
kNumberOfRegisterPairs,
|
|
ComputeRegisterMask(reinterpret_cast<const int*>(kCoreCalleeSaves),
|
|
arraysize(kCoreCalleeSaves))
|
|
| (1 << kFakeReturnRegister),
|
|
0,
|
|
compiler_options,
|
|
stats),
|
|
block_labels_(nullptr),
|
|
location_builder_(graph, this),
|
|
instruction_visitor_(graph, this),
|
|
move_resolver_(graph->GetArena(), this),
|
|
assembler_(graph->GetArena()),
|
|
isa_features_(isa_features),
|
|
method_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
|
|
relative_call_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
|
|
pc_relative_dex_cache_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
|
|
simple_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
|
|
string_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
|
|
constant_area_start_(-1),
|
|
fixups_to_jump_tables_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
|
|
method_address_offset_(-1) {
|
|
// Use a fake return address register to mimic Quick.
|
|
AddAllocatedRegister(Location::RegisterLocation(kFakeReturnRegister));
|
|
}
|
|
|
|
void CodeGeneratorX86::SetupBlockedRegisters() const {
|
|
// Don't allocate the dalvik style register pair passing.
|
|
blocked_register_pairs_[ECX_EDX] = true;
|
|
|
|
// Stack register is always reserved.
|
|
blocked_core_registers_[ESP] = true;
|
|
|
|
UpdateBlockedPairRegisters();
|
|
}
|
|
|
|
void CodeGeneratorX86::UpdateBlockedPairRegisters() const {
|
|
for (int i = 0; i < kNumberOfRegisterPairs; i++) {
|
|
X86ManagedRegister current =
|
|
X86ManagedRegister::FromRegisterPair(static_cast<RegisterPair>(i));
|
|
if (blocked_core_registers_[current.AsRegisterPairLow()]
|
|
|| blocked_core_registers_[current.AsRegisterPairHigh()]) {
|
|
blocked_register_pairs_[i] = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
InstructionCodeGeneratorX86::InstructionCodeGeneratorX86(HGraph* graph, CodeGeneratorX86* codegen)
|
|
: InstructionCodeGenerator(graph, codegen),
|
|
assembler_(codegen->GetAssembler()),
|
|
codegen_(codegen) {}
|
|
|
|
static dwarf::Reg DWARFReg(Register reg) {
|
|
return dwarf::Reg::X86Core(static_cast<int>(reg));
|
|
}
|
|
|
|
void CodeGeneratorX86::GenerateFrameEntry() {
|
|
__ cfi().SetCurrentCFAOffset(kX86WordSize); // return address
|
|
__ Bind(&frame_entry_label_);
|
|
bool skip_overflow_check =
|
|
IsLeafMethod() && !FrameNeedsStackCheck(GetFrameSize(), InstructionSet::kX86);
|
|
DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks());
|
|
|
|
if (!skip_overflow_check) {
|
|
__ testl(EAX, Address(ESP, -static_cast<int32_t>(GetStackOverflowReservedBytes(kX86))));
|
|
RecordPcInfo(nullptr, 0);
|
|
}
|
|
|
|
if (HasEmptyFrame()) {
|
|
return;
|
|
}
|
|
|
|
for (int i = arraysize(kCoreCalleeSaves) - 1; i >= 0; --i) {
|
|
Register reg = kCoreCalleeSaves[i];
|
|
if (allocated_registers_.ContainsCoreRegister(reg)) {
|
|
__ pushl(reg);
|
|
__ cfi().AdjustCFAOffset(kX86WordSize);
|
|
__ cfi().RelOffset(DWARFReg(reg), 0);
|
|
}
|
|
}
|
|
|
|
int adjust = GetFrameSize() - FrameEntrySpillSize();
|
|
__ subl(ESP, Immediate(adjust));
|
|
__ cfi().AdjustCFAOffset(adjust);
|
|
__ movl(Address(ESP, kCurrentMethodStackOffset), kMethodRegisterArgument);
|
|
}
|
|
|
|
void CodeGeneratorX86::GenerateFrameExit() {
|
|
__ cfi().RememberState();
|
|
if (!HasEmptyFrame()) {
|
|
int adjust = GetFrameSize() - FrameEntrySpillSize();
|
|
__ addl(ESP, Immediate(adjust));
|
|
__ cfi().AdjustCFAOffset(-adjust);
|
|
|
|
for (size_t i = 0; i < arraysize(kCoreCalleeSaves); ++i) {
|
|
Register reg = kCoreCalleeSaves[i];
|
|
if (allocated_registers_.ContainsCoreRegister(reg)) {
|
|
__ popl(reg);
|
|
__ cfi().AdjustCFAOffset(-static_cast<int>(kX86WordSize));
|
|
__ cfi().Restore(DWARFReg(reg));
|
|
}
|
|
}
|
|
}
|
|
__ ret();
|
|
__ cfi().RestoreState();
|
|
__ cfi().DefCFAOffset(GetFrameSize());
|
|
}
|
|
|
|
void CodeGeneratorX86::Bind(HBasicBlock* block) {
|
|
__ Bind(GetLabelOf(block));
|
|
}
|
|
|
|
Location InvokeDexCallingConventionVisitorX86::GetReturnLocation(Primitive::Type type) const {
|
|
switch (type) {
|
|
case Primitive::kPrimBoolean:
|
|
case Primitive::kPrimByte:
|
|
case Primitive::kPrimChar:
|
|
case Primitive::kPrimShort:
|
|
case Primitive::kPrimInt:
|
|
case Primitive::kPrimNot:
|
|
return Location::RegisterLocation(EAX);
|
|
|
|
case Primitive::kPrimLong:
|
|
return Location::RegisterPairLocation(EAX, EDX);
|
|
|
|
case Primitive::kPrimVoid:
|
|
return Location::NoLocation();
|
|
|
|
case Primitive::kPrimDouble:
|
|
case Primitive::kPrimFloat:
|
|
return Location::FpuRegisterLocation(XMM0);
|
|
}
|
|
|
|
UNREACHABLE();
|
|
}
|
|
|
|
Location InvokeDexCallingConventionVisitorX86::GetMethodLocation() const {
|
|
return Location::RegisterLocation(kMethodRegisterArgument);
|
|
}
|
|
|
|
Location InvokeDexCallingConventionVisitorX86::GetNextLocation(Primitive::Type type) {
|
|
switch (type) {
|
|
case Primitive::kPrimBoolean:
|
|
case Primitive::kPrimByte:
|
|
case Primitive::kPrimChar:
|
|
case Primitive::kPrimShort:
|
|
case Primitive::kPrimInt:
|
|
case Primitive::kPrimNot: {
|
|
uint32_t index = gp_index_++;
|
|
stack_index_++;
|
|
if (index < calling_convention.GetNumberOfRegisters()) {
|
|
return Location::RegisterLocation(calling_convention.GetRegisterAt(index));
|
|
} else {
|
|
return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 1));
|
|
}
|
|
}
|
|
|
|
case Primitive::kPrimLong: {
|
|
uint32_t index = gp_index_;
|
|
gp_index_ += 2;
|
|
stack_index_ += 2;
|
|
if (index + 1 < calling_convention.GetNumberOfRegisters()) {
|
|
X86ManagedRegister pair = X86ManagedRegister::FromRegisterPair(
|
|
calling_convention.GetRegisterPairAt(index));
|
|
return Location::RegisterPairLocation(pair.AsRegisterPairLow(), pair.AsRegisterPairHigh());
|
|
} else {
|
|
return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 2));
|
|
}
|
|
}
|
|
|
|
case Primitive::kPrimFloat: {
|
|
uint32_t index = float_index_++;
|
|
stack_index_++;
|
|
if (index < calling_convention.GetNumberOfFpuRegisters()) {
|
|
return Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(index));
|
|
} else {
|
|
return Location::StackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 1));
|
|
}
|
|
}
|
|
|
|
case Primitive::kPrimDouble: {
|
|
uint32_t index = float_index_++;
|
|
stack_index_ += 2;
|
|
if (index < calling_convention.GetNumberOfFpuRegisters()) {
|
|
return Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(index));
|
|
} else {
|
|
return Location::DoubleStackSlot(calling_convention.GetStackOffsetOf(stack_index_ - 2));
|
|
}
|
|
}
|
|
|
|
case Primitive::kPrimVoid:
|
|
LOG(FATAL) << "Unexpected parameter type " << type;
|
|
break;
|
|
}
|
|
return Location::NoLocation();
|
|
}
|
|
|
|
void CodeGeneratorX86::Move32(Location destination, Location source) {
|
|
if (source.Equals(destination)) {
|
|
return;
|
|
}
|
|
if (destination.IsRegister()) {
|
|
if (source.IsRegister()) {
|
|
__ movl(destination.AsRegister<Register>(), source.AsRegister<Register>());
|
|
} else if (source.IsFpuRegister()) {
|
|
__ movd(destination.AsRegister<Register>(), source.AsFpuRegister<XmmRegister>());
|
|
} else {
|
|
DCHECK(source.IsStackSlot());
|
|
__ movl(destination.AsRegister<Register>(), Address(ESP, source.GetStackIndex()));
|
|
}
|
|
} else if (destination.IsFpuRegister()) {
|
|
if (source.IsRegister()) {
|
|
__ movd(destination.AsFpuRegister<XmmRegister>(), source.AsRegister<Register>());
|
|
} else if (source.IsFpuRegister()) {
|
|
__ movaps(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>());
|
|
} else {
|
|
DCHECK(source.IsStackSlot());
|
|
__ movss(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex()));
|
|
}
|
|
} else {
|
|
DCHECK(destination.IsStackSlot()) << destination;
|
|
if (source.IsRegister()) {
|
|
__ movl(Address(ESP, destination.GetStackIndex()), source.AsRegister<Register>());
|
|
} else if (source.IsFpuRegister()) {
|
|
__ movss(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>());
|
|
} else if (source.IsConstant()) {
|
|
HConstant* constant = source.GetConstant();
|
|
int32_t value = GetInt32ValueOf(constant);
|
|
__ movl(Address(ESP, destination.GetStackIndex()), Immediate(value));
|
|
} else {
|
|
DCHECK(source.IsStackSlot());
|
|
__ pushl(Address(ESP, source.GetStackIndex()));
|
|
__ popl(Address(ESP, destination.GetStackIndex()));
|
|
}
|
|
}
|
|
}
|
|
|
|
void CodeGeneratorX86::Move64(Location destination, Location source) {
|
|
if (source.Equals(destination)) {
|
|
return;
|
|
}
|
|
if (destination.IsRegisterPair()) {
|
|
if (source.IsRegisterPair()) {
|
|
EmitParallelMoves(
|
|
Location::RegisterLocation(source.AsRegisterPairHigh<Register>()),
|
|
Location::RegisterLocation(destination.AsRegisterPairHigh<Register>()),
|
|
Primitive::kPrimInt,
|
|
Location::RegisterLocation(source.AsRegisterPairLow<Register>()),
|
|
Location::RegisterLocation(destination.AsRegisterPairLow<Register>()),
|
|
Primitive::kPrimInt);
|
|
} else if (source.IsFpuRegister()) {
|
|
XmmRegister src_reg = source.AsFpuRegister<XmmRegister>();
|
|
__ movd(destination.AsRegisterPairLow<Register>(), src_reg);
|
|
__ psrlq(src_reg, Immediate(32));
|
|
__ movd(destination.AsRegisterPairHigh<Register>(), src_reg);
|
|
} else {
|
|
// No conflict possible, so just do the moves.
|
|
DCHECK(source.IsDoubleStackSlot());
|
|
__ movl(destination.AsRegisterPairLow<Register>(), Address(ESP, source.GetStackIndex()));
|
|
__ movl(destination.AsRegisterPairHigh<Register>(),
|
|
Address(ESP, source.GetHighStackIndex(kX86WordSize)));
|
|
}
|
|
} else if (destination.IsFpuRegister()) {
|
|
if (source.IsFpuRegister()) {
|
|
__ movaps(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>());
|
|
} else if (source.IsDoubleStackSlot()) {
|
|
__ movsd(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex()));
|
|
} else if (source.IsRegisterPair()) {
|
|
size_t elem_size = Primitive::ComponentSize(Primitive::kPrimInt);
|
|
// Create stack space for 2 elements.
|
|
__ subl(ESP, Immediate(2 * elem_size));
|
|
__ movl(Address(ESP, 0), source.AsRegisterPairLow<Register>());
|
|
__ movl(Address(ESP, elem_size), source.AsRegisterPairHigh<Register>());
|
|
__ movsd(destination.AsFpuRegister<XmmRegister>(), Address(ESP, 0));
|
|
// And remove the temporary stack space we allocated.
|
|
__ addl(ESP, Immediate(2 * elem_size));
|
|
} else {
|
|
LOG(FATAL) << "Unimplemented";
|
|
}
|
|
} else {
|
|
DCHECK(destination.IsDoubleStackSlot()) << destination;
|
|
if (source.IsRegisterPair()) {
|
|
// No conflict possible, so just do the moves.
|
|
__ movl(Address(ESP, destination.GetStackIndex()), source.AsRegisterPairLow<Register>());
|
|
__ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)),
|
|
source.AsRegisterPairHigh<Register>());
|
|
} else if (source.IsFpuRegister()) {
|
|
__ movsd(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>());
|
|
} else if (source.IsConstant()) {
|
|
HConstant* constant = source.GetConstant();
|
|
int64_t value;
|
|
if (constant->IsLongConstant()) {
|
|
value = constant->AsLongConstant()->GetValue();
|
|
} else {
|
|
DCHECK(constant->IsDoubleConstant());
|
|
value = bit_cast<int64_t, double>(constant->AsDoubleConstant()->GetValue());
|
|
}
|
|
__ movl(Address(ESP, destination.GetStackIndex()), Immediate(Low32Bits(value)));
|
|
__ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)), Immediate(High32Bits(value)));
|
|
} else {
|
|
DCHECK(source.IsDoubleStackSlot()) << source;
|
|
EmitParallelMoves(
|
|
Location::StackSlot(source.GetStackIndex()),
|
|
Location::StackSlot(destination.GetStackIndex()),
|
|
Primitive::kPrimInt,
|
|
Location::StackSlot(source.GetHighStackIndex(kX86WordSize)),
|
|
Location::StackSlot(destination.GetHighStackIndex(kX86WordSize)),
|
|
Primitive::kPrimInt);
|
|
}
|
|
}
|
|
}
|
|
|
|
void CodeGeneratorX86::MoveConstant(Location location, int32_t value) {
|
|
DCHECK(location.IsRegister());
|
|
__ movl(location.AsRegister<Register>(), Immediate(value));
|
|
}
|
|
|
|
void CodeGeneratorX86::MoveLocation(Location dst, Location src, Primitive::Type dst_type) {
|
|
HParallelMove move(GetGraph()->GetArena());
|
|
if (dst_type == Primitive::kPrimLong && !src.IsConstant() && !src.IsFpuRegister()) {
|
|
move.AddMove(src.ToLow(), dst.ToLow(), Primitive::kPrimInt, nullptr);
|
|
move.AddMove(src.ToHigh(), dst.ToHigh(), Primitive::kPrimInt, nullptr);
|
|
} else {
|
|
move.AddMove(src, dst, dst_type, nullptr);
|
|
}
|
|
GetMoveResolver()->EmitNativeCode(&move);
|
|
}
|
|
|
|
void CodeGeneratorX86::AddLocationAsTemp(Location location, LocationSummary* locations) {
|
|
if (location.IsRegister()) {
|
|
locations->AddTemp(location);
|
|
} else if (location.IsRegisterPair()) {
|
|
locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairLow<Register>()));
|
|
locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairHigh<Register>()));
|
|
} else {
|
|
UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location;
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::HandleGoto(HInstruction* got, HBasicBlock* successor) {
|
|
DCHECK(!successor->IsExitBlock());
|
|
|
|
HBasicBlock* block = got->GetBlock();
|
|
HInstruction* previous = got->GetPrevious();
|
|
|
|
HLoopInformation* info = block->GetLoopInformation();
|
|
if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) {
|
|
GenerateSuspendCheck(info->GetSuspendCheck(), successor);
|
|
return;
|
|
}
|
|
|
|
if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) {
|
|
GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr);
|
|
}
|
|
if (!codegen_->GoesToNextBlock(got->GetBlock(), successor)) {
|
|
__ jmp(codegen_->GetLabelOf(successor));
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitGoto(HGoto* got) {
|
|
got->SetLocations(nullptr);
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitGoto(HGoto* got) {
|
|
HandleGoto(got, got->GetSuccessor());
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitTryBoundary(HTryBoundary* try_boundary) {
|
|
try_boundary->SetLocations(nullptr);
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitTryBoundary(HTryBoundary* try_boundary) {
|
|
HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor();
|
|
if (!successor->IsExitBlock()) {
|
|
HandleGoto(try_boundary, successor);
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitExit(HExit* exit) {
|
|
exit->SetLocations(nullptr);
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitExit(HExit* exit ATTRIBUTE_UNUSED) {
|
|
}
|
|
|
|
template<class LabelType>
|
|
void InstructionCodeGeneratorX86::GenerateFPJumps(HCondition* cond,
|
|
LabelType* true_label,
|
|
LabelType* false_label) {
|
|
if (cond->IsFPConditionTrueIfNaN()) {
|
|
__ j(kUnordered, true_label);
|
|
} else if (cond->IsFPConditionFalseIfNaN()) {
|
|
__ j(kUnordered, false_label);
|
|
}
|
|
__ j(X86UnsignedOrFPCondition(cond->GetCondition()), true_label);
|
|
}
|
|
|
|
template<class LabelType>
|
|
void InstructionCodeGeneratorX86::GenerateLongComparesAndJumps(HCondition* cond,
|
|
LabelType* true_label,
|
|
LabelType* false_label) {
|
|
LocationSummary* locations = cond->GetLocations();
|
|
Location left = locations->InAt(0);
|
|
Location right = locations->InAt(1);
|
|
IfCondition if_cond = cond->GetCondition();
|
|
|
|
Register left_high = left.AsRegisterPairHigh<Register>();
|
|
Register left_low = left.AsRegisterPairLow<Register>();
|
|
IfCondition true_high_cond = if_cond;
|
|
IfCondition false_high_cond = cond->GetOppositeCondition();
|
|
Condition final_condition = X86UnsignedOrFPCondition(if_cond); // unsigned on lower part
|
|
|
|
// Set the conditions for the test, remembering that == needs to be
|
|
// decided using the low words.
|
|
switch (if_cond) {
|
|
case kCondEQ:
|
|
case kCondNE:
|
|
// Nothing to do.
|
|
break;
|
|
case kCondLT:
|
|
false_high_cond = kCondGT;
|
|
break;
|
|
case kCondLE:
|
|
true_high_cond = kCondLT;
|
|
break;
|
|
case kCondGT:
|
|
false_high_cond = kCondLT;
|
|
break;
|
|
case kCondGE:
|
|
true_high_cond = kCondGT;
|
|
break;
|
|
case kCondB:
|
|
false_high_cond = kCondA;
|
|
break;
|
|
case kCondBE:
|
|
true_high_cond = kCondB;
|
|
break;
|
|
case kCondA:
|
|
false_high_cond = kCondB;
|
|
break;
|
|
case kCondAE:
|
|
true_high_cond = kCondA;
|
|
break;
|
|
}
|
|
|
|
if (right.IsConstant()) {
|
|
int64_t value = right.GetConstant()->AsLongConstant()->GetValue();
|
|
int32_t val_high = High32Bits(value);
|
|
int32_t val_low = Low32Bits(value);
|
|
|
|
codegen_->Compare32BitValue(left_high, val_high);
|
|
if (if_cond == kCondNE) {
|
|
__ j(X86Condition(true_high_cond), true_label);
|
|
} else if (if_cond == kCondEQ) {
|
|
__ j(X86Condition(false_high_cond), false_label);
|
|
} else {
|
|
__ j(X86Condition(true_high_cond), true_label);
|
|
__ j(X86Condition(false_high_cond), false_label);
|
|
}
|
|
// Must be equal high, so compare the lows.
|
|
codegen_->Compare32BitValue(left_low, val_low);
|
|
} else if (right.IsRegisterPair()) {
|
|
Register right_high = right.AsRegisterPairHigh<Register>();
|
|
Register right_low = right.AsRegisterPairLow<Register>();
|
|
|
|
__ cmpl(left_high, right_high);
|
|
if (if_cond == kCondNE) {
|
|
__ j(X86Condition(true_high_cond), true_label);
|
|
} else if (if_cond == kCondEQ) {
|
|
__ j(X86Condition(false_high_cond), false_label);
|
|
} else {
|
|
__ j(X86Condition(true_high_cond), true_label);
|
|
__ j(X86Condition(false_high_cond), false_label);
|
|
}
|
|
// Must be equal high, so compare the lows.
|
|
__ cmpl(left_low, right_low);
|
|
} else {
|
|
DCHECK(right.IsDoubleStackSlot());
|
|
__ cmpl(left_high, Address(ESP, right.GetHighStackIndex(kX86WordSize)));
|
|
if (if_cond == kCondNE) {
|
|
__ j(X86Condition(true_high_cond), true_label);
|
|
} else if (if_cond == kCondEQ) {
|
|
__ j(X86Condition(false_high_cond), false_label);
|
|
} else {
|
|
__ j(X86Condition(true_high_cond), true_label);
|
|
__ j(X86Condition(false_high_cond), false_label);
|
|
}
|
|
// Must be equal high, so compare the lows.
|
|
__ cmpl(left_low, Address(ESP, right.GetStackIndex()));
|
|
}
|
|
// The last comparison might be unsigned.
|
|
__ j(final_condition, true_label);
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::GenerateFPCompare(Location lhs,
|
|
Location rhs,
|
|
HInstruction* insn,
|
|
bool is_double) {
|
|
HX86LoadFromConstantTable* const_area = insn->InputAt(1)->AsX86LoadFromConstantTable();
|
|
if (is_double) {
|
|
if (rhs.IsFpuRegister()) {
|
|
__ ucomisd(lhs.AsFpuRegister<XmmRegister>(), rhs.AsFpuRegister<XmmRegister>());
|
|
} else if (const_area != nullptr) {
|
|
DCHECK(const_area->IsEmittedAtUseSite());
|
|
__ ucomisd(lhs.AsFpuRegister<XmmRegister>(),
|
|
codegen_->LiteralDoubleAddress(
|
|
const_area->GetConstant()->AsDoubleConstant()->GetValue(),
|
|
const_area->GetLocations()->InAt(0).AsRegister<Register>()));
|
|
} else {
|
|
DCHECK(rhs.IsDoubleStackSlot());
|
|
__ ucomisd(lhs.AsFpuRegister<XmmRegister>(), Address(ESP, rhs.GetStackIndex()));
|
|
}
|
|
} else {
|
|
if (rhs.IsFpuRegister()) {
|
|
__ ucomiss(lhs.AsFpuRegister<XmmRegister>(), rhs.AsFpuRegister<XmmRegister>());
|
|
} else if (const_area != nullptr) {
|
|
DCHECK(const_area->IsEmittedAtUseSite());
|
|
__ ucomiss(lhs.AsFpuRegister<XmmRegister>(),
|
|
codegen_->LiteralFloatAddress(
|
|
const_area->GetConstant()->AsFloatConstant()->GetValue(),
|
|
const_area->GetLocations()->InAt(0).AsRegister<Register>()));
|
|
} else {
|
|
DCHECK(rhs.IsStackSlot());
|
|
__ ucomiss(lhs.AsFpuRegister<XmmRegister>(), Address(ESP, rhs.GetStackIndex()));
|
|
}
|
|
}
|
|
}
|
|
|
|
template<class LabelType>
|
|
void InstructionCodeGeneratorX86::GenerateCompareTestAndBranch(HCondition* condition,
|
|
LabelType* true_target_in,
|
|
LabelType* false_target_in) {
|
|
// Generated branching requires both targets to be explicit. If either of the
|
|
// targets is nullptr (fallthrough) use and bind `fallthrough_target` instead.
|
|
LabelType fallthrough_target;
|
|
LabelType* true_target = true_target_in == nullptr ? &fallthrough_target : true_target_in;
|
|
LabelType* false_target = false_target_in == nullptr ? &fallthrough_target : false_target_in;
|
|
|
|
LocationSummary* locations = condition->GetLocations();
|
|
Location left = locations->InAt(0);
|
|
Location right = locations->InAt(1);
|
|
|
|
Primitive::Type type = condition->InputAt(0)->GetType();
|
|
switch (type) {
|
|
case Primitive::kPrimLong:
|
|
GenerateLongComparesAndJumps(condition, true_target, false_target);
|
|
break;
|
|
case Primitive::kPrimFloat:
|
|
GenerateFPCompare(left, right, condition, false);
|
|
GenerateFPJumps(condition, true_target, false_target);
|
|
break;
|
|
case Primitive::kPrimDouble:
|
|
GenerateFPCompare(left, right, condition, true);
|
|
GenerateFPJumps(condition, true_target, false_target);
|
|
break;
|
|
default:
|
|
LOG(FATAL) << "Unexpected compare type " << type;
|
|
}
|
|
|
|
if (false_target != &fallthrough_target) {
|
|
__ jmp(false_target);
|
|
}
|
|
|
|
if (fallthrough_target.IsLinked()) {
|
|
__ Bind(&fallthrough_target);
|
|
}
|
|
}
|
|
|
|
static bool AreEflagsSetFrom(HInstruction* cond, HInstruction* branch) {
|
|
// Moves may affect the eflags register (move zero uses xorl), so the EFLAGS
|
|
// are set only strictly before `branch`. We can't use the eflags on long/FP
|
|
// conditions if they are materialized due to the complex branching.
|
|
return cond->IsCondition() &&
|
|
cond->GetNext() == branch &&
|
|
cond->InputAt(0)->GetType() != Primitive::kPrimLong &&
|
|
!Primitive::IsFloatingPointType(cond->InputAt(0)->GetType());
|
|
}
|
|
|
|
template<class LabelType>
|
|
void InstructionCodeGeneratorX86::GenerateTestAndBranch(HInstruction* instruction,
|
|
size_t condition_input_index,
|
|
LabelType* true_target,
|
|
LabelType* false_target) {
|
|
HInstruction* cond = instruction->InputAt(condition_input_index);
|
|
|
|
if (true_target == nullptr && false_target == nullptr) {
|
|
// Nothing to do. The code always falls through.
|
|
return;
|
|
} else if (cond->IsIntConstant()) {
|
|
// Constant condition, statically compared against "true" (integer value 1).
|
|
if (cond->AsIntConstant()->IsTrue()) {
|
|
if (true_target != nullptr) {
|
|
__ jmp(true_target);
|
|
}
|
|
} else {
|
|
DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue();
|
|
if (false_target != nullptr) {
|
|
__ jmp(false_target);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
// The following code generates these patterns:
|
|
// (1) true_target == nullptr && false_target != nullptr
|
|
// - opposite condition true => branch to false_target
|
|
// (2) true_target != nullptr && false_target == nullptr
|
|
// - condition true => branch to true_target
|
|
// (3) true_target != nullptr && false_target != nullptr
|
|
// - condition true => branch to true_target
|
|
// - branch to false_target
|
|
if (IsBooleanValueOrMaterializedCondition(cond)) {
|
|
if (AreEflagsSetFrom(cond, instruction)) {
|
|
if (true_target == nullptr) {
|
|
__ j(X86Condition(cond->AsCondition()->GetOppositeCondition()), false_target);
|
|
} else {
|
|
__ j(X86Condition(cond->AsCondition()->GetCondition()), true_target);
|
|
}
|
|
} else {
|
|
// Materialized condition, compare against 0.
|
|
Location lhs = instruction->GetLocations()->InAt(condition_input_index);
|
|
if (lhs.IsRegister()) {
|
|
__ testl(lhs.AsRegister<Register>(), lhs.AsRegister<Register>());
|
|
} else {
|
|
__ cmpl(Address(ESP, lhs.GetStackIndex()), Immediate(0));
|
|
}
|
|
if (true_target == nullptr) {
|
|
__ j(kEqual, false_target);
|
|
} else {
|
|
__ j(kNotEqual, true_target);
|
|
}
|
|
}
|
|
} else {
|
|
// Condition has not been materialized, use its inputs as the comparison and
|
|
// its condition as the branch condition.
|
|
HCondition* condition = cond->AsCondition();
|
|
|
|
// If this is a long or FP comparison that has been folded into
|
|
// the HCondition, generate the comparison directly.
|
|
Primitive::Type type = condition->InputAt(0)->GetType();
|
|
if (type == Primitive::kPrimLong || Primitive::IsFloatingPointType(type)) {
|
|
GenerateCompareTestAndBranch(condition, true_target, false_target);
|
|
return;
|
|
}
|
|
|
|
Location lhs = condition->GetLocations()->InAt(0);
|
|
Location rhs = condition->GetLocations()->InAt(1);
|
|
// LHS is guaranteed to be in a register (see LocationsBuilderX86::HandleCondition).
|
|
if (rhs.IsRegister()) {
|
|
__ cmpl(lhs.AsRegister<Register>(), rhs.AsRegister<Register>());
|
|
} else if (rhs.IsConstant()) {
|
|
int32_t constant = CodeGenerator::GetInt32ValueOf(rhs.GetConstant());
|
|
codegen_->Compare32BitValue(lhs.AsRegister<Register>(), constant);
|
|
} else {
|
|
__ cmpl(lhs.AsRegister<Register>(), Address(ESP, rhs.GetStackIndex()));
|
|
}
|
|
if (true_target == nullptr) {
|
|
__ j(X86Condition(condition->GetOppositeCondition()), false_target);
|
|
} else {
|
|
__ j(X86Condition(condition->GetCondition()), true_target);
|
|
}
|
|
}
|
|
|
|
// If neither branch falls through (case 3), the conditional branch to `true_target`
|
|
// was already emitted (case 2) and we need to emit a jump to `false_target`.
|
|
if (true_target != nullptr && false_target != nullptr) {
|
|
__ jmp(false_target);
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitIf(HIf* if_instr) {
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(if_instr);
|
|
if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) {
|
|
locations->SetInAt(0, Location::Any());
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitIf(HIf* if_instr) {
|
|
HBasicBlock* true_successor = if_instr->IfTrueSuccessor();
|
|
HBasicBlock* false_successor = if_instr->IfFalseSuccessor();
|
|
Label* true_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor) ?
|
|
nullptr : codegen_->GetLabelOf(true_successor);
|
|
Label* false_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor) ?
|
|
nullptr : codegen_->GetLabelOf(false_successor);
|
|
GenerateTestAndBranch(if_instr, /* condition_input_index */ 0, true_target, false_target);
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitDeoptimize(HDeoptimize* deoptimize) {
|
|
LocationSummary* locations = new (GetGraph()->GetArena())
|
|
LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath);
|
|
if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) {
|
|
locations->SetInAt(0, Location::Any());
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitDeoptimize(HDeoptimize* deoptimize) {
|
|
SlowPathCode* slow_path = deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathX86>(deoptimize);
|
|
GenerateTestAndBranch<Label>(deoptimize,
|
|
/* condition_input_index */ 0,
|
|
slow_path->GetEntryLabel(),
|
|
/* false_target */ nullptr);
|
|
}
|
|
|
|
static bool SelectCanUseCMOV(HSelect* select) {
|
|
// There are no conditional move instructions for XMMs.
|
|
if (Primitive::IsFloatingPointType(select->GetType())) {
|
|
return false;
|
|
}
|
|
|
|
// A FP condition doesn't generate the single CC that we need.
|
|
// In 32 bit mode, a long condition doesn't generate a single CC either.
|
|
HInstruction* condition = select->GetCondition();
|
|
if (condition->IsCondition()) {
|
|
Primitive::Type compare_type = condition->InputAt(0)->GetType();
|
|
if (compare_type == Primitive::kPrimLong ||
|
|
Primitive::IsFloatingPointType(compare_type)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// We can generate a CMOV for this Select.
|
|
return true;
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitSelect(HSelect* select) {
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(select);
|
|
if (Primitive::IsFloatingPointType(select->GetType())) {
|
|
locations->SetInAt(0, Location::RequiresFpuRegister());
|
|
locations->SetInAt(1, Location::Any());
|
|
} else {
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
if (SelectCanUseCMOV(select)) {
|
|
if (select->InputAt(1)->IsConstant()) {
|
|
// Cmov can't handle a constant value.
|
|
locations->SetInAt(1, Location::RequiresRegister());
|
|
} else {
|
|
locations->SetInAt(1, Location::Any());
|
|
}
|
|
} else {
|
|
locations->SetInAt(1, Location::Any());
|
|
}
|
|
}
|
|
if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) {
|
|
locations->SetInAt(2, Location::RequiresRegister());
|
|
}
|
|
locations->SetOut(Location::SameAsFirstInput());
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::GenerateIntCompare(Location lhs, Location rhs) {
|
|
Register lhs_reg = lhs.AsRegister<Register>();
|
|
if (rhs.IsConstant()) {
|
|
int32_t value = CodeGenerator::GetInt32ValueOf(rhs.GetConstant());
|
|
codegen_->Compare32BitValue(lhs_reg, value);
|
|
} else if (rhs.IsStackSlot()) {
|
|
__ cmpl(lhs_reg, Address(ESP, rhs.GetStackIndex()));
|
|
} else {
|
|
__ cmpl(lhs_reg, rhs.AsRegister<Register>());
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitSelect(HSelect* select) {
|
|
LocationSummary* locations = select->GetLocations();
|
|
DCHECK(locations->InAt(0).Equals(locations->Out()));
|
|
if (SelectCanUseCMOV(select)) {
|
|
// If both the condition and the source types are integer, we can generate
|
|
// a CMOV to implement Select.
|
|
|
|
HInstruction* select_condition = select->GetCondition();
|
|
Condition cond = kNotEqual;
|
|
|
|
// Figure out how to test the 'condition'.
|
|
if (select_condition->IsCondition()) {
|
|
HCondition* condition = select_condition->AsCondition();
|
|
if (!condition->IsEmittedAtUseSite()) {
|
|
// This was a previously materialized condition.
|
|
// Can we use the existing condition code?
|
|
if (AreEflagsSetFrom(condition, select)) {
|
|
// Materialization was the previous instruction. Condition codes are right.
|
|
cond = X86Condition(condition->GetCondition());
|
|
} else {
|
|
// No, we have to recreate the condition code.
|
|
Register cond_reg = locations->InAt(2).AsRegister<Register>();
|
|
__ testl(cond_reg, cond_reg);
|
|
}
|
|
} else {
|
|
// We can't handle FP or long here.
|
|
DCHECK_NE(condition->InputAt(0)->GetType(), Primitive::kPrimLong);
|
|
DCHECK(!Primitive::IsFloatingPointType(condition->InputAt(0)->GetType()));
|
|
LocationSummary* cond_locations = condition->GetLocations();
|
|
GenerateIntCompare(cond_locations->InAt(0), cond_locations->InAt(1));
|
|
cond = X86Condition(condition->GetCondition());
|
|
}
|
|
} else {
|
|
// Must be a boolean condition, which needs to be compared to 0.
|
|
Register cond_reg = locations->InAt(2).AsRegister<Register>();
|
|
__ testl(cond_reg, cond_reg);
|
|
}
|
|
|
|
// If the condition is true, overwrite the output, which already contains false.
|
|
Location false_loc = locations->InAt(0);
|
|
Location true_loc = locations->InAt(1);
|
|
if (select->GetType() == Primitive::kPrimLong) {
|
|
// 64 bit conditional move.
|
|
Register false_high = false_loc.AsRegisterPairHigh<Register>();
|
|
Register false_low = false_loc.AsRegisterPairLow<Register>();
|
|
if (true_loc.IsRegisterPair()) {
|
|
__ cmovl(cond, false_high, true_loc.AsRegisterPairHigh<Register>());
|
|
__ cmovl(cond, false_low, true_loc.AsRegisterPairLow<Register>());
|
|
} else {
|
|
__ cmovl(cond, false_high, Address(ESP, true_loc.GetHighStackIndex(kX86WordSize)));
|
|
__ cmovl(cond, false_low, Address(ESP, true_loc.GetStackIndex()));
|
|
}
|
|
} else {
|
|
// 32 bit conditional move.
|
|
Register false_reg = false_loc.AsRegister<Register>();
|
|
if (true_loc.IsRegister()) {
|
|
__ cmovl(cond, false_reg, true_loc.AsRegister<Register>());
|
|
} else {
|
|
__ cmovl(cond, false_reg, Address(ESP, true_loc.GetStackIndex()));
|
|
}
|
|
}
|
|
} else {
|
|
NearLabel false_target;
|
|
GenerateTestAndBranch<NearLabel>(
|
|
select, /* condition_input_index */ 2, /* true_target */ nullptr, &false_target);
|
|
codegen_->MoveLocation(locations->Out(), locations->InAt(1), select->GetType());
|
|
__ Bind(&false_target);
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitNativeDebugInfo(HNativeDebugInfo* info) {
|
|
new (GetGraph()->GetArena()) LocationSummary(info);
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitNativeDebugInfo(HNativeDebugInfo*) {
|
|
// MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile.
|
|
}
|
|
|
|
void CodeGeneratorX86::GenerateNop() {
|
|
__ nop();
|
|
}
|
|
|
|
void LocationsBuilderX86::HandleCondition(HCondition* cond) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(cond, LocationSummary::kNoCall);
|
|
// Handle the long/FP comparisons made in instruction simplification.
|
|
switch (cond->InputAt(0)->GetType()) {
|
|
case Primitive::kPrimLong: {
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::Any());
|
|
if (!cond->IsEmittedAtUseSite()) {
|
|
locations->SetOut(Location::RequiresRegister());
|
|
}
|
|
break;
|
|
}
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimDouble: {
|
|
locations->SetInAt(0, Location::RequiresFpuRegister());
|
|
if (cond->InputAt(1)->IsX86LoadFromConstantTable()) {
|
|
DCHECK(cond->InputAt(1)->IsEmittedAtUseSite());
|
|
} else if (cond->InputAt(1)->IsConstant()) {
|
|
locations->SetInAt(1, Location::RequiresFpuRegister());
|
|
} else {
|
|
locations->SetInAt(1, Location::Any());
|
|
}
|
|
if (!cond->IsEmittedAtUseSite()) {
|
|
locations->SetOut(Location::RequiresRegister());
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::Any());
|
|
if (!cond->IsEmittedAtUseSite()) {
|
|
// We need a byte register.
|
|
locations->SetOut(Location::RegisterLocation(ECX));
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::HandleCondition(HCondition* cond) {
|
|
if (cond->IsEmittedAtUseSite()) {
|
|
return;
|
|
}
|
|
|
|
LocationSummary* locations = cond->GetLocations();
|
|
Location lhs = locations->InAt(0);
|
|
Location rhs = locations->InAt(1);
|
|
Register reg = locations->Out().AsRegister<Register>();
|
|
NearLabel true_label, false_label;
|
|
|
|
switch (cond->InputAt(0)->GetType()) {
|
|
default: {
|
|
// Integer case.
|
|
|
|
// Clear output register: setb only sets the low byte.
|
|
__ xorl(reg, reg);
|
|
GenerateIntCompare(lhs, rhs);
|
|
__ setb(X86Condition(cond->GetCondition()), reg);
|
|
return;
|
|
}
|
|
case Primitive::kPrimLong:
|
|
GenerateLongComparesAndJumps(cond, &true_label, &false_label);
|
|
break;
|
|
case Primitive::kPrimFloat:
|
|
GenerateFPCompare(lhs, rhs, cond, false);
|
|
GenerateFPJumps(cond, &true_label, &false_label);
|
|
break;
|
|
case Primitive::kPrimDouble:
|
|
GenerateFPCompare(lhs, rhs, cond, true);
|
|
GenerateFPJumps(cond, &true_label, &false_label);
|
|
break;
|
|
}
|
|
|
|
// Convert the jumps into the result.
|
|
NearLabel done_label;
|
|
|
|
// False case: result = 0.
|
|
__ Bind(&false_label);
|
|
__ xorl(reg, reg);
|
|
__ jmp(&done_label);
|
|
|
|
// True case: result = 1.
|
|
__ Bind(&true_label);
|
|
__ movl(reg, Immediate(1));
|
|
__ Bind(&done_label);
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitEqual(HEqual* comp) {
|
|
HandleCondition(comp);
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitEqual(HEqual* comp) {
|
|
HandleCondition(comp);
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitNotEqual(HNotEqual* comp) {
|
|
HandleCondition(comp);
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitNotEqual(HNotEqual* comp) {
|
|
HandleCondition(comp);
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitLessThan(HLessThan* comp) {
|
|
HandleCondition(comp);
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitLessThan(HLessThan* comp) {
|
|
HandleCondition(comp);
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
|
|
HandleCondition(comp);
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
|
|
HandleCondition(comp);
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitGreaterThan(HGreaterThan* comp) {
|
|
HandleCondition(comp);
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitGreaterThan(HGreaterThan* comp) {
|
|
HandleCondition(comp);
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
|
|
HandleCondition(comp);
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
|
|
HandleCondition(comp);
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitBelow(HBelow* comp) {
|
|
HandleCondition(comp);
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitBelow(HBelow* comp) {
|
|
HandleCondition(comp);
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitBelowOrEqual(HBelowOrEqual* comp) {
|
|
HandleCondition(comp);
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitBelowOrEqual(HBelowOrEqual* comp) {
|
|
HandleCondition(comp);
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitAbove(HAbove* comp) {
|
|
HandleCondition(comp);
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitAbove(HAbove* comp) {
|
|
HandleCondition(comp);
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitAboveOrEqual(HAboveOrEqual* comp) {
|
|
HandleCondition(comp);
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitAboveOrEqual(HAboveOrEqual* comp) {
|
|
HandleCondition(comp);
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitIntConstant(HIntConstant* constant) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
|
|
locations->SetOut(Location::ConstantLocation(constant));
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) {
|
|
// Will be generated at use site.
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitNullConstant(HNullConstant* constant) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
|
|
locations->SetOut(Location::ConstantLocation(constant));
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) {
|
|
// Will be generated at use site.
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitLongConstant(HLongConstant* constant) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
|
|
locations->SetOut(Location::ConstantLocation(constant));
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) {
|
|
// Will be generated at use site.
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitFloatConstant(HFloatConstant* constant) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
|
|
locations->SetOut(Location::ConstantLocation(constant));
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) {
|
|
// Will be generated at use site.
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitDoubleConstant(HDoubleConstant* constant) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
|
|
locations->SetOut(Location::ConstantLocation(constant));
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitDoubleConstant(HDoubleConstant* constant ATTRIBUTE_UNUSED) {
|
|
// Will be generated at use site.
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
|
|
memory_barrier->SetLocations(nullptr);
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
|
|
codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind());
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitReturnVoid(HReturnVoid* ret) {
|
|
ret->SetLocations(nullptr);
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitReturnVoid(HReturnVoid* ret ATTRIBUTE_UNUSED) {
|
|
codegen_->GenerateFrameExit();
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitReturn(HReturn* ret) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(ret, LocationSummary::kNoCall);
|
|
switch (ret->InputAt(0)->GetType()) {
|
|
case Primitive::kPrimBoolean:
|
|
case Primitive::kPrimByte:
|
|
case Primitive::kPrimChar:
|
|
case Primitive::kPrimShort:
|
|
case Primitive::kPrimInt:
|
|
case Primitive::kPrimNot:
|
|
locations->SetInAt(0, Location::RegisterLocation(EAX));
|
|
break;
|
|
|
|
case Primitive::kPrimLong:
|
|
locations->SetInAt(
|
|
0, Location::RegisterPairLocation(EAX, EDX));
|
|
break;
|
|
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimDouble:
|
|
locations->SetInAt(
|
|
0, Location::FpuRegisterLocation(XMM0));
|
|
break;
|
|
|
|
default:
|
|
LOG(FATAL) << "Unknown return type " << ret->InputAt(0)->GetType();
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitReturn(HReturn* ret) {
|
|
if (kIsDebugBuild) {
|
|
switch (ret->InputAt(0)->GetType()) {
|
|
case Primitive::kPrimBoolean:
|
|
case Primitive::kPrimByte:
|
|
case Primitive::kPrimChar:
|
|
case Primitive::kPrimShort:
|
|
case Primitive::kPrimInt:
|
|
case Primitive::kPrimNot:
|
|
DCHECK_EQ(ret->GetLocations()->InAt(0).AsRegister<Register>(), EAX);
|
|
break;
|
|
|
|
case Primitive::kPrimLong:
|
|
DCHECK_EQ(ret->GetLocations()->InAt(0).AsRegisterPairLow<Register>(), EAX);
|
|
DCHECK_EQ(ret->GetLocations()->InAt(0).AsRegisterPairHigh<Register>(), EDX);
|
|
break;
|
|
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimDouble:
|
|
DCHECK_EQ(ret->GetLocations()->InAt(0).AsFpuRegister<XmmRegister>(), XMM0);
|
|
break;
|
|
|
|
default:
|
|
LOG(FATAL) << "Unknown return type " << ret->InputAt(0)->GetType();
|
|
}
|
|
}
|
|
codegen_->GenerateFrameExit();
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
|
|
// The trampoline uses the same calling convention as dex calling conventions,
|
|
// except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain
|
|
// the method_idx.
|
|
HandleInvoke(invoke);
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
|
|
codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke);
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
|
|
// Explicit clinit checks triggered by static invokes must have been pruned by
|
|
// art::PrepareForRegisterAllocation.
|
|
DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
|
|
|
|
IntrinsicLocationsBuilderX86 intrinsic(codegen_);
|
|
if (intrinsic.TryDispatch(invoke)) {
|
|
if (invoke->GetLocations()->CanCall() && invoke->HasPcRelativeDexCache()) {
|
|
invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::Any());
|
|
}
|
|
return;
|
|
}
|
|
|
|
HandleInvoke(invoke);
|
|
|
|
// For PC-relative dex cache the invoke has an extra input, the PC-relative address base.
|
|
if (invoke->HasPcRelativeDexCache()) {
|
|
invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::RequiresRegister());
|
|
}
|
|
}
|
|
|
|
static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorX86* codegen) {
|
|
if (invoke->GetLocations()->Intrinsified()) {
|
|
IntrinsicCodeGeneratorX86 intrinsic(codegen);
|
|
intrinsic.Dispatch(invoke);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
|
|
// Explicit clinit checks triggered by static invokes must have been pruned by
|
|
// art::PrepareForRegisterAllocation.
|
|
DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
|
|
|
|
if (TryGenerateIntrinsicCode(invoke, codegen_)) {
|
|
return;
|
|
}
|
|
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
codegen_->GenerateStaticOrDirectCall(
|
|
invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation());
|
|
codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitInvokeVirtual(HInvokeVirtual* invoke) {
|
|
IntrinsicLocationsBuilderX86 intrinsic(codegen_);
|
|
if (intrinsic.TryDispatch(invoke)) {
|
|
return;
|
|
}
|
|
|
|
HandleInvoke(invoke);
|
|
}
|
|
|
|
void LocationsBuilderX86::HandleInvoke(HInvoke* invoke) {
|
|
InvokeDexCallingConventionVisitorX86 calling_convention_visitor;
|
|
CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor);
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitInvokeVirtual(HInvokeVirtual* invoke) {
|
|
if (TryGenerateIntrinsicCode(invoke, codegen_)) {
|
|
return;
|
|
}
|
|
|
|
codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0));
|
|
DCHECK(!codegen_->IsLeafMethod());
|
|
codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitInvokeInterface(HInvokeInterface* invoke) {
|
|
// This call to HandleInvoke allocates a temporary (core) register
|
|
// which is also used to transfer the hidden argument from FP to
|
|
// core register.
|
|
HandleInvoke(invoke);
|
|
// Add the hidden argument.
|
|
invoke->GetLocations()->AddTemp(Location::FpuRegisterLocation(XMM7));
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitInvokeInterface(HInvokeInterface* invoke) {
|
|
// TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError.
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
Register temp = locations->GetTemp(0).AsRegister<Register>();
|
|
XmmRegister hidden_reg = locations->GetTemp(1).AsFpuRegister<XmmRegister>();
|
|
Location receiver = locations->InAt(0);
|
|
uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
|
|
|
|
// Set the hidden argument. This is safe to do this here, as XMM7
|
|
// won't be modified thereafter, before the `call` instruction.
|
|
DCHECK_EQ(XMM7, hidden_reg);
|
|
__ movl(temp, Immediate(invoke->GetDexMethodIndex()));
|
|
__ movd(hidden_reg, temp);
|
|
|
|
if (receiver.IsStackSlot()) {
|
|
__ movl(temp, Address(ESP, receiver.GetStackIndex()));
|
|
// /* HeapReference<Class> */ temp = temp->klass_
|
|
__ movl(temp, Address(temp, class_offset));
|
|
} else {
|
|
// /* HeapReference<Class> */ temp = receiver->klass_
|
|
__ movl(temp, Address(receiver.AsRegister<Register>(), class_offset));
|
|
}
|
|
codegen_->MaybeRecordImplicitNullCheck(invoke);
|
|
// Instead of simply (possibly) unpoisoning `temp` here, we should
|
|
// emit a read barrier for the previous class reference load.
|
|
// However this is not required in practice, as this is an
|
|
// intermediate/temporary reference and because the current
|
|
// concurrent copying collector keeps the from-space memory
|
|
// intact/accessible until the end of the marking phase (the
|
|
// concurrent copying collector may not in the future).
|
|
__ MaybeUnpoisonHeapReference(temp);
|
|
// temp = temp->GetAddressOfIMT()
|
|
__ movl(temp,
|
|
Address(temp, mirror::Class::ImtPtrOffset(kX86PointerSize).Uint32Value()));
|
|
// temp = temp->GetImtEntryAt(method_offset);
|
|
uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
|
|
invoke->GetImtIndex() % ImTable::kSize, kX86PointerSize));
|
|
__ movl(temp, Address(temp, method_offset));
|
|
// call temp->GetEntryPoint();
|
|
__ call(Address(temp,
|
|
ArtMethod::EntryPointFromQuickCompiledCodeOffset(kX86WordSize).Int32Value()));
|
|
|
|
DCHECK(!codegen_->IsLeafMethod());
|
|
codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitNeg(HNeg* neg) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall);
|
|
switch (neg->GetResultType()) {
|
|
case Primitive::kPrimInt:
|
|
case Primitive::kPrimLong:
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetOut(Location::SameAsFirstInput());
|
|
break;
|
|
|
|
case Primitive::kPrimFloat:
|
|
locations->SetInAt(0, Location::RequiresFpuRegister());
|
|
locations->SetOut(Location::SameAsFirstInput());
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
locations->AddTemp(Location::RequiresFpuRegister());
|
|
break;
|
|
|
|
case Primitive::kPrimDouble:
|
|
locations->SetInAt(0, Location::RequiresFpuRegister());
|
|
locations->SetOut(Location::SameAsFirstInput());
|
|
locations->AddTemp(Location::RequiresFpuRegister());
|
|
break;
|
|
|
|
default:
|
|
LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitNeg(HNeg* neg) {
|
|
LocationSummary* locations = neg->GetLocations();
|
|
Location out = locations->Out();
|
|
Location in = locations->InAt(0);
|
|
switch (neg->GetResultType()) {
|
|
case Primitive::kPrimInt:
|
|
DCHECK(in.IsRegister());
|
|
DCHECK(in.Equals(out));
|
|
__ negl(out.AsRegister<Register>());
|
|
break;
|
|
|
|
case Primitive::kPrimLong:
|
|
DCHECK(in.IsRegisterPair());
|
|
DCHECK(in.Equals(out));
|
|
__ negl(out.AsRegisterPairLow<Register>());
|
|
// Negation is similar to subtraction from zero. The least
|
|
// significant byte triggers a borrow when it is different from
|
|
// zero; to take it into account, add 1 to the most significant
|
|
// byte if the carry flag (CF) is set to 1 after the first NEGL
|
|
// operation.
|
|
__ adcl(out.AsRegisterPairHigh<Register>(), Immediate(0));
|
|
__ negl(out.AsRegisterPairHigh<Register>());
|
|
break;
|
|
|
|
case Primitive::kPrimFloat: {
|
|
DCHECK(in.Equals(out));
|
|
Register constant = locations->GetTemp(0).AsRegister<Register>();
|
|
XmmRegister mask = locations->GetTemp(1).AsFpuRegister<XmmRegister>();
|
|
// Implement float negation with an exclusive or with value
|
|
// 0x80000000 (mask for bit 31, representing the sign of a
|
|
// single-precision floating-point number).
|
|
__ movl(constant, Immediate(INT32_C(0x80000000)));
|
|
__ movd(mask, constant);
|
|
__ xorps(out.AsFpuRegister<XmmRegister>(), mask);
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimDouble: {
|
|
DCHECK(in.Equals(out));
|
|
XmmRegister mask = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
|
|
// Implement double negation with an exclusive or with value
|
|
// 0x8000000000000000 (mask for bit 63, representing the sign of
|
|
// a double-precision floating-point number).
|
|
__ LoadLongConstant(mask, INT64_C(0x8000000000000000));
|
|
__ xorpd(out.AsFpuRegister<XmmRegister>(), mask);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitX86FPNeg(HX86FPNeg* neg) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall);
|
|
DCHECK(Primitive::IsFloatingPointType(neg->GetType()));
|
|
locations->SetInAt(0, Location::RequiresFpuRegister());
|
|
locations->SetInAt(1, Location::RequiresRegister());
|
|
locations->SetOut(Location::SameAsFirstInput());
|
|
locations->AddTemp(Location::RequiresFpuRegister());
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitX86FPNeg(HX86FPNeg* neg) {
|
|
LocationSummary* locations = neg->GetLocations();
|
|
Location out = locations->Out();
|
|
DCHECK(locations->InAt(0).Equals(out));
|
|
|
|
Register constant_area = locations->InAt(1).AsRegister<Register>();
|
|
XmmRegister mask = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
|
|
if (neg->GetType() == Primitive::kPrimFloat) {
|
|
__ movss(mask, codegen_->LiteralInt32Address(INT32_C(0x80000000), constant_area));
|
|
__ xorps(out.AsFpuRegister<XmmRegister>(), mask);
|
|
} else {
|
|
__ movsd(mask, codegen_->LiteralInt64Address(INT64_C(0x8000000000000000), constant_area));
|
|
__ xorpd(out.AsFpuRegister<XmmRegister>(), mask);
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitTypeConversion(HTypeConversion* conversion) {
|
|
Primitive::Type result_type = conversion->GetResultType();
|
|
Primitive::Type input_type = conversion->GetInputType();
|
|
DCHECK_NE(result_type, input_type);
|
|
|
|
// The float-to-long and double-to-long type conversions rely on a
|
|
// call to the runtime.
|
|
LocationSummary::CallKind call_kind =
|
|
((input_type == Primitive::kPrimFloat || input_type == Primitive::kPrimDouble)
|
|
&& result_type == Primitive::kPrimLong)
|
|
? LocationSummary::kCall
|
|
: LocationSummary::kNoCall;
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(conversion, call_kind);
|
|
|
|
// The Java language does not allow treating boolean as an integral type but
|
|
// our bit representation makes it safe.
|
|
|
|
switch (result_type) {
|
|
case Primitive::kPrimByte:
|
|
switch (input_type) {
|
|
case Primitive::kPrimLong: {
|
|
// Type conversion from long to byte is a result of code transformations.
|
|
HInstruction* input = conversion->InputAt(0);
|
|
Location input_location = input->IsConstant()
|
|
? Location::ConstantLocation(input->AsConstant())
|
|
: Location::RegisterPairLocation(EAX, EDX);
|
|
locations->SetInAt(0, input_location);
|
|
// Make the output overlap to please the register allocator. This greatly simplifies
|
|
// the validation of the linear scan implementation
|
|
locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
|
|
break;
|
|
}
|
|
case Primitive::kPrimBoolean:
|
|
// Boolean input is a result of code transformations.
|
|
case Primitive::kPrimShort:
|
|
case Primitive::kPrimInt:
|
|
case Primitive::kPrimChar:
|
|
// Processing a Dex `int-to-byte' instruction.
|
|
locations->SetInAt(0, Location::ByteRegisterOrConstant(ECX, conversion->InputAt(0)));
|
|
// Make the output overlap to please the register allocator. This greatly simplifies
|
|
// the validation of the linear scan implementation
|
|
locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
|
|
break;
|
|
|
|
default:
|
|
LOG(FATAL) << "Unexpected type conversion from " << input_type
|
|
<< " to " << result_type;
|
|
}
|
|
break;
|
|
|
|
case Primitive::kPrimShort:
|
|
switch (input_type) {
|
|
case Primitive::kPrimLong:
|
|
// Type conversion from long to short is a result of code transformations.
|
|
case Primitive::kPrimBoolean:
|
|
// Boolean input is a result of code transformations.
|
|
case Primitive::kPrimByte:
|
|
case Primitive::kPrimInt:
|
|
case Primitive::kPrimChar:
|
|
// Processing a Dex `int-to-short' instruction.
|
|
locations->SetInAt(0, Location::Any());
|
|
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
|
|
break;
|
|
|
|
default:
|
|
LOG(FATAL) << "Unexpected type conversion from " << input_type
|
|
<< " to " << result_type;
|
|
}
|
|
break;
|
|
|
|
case Primitive::kPrimInt:
|
|
switch (input_type) {
|
|
case Primitive::kPrimLong:
|
|
// Processing a Dex `long-to-int' instruction.
|
|
locations->SetInAt(0, Location::Any());
|
|
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
|
|
break;
|
|
|
|
case Primitive::kPrimFloat:
|
|
// Processing a Dex `float-to-int' instruction.
|
|
locations->SetInAt(0, Location::RequiresFpuRegister());
|
|
locations->SetOut(Location::RequiresRegister());
|
|
locations->AddTemp(Location::RequiresFpuRegister());
|
|
break;
|
|
|
|
case Primitive::kPrimDouble:
|
|
// Processing a Dex `double-to-int' instruction.
|
|
locations->SetInAt(0, Location::RequiresFpuRegister());
|
|
locations->SetOut(Location::RequiresRegister());
|
|
locations->AddTemp(Location::RequiresFpuRegister());
|
|
break;
|
|
|
|
default:
|
|
LOG(FATAL) << "Unexpected type conversion from " << input_type
|
|
<< " to " << result_type;
|
|
}
|
|
break;
|
|
|
|
case Primitive::kPrimLong:
|
|
switch (input_type) {
|
|
case Primitive::kPrimBoolean:
|
|
// Boolean input is a result of code transformations.
|
|
case Primitive::kPrimByte:
|
|
case Primitive::kPrimShort:
|
|
case Primitive::kPrimInt:
|
|
case Primitive::kPrimChar:
|
|
// Processing a Dex `int-to-long' instruction.
|
|
locations->SetInAt(0, Location::RegisterLocation(EAX));
|
|
locations->SetOut(Location::RegisterPairLocation(EAX, EDX));
|
|
break;
|
|
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimDouble: {
|
|
// Processing a Dex `float-to-long' or 'double-to-long' instruction.
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
XmmRegister parameter = calling_convention.GetFpuRegisterAt(0);
|
|
locations->SetInAt(0, Location::FpuRegisterLocation(parameter));
|
|
|
|
// The runtime helper puts the result in EAX, EDX.
|
|
locations->SetOut(Location::RegisterPairLocation(EAX, EDX));
|
|
}
|
|
break;
|
|
|
|
default:
|
|
LOG(FATAL) << "Unexpected type conversion from " << input_type
|
|
<< " to " << result_type;
|
|
}
|
|
break;
|
|
|
|
case Primitive::kPrimChar:
|
|
switch (input_type) {
|
|
case Primitive::kPrimLong:
|
|
// Type conversion from long to char is a result of code transformations.
|
|
case Primitive::kPrimBoolean:
|
|
// Boolean input is a result of code transformations.
|
|
case Primitive::kPrimByte:
|
|
case Primitive::kPrimShort:
|
|
case Primitive::kPrimInt:
|
|
// Processing a Dex `int-to-char' instruction.
|
|
locations->SetInAt(0, Location::Any());
|
|
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
|
|
break;
|
|
|
|
default:
|
|
LOG(FATAL) << "Unexpected type conversion from " << input_type
|
|
<< " to " << result_type;
|
|
}
|
|
break;
|
|
|
|
case Primitive::kPrimFloat:
|
|
switch (input_type) {
|
|
case Primitive::kPrimBoolean:
|
|
// Boolean input is a result of code transformations.
|
|
case Primitive::kPrimByte:
|
|
case Primitive::kPrimShort:
|
|
case Primitive::kPrimInt:
|
|
case Primitive::kPrimChar:
|
|
// Processing a Dex `int-to-float' instruction.
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetOut(Location::RequiresFpuRegister());
|
|
break;
|
|
|
|
case Primitive::kPrimLong:
|
|
// Processing a Dex `long-to-float' instruction.
|
|
locations->SetInAt(0, Location::Any());
|
|
locations->SetOut(Location::Any());
|
|
break;
|
|
|
|
case Primitive::kPrimDouble:
|
|
// Processing a Dex `double-to-float' instruction.
|
|
locations->SetInAt(0, Location::RequiresFpuRegister());
|
|
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
|
|
break;
|
|
|
|
default:
|
|
LOG(FATAL) << "Unexpected type conversion from " << input_type
|
|
<< " to " << result_type;
|
|
};
|
|
break;
|
|
|
|
case Primitive::kPrimDouble:
|
|
switch (input_type) {
|
|
case Primitive::kPrimBoolean:
|
|
// Boolean input is a result of code transformations.
|
|
case Primitive::kPrimByte:
|
|
case Primitive::kPrimShort:
|
|
case Primitive::kPrimInt:
|
|
case Primitive::kPrimChar:
|
|
// Processing a Dex `int-to-double' instruction.
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetOut(Location::RequiresFpuRegister());
|
|
break;
|
|
|
|
case Primitive::kPrimLong:
|
|
// Processing a Dex `long-to-double' instruction.
|
|
locations->SetInAt(0, Location::Any());
|
|
locations->SetOut(Location::Any());
|
|
break;
|
|
|
|
case Primitive::kPrimFloat:
|
|
// Processing a Dex `float-to-double' instruction.
|
|
locations->SetInAt(0, Location::RequiresFpuRegister());
|
|
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
|
|
break;
|
|
|
|
default:
|
|
LOG(FATAL) << "Unexpected type conversion from " << input_type
|
|
<< " to " << result_type;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
LOG(FATAL) << "Unexpected type conversion from " << input_type
|
|
<< " to " << result_type;
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitTypeConversion(HTypeConversion* conversion) {
|
|
LocationSummary* locations = conversion->GetLocations();
|
|
Location out = locations->Out();
|
|
Location in = locations->InAt(0);
|
|
Primitive::Type result_type = conversion->GetResultType();
|
|
Primitive::Type input_type = conversion->GetInputType();
|
|
DCHECK_NE(result_type, input_type);
|
|
switch (result_type) {
|
|
case Primitive::kPrimByte:
|
|
switch (input_type) {
|
|
case Primitive::kPrimLong:
|
|
// Type conversion from long to byte is a result of code transformations.
|
|
if (in.IsRegisterPair()) {
|
|
__ movsxb(out.AsRegister<Register>(), in.AsRegisterPairLow<ByteRegister>());
|
|
} else {
|
|
DCHECK(in.GetConstant()->IsLongConstant());
|
|
int64_t value = in.GetConstant()->AsLongConstant()->GetValue();
|
|
__ movl(out.AsRegister<Register>(), Immediate(static_cast<int8_t>(value)));
|
|
}
|
|
break;
|
|
case Primitive::kPrimBoolean:
|
|
// Boolean input is a result of code transformations.
|
|
case Primitive::kPrimShort:
|
|
case Primitive::kPrimInt:
|
|
case Primitive::kPrimChar:
|
|
// Processing a Dex `int-to-byte' instruction.
|
|
if (in.IsRegister()) {
|
|
__ movsxb(out.AsRegister<Register>(), in.AsRegister<ByteRegister>());
|
|
} else {
|
|
DCHECK(in.GetConstant()->IsIntConstant());
|
|
int32_t value = in.GetConstant()->AsIntConstant()->GetValue();
|
|
__ movl(out.AsRegister<Register>(), Immediate(static_cast<int8_t>(value)));
|
|
}
|
|
break;
|
|
|
|
default:
|
|
LOG(FATAL) << "Unexpected type conversion from " << input_type
|
|
<< " to " << result_type;
|
|
}
|
|
break;
|
|
|
|
case Primitive::kPrimShort:
|
|
switch (input_type) {
|
|
case Primitive::kPrimLong:
|
|
// Type conversion from long to short is a result of code transformations.
|
|
if (in.IsRegisterPair()) {
|
|
__ movsxw(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>());
|
|
} else if (in.IsDoubleStackSlot()) {
|
|
__ movsxw(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex()));
|
|
} else {
|
|
DCHECK(in.GetConstant()->IsLongConstant());
|
|
int64_t value = in.GetConstant()->AsLongConstant()->GetValue();
|
|
__ movl(out.AsRegister<Register>(), Immediate(static_cast<int16_t>(value)));
|
|
}
|
|
break;
|
|
case Primitive::kPrimBoolean:
|
|
// Boolean input is a result of code transformations.
|
|
case Primitive::kPrimByte:
|
|
case Primitive::kPrimInt:
|
|
case Primitive::kPrimChar:
|
|
// Processing a Dex `int-to-short' instruction.
|
|
if (in.IsRegister()) {
|
|
__ movsxw(out.AsRegister<Register>(), in.AsRegister<Register>());
|
|
} else if (in.IsStackSlot()) {
|
|
__ movsxw(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex()));
|
|
} else {
|
|
DCHECK(in.GetConstant()->IsIntConstant());
|
|
int32_t value = in.GetConstant()->AsIntConstant()->GetValue();
|
|
__ movl(out.AsRegister<Register>(), Immediate(static_cast<int16_t>(value)));
|
|
}
|
|
break;
|
|
|
|
default:
|
|
LOG(FATAL) << "Unexpected type conversion from " << input_type
|
|
<< " to " << result_type;
|
|
}
|
|
break;
|
|
|
|
case Primitive::kPrimInt:
|
|
switch (input_type) {
|
|
case Primitive::kPrimLong:
|
|
// Processing a Dex `long-to-int' instruction.
|
|
if (in.IsRegisterPair()) {
|
|
__ movl(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>());
|
|
} else if (in.IsDoubleStackSlot()) {
|
|
__ movl(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex()));
|
|
} else {
|
|
DCHECK(in.IsConstant());
|
|
DCHECK(in.GetConstant()->IsLongConstant());
|
|
int64_t value = in.GetConstant()->AsLongConstant()->GetValue();
|
|
__ movl(out.AsRegister<Register>(), Immediate(static_cast<int32_t>(value)));
|
|
}
|
|
break;
|
|
|
|
case Primitive::kPrimFloat: {
|
|
// Processing a Dex `float-to-int' instruction.
|
|
XmmRegister input = in.AsFpuRegister<XmmRegister>();
|
|
Register output = out.AsRegister<Register>();
|
|
XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
|
|
NearLabel done, nan;
|
|
|
|
__ movl(output, Immediate(kPrimIntMax));
|
|
// temp = int-to-float(output)
|
|
__ cvtsi2ss(temp, output);
|
|
// if input >= temp goto done
|
|
__ comiss(input, temp);
|
|
__ j(kAboveEqual, &done);
|
|
// if input == NaN goto nan
|
|
__ j(kUnordered, &nan);
|
|
// output = float-to-int-truncate(input)
|
|
__ cvttss2si(output, input);
|
|
__ jmp(&done);
|
|
__ Bind(&nan);
|
|
// output = 0
|
|
__ xorl(output, output);
|
|
__ Bind(&done);
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimDouble: {
|
|
// Processing a Dex `double-to-int' instruction.
|
|
XmmRegister input = in.AsFpuRegister<XmmRegister>();
|
|
Register output = out.AsRegister<Register>();
|
|
XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
|
|
NearLabel done, nan;
|
|
|
|
__ movl(output, Immediate(kPrimIntMax));
|
|
// temp = int-to-double(output)
|
|
__ cvtsi2sd(temp, output);
|
|
// if input >= temp goto done
|
|
__ comisd(input, temp);
|
|
__ j(kAboveEqual, &done);
|
|
// if input == NaN goto nan
|
|
__ j(kUnordered, &nan);
|
|
// output = double-to-int-truncate(input)
|
|
__ cvttsd2si(output, input);
|
|
__ jmp(&done);
|
|
__ Bind(&nan);
|
|
// output = 0
|
|
__ xorl(output, output);
|
|
__ Bind(&done);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
LOG(FATAL) << "Unexpected type conversion from " << input_type
|
|
<< " to " << result_type;
|
|
}
|
|
break;
|
|
|
|
case Primitive::kPrimLong:
|
|
switch (input_type) {
|
|
case Primitive::kPrimBoolean:
|
|
// Boolean input is a result of code transformations.
|
|
case Primitive::kPrimByte:
|
|
case Primitive::kPrimShort:
|
|
case Primitive::kPrimInt:
|
|
case Primitive::kPrimChar:
|
|
// Processing a Dex `int-to-long' instruction.
|
|
DCHECK_EQ(out.AsRegisterPairLow<Register>(), EAX);
|
|
DCHECK_EQ(out.AsRegisterPairHigh<Register>(), EDX);
|
|
DCHECK_EQ(in.AsRegister<Register>(), EAX);
|
|
__ cdq();
|
|
break;
|
|
|
|
case Primitive::kPrimFloat:
|
|
// Processing a Dex `float-to-long' instruction.
|
|
codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pF2l),
|
|
conversion,
|
|
conversion->GetDexPc(),
|
|
nullptr);
|
|
CheckEntrypointTypes<kQuickF2l, int64_t, float>();
|
|
break;
|
|
|
|
case Primitive::kPrimDouble:
|
|
// Processing a Dex `double-to-long' instruction.
|
|
codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pD2l),
|
|
conversion,
|
|
conversion->GetDexPc(),
|
|
nullptr);
|
|
CheckEntrypointTypes<kQuickD2l, int64_t, double>();
|
|
break;
|
|
|
|
default:
|
|
LOG(FATAL) << "Unexpected type conversion from " << input_type
|
|
<< " to " << result_type;
|
|
}
|
|
break;
|
|
|
|
case Primitive::kPrimChar:
|
|
switch (input_type) {
|
|
case Primitive::kPrimLong:
|
|
// Type conversion from long to short is a result of code transformations.
|
|
if (in.IsRegisterPair()) {
|
|
__ movzxw(out.AsRegister<Register>(), in.AsRegisterPairLow<Register>());
|
|
} else if (in.IsDoubleStackSlot()) {
|
|
__ movzxw(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex()));
|
|
} else {
|
|
DCHECK(in.GetConstant()->IsLongConstant());
|
|
int64_t value = in.GetConstant()->AsLongConstant()->GetValue();
|
|
__ movl(out.AsRegister<Register>(), Immediate(static_cast<uint16_t>(value)));
|
|
}
|
|
break;
|
|
case Primitive::kPrimBoolean:
|
|
// Boolean input is a result of code transformations.
|
|
case Primitive::kPrimByte:
|
|
case Primitive::kPrimShort:
|
|
case Primitive::kPrimInt:
|
|
// Processing a Dex `Process a Dex `int-to-char'' instruction.
|
|
if (in.IsRegister()) {
|
|
__ movzxw(out.AsRegister<Register>(), in.AsRegister<Register>());
|
|
} else if (in.IsStackSlot()) {
|
|
__ movzxw(out.AsRegister<Register>(), Address(ESP, in.GetStackIndex()));
|
|
} else {
|
|
DCHECK(in.GetConstant()->IsIntConstant());
|
|
int32_t value = in.GetConstant()->AsIntConstant()->GetValue();
|
|
__ movl(out.AsRegister<Register>(), Immediate(static_cast<uint16_t>(value)));
|
|
}
|
|
break;
|
|
|
|
default:
|
|
LOG(FATAL) << "Unexpected type conversion from " << input_type
|
|
<< " to " << result_type;
|
|
}
|
|
break;
|
|
|
|
case Primitive::kPrimFloat:
|
|
switch (input_type) {
|
|
case Primitive::kPrimBoolean:
|
|
// Boolean input is a result of code transformations.
|
|
case Primitive::kPrimByte:
|
|
case Primitive::kPrimShort:
|
|
case Primitive::kPrimInt:
|
|
case Primitive::kPrimChar:
|
|
// Processing a Dex `int-to-float' instruction.
|
|
__ cvtsi2ss(out.AsFpuRegister<XmmRegister>(), in.AsRegister<Register>());
|
|
break;
|
|
|
|
case Primitive::kPrimLong: {
|
|
// Processing a Dex `long-to-float' instruction.
|
|
size_t adjustment = 0;
|
|
|
|
// Create stack space for the call to
|
|
// InstructionCodeGeneratorX86::PushOntoFPStack and/or X86Assembler::fstps below.
|
|
// TODO: enhance register allocator to ask for stack temporaries.
|
|
if (!in.IsDoubleStackSlot() || !out.IsStackSlot()) {
|
|
adjustment = Primitive::ComponentSize(Primitive::kPrimLong);
|
|
__ subl(ESP, Immediate(adjustment));
|
|
}
|
|
|
|
// Load the value to the FP stack, using temporaries if needed.
|
|
PushOntoFPStack(in, 0, adjustment, false, true);
|
|
|
|
if (out.IsStackSlot()) {
|
|
__ fstps(Address(ESP, out.GetStackIndex() + adjustment));
|
|
} else {
|
|
__ fstps(Address(ESP, 0));
|
|
Location stack_temp = Location::StackSlot(0);
|
|
codegen_->Move32(out, stack_temp);
|
|
}
|
|
|
|
// Remove the temporary stack space we allocated.
|
|
if (adjustment != 0) {
|
|
__ addl(ESP, Immediate(adjustment));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimDouble:
|
|
// Processing a Dex `double-to-float' instruction.
|
|
__ cvtsd2ss(out.AsFpuRegister<XmmRegister>(), in.AsFpuRegister<XmmRegister>());
|
|
break;
|
|
|
|
default:
|
|
LOG(FATAL) << "Unexpected type conversion from " << input_type
|
|
<< " to " << result_type;
|
|
};
|
|
break;
|
|
|
|
case Primitive::kPrimDouble:
|
|
switch (input_type) {
|
|
case Primitive::kPrimBoolean:
|
|
// Boolean input is a result of code transformations.
|
|
case Primitive::kPrimByte:
|
|
case Primitive::kPrimShort:
|
|
case Primitive::kPrimInt:
|
|
case Primitive::kPrimChar:
|
|
// Processing a Dex `int-to-double' instruction.
|
|
__ cvtsi2sd(out.AsFpuRegister<XmmRegister>(), in.AsRegister<Register>());
|
|
break;
|
|
|
|
case Primitive::kPrimLong: {
|
|
// Processing a Dex `long-to-double' instruction.
|
|
size_t adjustment = 0;
|
|
|
|
// Create stack space for the call to
|
|
// InstructionCodeGeneratorX86::PushOntoFPStack and/or X86Assembler::fstpl below.
|
|
// TODO: enhance register allocator to ask for stack temporaries.
|
|
if (!in.IsDoubleStackSlot() || !out.IsDoubleStackSlot()) {
|
|
adjustment = Primitive::ComponentSize(Primitive::kPrimLong);
|
|
__ subl(ESP, Immediate(adjustment));
|
|
}
|
|
|
|
// Load the value to the FP stack, using temporaries if needed.
|
|
PushOntoFPStack(in, 0, adjustment, false, true);
|
|
|
|
if (out.IsDoubleStackSlot()) {
|
|
__ fstpl(Address(ESP, out.GetStackIndex() + adjustment));
|
|
} else {
|
|
__ fstpl(Address(ESP, 0));
|
|
Location stack_temp = Location::DoubleStackSlot(0);
|
|
codegen_->Move64(out, stack_temp);
|
|
}
|
|
|
|
// Remove the temporary stack space we allocated.
|
|
if (adjustment != 0) {
|
|
__ addl(ESP, Immediate(adjustment));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimFloat:
|
|
// Processing a Dex `float-to-double' instruction.
|
|
__ cvtss2sd(out.AsFpuRegister<XmmRegister>(), in.AsFpuRegister<XmmRegister>());
|
|
break;
|
|
|
|
default:
|
|
LOG(FATAL) << "Unexpected type conversion from " << input_type
|
|
<< " to " << result_type;
|
|
};
|
|
break;
|
|
|
|
default:
|
|
LOG(FATAL) << "Unexpected type conversion from " << input_type
|
|
<< " to " << result_type;
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitAdd(HAdd* add) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(add, LocationSummary::kNoCall);
|
|
switch (add->GetResultType()) {
|
|
case Primitive::kPrimInt: {
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::RegisterOrConstant(add->InputAt(1)));
|
|
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimLong: {
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::Any());
|
|
locations->SetOut(Location::SameAsFirstInput());
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimDouble: {
|
|
locations->SetInAt(0, Location::RequiresFpuRegister());
|
|
if (add->InputAt(1)->IsX86LoadFromConstantTable()) {
|
|
DCHECK(add->InputAt(1)->IsEmittedAtUseSite());
|
|
} else if (add->InputAt(1)->IsConstant()) {
|
|
locations->SetInAt(1, Location::RequiresFpuRegister());
|
|
} else {
|
|
locations->SetInAt(1, Location::Any());
|
|
}
|
|
locations->SetOut(Location::SameAsFirstInput());
|
|
break;
|
|
}
|
|
|
|
default:
|
|
LOG(FATAL) << "Unexpected add type " << add->GetResultType();
|
|
break;
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitAdd(HAdd* add) {
|
|
LocationSummary* locations = add->GetLocations();
|
|
Location first = locations->InAt(0);
|
|
Location second = locations->InAt(1);
|
|
Location out = locations->Out();
|
|
|
|
switch (add->GetResultType()) {
|
|
case Primitive::kPrimInt: {
|
|
if (second.IsRegister()) {
|
|
if (out.AsRegister<Register>() == first.AsRegister<Register>()) {
|
|
__ addl(out.AsRegister<Register>(), second.AsRegister<Register>());
|
|
} else if (out.AsRegister<Register>() == second.AsRegister<Register>()) {
|
|
__ addl(out.AsRegister<Register>(), first.AsRegister<Register>());
|
|
} else {
|
|
__ leal(out.AsRegister<Register>(), Address(
|
|
first.AsRegister<Register>(), second.AsRegister<Register>(), TIMES_1, 0));
|
|
}
|
|
} else if (second.IsConstant()) {
|
|
int32_t value = second.GetConstant()->AsIntConstant()->GetValue();
|
|
if (out.AsRegister<Register>() == first.AsRegister<Register>()) {
|
|
__ addl(out.AsRegister<Register>(), Immediate(value));
|
|
} else {
|
|
__ leal(out.AsRegister<Register>(), Address(first.AsRegister<Register>(), value));
|
|
}
|
|
} else {
|
|
DCHECK(first.Equals(locations->Out()));
|
|
__ addl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex()));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimLong: {
|
|
if (second.IsRegisterPair()) {
|
|
__ addl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>());
|
|
__ adcl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>());
|
|
} else if (second.IsDoubleStackSlot()) {
|
|
__ addl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex()));
|
|
__ adcl(first.AsRegisterPairHigh<Register>(),
|
|
Address(ESP, second.GetHighStackIndex(kX86WordSize)));
|
|
} else {
|
|
DCHECK(second.IsConstant()) << second;
|
|
int64_t value = second.GetConstant()->AsLongConstant()->GetValue();
|
|
__ addl(first.AsRegisterPairLow<Register>(), Immediate(Low32Bits(value)));
|
|
__ adcl(first.AsRegisterPairHigh<Register>(), Immediate(High32Bits(value)));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimFloat: {
|
|
if (second.IsFpuRegister()) {
|
|
__ addss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
|
|
} else if (add->InputAt(1)->IsX86LoadFromConstantTable()) {
|
|
HX86LoadFromConstantTable* const_area = add->InputAt(1)->AsX86LoadFromConstantTable();
|
|
DCHECK(const_area->IsEmittedAtUseSite());
|
|
__ addss(first.AsFpuRegister<XmmRegister>(),
|
|
codegen_->LiteralFloatAddress(
|
|
const_area->GetConstant()->AsFloatConstant()->GetValue(),
|
|
const_area->GetLocations()->InAt(0).AsRegister<Register>()));
|
|
} else {
|
|
DCHECK(second.IsStackSlot());
|
|
__ addss(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimDouble: {
|
|
if (second.IsFpuRegister()) {
|
|
__ addsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
|
|
} else if (add->InputAt(1)->IsX86LoadFromConstantTable()) {
|
|
HX86LoadFromConstantTable* const_area = add->InputAt(1)->AsX86LoadFromConstantTable();
|
|
DCHECK(const_area->IsEmittedAtUseSite());
|
|
__ addsd(first.AsFpuRegister<XmmRegister>(),
|
|
codegen_->LiteralDoubleAddress(
|
|
const_area->GetConstant()->AsDoubleConstant()->GetValue(),
|
|
const_area->GetLocations()->InAt(0).AsRegister<Register>()));
|
|
} else {
|
|
DCHECK(second.IsDoubleStackSlot());
|
|
__ addsd(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
LOG(FATAL) << "Unexpected add type " << add->GetResultType();
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitSub(HSub* sub) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(sub, LocationSummary::kNoCall);
|
|
switch (sub->GetResultType()) {
|
|
case Primitive::kPrimInt:
|
|
case Primitive::kPrimLong: {
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::Any());
|
|
locations->SetOut(Location::SameAsFirstInput());
|
|
break;
|
|
}
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimDouble: {
|
|
locations->SetInAt(0, Location::RequiresFpuRegister());
|
|
if (sub->InputAt(1)->IsX86LoadFromConstantTable()) {
|
|
DCHECK(sub->InputAt(1)->IsEmittedAtUseSite());
|
|
} else if (sub->InputAt(1)->IsConstant()) {
|
|
locations->SetInAt(1, Location::RequiresFpuRegister());
|
|
} else {
|
|
locations->SetInAt(1, Location::Any());
|
|
}
|
|
locations->SetOut(Location::SameAsFirstInput());
|
|
break;
|
|
}
|
|
|
|
default:
|
|
LOG(FATAL) << "Unexpected sub type " << sub->GetResultType();
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitSub(HSub* sub) {
|
|
LocationSummary* locations = sub->GetLocations();
|
|
Location first = locations->InAt(0);
|
|
Location second = locations->InAt(1);
|
|
DCHECK(first.Equals(locations->Out()));
|
|
switch (sub->GetResultType()) {
|
|
case Primitive::kPrimInt: {
|
|
if (second.IsRegister()) {
|
|
__ subl(first.AsRegister<Register>(), second.AsRegister<Register>());
|
|
} else if (second.IsConstant()) {
|
|
__ subl(first.AsRegister<Register>(),
|
|
Immediate(second.GetConstant()->AsIntConstant()->GetValue()));
|
|
} else {
|
|
__ subl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex()));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimLong: {
|
|
if (second.IsRegisterPair()) {
|
|
__ subl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>());
|
|
__ sbbl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>());
|
|
} else if (second.IsDoubleStackSlot()) {
|
|
__ subl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex()));
|
|
__ sbbl(first.AsRegisterPairHigh<Register>(),
|
|
Address(ESP, second.GetHighStackIndex(kX86WordSize)));
|
|
} else {
|
|
DCHECK(second.IsConstant()) << second;
|
|
int64_t value = second.GetConstant()->AsLongConstant()->GetValue();
|
|
__ subl(first.AsRegisterPairLow<Register>(), Immediate(Low32Bits(value)));
|
|
__ sbbl(first.AsRegisterPairHigh<Register>(), Immediate(High32Bits(value)));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimFloat: {
|
|
if (second.IsFpuRegister()) {
|
|
__ subss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
|
|
} else if (sub->InputAt(1)->IsX86LoadFromConstantTable()) {
|
|
HX86LoadFromConstantTable* const_area = sub->InputAt(1)->AsX86LoadFromConstantTable();
|
|
DCHECK(const_area->IsEmittedAtUseSite());
|
|
__ subss(first.AsFpuRegister<XmmRegister>(),
|
|
codegen_->LiteralFloatAddress(
|
|
const_area->GetConstant()->AsFloatConstant()->GetValue(),
|
|
const_area->GetLocations()->InAt(0).AsRegister<Register>()));
|
|
} else {
|
|
DCHECK(second.IsStackSlot());
|
|
__ subss(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimDouble: {
|
|
if (second.IsFpuRegister()) {
|
|
__ subsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
|
|
} else if (sub->InputAt(1)->IsX86LoadFromConstantTable()) {
|
|
HX86LoadFromConstantTable* const_area = sub->InputAt(1)->AsX86LoadFromConstantTable();
|
|
DCHECK(const_area->IsEmittedAtUseSite());
|
|
__ subsd(first.AsFpuRegister<XmmRegister>(),
|
|
codegen_->LiteralDoubleAddress(
|
|
const_area->GetConstant()->AsDoubleConstant()->GetValue(),
|
|
const_area->GetLocations()->InAt(0).AsRegister<Register>()));
|
|
} else {
|
|
DCHECK(second.IsDoubleStackSlot());
|
|
__ subsd(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
LOG(FATAL) << "Unexpected sub type " << sub->GetResultType();
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitMul(HMul* mul) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(mul, LocationSummary::kNoCall);
|
|
switch (mul->GetResultType()) {
|
|
case Primitive::kPrimInt:
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::Any());
|
|
if (mul->InputAt(1)->IsIntConstant()) {
|
|
// Can use 3 operand multiply.
|
|
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
|
|
} else {
|
|
locations->SetOut(Location::SameAsFirstInput());
|
|
}
|
|
break;
|
|
case Primitive::kPrimLong: {
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::Any());
|
|
locations->SetOut(Location::SameAsFirstInput());
|
|
// Needed for imul on 32bits with 64bits output.
|
|
locations->AddTemp(Location::RegisterLocation(EAX));
|
|
locations->AddTemp(Location::RegisterLocation(EDX));
|
|
break;
|
|
}
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimDouble: {
|
|
locations->SetInAt(0, Location::RequiresFpuRegister());
|
|
if (mul->InputAt(1)->IsX86LoadFromConstantTable()) {
|
|
DCHECK(mul->InputAt(1)->IsEmittedAtUseSite());
|
|
} else if (mul->InputAt(1)->IsConstant()) {
|
|
locations->SetInAt(1, Location::RequiresFpuRegister());
|
|
} else {
|
|
locations->SetInAt(1, Location::Any());
|
|
}
|
|
locations->SetOut(Location::SameAsFirstInput());
|
|
break;
|
|
}
|
|
|
|
default:
|
|
LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitMul(HMul* mul) {
|
|
LocationSummary* locations = mul->GetLocations();
|
|
Location first = locations->InAt(0);
|
|
Location second = locations->InAt(1);
|
|
Location out = locations->Out();
|
|
|
|
switch (mul->GetResultType()) {
|
|
case Primitive::kPrimInt:
|
|
// The constant may have ended up in a register, so test explicitly to avoid
|
|
// problems where the output may not be the same as the first operand.
|
|
if (mul->InputAt(1)->IsIntConstant()) {
|
|
Immediate imm(mul->InputAt(1)->AsIntConstant()->GetValue());
|
|
__ imull(out.AsRegister<Register>(), first.AsRegister<Register>(), imm);
|
|
} else if (second.IsRegister()) {
|
|
DCHECK(first.Equals(out));
|
|
__ imull(first.AsRegister<Register>(), second.AsRegister<Register>());
|
|
} else {
|
|
DCHECK(second.IsStackSlot());
|
|
DCHECK(first.Equals(out));
|
|
__ imull(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex()));
|
|
}
|
|
break;
|
|
|
|
case Primitive::kPrimLong: {
|
|
Register in1_hi = first.AsRegisterPairHigh<Register>();
|
|
Register in1_lo = first.AsRegisterPairLow<Register>();
|
|
Register eax = locations->GetTemp(0).AsRegister<Register>();
|
|
Register edx = locations->GetTemp(1).AsRegister<Register>();
|
|
|
|
DCHECK_EQ(EAX, eax);
|
|
DCHECK_EQ(EDX, edx);
|
|
|
|
// input: in1 - 64 bits, in2 - 64 bits.
|
|
// output: in1
|
|
// formula: in1.hi : in1.lo = (in1.lo * in2.hi + in1.hi * in2.lo)* 2^32 + in1.lo * in2.lo
|
|
// parts: in1.hi = in1.lo * in2.hi + in1.hi * in2.lo + (in1.lo * in2.lo)[63:32]
|
|
// parts: in1.lo = (in1.lo * in2.lo)[31:0]
|
|
if (second.IsConstant()) {
|
|
DCHECK(second.GetConstant()->IsLongConstant());
|
|
|
|
int64_t value = second.GetConstant()->AsLongConstant()->GetValue();
|
|
int32_t low_value = Low32Bits(value);
|
|
int32_t high_value = High32Bits(value);
|
|
Immediate low(low_value);
|
|
Immediate high(high_value);
|
|
|
|
__ movl(eax, high);
|
|
// eax <- in1.lo * in2.hi
|
|
__ imull(eax, in1_lo);
|
|
// in1.hi <- in1.hi * in2.lo
|
|
__ imull(in1_hi, low);
|
|
// in1.hi <- in1.lo * in2.hi + in1.hi * in2.lo
|
|
__ addl(in1_hi, eax);
|
|
// move in2_lo to eax to prepare for double precision
|
|
__ movl(eax, low);
|
|
// edx:eax <- in1.lo * in2.lo
|
|
__ mull(in1_lo);
|
|
// in1.hi <- in2.hi * in1.lo + in2.lo * in1.hi + (in1.lo * in2.lo)[63:32]
|
|
__ addl(in1_hi, edx);
|
|
// in1.lo <- (in1.lo * in2.lo)[31:0];
|
|
__ movl(in1_lo, eax);
|
|
} else if (second.IsRegisterPair()) {
|
|
Register in2_hi = second.AsRegisterPairHigh<Register>();
|
|
Register in2_lo = second.AsRegisterPairLow<Register>();
|
|
|
|
__ movl(eax, in2_hi);
|
|
// eax <- in1.lo * in2.hi
|
|
__ imull(eax, in1_lo);
|
|
// in1.hi <- in1.hi * in2.lo
|
|
__ imull(in1_hi, in2_lo);
|
|
// in1.hi <- in1.lo * in2.hi + in1.hi * in2.lo
|
|
__ addl(in1_hi, eax);
|
|
// move in1_lo to eax to prepare for double precision
|
|
__ movl(eax, in1_lo);
|
|
// edx:eax <- in1.lo * in2.lo
|
|
__ mull(in2_lo);
|
|
// in1.hi <- in2.hi * in1.lo + in2.lo * in1.hi + (in1.lo * in2.lo)[63:32]
|
|
__ addl(in1_hi, edx);
|
|
// in1.lo <- (in1.lo * in2.lo)[31:0];
|
|
__ movl(in1_lo, eax);
|
|
} else {
|
|
DCHECK(second.IsDoubleStackSlot()) << second;
|
|
Address in2_hi(ESP, second.GetHighStackIndex(kX86WordSize));
|
|
Address in2_lo(ESP, second.GetStackIndex());
|
|
|
|
__ movl(eax, in2_hi);
|
|
// eax <- in1.lo * in2.hi
|
|
__ imull(eax, in1_lo);
|
|
// in1.hi <- in1.hi * in2.lo
|
|
__ imull(in1_hi, in2_lo);
|
|
// in1.hi <- in1.lo * in2.hi + in1.hi * in2.lo
|
|
__ addl(in1_hi, eax);
|
|
// move in1_lo to eax to prepare for double precision
|
|
__ movl(eax, in1_lo);
|
|
// edx:eax <- in1.lo * in2.lo
|
|
__ mull(in2_lo);
|
|
// in1.hi <- in2.hi * in1.lo + in2.lo * in1.hi + (in1.lo * in2.lo)[63:32]
|
|
__ addl(in1_hi, edx);
|
|
// in1.lo <- (in1.lo * in2.lo)[31:0];
|
|
__ movl(in1_lo, eax);
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimFloat: {
|
|
DCHECK(first.Equals(locations->Out()));
|
|
if (second.IsFpuRegister()) {
|
|
__ mulss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
|
|
} else if (mul->InputAt(1)->IsX86LoadFromConstantTable()) {
|
|
HX86LoadFromConstantTable* const_area = mul->InputAt(1)->AsX86LoadFromConstantTable();
|
|
DCHECK(const_area->IsEmittedAtUseSite());
|
|
__ mulss(first.AsFpuRegister<XmmRegister>(),
|
|
codegen_->LiteralFloatAddress(
|
|
const_area->GetConstant()->AsFloatConstant()->GetValue(),
|
|
const_area->GetLocations()->InAt(0).AsRegister<Register>()));
|
|
} else {
|
|
DCHECK(second.IsStackSlot());
|
|
__ mulss(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimDouble: {
|
|
DCHECK(first.Equals(locations->Out()));
|
|
if (second.IsFpuRegister()) {
|
|
__ mulsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
|
|
} else if (mul->InputAt(1)->IsX86LoadFromConstantTable()) {
|
|
HX86LoadFromConstantTable* const_area = mul->InputAt(1)->AsX86LoadFromConstantTable();
|
|
DCHECK(const_area->IsEmittedAtUseSite());
|
|
__ mulsd(first.AsFpuRegister<XmmRegister>(),
|
|
codegen_->LiteralDoubleAddress(
|
|
const_area->GetConstant()->AsDoubleConstant()->GetValue(),
|
|
const_area->GetLocations()->InAt(0).AsRegister<Register>()));
|
|
} else {
|
|
DCHECK(second.IsDoubleStackSlot());
|
|
__ mulsd(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::PushOntoFPStack(Location source,
|
|
uint32_t temp_offset,
|
|
uint32_t stack_adjustment,
|
|
bool is_fp,
|
|
bool is_wide) {
|
|
if (source.IsStackSlot()) {
|
|
DCHECK(!is_wide);
|
|
if (is_fp) {
|
|
__ flds(Address(ESP, source.GetStackIndex() + stack_adjustment));
|
|
} else {
|
|
__ filds(Address(ESP, source.GetStackIndex() + stack_adjustment));
|
|
}
|
|
} else if (source.IsDoubleStackSlot()) {
|
|
DCHECK(is_wide);
|
|
if (is_fp) {
|
|
__ fldl(Address(ESP, source.GetStackIndex() + stack_adjustment));
|
|
} else {
|
|
__ fildl(Address(ESP, source.GetStackIndex() + stack_adjustment));
|
|
}
|
|
} else {
|
|
// Write the value to the temporary location on the stack and load to FP stack.
|
|
if (!is_wide) {
|
|
Location stack_temp = Location::StackSlot(temp_offset);
|
|
codegen_->Move32(stack_temp, source);
|
|
if (is_fp) {
|
|
__ flds(Address(ESP, temp_offset));
|
|
} else {
|
|
__ filds(Address(ESP, temp_offset));
|
|
}
|
|
} else {
|
|
Location stack_temp = Location::DoubleStackSlot(temp_offset);
|
|
codegen_->Move64(stack_temp, source);
|
|
if (is_fp) {
|
|
__ fldl(Address(ESP, temp_offset));
|
|
} else {
|
|
__ fildl(Address(ESP, temp_offset));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::GenerateRemFP(HRem *rem) {
|
|
Primitive::Type type = rem->GetResultType();
|
|
bool is_float = type == Primitive::kPrimFloat;
|
|
size_t elem_size = Primitive::ComponentSize(type);
|
|
LocationSummary* locations = rem->GetLocations();
|
|
Location first = locations->InAt(0);
|
|
Location second = locations->InAt(1);
|
|
Location out = locations->Out();
|
|
|
|
// Create stack space for 2 elements.
|
|
// TODO: enhance register allocator to ask for stack temporaries.
|
|
__ subl(ESP, Immediate(2 * elem_size));
|
|
|
|
// Load the values to the FP stack in reverse order, using temporaries if needed.
|
|
const bool is_wide = !is_float;
|
|
PushOntoFPStack(second, elem_size, 2 * elem_size, /* is_fp */ true, is_wide);
|
|
PushOntoFPStack(first, 0, 2 * elem_size, /* is_fp */ true, is_wide);
|
|
|
|
// Loop doing FPREM until we stabilize.
|
|
NearLabel retry;
|
|
__ Bind(&retry);
|
|
__ fprem();
|
|
|
|
// Move FP status to AX.
|
|
__ fstsw();
|
|
|
|
// And see if the argument reduction is complete. This is signaled by the
|
|
// C2 FPU flag bit set to 0.
|
|
__ andl(EAX, Immediate(kC2ConditionMask));
|
|
__ j(kNotEqual, &retry);
|
|
|
|
// We have settled on the final value. Retrieve it into an XMM register.
|
|
// Store FP top of stack to real stack.
|
|
if (is_float) {
|
|
__ fsts(Address(ESP, 0));
|
|
} else {
|
|
__ fstl(Address(ESP, 0));
|
|
}
|
|
|
|
// Pop the 2 items from the FP stack.
|
|
__ fucompp();
|
|
|
|
// Load the value from the stack into an XMM register.
|
|
DCHECK(out.IsFpuRegister()) << out;
|
|
if (is_float) {
|
|
__ movss(out.AsFpuRegister<XmmRegister>(), Address(ESP, 0));
|
|
} else {
|
|
__ movsd(out.AsFpuRegister<XmmRegister>(), Address(ESP, 0));
|
|
}
|
|
|
|
// And remove the temporary stack space we allocated.
|
|
__ addl(ESP, Immediate(2 * elem_size));
|
|
}
|
|
|
|
|
|
void InstructionCodeGeneratorX86::DivRemOneOrMinusOne(HBinaryOperation* instruction) {
|
|
DCHECK(instruction->IsDiv() || instruction->IsRem());
|
|
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
DCHECK(locations->InAt(1).IsConstant());
|
|
DCHECK(locations->InAt(1).GetConstant()->IsIntConstant());
|
|
|
|
Register out_register = locations->Out().AsRegister<Register>();
|
|
Register input_register = locations->InAt(0).AsRegister<Register>();
|
|
int32_t imm = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue();
|
|
|
|
DCHECK(imm == 1 || imm == -1);
|
|
|
|
if (instruction->IsRem()) {
|
|
__ xorl(out_register, out_register);
|
|
} else {
|
|
__ movl(out_register, input_register);
|
|
if (imm == -1) {
|
|
__ negl(out_register);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void InstructionCodeGeneratorX86::DivByPowerOfTwo(HDiv* instruction) {
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
|
|
Register out_register = locations->Out().AsRegister<Register>();
|
|
Register input_register = locations->InAt(0).AsRegister<Register>();
|
|
int32_t imm = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue();
|
|
DCHECK(IsPowerOfTwo(AbsOrMin(imm)));
|
|
uint32_t abs_imm = static_cast<uint32_t>(AbsOrMin(imm));
|
|
|
|
Register num = locations->GetTemp(0).AsRegister<Register>();
|
|
|
|
__ leal(num, Address(input_register, abs_imm - 1));
|
|
__ testl(input_register, input_register);
|
|
__ cmovl(kGreaterEqual, num, input_register);
|
|
int shift = CTZ(imm);
|
|
__ sarl(num, Immediate(shift));
|
|
|
|
if (imm < 0) {
|
|
__ negl(num);
|
|
}
|
|
|
|
__ movl(out_register, num);
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) {
|
|
DCHECK(instruction->IsDiv() || instruction->IsRem());
|
|
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
int imm = locations->InAt(1).GetConstant()->AsIntConstant()->GetValue();
|
|
|
|
Register eax = locations->InAt(0).AsRegister<Register>();
|
|
Register out = locations->Out().AsRegister<Register>();
|
|
Register num;
|
|
Register edx;
|
|
|
|
if (instruction->IsDiv()) {
|
|
edx = locations->GetTemp(0).AsRegister<Register>();
|
|
num = locations->GetTemp(1).AsRegister<Register>();
|
|
} else {
|
|
edx = locations->Out().AsRegister<Register>();
|
|
num = locations->GetTemp(0).AsRegister<Register>();
|
|
}
|
|
|
|
DCHECK_EQ(EAX, eax);
|
|
DCHECK_EQ(EDX, edx);
|
|
if (instruction->IsDiv()) {
|
|
DCHECK_EQ(EAX, out);
|
|
} else {
|
|
DCHECK_EQ(EDX, out);
|
|
}
|
|
|
|
int64_t magic;
|
|
int shift;
|
|
CalculateMagicAndShiftForDivRem(imm, false /* is_long */, &magic, &shift);
|
|
|
|
NearLabel ndiv;
|
|
NearLabel end;
|
|
// If numerator is 0, the result is 0, no computation needed.
|
|
__ testl(eax, eax);
|
|
__ j(kNotEqual, &ndiv);
|
|
|
|
__ xorl(out, out);
|
|
__ jmp(&end);
|
|
|
|
__ Bind(&ndiv);
|
|
|
|
// Save the numerator.
|
|
__ movl(num, eax);
|
|
|
|
// EAX = magic
|
|
__ movl(eax, Immediate(magic));
|
|
|
|
// EDX:EAX = magic * numerator
|
|
__ imull(num);
|
|
|
|
if (imm > 0 && magic < 0) {
|
|
// EDX += num
|
|
__ addl(edx, num);
|
|
} else if (imm < 0 && magic > 0) {
|
|
__ subl(edx, num);
|
|
}
|
|
|
|
// Shift if needed.
|
|
if (shift != 0) {
|
|
__ sarl(edx, Immediate(shift));
|
|
}
|
|
|
|
// EDX += 1 if EDX < 0
|
|
__ movl(eax, edx);
|
|
__ shrl(edx, Immediate(31));
|
|
__ addl(edx, eax);
|
|
|
|
if (instruction->IsRem()) {
|
|
__ movl(eax, num);
|
|
__ imull(edx, Immediate(imm));
|
|
__ subl(eax, edx);
|
|
__ movl(edx, eax);
|
|
} else {
|
|
__ movl(eax, edx);
|
|
}
|
|
__ Bind(&end);
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::GenerateDivRemIntegral(HBinaryOperation* instruction) {
|
|
DCHECK(instruction->IsDiv() || instruction->IsRem());
|
|
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
Location out = locations->Out();
|
|
Location first = locations->InAt(0);
|
|
Location second = locations->InAt(1);
|
|
bool is_div = instruction->IsDiv();
|
|
|
|
switch (instruction->GetResultType()) {
|
|
case Primitive::kPrimInt: {
|
|
DCHECK_EQ(EAX, first.AsRegister<Register>());
|
|
DCHECK_EQ(is_div ? EAX : EDX, out.AsRegister<Register>());
|
|
|
|
if (second.IsConstant()) {
|
|
int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
|
|
|
|
if (imm == 0) {
|
|
// Do not generate anything for 0. DivZeroCheck would forbid any generated code.
|
|
} else if (imm == 1 || imm == -1) {
|
|
DivRemOneOrMinusOne(instruction);
|
|
} else if (is_div && IsPowerOfTwo(AbsOrMin(imm))) {
|
|
DivByPowerOfTwo(instruction->AsDiv());
|
|
} else {
|
|
DCHECK(imm <= -2 || imm >= 2);
|
|
GenerateDivRemWithAnyConstant(instruction);
|
|
}
|
|
} else {
|
|
SlowPathCode* slow_path = new (GetGraph()->GetArena()) DivRemMinusOneSlowPathX86(
|
|
instruction, out.AsRegister<Register>(), is_div);
|
|
codegen_->AddSlowPath(slow_path);
|
|
|
|
Register second_reg = second.AsRegister<Register>();
|
|
// 0x80000000/-1 triggers an arithmetic exception!
|
|
// Dividing by -1 is actually negation and -0x800000000 = 0x80000000 so
|
|
// it's safe to just use negl instead of more complex comparisons.
|
|
|
|
__ cmpl(second_reg, Immediate(-1));
|
|
__ j(kEqual, slow_path->GetEntryLabel());
|
|
|
|
// edx:eax <- sign-extended of eax
|
|
__ cdq();
|
|
// eax = quotient, edx = remainder
|
|
__ idivl(second_reg);
|
|
__ Bind(slow_path->GetExitLabel());
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimLong: {
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
DCHECK_EQ(calling_convention.GetRegisterAt(0), first.AsRegisterPairLow<Register>());
|
|
DCHECK_EQ(calling_convention.GetRegisterAt(1), first.AsRegisterPairHigh<Register>());
|
|
DCHECK_EQ(calling_convention.GetRegisterAt(2), second.AsRegisterPairLow<Register>());
|
|
DCHECK_EQ(calling_convention.GetRegisterAt(3), second.AsRegisterPairHigh<Register>());
|
|
DCHECK_EQ(EAX, out.AsRegisterPairLow<Register>());
|
|
DCHECK_EQ(EDX, out.AsRegisterPairHigh<Register>());
|
|
|
|
if (is_div) {
|
|
codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pLdiv),
|
|
instruction,
|
|
instruction->GetDexPc(),
|
|
nullptr);
|
|
CheckEntrypointTypes<kQuickLdiv, int64_t, int64_t, int64_t>();
|
|
} else {
|
|
codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pLmod),
|
|
instruction,
|
|
instruction->GetDexPc(),
|
|
nullptr);
|
|
CheckEntrypointTypes<kQuickLmod, int64_t, int64_t, int64_t>();
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
LOG(FATAL) << "Unexpected type for GenerateDivRemIntegral " << instruction->GetResultType();
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitDiv(HDiv* div) {
|
|
LocationSummary::CallKind call_kind = (div->GetResultType() == Primitive::kPrimLong)
|
|
? LocationSummary::kCall
|
|
: LocationSummary::kNoCall;
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(div, call_kind);
|
|
|
|
switch (div->GetResultType()) {
|
|
case Primitive::kPrimInt: {
|
|
locations->SetInAt(0, Location::RegisterLocation(EAX));
|
|
locations->SetInAt(1, Location::RegisterOrConstant(div->InputAt(1)));
|
|
locations->SetOut(Location::SameAsFirstInput());
|
|
// Intel uses edx:eax as the dividend.
|
|
locations->AddTemp(Location::RegisterLocation(EDX));
|
|
// We need to save the numerator while we tweak eax and edx. As we are using imul in a way
|
|
// which enforces results to be in EAX and EDX, things are simpler if we use EAX also as
|
|
// output and request another temp.
|
|
if (div->InputAt(1)->IsIntConstant()) {
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
}
|
|
break;
|
|
}
|
|
case Primitive::kPrimLong: {
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
locations->SetInAt(0, Location::RegisterPairLocation(
|
|
calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
|
|
locations->SetInAt(1, Location::RegisterPairLocation(
|
|
calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
|
|
// Runtime helper puts the result in EAX, EDX.
|
|
locations->SetOut(Location::RegisterPairLocation(EAX, EDX));
|
|
break;
|
|
}
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimDouble: {
|
|
locations->SetInAt(0, Location::RequiresFpuRegister());
|
|
if (div->InputAt(1)->IsX86LoadFromConstantTable()) {
|
|
DCHECK(div->InputAt(1)->IsEmittedAtUseSite());
|
|
} else if (div->InputAt(1)->IsConstant()) {
|
|
locations->SetInAt(1, Location::RequiresFpuRegister());
|
|
} else {
|
|
locations->SetInAt(1, Location::Any());
|
|
}
|
|
locations->SetOut(Location::SameAsFirstInput());
|
|
break;
|
|
}
|
|
|
|
default:
|
|
LOG(FATAL) << "Unexpected div type " << div->GetResultType();
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitDiv(HDiv* div) {
|
|
LocationSummary* locations = div->GetLocations();
|
|
Location first = locations->InAt(0);
|
|
Location second = locations->InAt(1);
|
|
|
|
switch (div->GetResultType()) {
|
|
case Primitive::kPrimInt:
|
|
case Primitive::kPrimLong: {
|
|
GenerateDivRemIntegral(div);
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimFloat: {
|
|
if (second.IsFpuRegister()) {
|
|
__ divss(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
|
|
} else if (div->InputAt(1)->IsX86LoadFromConstantTable()) {
|
|
HX86LoadFromConstantTable* const_area = div->InputAt(1)->AsX86LoadFromConstantTable();
|
|
DCHECK(const_area->IsEmittedAtUseSite());
|
|
__ divss(first.AsFpuRegister<XmmRegister>(),
|
|
codegen_->LiteralFloatAddress(
|
|
const_area->GetConstant()->AsFloatConstant()->GetValue(),
|
|
const_area->GetLocations()->InAt(0).AsRegister<Register>()));
|
|
} else {
|
|
DCHECK(second.IsStackSlot());
|
|
__ divss(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimDouble: {
|
|
if (second.IsFpuRegister()) {
|
|
__ divsd(first.AsFpuRegister<XmmRegister>(), second.AsFpuRegister<XmmRegister>());
|
|
} else if (div->InputAt(1)->IsX86LoadFromConstantTable()) {
|
|
HX86LoadFromConstantTable* const_area = div->InputAt(1)->AsX86LoadFromConstantTable();
|
|
DCHECK(const_area->IsEmittedAtUseSite());
|
|
__ divsd(first.AsFpuRegister<XmmRegister>(),
|
|
codegen_->LiteralDoubleAddress(
|
|
const_area->GetConstant()->AsDoubleConstant()->GetValue(),
|
|
const_area->GetLocations()->InAt(0).AsRegister<Register>()));
|
|
} else {
|
|
DCHECK(second.IsDoubleStackSlot());
|
|
__ divsd(first.AsFpuRegister<XmmRegister>(), Address(ESP, second.GetStackIndex()));
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
LOG(FATAL) << "Unexpected div type " << div->GetResultType();
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitRem(HRem* rem) {
|
|
Primitive::Type type = rem->GetResultType();
|
|
|
|
LocationSummary::CallKind call_kind = (rem->GetResultType() == Primitive::kPrimLong)
|
|
? LocationSummary::kCall
|
|
: LocationSummary::kNoCall;
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(rem, call_kind);
|
|
|
|
switch (type) {
|
|
case Primitive::kPrimInt: {
|
|
locations->SetInAt(0, Location::RegisterLocation(EAX));
|
|
locations->SetInAt(1, Location::RegisterOrConstant(rem->InputAt(1)));
|
|
locations->SetOut(Location::RegisterLocation(EDX));
|
|
// We need to save the numerator while we tweak eax and edx. As we are using imul in a way
|
|
// which enforces results to be in EAX and EDX, things are simpler if we use EDX also as
|
|
// output and request another temp.
|
|
if (rem->InputAt(1)->IsIntConstant()) {
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
}
|
|
break;
|
|
}
|
|
case Primitive::kPrimLong: {
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
locations->SetInAt(0, Location::RegisterPairLocation(
|
|
calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
|
|
locations->SetInAt(1, Location::RegisterPairLocation(
|
|
calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
|
|
// Runtime helper puts the result in EAX, EDX.
|
|
locations->SetOut(Location::RegisterPairLocation(EAX, EDX));
|
|
break;
|
|
}
|
|
case Primitive::kPrimDouble:
|
|
case Primitive::kPrimFloat: {
|
|
locations->SetInAt(0, Location::Any());
|
|
locations->SetInAt(1, Location::Any());
|
|
locations->SetOut(Location::RequiresFpuRegister());
|
|
locations->AddTemp(Location::RegisterLocation(EAX));
|
|
break;
|
|
}
|
|
|
|
default:
|
|
LOG(FATAL) << "Unexpected rem type " << type;
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitRem(HRem* rem) {
|
|
Primitive::Type type = rem->GetResultType();
|
|
switch (type) {
|
|
case Primitive::kPrimInt:
|
|
case Primitive::kPrimLong: {
|
|
GenerateDivRemIntegral(rem);
|
|
break;
|
|
}
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimDouble: {
|
|
GenerateRemFP(rem);
|
|
break;
|
|
}
|
|
default:
|
|
LOG(FATAL) << "Unexpected rem type " << type;
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitDivZeroCheck(HDivZeroCheck* instruction) {
|
|
LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock()
|
|
? LocationSummary::kCallOnSlowPath
|
|
: LocationSummary::kNoCall;
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
|
|
switch (instruction->GetType()) {
|
|
case Primitive::kPrimBoolean:
|
|
case Primitive::kPrimByte:
|
|
case Primitive::kPrimChar:
|
|
case Primitive::kPrimShort:
|
|
case Primitive::kPrimInt: {
|
|
locations->SetInAt(0, Location::Any());
|
|
break;
|
|
}
|
|
case Primitive::kPrimLong: {
|
|
locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
|
|
if (!instruction->IsConstant()) {
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
LOG(FATAL) << "Unexpected type for HDivZeroCheck " << instruction->GetType();
|
|
}
|
|
if (instruction->HasUses()) {
|
|
locations->SetOut(Location::SameAsFirstInput());
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitDivZeroCheck(HDivZeroCheck* instruction) {
|
|
SlowPathCode* slow_path = new (GetGraph()->GetArena()) DivZeroCheckSlowPathX86(instruction);
|
|
codegen_->AddSlowPath(slow_path);
|
|
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
Location value = locations->InAt(0);
|
|
|
|
switch (instruction->GetType()) {
|
|
case Primitive::kPrimBoolean:
|
|
case Primitive::kPrimByte:
|
|
case Primitive::kPrimChar:
|
|
case Primitive::kPrimShort:
|
|
case Primitive::kPrimInt: {
|
|
if (value.IsRegister()) {
|
|
__ testl(value.AsRegister<Register>(), value.AsRegister<Register>());
|
|
__ j(kEqual, slow_path->GetEntryLabel());
|
|
} else if (value.IsStackSlot()) {
|
|
__ cmpl(Address(ESP, value.GetStackIndex()), Immediate(0));
|
|
__ j(kEqual, slow_path->GetEntryLabel());
|
|
} else {
|
|
DCHECK(value.IsConstant()) << value;
|
|
if (value.GetConstant()->AsIntConstant()->GetValue() == 0) {
|
|
__ jmp(slow_path->GetEntryLabel());
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case Primitive::kPrimLong: {
|
|
if (value.IsRegisterPair()) {
|
|
Register temp = locations->GetTemp(0).AsRegister<Register>();
|
|
__ movl(temp, value.AsRegisterPairLow<Register>());
|
|
__ orl(temp, value.AsRegisterPairHigh<Register>());
|
|
__ j(kEqual, slow_path->GetEntryLabel());
|
|
} else {
|
|
DCHECK(value.IsConstant()) << value;
|
|
if (value.GetConstant()->AsLongConstant()->GetValue() == 0) {
|
|
__ jmp(slow_path->GetEntryLabel());
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
LOG(FATAL) << "Unexpected type for HDivZeroCheck" << instruction->GetType();
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderX86::HandleShift(HBinaryOperation* op) {
|
|
DCHECK(op->IsShl() || op->IsShr() || op->IsUShr());
|
|
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(op, LocationSummary::kNoCall);
|
|
|
|
switch (op->GetResultType()) {
|
|
case Primitive::kPrimInt:
|
|
case Primitive::kPrimLong: {
|
|
// Can't have Location::Any() and output SameAsFirstInput()
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
// The shift count needs to be in CL or a constant.
|
|
locations->SetInAt(1, Location::ByteRegisterOrConstant(ECX, op->InputAt(1)));
|
|
locations->SetOut(Location::SameAsFirstInput());
|
|
break;
|
|
}
|
|
default:
|
|
LOG(FATAL) << "Unexpected op type " << op->GetResultType();
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::HandleShift(HBinaryOperation* op) {
|
|
DCHECK(op->IsShl() || op->IsShr() || op->IsUShr());
|
|
|
|
LocationSummary* locations = op->GetLocations();
|
|
Location first = locations->InAt(0);
|
|
Location second = locations->InAt(1);
|
|
DCHECK(first.Equals(locations->Out()));
|
|
|
|
switch (op->GetResultType()) {
|
|
case Primitive::kPrimInt: {
|
|
DCHECK(first.IsRegister());
|
|
Register first_reg = first.AsRegister<Register>();
|
|
if (second.IsRegister()) {
|
|
Register second_reg = second.AsRegister<Register>();
|
|
DCHECK_EQ(ECX, second_reg);
|
|
if (op->IsShl()) {
|
|
__ shll(first_reg, second_reg);
|
|
} else if (op->IsShr()) {
|
|
__ sarl(first_reg, second_reg);
|
|
} else {
|
|
__ shrl(first_reg, second_reg);
|
|
}
|
|
} else {
|
|
int32_t shift = second.GetConstant()->AsIntConstant()->GetValue() & kMaxIntShiftDistance;
|
|
if (shift == 0) {
|
|
return;
|
|
}
|
|
Immediate imm(shift);
|
|
if (op->IsShl()) {
|
|
__ shll(first_reg, imm);
|
|
} else if (op->IsShr()) {
|
|
__ sarl(first_reg, imm);
|
|
} else {
|
|
__ shrl(first_reg, imm);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case Primitive::kPrimLong: {
|
|
if (second.IsRegister()) {
|
|
Register second_reg = second.AsRegister<Register>();
|
|
DCHECK_EQ(ECX, second_reg);
|
|
if (op->IsShl()) {
|
|
GenerateShlLong(first, second_reg);
|
|
} else if (op->IsShr()) {
|
|
GenerateShrLong(first, second_reg);
|
|
} else {
|
|
GenerateUShrLong(first, second_reg);
|
|
}
|
|
} else {
|
|
// Shift by a constant.
|
|
int32_t shift = second.GetConstant()->AsIntConstant()->GetValue() & kMaxLongShiftDistance;
|
|
// Nothing to do if the shift is 0, as the input is already the output.
|
|
if (shift != 0) {
|
|
if (op->IsShl()) {
|
|
GenerateShlLong(first, shift);
|
|
} else if (op->IsShr()) {
|
|
GenerateShrLong(first, shift);
|
|
} else {
|
|
GenerateUShrLong(first, shift);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
LOG(FATAL) << "Unexpected op type " << op->GetResultType();
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::GenerateShlLong(const Location& loc, int shift) {
|
|
Register low = loc.AsRegisterPairLow<Register>();
|
|
Register high = loc.AsRegisterPairHigh<Register>();
|
|
if (shift == 1) {
|
|
// This is just an addition.
|
|
__ addl(low, low);
|
|
__ adcl(high, high);
|
|
} else if (shift == 32) {
|
|
// Shift by 32 is easy. High gets low, and low gets 0.
|
|
codegen_->EmitParallelMoves(
|
|
loc.ToLow(),
|
|
loc.ToHigh(),
|
|
Primitive::kPrimInt,
|
|
Location::ConstantLocation(GetGraph()->GetIntConstant(0)),
|
|
loc.ToLow(),
|
|
Primitive::kPrimInt);
|
|
} else if (shift > 32) {
|
|
// Low part becomes 0. High part is low part << (shift-32).
|
|
__ movl(high, low);
|
|
__ shll(high, Immediate(shift - 32));
|
|
__ xorl(low, low);
|
|
} else {
|
|
// Between 1 and 31.
|
|
__ shld(high, low, Immediate(shift));
|
|
__ shll(low, Immediate(shift));
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::GenerateShlLong(const Location& loc, Register shifter) {
|
|
NearLabel done;
|
|
__ shld(loc.AsRegisterPairHigh<Register>(), loc.AsRegisterPairLow<Register>(), shifter);
|
|
__ shll(loc.AsRegisterPairLow<Register>(), shifter);
|
|
__ testl(shifter, Immediate(32));
|
|
__ j(kEqual, &done);
|
|
__ movl(loc.AsRegisterPairHigh<Register>(), loc.AsRegisterPairLow<Register>());
|
|
__ movl(loc.AsRegisterPairLow<Register>(), Immediate(0));
|
|
__ Bind(&done);
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::GenerateShrLong(const Location& loc, int shift) {
|
|
Register low = loc.AsRegisterPairLow<Register>();
|
|
Register high = loc.AsRegisterPairHigh<Register>();
|
|
if (shift == 32) {
|
|
// Need to copy the sign.
|
|
DCHECK_NE(low, high);
|
|
__ movl(low, high);
|
|
__ sarl(high, Immediate(31));
|
|
} else if (shift > 32) {
|
|
DCHECK_NE(low, high);
|
|
// High part becomes sign. Low part is shifted by shift - 32.
|
|
__ movl(low, high);
|
|
__ sarl(high, Immediate(31));
|
|
__ sarl(low, Immediate(shift - 32));
|
|
} else {
|
|
// Between 1 and 31.
|
|
__ shrd(low, high, Immediate(shift));
|
|
__ sarl(high, Immediate(shift));
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::GenerateShrLong(const Location& loc, Register shifter) {
|
|
NearLabel done;
|
|
__ shrd(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>(), shifter);
|
|
__ sarl(loc.AsRegisterPairHigh<Register>(), shifter);
|
|
__ testl(shifter, Immediate(32));
|
|
__ j(kEqual, &done);
|
|
__ movl(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>());
|
|
__ sarl(loc.AsRegisterPairHigh<Register>(), Immediate(31));
|
|
__ Bind(&done);
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::GenerateUShrLong(const Location& loc, int shift) {
|
|
Register low = loc.AsRegisterPairLow<Register>();
|
|
Register high = loc.AsRegisterPairHigh<Register>();
|
|
if (shift == 32) {
|
|
// Shift by 32 is easy. Low gets high, and high gets 0.
|
|
codegen_->EmitParallelMoves(
|
|
loc.ToHigh(),
|
|
loc.ToLow(),
|
|
Primitive::kPrimInt,
|
|
Location::ConstantLocation(GetGraph()->GetIntConstant(0)),
|
|
loc.ToHigh(),
|
|
Primitive::kPrimInt);
|
|
} else if (shift > 32) {
|
|
// Low part is high >> (shift - 32). High part becomes 0.
|
|
__ movl(low, high);
|
|
__ shrl(low, Immediate(shift - 32));
|
|
__ xorl(high, high);
|
|
} else {
|
|
// Between 1 and 31.
|
|
__ shrd(low, high, Immediate(shift));
|
|
__ shrl(high, Immediate(shift));
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::GenerateUShrLong(const Location& loc, Register shifter) {
|
|
NearLabel done;
|
|
__ shrd(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>(), shifter);
|
|
__ shrl(loc.AsRegisterPairHigh<Register>(), shifter);
|
|
__ testl(shifter, Immediate(32));
|
|
__ j(kEqual, &done);
|
|
__ movl(loc.AsRegisterPairLow<Register>(), loc.AsRegisterPairHigh<Register>());
|
|
__ movl(loc.AsRegisterPairHigh<Register>(), Immediate(0));
|
|
__ Bind(&done);
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitRor(HRor* ror) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(ror, LocationSummary::kNoCall);
|
|
|
|
switch (ror->GetResultType()) {
|
|
case Primitive::kPrimLong:
|
|
// Add the temporary needed.
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
FALLTHROUGH_INTENDED;
|
|
case Primitive::kPrimInt:
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
// The shift count needs to be in CL (unless it is a constant).
|
|
locations->SetInAt(1, Location::ByteRegisterOrConstant(ECX, ror->InputAt(1)));
|
|
locations->SetOut(Location::SameAsFirstInput());
|
|
break;
|
|
default:
|
|
LOG(FATAL) << "Unexpected operation type " << ror->GetResultType();
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitRor(HRor* ror) {
|
|
LocationSummary* locations = ror->GetLocations();
|
|
Location first = locations->InAt(0);
|
|
Location second = locations->InAt(1);
|
|
|
|
if (ror->GetResultType() == Primitive::kPrimInt) {
|
|
Register first_reg = first.AsRegister<Register>();
|
|
if (second.IsRegister()) {
|
|
Register second_reg = second.AsRegister<Register>();
|
|
__ rorl(first_reg, second_reg);
|
|
} else {
|
|
Immediate imm(second.GetConstant()->AsIntConstant()->GetValue() & kMaxIntShiftDistance);
|
|
__ rorl(first_reg, imm);
|
|
}
|
|
return;
|
|
}
|
|
|
|
DCHECK_EQ(ror->GetResultType(), Primitive::kPrimLong);
|
|
Register first_reg_lo = first.AsRegisterPairLow<Register>();
|
|
Register first_reg_hi = first.AsRegisterPairHigh<Register>();
|
|
Register temp_reg = locations->GetTemp(0).AsRegister<Register>();
|
|
if (second.IsRegister()) {
|
|
Register second_reg = second.AsRegister<Register>();
|
|
DCHECK_EQ(second_reg, ECX);
|
|
__ movl(temp_reg, first_reg_hi);
|
|
__ shrd(first_reg_hi, first_reg_lo, second_reg);
|
|
__ shrd(first_reg_lo, temp_reg, second_reg);
|
|
__ movl(temp_reg, first_reg_hi);
|
|
__ testl(second_reg, Immediate(32));
|
|
__ cmovl(kNotEqual, first_reg_hi, first_reg_lo);
|
|
__ cmovl(kNotEqual, first_reg_lo, temp_reg);
|
|
} else {
|
|
int32_t shift_amt = second.GetConstant()->AsIntConstant()->GetValue() & kMaxLongShiftDistance;
|
|
if (shift_amt == 0) {
|
|
// Already fine.
|
|
return;
|
|
}
|
|
if (shift_amt == 32) {
|
|
// Just swap.
|
|
__ movl(temp_reg, first_reg_lo);
|
|
__ movl(first_reg_lo, first_reg_hi);
|
|
__ movl(first_reg_hi, temp_reg);
|
|
return;
|
|
}
|
|
|
|
Immediate imm(shift_amt);
|
|
// Save the constents of the low value.
|
|
__ movl(temp_reg, first_reg_lo);
|
|
|
|
// Shift right into low, feeding bits from high.
|
|
__ shrd(first_reg_lo, first_reg_hi, imm);
|
|
|
|
// Shift right into high, feeding bits from the original low.
|
|
__ shrd(first_reg_hi, temp_reg, imm);
|
|
|
|
// Swap if needed.
|
|
if (shift_amt > 32) {
|
|
__ movl(temp_reg, first_reg_lo);
|
|
__ movl(first_reg_lo, first_reg_hi);
|
|
__ movl(first_reg_hi, temp_reg);
|
|
}
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitShl(HShl* shl) {
|
|
HandleShift(shl);
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitShl(HShl* shl) {
|
|
HandleShift(shl);
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitShr(HShr* shr) {
|
|
HandleShift(shr);
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitShr(HShr* shr) {
|
|
HandleShift(shr);
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitUShr(HUShr* ushr) {
|
|
HandleShift(ushr);
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitUShr(HUShr* ushr) {
|
|
HandleShift(ushr);
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitNewInstance(HNewInstance* instruction) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
|
|
locations->SetOut(Location::RegisterLocation(EAX));
|
|
if (instruction->IsStringAlloc()) {
|
|
locations->AddTemp(Location::RegisterLocation(kMethodRegisterArgument));
|
|
} else {
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
|
|
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitNewInstance(HNewInstance* instruction) {
|
|
// Note: if heap poisoning is enabled, the entry point takes cares
|
|
// of poisoning the reference.
|
|
if (instruction->IsStringAlloc()) {
|
|
// String is allocated through StringFactory. Call NewEmptyString entry point.
|
|
Register temp = instruction->GetLocations()->GetTemp(0).AsRegister<Register>();
|
|
MemberOffset code_offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kX86WordSize);
|
|
__ fs()->movl(temp, Address::Absolute(QUICK_ENTRY_POINT(pNewEmptyString)));
|
|
__ call(Address(temp, code_offset.Int32Value()));
|
|
codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
|
|
} else {
|
|
codegen_->InvokeRuntime(instruction->GetEntrypoint(),
|
|
instruction,
|
|
instruction->GetDexPc(),
|
|
nullptr);
|
|
CheckEntrypointTypes<kQuickAllocObjectWithAccessCheck, void*, uint32_t, ArtMethod*>();
|
|
DCHECK(!codegen_->IsLeafMethod());
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitNewArray(HNewArray* instruction) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
|
|
locations->SetOut(Location::RegisterLocation(EAX));
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
|
|
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
|
|
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitNewArray(HNewArray* instruction) {
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
__ movl(calling_convention.GetRegisterAt(0), Immediate(instruction->GetTypeIndex()));
|
|
// Note: if heap poisoning is enabled, the entry point takes cares
|
|
// of poisoning the reference.
|
|
codegen_->InvokeRuntime(instruction->GetEntrypoint(),
|
|
instruction,
|
|
instruction->GetDexPc(),
|
|
nullptr);
|
|
CheckEntrypointTypes<kQuickAllocArrayWithAccessCheck, void*, uint32_t, int32_t, ArtMethod*>();
|
|
DCHECK(!codegen_->IsLeafMethod());
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitParameterValue(HParameterValue* instruction) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
|
|
Location location = parameter_visitor_.GetNextLocation(instruction->GetType());
|
|
if (location.IsStackSlot()) {
|
|
location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
|
|
} else if (location.IsDoubleStackSlot()) {
|
|
location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
|
|
}
|
|
locations->SetOut(location);
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitParameterValue(
|
|
HParameterValue* instruction ATTRIBUTE_UNUSED) {
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitCurrentMethod(HCurrentMethod* instruction) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
|
|
locations->SetOut(Location::RegisterLocation(kMethodRegisterArgument));
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitCurrentMethod(HCurrentMethod* instruction ATTRIBUTE_UNUSED) {
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitClassTableGet(HClassTableGet* instruction) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetOut(Location::RequiresRegister());
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitClassTableGet(HClassTableGet* instruction) {
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) {
|
|
uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
|
|
instruction->GetIndex(), kX86PointerSize).SizeValue();
|
|
__ movl(locations->Out().AsRegister<Register>(),
|
|
Address(locations->InAt(0).AsRegister<Register>(), method_offset));
|
|
} else {
|
|
uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
|
|
instruction->GetIndex() % ImTable::kSize, kX86PointerSize));
|
|
__ movl(locations->Out().AsRegister<Register>(),
|
|
Address(locations->InAt(0).AsRegister<Register>(),
|
|
mirror::Class::ImtPtrOffset(kX86PointerSize).Uint32Value()));
|
|
// temp = temp->GetImtEntryAt(method_offset);
|
|
__ movl(locations->Out().AsRegister<Register>(),
|
|
Address(locations->Out().AsRegister<Register>(), method_offset));
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitNot(HNot* not_) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(not_, LocationSummary::kNoCall);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetOut(Location::SameAsFirstInput());
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitNot(HNot* not_) {
|
|
LocationSummary* locations = not_->GetLocations();
|
|
Location in = locations->InAt(0);
|
|
Location out = locations->Out();
|
|
DCHECK(in.Equals(out));
|
|
switch (not_->GetResultType()) {
|
|
case Primitive::kPrimInt:
|
|
__ notl(out.AsRegister<Register>());
|
|
break;
|
|
|
|
case Primitive::kPrimLong:
|
|
__ notl(out.AsRegisterPairLow<Register>());
|
|
__ notl(out.AsRegisterPairHigh<Register>());
|
|
break;
|
|
|
|
default:
|
|
LOG(FATAL) << "Unimplemented type for not operation " << not_->GetResultType();
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitBooleanNot(HBooleanNot* bool_not) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(bool_not, LocationSummary::kNoCall);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetOut(Location::SameAsFirstInput());
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitBooleanNot(HBooleanNot* bool_not) {
|
|
LocationSummary* locations = bool_not->GetLocations();
|
|
Location in = locations->InAt(0);
|
|
Location out = locations->Out();
|
|
DCHECK(in.Equals(out));
|
|
__ xorl(out.AsRegister<Register>(), Immediate(1));
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitCompare(HCompare* compare) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(compare, LocationSummary::kNoCall);
|
|
switch (compare->InputAt(0)->GetType()) {
|
|
case Primitive::kPrimBoolean:
|
|
case Primitive::kPrimByte:
|
|
case Primitive::kPrimShort:
|
|
case Primitive::kPrimChar:
|
|
case Primitive::kPrimInt:
|
|
case Primitive::kPrimLong: {
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::Any());
|
|
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
|
|
break;
|
|
}
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimDouble: {
|
|
locations->SetInAt(0, Location::RequiresFpuRegister());
|
|
if (compare->InputAt(1)->IsX86LoadFromConstantTable()) {
|
|
DCHECK(compare->InputAt(1)->IsEmittedAtUseSite());
|
|
} else if (compare->InputAt(1)->IsConstant()) {
|
|
locations->SetInAt(1, Location::RequiresFpuRegister());
|
|
} else {
|
|
locations->SetInAt(1, Location::Any());
|
|
}
|
|
locations->SetOut(Location::RequiresRegister());
|
|
break;
|
|
}
|
|
default:
|
|
LOG(FATAL) << "Unexpected type for compare operation " << compare->InputAt(0)->GetType();
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitCompare(HCompare* compare) {
|
|
LocationSummary* locations = compare->GetLocations();
|
|
Register out = locations->Out().AsRegister<Register>();
|
|
Location left = locations->InAt(0);
|
|
Location right = locations->InAt(1);
|
|
|
|
NearLabel less, greater, done;
|
|
Condition less_cond = kLess;
|
|
|
|
switch (compare->InputAt(0)->GetType()) {
|
|
case Primitive::kPrimBoolean:
|
|
case Primitive::kPrimByte:
|
|
case Primitive::kPrimShort:
|
|
case Primitive::kPrimChar:
|
|
case Primitive::kPrimInt: {
|
|
GenerateIntCompare(left, right);
|
|
break;
|
|
}
|
|
case Primitive::kPrimLong: {
|
|
Register left_low = left.AsRegisterPairLow<Register>();
|
|
Register left_high = left.AsRegisterPairHigh<Register>();
|
|
int32_t val_low = 0;
|
|
int32_t val_high = 0;
|
|
bool right_is_const = false;
|
|
|
|
if (right.IsConstant()) {
|
|
DCHECK(right.GetConstant()->IsLongConstant());
|
|
right_is_const = true;
|
|
int64_t val = right.GetConstant()->AsLongConstant()->GetValue();
|
|
val_low = Low32Bits(val);
|
|
val_high = High32Bits(val);
|
|
}
|
|
|
|
if (right.IsRegisterPair()) {
|
|
__ cmpl(left_high, right.AsRegisterPairHigh<Register>());
|
|
} else if (right.IsDoubleStackSlot()) {
|
|
__ cmpl(left_high, Address(ESP, right.GetHighStackIndex(kX86WordSize)));
|
|
} else {
|
|
DCHECK(right_is_const) << right;
|
|
codegen_->Compare32BitValue(left_high, val_high);
|
|
}
|
|
__ j(kLess, &less); // Signed compare.
|
|
__ j(kGreater, &greater); // Signed compare.
|
|
if (right.IsRegisterPair()) {
|
|
__ cmpl(left_low, right.AsRegisterPairLow<Register>());
|
|
} else if (right.IsDoubleStackSlot()) {
|
|
__ cmpl(left_low, Address(ESP, right.GetStackIndex()));
|
|
} else {
|
|
DCHECK(right_is_const) << right;
|
|
codegen_->Compare32BitValue(left_low, val_low);
|
|
}
|
|
less_cond = kBelow; // for CF (unsigned).
|
|
break;
|
|
}
|
|
case Primitive::kPrimFloat: {
|
|
GenerateFPCompare(left, right, compare, false);
|
|
__ j(kUnordered, compare->IsGtBias() ? &greater : &less);
|
|
less_cond = kBelow; // for CF (floats).
|
|
break;
|
|
}
|
|
case Primitive::kPrimDouble: {
|
|
GenerateFPCompare(left, right, compare, true);
|
|
__ j(kUnordered, compare->IsGtBias() ? &greater : &less);
|
|
less_cond = kBelow; // for CF (floats).
|
|
break;
|
|
}
|
|
default:
|
|
LOG(FATAL) << "Unexpected type for compare operation " << compare->InputAt(0)->GetType();
|
|
}
|
|
|
|
__ movl(out, Immediate(0));
|
|
__ j(kEqual, &done);
|
|
__ j(less_cond, &less);
|
|
|
|
__ Bind(&greater);
|
|
__ movl(out, Immediate(1));
|
|
__ jmp(&done);
|
|
|
|
__ Bind(&less);
|
|
__ movl(out, Immediate(-1));
|
|
|
|
__ Bind(&done);
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitPhi(HPhi* instruction) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
|
|
for (size_t i = 0, e = instruction->InputCount(); i < e; ++i) {
|
|
locations->SetInAt(i, Location::Any());
|
|
}
|
|
locations->SetOut(Location::Any());
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) {
|
|
LOG(FATAL) << "Unreachable";
|
|
}
|
|
|
|
void CodeGeneratorX86::GenerateMemoryBarrier(MemBarrierKind kind) {
|
|
/*
|
|
* According to the JSR-133 Cookbook, for x86 only StoreLoad/AnyAny barriers need memory fence.
|
|
* All other barriers (LoadAny, AnyStore, StoreStore) are nops due to the x86 memory model.
|
|
* For those cases, all we need to ensure is that there is a scheduling barrier in place.
|
|
*/
|
|
switch (kind) {
|
|
case MemBarrierKind::kAnyAny: {
|
|
MemoryFence();
|
|
break;
|
|
}
|
|
case MemBarrierKind::kAnyStore:
|
|
case MemBarrierKind::kLoadAny:
|
|
case MemBarrierKind::kStoreStore: {
|
|
// nop
|
|
break;
|
|
}
|
|
default:
|
|
LOG(FATAL) << "Unexpected memory barrier " << kind;
|
|
}
|
|
}
|
|
|
|
HInvokeStaticOrDirect::DispatchInfo CodeGeneratorX86::GetSupportedInvokeStaticOrDirectDispatch(
|
|
const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
|
|
MethodReference target_method ATTRIBUTE_UNUSED) {
|
|
HInvokeStaticOrDirect::DispatchInfo dispatch_info = desired_dispatch_info;
|
|
|
|
// We disable pc-relative load when there is an irreducible loop, as the optimization
|
|
// is incompatible with it.
|
|
// TODO: Create as many X86ComputeBaseMethodAddress instructions
|
|
// as needed for methods with irreducible loops.
|
|
if (GetGraph()->HasIrreducibleLoops() &&
|
|
(dispatch_info.method_load_kind ==
|
|
HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative)) {
|
|
dispatch_info.method_load_kind = HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod;
|
|
}
|
|
switch (dispatch_info.code_ptr_location) {
|
|
case HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup:
|
|
case HInvokeStaticOrDirect::CodePtrLocation::kCallDirect:
|
|
// For direct code, we actually prefer to call via the code pointer from ArtMethod*.
|
|
// (Though the direct CALL ptr16:32 is available for consideration).
|
|
return HInvokeStaticOrDirect::DispatchInfo {
|
|
dispatch_info.method_load_kind,
|
|
HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod,
|
|
dispatch_info.method_load_data,
|
|
0u
|
|
};
|
|
default:
|
|
return dispatch_info;
|
|
}
|
|
}
|
|
|
|
Register CodeGeneratorX86::GetInvokeStaticOrDirectExtraParameter(HInvokeStaticOrDirect* invoke,
|
|
Register temp) {
|
|
DCHECK_EQ(invoke->InputCount(), invoke->GetNumberOfArguments() + 1u);
|
|
Location location = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
|
|
if (!invoke->GetLocations()->Intrinsified()) {
|
|
return location.AsRegister<Register>();
|
|
}
|
|
// For intrinsics we allow any location, so it may be on the stack.
|
|
if (!location.IsRegister()) {
|
|
__ movl(temp, Address(ESP, location.GetStackIndex()));
|
|
return temp;
|
|
}
|
|
// For register locations, check if the register was saved. If so, get it from the stack.
|
|
// Note: There is a chance that the register was saved but not overwritten, so we could
|
|
// save one load. However, since this is just an intrinsic slow path we prefer this
|
|
// simple and more robust approach rather that trying to determine if that's the case.
|
|
SlowPathCode* slow_path = GetCurrentSlowPath();
|
|
DCHECK(slow_path != nullptr); // For intrinsified invokes the call is emitted on the slow path.
|
|
if (slow_path->IsCoreRegisterSaved(location.AsRegister<Register>())) {
|
|
int stack_offset = slow_path->GetStackOffsetOfCoreRegister(location.AsRegister<Register>());
|
|
__ movl(temp, Address(ESP, stack_offset));
|
|
return temp;
|
|
}
|
|
return location.AsRegister<Register>();
|
|
}
|
|
|
|
void CodeGeneratorX86::GenerateStaticOrDirectCall(HInvokeStaticOrDirect* invoke, Location temp) {
|
|
Location callee_method = temp; // For all kinds except kRecursive, callee will be in temp.
|
|
switch (invoke->GetMethodLoadKind()) {
|
|
case HInvokeStaticOrDirect::MethodLoadKind::kStringInit:
|
|
// temp = thread->string_init_entrypoint
|
|
__ fs()->movl(temp.AsRegister<Register>(), Address::Absolute(invoke->GetStringInitOffset()));
|
|
break;
|
|
case HInvokeStaticOrDirect::MethodLoadKind::kRecursive:
|
|
callee_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
|
|
break;
|
|
case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress:
|
|
__ movl(temp.AsRegister<Register>(), Immediate(invoke->GetMethodAddress()));
|
|
break;
|
|
case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddressWithFixup:
|
|
__ movl(temp.AsRegister<Register>(), Immediate(/* placeholder */ 0));
|
|
method_patches_.emplace_back(invoke->GetTargetMethod());
|
|
__ Bind(&method_patches_.back().label); // Bind the label at the end of the "movl" insn.
|
|
break;
|
|
case HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative: {
|
|
Register base_reg = GetInvokeStaticOrDirectExtraParameter(invoke,
|
|
temp.AsRegister<Register>());
|
|
__ movl(temp.AsRegister<Register>(), Address(base_reg, kDummy32BitOffset));
|
|
// Bind a new fixup label at the end of the "movl" insn.
|
|
uint32_t offset = invoke->GetDexCacheArrayOffset();
|
|
__ Bind(NewPcRelativeDexCacheArrayPatch(*invoke->GetTargetMethod().dex_file, offset));
|
|
break;
|
|
}
|
|
case HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod: {
|
|
Location current_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
|
|
Register method_reg;
|
|
Register reg = temp.AsRegister<Register>();
|
|
if (current_method.IsRegister()) {
|
|
method_reg = current_method.AsRegister<Register>();
|
|
} else {
|
|
DCHECK(invoke->GetLocations()->Intrinsified());
|
|
DCHECK(!current_method.IsValid());
|
|
method_reg = reg;
|
|
__ movl(reg, Address(ESP, kCurrentMethodStackOffset));
|
|
}
|
|
// /* ArtMethod*[] */ temp = temp.ptr_sized_fields_->dex_cache_resolved_methods_;
|
|
__ movl(reg, Address(method_reg,
|
|
ArtMethod::DexCacheResolvedMethodsOffset(kX86PointerSize).Int32Value()));
|
|
// temp = temp[index_in_cache];
|
|
// Note: Don't use invoke->GetTargetMethod() as it may point to a different dex file.
|
|
uint32_t index_in_cache = invoke->GetDexMethodIndex();
|
|
__ movl(reg, Address(reg, CodeGenerator::GetCachePointerOffset(index_in_cache)));
|
|
break;
|
|
}
|
|
}
|
|
|
|
switch (invoke->GetCodePtrLocation()) {
|
|
case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf:
|
|
__ call(GetFrameEntryLabel());
|
|
break;
|
|
case HInvokeStaticOrDirect::CodePtrLocation::kCallPCRelative: {
|
|
relative_call_patches_.emplace_back(invoke->GetTargetMethod());
|
|
Label* label = &relative_call_patches_.back().label;
|
|
__ call(label); // Bind to the patch label, override at link time.
|
|
__ Bind(label); // Bind the label at the end of the "call" insn.
|
|
break;
|
|
}
|
|
case HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup:
|
|
case HInvokeStaticOrDirect::CodePtrLocation::kCallDirect:
|
|
// Filtered out by GetSupportedInvokeStaticOrDirectDispatch().
|
|
LOG(FATAL) << "Unsupported";
|
|
UNREACHABLE();
|
|
case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod:
|
|
// (callee_method + offset_of_quick_compiled_code)()
|
|
__ call(Address(callee_method.AsRegister<Register>(),
|
|
ArtMethod::EntryPointFromQuickCompiledCodeOffset(
|
|
kX86WordSize).Int32Value()));
|
|
break;
|
|
}
|
|
|
|
DCHECK(!IsLeafMethod());
|
|
}
|
|
|
|
void CodeGeneratorX86::GenerateVirtualCall(HInvokeVirtual* invoke, Location temp_in) {
|
|
Register temp = temp_in.AsRegister<Register>();
|
|
uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
|
|
invoke->GetVTableIndex(), kX86PointerSize).Uint32Value();
|
|
|
|
// Use the calling convention instead of the location of the receiver, as
|
|
// intrinsics may have put the receiver in a different register. In the intrinsics
|
|
// slow path, the arguments have been moved to the right place, so here we are
|
|
// guaranteed that the receiver is the first register of the calling convention.
|
|
InvokeDexCallingConvention calling_convention;
|
|
Register receiver = calling_convention.GetRegisterAt(0);
|
|
uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
|
|
// /* HeapReference<Class> */ temp = receiver->klass_
|
|
__ movl(temp, Address(receiver, class_offset));
|
|
MaybeRecordImplicitNullCheck(invoke);
|
|
// Instead of simply (possibly) unpoisoning `temp` here, we should
|
|
// emit a read barrier for the previous class reference load.
|
|
// However this is not required in practice, as this is an
|
|
// intermediate/temporary reference and because the current
|
|
// concurrent copying collector keeps the from-space memory
|
|
// intact/accessible until the end of the marking phase (the
|
|
// concurrent copying collector may not in the future).
|
|
__ MaybeUnpoisonHeapReference(temp);
|
|
// temp = temp->GetMethodAt(method_offset);
|
|
__ movl(temp, Address(temp, method_offset));
|
|
// call temp->GetEntryPoint();
|
|
__ call(Address(
|
|
temp, ArtMethod::EntryPointFromQuickCompiledCodeOffset(kX86WordSize).Int32Value()));
|
|
}
|
|
|
|
void CodeGeneratorX86::RecordSimplePatch() {
|
|
if (GetCompilerOptions().GetIncludePatchInformation()) {
|
|
simple_patches_.emplace_back();
|
|
__ Bind(&simple_patches_.back());
|
|
}
|
|
}
|
|
|
|
void CodeGeneratorX86::RecordStringPatch(HLoadString* load_string) {
|
|
string_patches_.emplace_back(load_string->GetDexFile(), load_string->GetStringIndex());
|
|
__ Bind(&string_patches_.back().label);
|
|
}
|
|
|
|
Label* CodeGeneratorX86::NewPcRelativeDexCacheArrayPatch(const DexFile& dex_file,
|
|
uint32_t element_offset) {
|
|
// Add the patch entry and bind its label at the end of the instruction.
|
|
pc_relative_dex_cache_patches_.emplace_back(dex_file, element_offset);
|
|
return &pc_relative_dex_cache_patches_.back().label;
|
|
}
|
|
|
|
void CodeGeneratorX86::EmitLinkerPatches(ArenaVector<LinkerPatch>* linker_patches) {
|
|
DCHECK(linker_patches->empty());
|
|
size_t size =
|
|
method_patches_.size() +
|
|
relative_call_patches_.size() +
|
|
pc_relative_dex_cache_patches_.size() +
|
|
simple_patches_.size() +
|
|
string_patches_.size();
|
|
linker_patches->reserve(size);
|
|
// The label points to the end of the "movl" insn but the literal offset for method
|
|
// patch needs to point to the embedded constant which occupies the last 4 bytes.
|
|
constexpr uint32_t kLabelPositionToLiteralOffsetAdjustment = 4u;
|
|
for (const MethodPatchInfo<Label>& info : method_patches_) {
|
|
uint32_t literal_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment;
|
|
linker_patches->push_back(LinkerPatch::MethodPatch(literal_offset,
|
|
info.target_method.dex_file,
|
|
info.target_method.dex_method_index));
|
|
}
|
|
for (const MethodPatchInfo<Label>& info : relative_call_patches_) {
|
|
uint32_t literal_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment;
|
|
linker_patches->push_back(LinkerPatch::RelativeCodePatch(literal_offset,
|
|
info.target_method.dex_file,
|
|
info.target_method.dex_method_index));
|
|
}
|
|
for (const PcRelativeDexCacheAccessInfo& info : pc_relative_dex_cache_patches_) {
|
|
uint32_t literal_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment;
|
|
linker_patches->push_back(LinkerPatch::DexCacheArrayPatch(literal_offset,
|
|
&info.target_dex_file,
|
|
GetMethodAddressOffset(),
|
|
info.element_offset));
|
|
}
|
|
for (const Label& label : simple_patches_) {
|
|
uint32_t literal_offset = label.Position() - kLabelPositionToLiteralOffsetAdjustment;
|
|
linker_patches->push_back(LinkerPatch::RecordPosition(literal_offset));
|
|
}
|
|
if (GetCompilerOptions().GetCompilePic()) {
|
|
for (const StringPatchInfo<Label>& info : string_patches_) {
|
|
uint32_t literal_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment;
|
|
linker_patches->push_back(LinkerPatch::RelativeStringPatch(literal_offset,
|
|
&info.dex_file,
|
|
GetMethodAddressOffset(),
|
|
info.string_index));
|
|
}
|
|
} else {
|
|
for (const StringPatchInfo<Label>& info : string_patches_) {
|
|
uint32_t literal_offset = info.label.Position() - kLabelPositionToLiteralOffsetAdjustment;
|
|
linker_patches->push_back(LinkerPatch::StringPatch(literal_offset,
|
|
&info.dex_file,
|
|
info.string_index));
|
|
}
|
|
}
|
|
}
|
|
|
|
void CodeGeneratorX86::MarkGCCard(Register temp,
|
|
Register card,
|
|
Register object,
|
|
Register value,
|
|
bool value_can_be_null) {
|
|
NearLabel is_null;
|
|
if (value_can_be_null) {
|
|
__ testl(value, value);
|
|
__ j(kEqual, &is_null);
|
|
}
|
|
__ fs()->movl(card, Address::Absolute(Thread::CardTableOffset<kX86WordSize>().Int32Value()));
|
|
__ movl(temp, object);
|
|
__ shrl(temp, Immediate(gc::accounting::CardTable::kCardShift));
|
|
__ movb(Address(temp, card, TIMES_1, 0),
|
|
X86ManagedRegister::FromCpuRegister(card).AsByteRegister());
|
|
if (value_can_be_null) {
|
|
__ Bind(&is_null);
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderX86::HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info) {
|
|
DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
|
|
|
|
bool object_field_get_with_read_barrier =
|
|
kEmitCompilerReadBarrier && (instruction->GetType() == Primitive::kPrimNot);
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(instruction,
|
|
kEmitCompilerReadBarrier ?
|
|
LocationSummary::kCallOnSlowPath :
|
|
LocationSummary::kNoCall);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
|
|
if (Primitive::IsFloatingPointType(instruction->GetType())) {
|
|
locations->SetOut(Location::RequiresFpuRegister());
|
|
} else {
|
|
// The output overlaps in case of long: we don't want the low move
|
|
// to overwrite the object's location. Likewise, in the case of
|
|
// an object field get with read barriers enabled, we do not want
|
|
// the move to overwrite the object's location, as we need it to emit
|
|
// the read barrier.
|
|
locations->SetOut(
|
|
Location::RequiresRegister(),
|
|
(object_field_get_with_read_barrier || instruction->GetType() == Primitive::kPrimLong) ?
|
|
Location::kOutputOverlap :
|
|
Location::kNoOutputOverlap);
|
|
}
|
|
|
|
if (field_info.IsVolatile() && (field_info.GetFieldType() == Primitive::kPrimLong)) {
|
|
// Long values can be loaded atomically into an XMM using movsd.
|
|
// So we use an XMM register as a temp to achieve atomicity (first
|
|
// load the temp into the XMM and then copy the XMM into the
|
|
// output, 32 bits at a time).
|
|
locations->AddTemp(Location::RequiresFpuRegister());
|
|
} else if (object_field_get_with_read_barrier && kUseBakerReadBarrier) {
|
|
// We need a temporary register for the read barrier marking slow
|
|
// path in CodeGeneratorX86::GenerateFieldLoadWithBakerReadBarrier.
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::HandleFieldGet(HInstruction* instruction,
|
|
const FieldInfo& field_info) {
|
|
DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
|
|
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
Location base_loc = locations->InAt(0);
|
|
Register base = base_loc.AsRegister<Register>();
|
|
Location out = locations->Out();
|
|
bool is_volatile = field_info.IsVolatile();
|
|
Primitive::Type field_type = field_info.GetFieldType();
|
|
uint32_t offset = field_info.GetFieldOffset().Uint32Value();
|
|
|
|
switch (field_type) {
|
|
case Primitive::kPrimBoolean: {
|
|
__ movzxb(out.AsRegister<Register>(), Address(base, offset));
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimByte: {
|
|
__ movsxb(out.AsRegister<Register>(), Address(base, offset));
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimShort: {
|
|
__ movsxw(out.AsRegister<Register>(), Address(base, offset));
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimChar: {
|
|
__ movzxw(out.AsRegister<Register>(), Address(base, offset));
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimInt:
|
|
__ movl(out.AsRegister<Register>(), Address(base, offset));
|
|
break;
|
|
|
|
case Primitive::kPrimNot: {
|
|
// /* HeapReference<Object> */ out = *(base + offset)
|
|
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
|
|
Location temp_loc = locations->GetTemp(0);
|
|
// Note that a potential implicit null check is handled in this
|
|
// CodeGeneratorX86::GenerateFieldLoadWithBakerReadBarrier call.
|
|
codegen_->GenerateFieldLoadWithBakerReadBarrier(
|
|
instruction, out, base, offset, temp_loc, /* needs_null_check */ true);
|
|
if (is_volatile) {
|
|
codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
|
|
}
|
|
} else {
|
|
__ movl(out.AsRegister<Register>(), Address(base, offset));
|
|
codegen_->MaybeRecordImplicitNullCheck(instruction);
|
|
if (is_volatile) {
|
|
codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
|
|
}
|
|
// If read barriers are enabled, emit read barriers other than
|
|
// Baker's using a slow path (and also unpoison the loaded
|
|
// reference, if heap poisoning is enabled).
|
|
codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, base_loc, offset);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimLong: {
|
|
if (is_volatile) {
|
|
XmmRegister temp = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
|
|
__ movsd(temp, Address(base, offset));
|
|
codegen_->MaybeRecordImplicitNullCheck(instruction);
|
|
__ movd(out.AsRegisterPairLow<Register>(), temp);
|
|
__ psrlq(temp, Immediate(32));
|
|
__ movd(out.AsRegisterPairHigh<Register>(), temp);
|
|
} else {
|
|
DCHECK_NE(base, out.AsRegisterPairLow<Register>());
|
|
__ movl(out.AsRegisterPairLow<Register>(), Address(base, offset));
|
|
codegen_->MaybeRecordImplicitNullCheck(instruction);
|
|
__ movl(out.AsRegisterPairHigh<Register>(), Address(base, kX86WordSize + offset));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimFloat: {
|
|
__ movss(out.AsFpuRegister<XmmRegister>(), Address(base, offset));
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimDouble: {
|
|
__ movsd(out.AsFpuRegister<XmmRegister>(), Address(base, offset));
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimVoid:
|
|
LOG(FATAL) << "Unreachable type " << field_type;
|
|
UNREACHABLE();
|
|
}
|
|
|
|
if (field_type == Primitive::kPrimNot || field_type == Primitive::kPrimLong) {
|
|
// Potential implicit null checks, in the case of reference or
|
|
// long fields, are handled in the previous switch statement.
|
|
} else {
|
|
codegen_->MaybeRecordImplicitNullCheck(instruction);
|
|
}
|
|
|
|
if (is_volatile) {
|
|
if (field_type == Primitive::kPrimNot) {
|
|
// Memory barriers, in the case of references, are also handled
|
|
// in the previous switch statement.
|
|
} else {
|
|
codegen_->GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
|
|
}
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderX86::HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info) {
|
|
DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
|
|
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
bool is_volatile = field_info.IsVolatile();
|
|
Primitive::Type field_type = field_info.GetFieldType();
|
|
bool is_byte_type = (field_type == Primitive::kPrimBoolean)
|
|
|| (field_type == Primitive::kPrimByte);
|
|
|
|
// The register allocator does not support multiple
|
|
// inputs that die at entry with one in a specific register.
|
|
if (is_byte_type) {
|
|
// Ensure the value is in a byte register.
|
|
locations->SetInAt(1, Location::RegisterLocation(EAX));
|
|
} else if (Primitive::IsFloatingPointType(field_type)) {
|
|
if (is_volatile && field_type == Primitive::kPrimDouble) {
|
|
// In order to satisfy the semantics of volatile, this must be a single instruction store.
|
|
locations->SetInAt(1, Location::RequiresFpuRegister());
|
|
} else {
|
|
locations->SetInAt(1, Location::FpuRegisterOrConstant(instruction->InputAt(1)));
|
|
}
|
|
} else if (is_volatile && field_type == Primitive::kPrimLong) {
|
|
// In order to satisfy the semantics of volatile, this must be a single instruction store.
|
|
locations->SetInAt(1, Location::RequiresRegister());
|
|
|
|
// 64bits value can be atomically written to an address with movsd and an XMM register.
|
|
// We need two XMM registers because there's no easier way to (bit) copy a register pair
|
|
// into a single XMM register (we copy each pair part into the XMMs and then interleave them).
|
|
// NB: We could make the register allocator understand fp_reg <-> core_reg moves but given the
|
|
// isolated cases when we need this it isn't worth adding the extra complexity.
|
|
locations->AddTemp(Location::RequiresFpuRegister());
|
|
locations->AddTemp(Location::RequiresFpuRegister());
|
|
} else {
|
|
locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
|
|
|
|
if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) {
|
|
// Temporary registers for the write barrier.
|
|
locations->AddTemp(Location::RequiresRegister()); // May be used for reference poisoning too.
|
|
// Ensure the card is in a byte register.
|
|
locations->AddTemp(Location::RegisterLocation(ECX));
|
|
}
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::HandleFieldSet(HInstruction* instruction,
|
|
const FieldInfo& field_info,
|
|
bool value_can_be_null) {
|
|
DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
|
|
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
Register base = locations->InAt(0).AsRegister<Register>();
|
|
Location value = locations->InAt(1);
|
|
bool is_volatile = field_info.IsVolatile();
|
|
Primitive::Type field_type = field_info.GetFieldType();
|
|
uint32_t offset = field_info.GetFieldOffset().Uint32Value();
|
|
bool needs_write_barrier =
|
|
CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1));
|
|
|
|
if (is_volatile) {
|
|
codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyStore);
|
|
}
|
|
|
|
bool maybe_record_implicit_null_check_done = false;
|
|
|
|
switch (field_type) {
|
|
case Primitive::kPrimBoolean:
|
|
case Primitive::kPrimByte: {
|
|
__ movb(Address(base, offset), value.AsRegister<ByteRegister>());
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimShort:
|
|
case Primitive::kPrimChar: {
|
|
if (value.IsConstant()) {
|
|
int16_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant());
|
|
__ movw(Address(base, offset), Immediate(v));
|
|
} else {
|
|
__ movw(Address(base, offset), value.AsRegister<Register>());
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimInt:
|
|
case Primitive::kPrimNot: {
|
|
if (kPoisonHeapReferences && needs_write_barrier) {
|
|
// Note that in the case where `value` is a null reference,
|
|
// we do not enter this block, as the reference does not
|
|
// need poisoning.
|
|
DCHECK_EQ(field_type, Primitive::kPrimNot);
|
|
Register temp = locations->GetTemp(0).AsRegister<Register>();
|
|
__ movl(temp, value.AsRegister<Register>());
|
|
__ PoisonHeapReference(temp);
|
|
__ movl(Address(base, offset), temp);
|
|
} else if (value.IsConstant()) {
|
|
int32_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant());
|
|
__ movl(Address(base, offset), Immediate(v));
|
|
} else {
|
|
DCHECK(value.IsRegister()) << value;
|
|
__ movl(Address(base, offset), value.AsRegister<Register>());
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimLong: {
|
|
if (is_volatile) {
|
|
XmmRegister temp1 = locations->GetTemp(0).AsFpuRegister<XmmRegister>();
|
|
XmmRegister temp2 = locations->GetTemp(1).AsFpuRegister<XmmRegister>();
|
|
__ movd(temp1, value.AsRegisterPairLow<Register>());
|
|
__ movd(temp2, value.AsRegisterPairHigh<Register>());
|
|
__ punpckldq(temp1, temp2);
|
|
__ movsd(Address(base, offset), temp1);
|
|
codegen_->MaybeRecordImplicitNullCheck(instruction);
|
|
} else if (value.IsConstant()) {
|
|
int64_t v = CodeGenerator::GetInt64ValueOf(value.GetConstant());
|
|
__ movl(Address(base, offset), Immediate(Low32Bits(v)));
|
|
codegen_->MaybeRecordImplicitNullCheck(instruction);
|
|
__ movl(Address(base, kX86WordSize + offset), Immediate(High32Bits(v)));
|
|
} else {
|
|
__ movl(Address(base, offset), value.AsRegisterPairLow<Register>());
|
|
codegen_->MaybeRecordImplicitNullCheck(instruction);
|
|
__ movl(Address(base, kX86WordSize + offset), value.AsRegisterPairHigh<Register>());
|
|
}
|
|
maybe_record_implicit_null_check_done = true;
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimFloat: {
|
|
if (value.IsConstant()) {
|
|
int32_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant());
|
|
__ movl(Address(base, offset), Immediate(v));
|
|
} else {
|
|
__ movss(Address(base, offset), value.AsFpuRegister<XmmRegister>());
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimDouble: {
|
|
if (value.IsConstant()) {
|
|
int64_t v = CodeGenerator::GetInt64ValueOf(value.GetConstant());
|
|
__ movl(Address(base, offset), Immediate(Low32Bits(v)));
|
|
codegen_->MaybeRecordImplicitNullCheck(instruction);
|
|
__ movl(Address(base, kX86WordSize + offset), Immediate(High32Bits(v)));
|
|
maybe_record_implicit_null_check_done = true;
|
|
} else {
|
|
__ movsd(Address(base, offset), value.AsFpuRegister<XmmRegister>());
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimVoid:
|
|
LOG(FATAL) << "Unreachable type " << field_type;
|
|
UNREACHABLE();
|
|
}
|
|
|
|
if (!maybe_record_implicit_null_check_done) {
|
|
codegen_->MaybeRecordImplicitNullCheck(instruction);
|
|
}
|
|
|
|
if (needs_write_barrier) {
|
|
Register temp = locations->GetTemp(0).AsRegister<Register>();
|
|
Register card = locations->GetTemp(1).AsRegister<Register>();
|
|
codegen_->MarkGCCard(temp, card, base, value.AsRegister<Register>(), value_can_be_null);
|
|
}
|
|
|
|
if (is_volatile) {
|
|
codegen_->GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitStaticFieldGet(HStaticFieldGet* instruction) {
|
|
HandleFieldGet(instruction, instruction->GetFieldInfo());
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitStaticFieldGet(HStaticFieldGet* instruction) {
|
|
HandleFieldGet(instruction, instruction->GetFieldInfo());
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitStaticFieldSet(HStaticFieldSet* instruction) {
|
|
HandleFieldSet(instruction, instruction->GetFieldInfo());
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitStaticFieldSet(HStaticFieldSet* instruction) {
|
|
HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
|
|
HandleFieldSet(instruction, instruction->GetFieldInfo());
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
|
|
HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
|
|
HandleFieldGet(instruction, instruction->GetFieldInfo());
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
|
|
HandleFieldGet(instruction, instruction->GetFieldInfo());
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitUnresolvedInstanceFieldGet(
|
|
HUnresolvedInstanceFieldGet* instruction) {
|
|
FieldAccessCallingConventionX86 calling_convention;
|
|
codegen_->CreateUnresolvedFieldLocationSummary(
|
|
instruction, instruction->GetFieldType(), calling_convention);
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitUnresolvedInstanceFieldGet(
|
|
HUnresolvedInstanceFieldGet* instruction) {
|
|
FieldAccessCallingConventionX86 calling_convention;
|
|
codegen_->GenerateUnresolvedFieldAccess(instruction,
|
|
instruction->GetFieldType(),
|
|
instruction->GetFieldIndex(),
|
|
instruction->GetDexPc(),
|
|
calling_convention);
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitUnresolvedInstanceFieldSet(
|
|
HUnresolvedInstanceFieldSet* instruction) {
|
|
FieldAccessCallingConventionX86 calling_convention;
|
|
codegen_->CreateUnresolvedFieldLocationSummary(
|
|
instruction, instruction->GetFieldType(), calling_convention);
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitUnresolvedInstanceFieldSet(
|
|
HUnresolvedInstanceFieldSet* instruction) {
|
|
FieldAccessCallingConventionX86 calling_convention;
|
|
codegen_->GenerateUnresolvedFieldAccess(instruction,
|
|
instruction->GetFieldType(),
|
|
instruction->GetFieldIndex(),
|
|
instruction->GetDexPc(),
|
|
calling_convention);
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitUnresolvedStaticFieldGet(
|
|
HUnresolvedStaticFieldGet* instruction) {
|
|
FieldAccessCallingConventionX86 calling_convention;
|
|
codegen_->CreateUnresolvedFieldLocationSummary(
|
|
instruction, instruction->GetFieldType(), calling_convention);
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitUnresolvedStaticFieldGet(
|
|
HUnresolvedStaticFieldGet* instruction) {
|
|
FieldAccessCallingConventionX86 calling_convention;
|
|
codegen_->GenerateUnresolvedFieldAccess(instruction,
|
|
instruction->GetFieldType(),
|
|
instruction->GetFieldIndex(),
|
|
instruction->GetDexPc(),
|
|
calling_convention);
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitUnresolvedStaticFieldSet(
|
|
HUnresolvedStaticFieldSet* instruction) {
|
|
FieldAccessCallingConventionX86 calling_convention;
|
|
codegen_->CreateUnresolvedFieldLocationSummary(
|
|
instruction, instruction->GetFieldType(), calling_convention);
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitUnresolvedStaticFieldSet(
|
|
HUnresolvedStaticFieldSet* instruction) {
|
|
FieldAccessCallingConventionX86 calling_convention;
|
|
codegen_->GenerateUnresolvedFieldAccess(instruction,
|
|
instruction->GetFieldType(),
|
|
instruction->GetFieldIndex(),
|
|
instruction->GetDexPc(),
|
|
calling_convention);
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitNullCheck(HNullCheck* instruction) {
|
|
LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock()
|
|
? LocationSummary::kCallOnSlowPath
|
|
: LocationSummary::kNoCall;
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
|
|
Location loc = codegen_->IsImplicitNullCheckAllowed(instruction)
|
|
? Location::RequiresRegister()
|
|
: Location::Any();
|
|
locations->SetInAt(0, loc);
|
|
if (instruction->HasUses()) {
|
|
locations->SetOut(Location::SameAsFirstInput());
|
|
}
|
|
}
|
|
|
|
void CodeGeneratorX86::GenerateImplicitNullCheck(HNullCheck* instruction) {
|
|
if (CanMoveNullCheckToUser(instruction)) {
|
|
return;
|
|
}
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
Location obj = locations->InAt(0);
|
|
|
|
__ testl(EAX, Address(obj.AsRegister<Register>(), 0));
|
|
RecordPcInfo(instruction, instruction->GetDexPc());
|
|
}
|
|
|
|
void CodeGeneratorX86::GenerateExplicitNullCheck(HNullCheck* instruction) {
|
|
SlowPathCode* slow_path = new (GetGraph()->GetArena()) NullCheckSlowPathX86(instruction);
|
|
AddSlowPath(slow_path);
|
|
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
Location obj = locations->InAt(0);
|
|
|
|
if (obj.IsRegister()) {
|
|
__ testl(obj.AsRegister<Register>(), obj.AsRegister<Register>());
|
|
} else if (obj.IsStackSlot()) {
|
|
__ cmpl(Address(ESP, obj.GetStackIndex()), Immediate(0));
|
|
} else {
|
|
DCHECK(obj.IsConstant()) << obj;
|
|
DCHECK(obj.GetConstant()->IsNullConstant());
|
|
__ jmp(slow_path->GetEntryLabel());
|
|
return;
|
|
}
|
|
__ j(kEqual, slow_path->GetEntryLabel());
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitNullCheck(HNullCheck* instruction) {
|
|
codegen_->GenerateNullCheck(instruction);
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitArrayGet(HArrayGet* instruction) {
|
|
bool object_array_get_with_read_barrier =
|
|
kEmitCompilerReadBarrier && (instruction->GetType() == Primitive::kPrimNot);
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(instruction,
|
|
object_array_get_with_read_barrier ?
|
|
LocationSummary::kCallOnSlowPath :
|
|
LocationSummary::kNoCall);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
|
|
if (Primitive::IsFloatingPointType(instruction->GetType())) {
|
|
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
|
|
} else {
|
|
// The output overlaps in case of long: we don't want the low move
|
|
// to overwrite the array's location. Likewise, in the case of an
|
|
// object array get with read barriers enabled, we do not want the
|
|
// move to overwrite the array's location, as we need it to emit
|
|
// the read barrier.
|
|
locations->SetOut(
|
|
Location::RequiresRegister(),
|
|
(instruction->GetType() == Primitive::kPrimLong || object_array_get_with_read_barrier) ?
|
|
Location::kOutputOverlap :
|
|
Location::kNoOutputOverlap);
|
|
}
|
|
// We need a temporary register for the read barrier marking slow
|
|
// path in CodeGeneratorX86::GenerateArrayLoadWithBakerReadBarrier.
|
|
if (object_array_get_with_read_barrier && kUseBakerReadBarrier) {
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitArrayGet(HArrayGet* instruction) {
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
Location obj_loc = locations->InAt(0);
|
|
Register obj = obj_loc.AsRegister<Register>();
|
|
Location index = locations->InAt(1);
|
|
Location out_loc = locations->Out();
|
|
|
|
Primitive::Type type = instruction->GetType();
|
|
switch (type) {
|
|
case Primitive::kPrimBoolean: {
|
|
uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint8_t)).Uint32Value();
|
|
Register out = out_loc.AsRegister<Register>();
|
|
if (index.IsConstant()) {
|
|
__ movzxb(out, Address(obj,
|
|
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset));
|
|
} else {
|
|
__ movzxb(out, Address(obj, index.AsRegister<Register>(), TIMES_1, data_offset));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimByte: {
|
|
uint32_t data_offset = mirror::Array::DataOffset(sizeof(int8_t)).Uint32Value();
|
|
Register out = out_loc.AsRegister<Register>();
|
|
if (index.IsConstant()) {
|
|
__ movsxb(out, Address(obj,
|
|
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset));
|
|
} else {
|
|
__ movsxb(out, Address(obj, index.AsRegister<Register>(), TIMES_1, data_offset));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimShort: {
|
|
uint32_t data_offset = mirror::Array::DataOffset(sizeof(int16_t)).Uint32Value();
|
|
Register out = out_loc.AsRegister<Register>();
|
|
if (index.IsConstant()) {
|
|
__ movsxw(out, Address(obj,
|
|
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset));
|
|
} else {
|
|
__ movsxw(out, Address(obj, index.AsRegister<Register>(), TIMES_2, data_offset));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimChar: {
|
|
uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Uint32Value();
|
|
Register out = out_loc.AsRegister<Register>();
|
|
if (index.IsConstant()) {
|
|
__ movzxw(out, Address(obj,
|
|
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset));
|
|
} else {
|
|
__ movzxw(out, Address(obj, index.AsRegister<Register>(), TIMES_2, data_offset));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimInt: {
|
|
uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
|
|
Register out = out_loc.AsRegister<Register>();
|
|
if (index.IsConstant()) {
|
|
__ movl(out, Address(obj,
|
|
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset));
|
|
} else {
|
|
__ movl(out, Address(obj, index.AsRegister<Register>(), TIMES_4, data_offset));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimNot: {
|
|
static_assert(
|
|
sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
|
|
"art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
|
|
uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
|
|
// /* HeapReference<Object> */ out =
|
|
// *(obj + data_offset + index * sizeof(HeapReference<Object>))
|
|
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
|
|
Location temp = locations->GetTemp(0);
|
|
// Note that a potential implicit null check is handled in this
|
|
// CodeGeneratorX86::GenerateArrayLoadWithBakerReadBarrier call.
|
|
codegen_->GenerateArrayLoadWithBakerReadBarrier(
|
|
instruction, out_loc, obj, data_offset, index, temp, /* needs_null_check */ true);
|
|
} else {
|
|
Register out = out_loc.AsRegister<Register>();
|
|
if (index.IsConstant()) {
|
|
uint32_t offset =
|
|
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
|
|
__ movl(out, Address(obj, offset));
|
|
codegen_->MaybeRecordImplicitNullCheck(instruction);
|
|
// If read barriers are enabled, emit read barriers other than
|
|
// Baker's using a slow path (and also unpoison the loaded
|
|
// reference, if heap poisoning is enabled).
|
|
codegen_->MaybeGenerateReadBarrierSlow(instruction, out_loc, out_loc, obj_loc, offset);
|
|
} else {
|
|
__ movl(out, Address(obj, index.AsRegister<Register>(), TIMES_4, data_offset));
|
|
codegen_->MaybeRecordImplicitNullCheck(instruction);
|
|
// If read barriers are enabled, emit read barriers other than
|
|
// Baker's using a slow path (and also unpoison the loaded
|
|
// reference, if heap poisoning is enabled).
|
|
codegen_->MaybeGenerateReadBarrierSlow(
|
|
instruction, out_loc, out_loc, obj_loc, data_offset, index);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimLong: {
|
|
uint32_t data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Uint32Value();
|
|
DCHECK_NE(obj, out_loc.AsRegisterPairLow<Register>());
|
|
if (index.IsConstant()) {
|
|
size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
|
|
__ movl(out_loc.AsRegisterPairLow<Register>(), Address(obj, offset));
|
|
codegen_->MaybeRecordImplicitNullCheck(instruction);
|
|
__ movl(out_loc.AsRegisterPairHigh<Register>(), Address(obj, offset + kX86WordSize));
|
|
} else {
|
|
__ movl(out_loc.AsRegisterPairLow<Register>(),
|
|
Address(obj, index.AsRegister<Register>(), TIMES_8, data_offset));
|
|
codegen_->MaybeRecordImplicitNullCheck(instruction);
|
|
__ movl(out_loc.AsRegisterPairHigh<Register>(),
|
|
Address(obj, index.AsRegister<Register>(), TIMES_8, data_offset + kX86WordSize));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimFloat: {
|
|
uint32_t data_offset = mirror::Array::DataOffset(sizeof(float)).Uint32Value();
|
|
XmmRegister out = out_loc.AsFpuRegister<XmmRegister>();
|
|
if (index.IsConstant()) {
|
|
__ movss(out, Address(obj,
|
|
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset));
|
|
} else {
|
|
__ movss(out, Address(obj, index.AsRegister<Register>(), TIMES_4, data_offset));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimDouble: {
|
|
uint32_t data_offset = mirror::Array::DataOffset(sizeof(double)).Uint32Value();
|
|
XmmRegister out = out_loc.AsFpuRegister<XmmRegister>();
|
|
if (index.IsConstant()) {
|
|
__ movsd(out, Address(obj,
|
|
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset));
|
|
} else {
|
|
__ movsd(out, Address(obj, index.AsRegister<Register>(), TIMES_8, data_offset));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimVoid:
|
|
LOG(FATAL) << "Unreachable type " << type;
|
|
UNREACHABLE();
|
|
}
|
|
|
|
if (type == Primitive::kPrimNot || type == Primitive::kPrimLong) {
|
|
// Potential implicit null checks, in the case of reference or
|
|
// long arrays, are handled in the previous switch statement.
|
|
} else {
|
|
codegen_->MaybeRecordImplicitNullCheck(instruction);
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitArraySet(HArraySet* instruction) {
|
|
Primitive::Type value_type = instruction->GetComponentType();
|
|
|
|
bool needs_write_barrier =
|
|
CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
|
|
bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck();
|
|
bool object_array_set_with_read_barrier =
|
|
kEmitCompilerReadBarrier && (value_type == Primitive::kPrimNot);
|
|
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(
|
|
instruction,
|
|
(may_need_runtime_call_for_type_check || object_array_set_with_read_barrier) ?
|
|
LocationSummary::kCallOnSlowPath :
|
|
LocationSummary::kNoCall);
|
|
|
|
bool is_byte_type = (value_type == Primitive::kPrimBoolean)
|
|
|| (value_type == Primitive::kPrimByte);
|
|
// We need the inputs to be different than the output in case of long operation.
|
|
// In case of a byte operation, the register allocator does not support multiple
|
|
// inputs that die at entry with one in a specific register.
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
|
|
if (is_byte_type) {
|
|
// Ensure the value is in a byte register.
|
|
locations->SetInAt(2, Location::ByteRegisterOrConstant(EAX, instruction->InputAt(2)));
|
|
} else if (Primitive::IsFloatingPointType(value_type)) {
|
|
locations->SetInAt(2, Location::FpuRegisterOrConstant(instruction->InputAt(2)));
|
|
} else {
|
|
locations->SetInAt(2, Location::RegisterOrConstant(instruction->InputAt(2)));
|
|
}
|
|
if (needs_write_barrier) {
|
|
// Temporary registers for the write barrier.
|
|
locations->AddTemp(Location::RequiresRegister()); // Possibly used for ref. poisoning too.
|
|
// Ensure the card is in a byte register.
|
|
locations->AddTemp(Location::RegisterLocation(ECX));
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitArraySet(HArraySet* instruction) {
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
Location array_loc = locations->InAt(0);
|
|
Register array = array_loc.AsRegister<Register>();
|
|
Location index = locations->InAt(1);
|
|
Location value = locations->InAt(2);
|
|
Primitive::Type value_type = instruction->GetComponentType();
|
|
uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
|
|
uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
|
|
uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
|
|
bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck();
|
|
bool needs_write_barrier =
|
|
CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
|
|
|
|
switch (value_type) {
|
|
case Primitive::kPrimBoolean:
|
|
case Primitive::kPrimByte: {
|
|
uint32_t offset = mirror::Array::DataOffset(sizeof(uint8_t)).Uint32Value();
|
|
Address address = index.IsConstant()
|
|
? Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + offset)
|
|
: Address(array, index.AsRegister<Register>(), TIMES_1, offset);
|
|
if (value.IsRegister()) {
|
|
__ movb(address, value.AsRegister<ByteRegister>());
|
|
} else {
|
|
__ movb(address, Immediate(value.GetConstant()->AsIntConstant()->GetValue()));
|
|
}
|
|
codegen_->MaybeRecordImplicitNullCheck(instruction);
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimShort:
|
|
case Primitive::kPrimChar: {
|
|
uint32_t offset = mirror::Array::DataOffset(sizeof(uint16_t)).Uint32Value();
|
|
Address address = index.IsConstant()
|
|
? Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + offset)
|
|
: Address(array, index.AsRegister<Register>(), TIMES_2, offset);
|
|
if (value.IsRegister()) {
|
|
__ movw(address, value.AsRegister<Register>());
|
|
} else {
|
|
__ movw(address, Immediate(value.GetConstant()->AsIntConstant()->GetValue()));
|
|
}
|
|
codegen_->MaybeRecordImplicitNullCheck(instruction);
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimNot: {
|
|
uint32_t offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
|
|
Address address = index.IsConstant()
|
|
? Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + offset)
|
|
: Address(array, index.AsRegister<Register>(), TIMES_4, offset);
|
|
|
|
if (!value.IsRegister()) {
|
|
// Just setting null.
|
|
DCHECK(instruction->InputAt(2)->IsNullConstant());
|
|
DCHECK(value.IsConstant()) << value;
|
|
__ movl(address, Immediate(0));
|
|
codegen_->MaybeRecordImplicitNullCheck(instruction);
|
|
DCHECK(!needs_write_barrier);
|
|
DCHECK(!may_need_runtime_call_for_type_check);
|
|
break;
|
|
}
|
|
|
|
DCHECK(needs_write_barrier);
|
|
Register register_value = value.AsRegister<Register>();
|
|
NearLabel done, not_null, do_put;
|
|
SlowPathCode* slow_path = nullptr;
|
|
Register temp = locations->GetTemp(0).AsRegister<Register>();
|
|
if (may_need_runtime_call_for_type_check) {
|
|
slow_path = new (GetGraph()->GetArena()) ArraySetSlowPathX86(instruction);
|
|
codegen_->AddSlowPath(slow_path);
|
|
if (instruction->GetValueCanBeNull()) {
|
|
__ testl(register_value, register_value);
|
|
__ j(kNotEqual, ¬_null);
|
|
__ movl(address, Immediate(0));
|
|
codegen_->MaybeRecordImplicitNullCheck(instruction);
|
|
__ jmp(&done);
|
|
__ Bind(¬_null);
|
|
}
|
|
|
|
if (kEmitCompilerReadBarrier) {
|
|
// When read barriers are enabled, the type checking
|
|
// instrumentation requires two read barriers:
|
|
//
|
|
// __ movl(temp2, temp);
|
|
// // /* HeapReference<Class> */ temp = temp->component_type_
|
|
// __ movl(temp, Address(temp, component_offset));
|
|
// codegen_->GenerateReadBarrierSlow(
|
|
// instruction, temp_loc, temp_loc, temp2_loc, component_offset);
|
|
//
|
|
// // /* HeapReference<Class> */ temp2 = register_value->klass_
|
|
// __ movl(temp2, Address(register_value, class_offset));
|
|
// codegen_->GenerateReadBarrierSlow(
|
|
// instruction, temp2_loc, temp2_loc, value, class_offset, temp_loc);
|
|
//
|
|
// __ cmpl(temp, temp2);
|
|
//
|
|
// However, the second read barrier may trash `temp`, as it
|
|
// is a temporary register, and as such would not be saved
|
|
// along with live registers before calling the runtime (nor
|
|
// restored afterwards). So in this case, we bail out and
|
|
// delegate the work to the array set slow path.
|
|
//
|
|
// TODO: Extend the register allocator to support a new
|
|
// "(locally) live temp" location so as to avoid always
|
|
// going into the slow path when read barriers are enabled.
|
|
__ jmp(slow_path->GetEntryLabel());
|
|
} else {
|
|
// /* HeapReference<Class> */ temp = array->klass_
|
|
__ movl(temp, Address(array, class_offset));
|
|
codegen_->MaybeRecordImplicitNullCheck(instruction);
|
|
__ MaybeUnpoisonHeapReference(temp);
|
|
|
|
// /* HeapReference<Class> */ temp = temp->component_type_
|
|
__ movl(temp, Address(temp, component_offset));
|
|
// If heap poisoning is enabled, no need to unpoison `temp`
|
|
// nor the object reference in `register_value->klass`, as
|
|
// we are comparing two poisoned references.
|
|
__ cmpl(temp, Address(register_value, class_offset));
|
|
|
|
if (instruction->StaticTypeOfArrayIsObjectArray()) {
|
|
__ j(kEqual, &do_put);
|
|
// If heap poisoning is enabled, the `temp` reference has
|
|
// not been unpoisoned yet; unpoison it now.
|
|
__ MaybeUnpoisonHeapReference(temp);
|
|
|
|
// /* HeapReference<Class> */ temp = temp->super_class_
|
|
__ movl(temp, Address(temp, super_offset));
|
|
// If heap poisoning is enabled, no need to unpoison
|
|
// `temp`, as we are comparing against null below.
|
|
__ testl(temp, temp);
|
|
__ j(kNotEqual, slow_path->GetEntryLabel());
|
|
__ Bind(&do_put);
|
|
} else {
|
|
__ j(kNotEqual, slow_path->GetEntryLabel());
|
|
}
|
|
}
|
|
}
|
|
|
|
if (kPoisonHeapReferences) {
|
|
__ movl(temp, register_value);
|
|
__ PoisonHeapReference(temp);
|
|
__ movl(address, temp);
|
|
} else {
|
|
__ movl(address, register_value);
|
|
}
|
|
if (!may_need_runtime_call_for_type_check) {
|
|
codegen_->MaybeRecordImplicitNullCheck(instruction);
|
|
}
|
|
|
|
Register card = locations->GetTemp(1).AsRegister<Register>();
|
|
codegen_->MarkGCCard(
|
|
temp, card, array, value.AsRegister<Register>(), instruction->GetValueCanBeNull());
|
|
__ Bind(&done);
|
|
|
|
if (slow_path != nullptr) {
|
|
__ Bind(slow_path->GetExitLabel());
|
|
}
|
|
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimInt: {
|
|
uint32_t offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
|
|
Address address = index.IsConstant()
|
|
? Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + offset)
|
|
: Address(array, index.AsRegister<Register>(), TIMES_4, offset);
|
|
if (value.IsRegister()) {
|
|
__ movl(address, value.AsRegister<Register>());
|
|
} else {
|
|
DCHECK(value.IsConstant()) << value;
|
|
int32_t v = CodeGenerator::GetInt32ValueOf(value.GetConstant());
|
|
__ movl(address, Immediate(v));
|
|
}
|
|
codegen_->MaybeRecordImplicitNullCheck(instruction);
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimLong: {
|
|
uint32_t data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Uint32Value();
|
|
if (index.IsConstant()) {
|
|
size_t offset = (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
|
|
if (value.IsRegisterPair()) {
|
|
__ movl(Address(array, offset), value.AsRegisterPairLow<Register>());
|
|
codegen_->MaybeRecordImplicitNullCheck(instruction);
|
|
__ movl(Address(array, offset + kX86WordSize), value.AsRegisterPairHigh<Register>());
|
|
} else {
|
|
DCHECK(value.IsConstant());
|
|
int64_t val = value.GetConstant()->AsLongConstant()->GetValue();
|
|
__ movl(Address(array, offset), Immediate(Low32Bits(val)));
|
|
codegen_->MaybeRecordImplicitNullCheck(instruction);
|
|
__ movl(Address(array, offset + kX86WordSize), Immediate(High32Bits(val)));
|
|
}
|
|
} else {
|
|
if (value.IsRegisterPair()) {
|
|
__ movl(Address(array, index.AsRegister<Register>(), TIMES_8, data_offset),
|
|
value.AsRegisterPairLow<Register>());
|
|
codegen_->MaybeRecordImplicitNullCheck(instruction);
|
|
__ movl(Address(array, index.AsRegister<Register>(), TIMES_8, data_offset + kX86WordSize),
|
|
value.AsRegisterPairHigh<Register>());
|
|
} else {
|
|
DCHECK(value.IsConstant());
|
|
int64_t val = value.GetConstant()->AsLongConstant()->GetValue();
|
|
__ movl(Address(array, index.AsRegister<Register>(), TIMES_8, data_offset),
|
|
Immediate(Low32Bits(val)));
|
|
codegen_->MaybeRecordImplicitNullCheck(instruction);
|
|
__ movl(Address(array, index.AsRegister<Register>(), TIMES_8, data_offset + kX86WordSize),
|
|
Immediate(High32Bits(val)));
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimFloat: {
|
|
uint32_t offset = mirror::Array::DataOffset(sizeof(float)).Uint32Value();
|
|
Address address = index.IsConstant()
|
|
? Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + offset)
|
|
: Address(array, index.AsRegister<Register>(), TIMES_4, offset);
|
|
if (value.IsFpuRegister()) {
|
|
__ movss(address, value.AsFpuRegister<XmmRegister>());
|
|
} else {
|
|
DCHECK(value.IsConstant());
|
|
int32_t v = bit_cast<int32_t, float>(value.GetConstant()->AsFloatConstant()->GetValue());
|
|
__ movl(address, Immediate(v));
|
|
}
|
|
codegen_->MaybeRecordImplicitNullCheck(instruction);
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimDouble: {
|
|
uint32_t offset = mirror::Array::DataOffset(sizeof(double)).Uint32Value();
|
|
Address address = index.IsConstant()
|
|
? Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + offset)
|
|
: Address(array, index.AsRegister<Register>(), TIMES_8, offset);
|
|
if (value.IsFpuRegister()) {
|
|
__ movsd(address, value.AsFpuRegister<XmmRegister>());
|
|
} else {
|
|
DCHECK(value.IsConstant());
|
|
Address address_hi = index.IsConstant() ?
|
|
Address(array, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) +
|
|
offset + kX86WordSize) :
|
|
Address(array, index.AsRegister<Register>(), TIMES_8, offset + kX86WordSize);
|
|
int64_t v = bit_cast<int64_t, double>(value.GetConstant()->AsDoubleConstant()->GetValue());
|
|
__ movl(address, Immediate(Low32Bits(v)));
|
|
codegen_->MaybeRecordImplicitNullCheck(instruction);
|
|
__ movl(address_hi, Immediate(High32Bits(v)));
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimVoid:
|
|
LOG(FATAL) << "Unreachable type " << instruction->GetType();
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitArrayLength(HArrayLength* instruction) {
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitArrayLength(HArrayLength* instruction) {
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
uint32_t offset = mirror::Array::LengthOffset().Uint32Value();
|
|
Register obj = locations->InAt(0).AsRegister<Register>();
|
|
Register out = locations->Out().AsRegister<Register>();
|
|
__ movl(out, Address(obj, offset));
|
|
codegen_->MaybeRecordImplicitNullCheck(instruction);
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitBoundsCheck(HBoundsCheck* instruction) {
|
|
LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock()
|
|
? LocationSummary::kCallOnSlowPath
|
|
: LocationSummary::kNoCall;
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
|
|
locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
|
|
locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
|
|
if (instruction->HasUses()) {
|
|
locations->SetOut(Location::SameAsFirstInput());
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitBoundsCheck(HBoundsCheck* instruction) {
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
Location index_loc = locations->InAt(0);
|
|
Location length_loc = locations->InAt(1);
|
|
SlowPathCode* slow_path =
|
|
new (GetGraph()->GetArena()) BoundsCheckSlowPathX86(instruction);
|
|
|
|
if (length_loc.IsConstant()) {
|
|
int32_t length = CodeGenerator::GetInt32ValueOf(length_loc.GetConstant());
|
|
if (index_loc.IsConstant()) {
|
|
// BCE will remove the bounds check if we are guarenteed to pass.
|
|
int32_t index = CodeGenerator::GetInt32ValueOf(index_loc.GetConstant());
|
|
if (index < 0 || index >= length) {
|
|
codegen_->AddSlowPath(slow_path);
|
|
__ jmp(slow_path->GetEntryLabel());
|
|
} else {
|
|
// Some optimization after BCE may have generated this, and we should not
|
|
// generate a bounds check if it is a valid range.
|
|
}
|
|
return;
|
|
}
|
|
|
|
// We have to reverse the jump condition because the length is the constant.
|
|
Register index_reg = index_loc.AsRegister<Register>();
|
|
__ cmpl(index_reg, Immediate(length));
|
|
codegen_->AddSlowPath(slow_path);
|
|
__ j(kAboveEqual, slow_path->GetEntryLabel());
|
|
} else {
|
|
Register length = length_loc.AsRegister<Register>();
|
|
if (index_loc.IsConstant()) {
|
|
int32_t value = CodeGenerator::GetInt32ValueOf(index_loc.GetConstant());
|
|
__ cmpl(length, Immediate(value));
|
|
} else {
|
|
__ cmpl(length, index_loc.AsRegister<Register>());
|
|
}
|
|
codegen_->AddSlowPath(slow_path);
|
|
__ j(kBelowEqual, slow_path->GetEntryLabel());
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) {
|
|
LOG(FATAL) << "Unreachable";
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitParallelMove(HParallelMove* instruction) {
|
|
codegen_->GetMoveResolver()->EmitNativeCode(instruction);
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitSuspendCheck(HSuspendCheck* instruction) {
|
|
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnSlowPath);
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitSuspendCheck(HSuspendCheck* instruction) {
|
|
HBasicBlock* block = instruction->GetBlock();
|
|
if (block->GetLoopInformation() != nullptr) {
|
|
DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction);
|
|
// The back edge will generate the suspend check.
|
|
return;
|
|
}
|
|
if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) {
|
|
// The goto will generate the suspend check.
|
|
return;
|
|
}
|
|
GenerateSuspendCheck(instruction, nullptr);
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::GenerateSuspendCheck(HSuspendCheck* instruction,
|
|
HBasicBlock* successor) {
|
|
SuspendCheckSlowPathX86* slow_path =
|
|
down_cast<SuspendCheckSlowPathX86*>(instruction->GetSlowPath());
|
|
if (slow_path == nullptr) {
|
|
slow_path = new (GetGraph()->GetArena()) SuspendCheckSlowPathX86(instruction, successor);
|
|
instruction->SetSlowPath(slow_path);
|
|
codegen_->AddSlowPath(slow_path);
|
|
if (successor != nullptr) {
|
|
DCHECK(successor->IsLoopHeader());
|
|
codegen_->ClearSpillSlotsFromLoopPhisInStackMap(instruction);
|
|
}
|
|
} else {
|
|
DCHECK_EQ(slow_path->GetSuccessor(), successor);
|
|
}
|
|
|
|
__ fs()->cmpw(Address::Absolute(Thread::ThreadFlagsOffset<kX86WordSize>().Int32Value()),
|
|
Immediate(0));
|
|
if (successor == nullptr) {
|
|
__ j(kNotEqual, slow_path->GetEntryLabel());
|
|
__ Bind(slow_path->GetReturnLabel());
|
|
} else {
|
|
__ j(kEqual, codegen_->GetLabelOf(successor));
|
|
__ jmp(slow_path->GetEntryLabel());
|
|
}
|
|
}
|
|
|
|
X86Assembler* ParallelMoveResolverX86::GetAssembler() const {
|
|
return codegen_->GetAssembler();
|
|
}
|
|
|
|
void ParallelMoveResolverX86::MoveMemoryToMemory32(int dst, int src) {
|
|
ScratchRegisterScope ensure_scratch(
|
|
this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters());
|
|
Register temp_reg = static_cast<Register>(ensure_scratch.GetRegister());
|
|
int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0;
|
|
__ movl(temp_reg, Address(ESP, src + stack_offset));
|
|
__ movl(Address(ESP, dst + stack_offset), temp_reg);
|
|
}
|
|
|
|
void ParallelMoveResolverX86::MoveMemoryToMemory64(int dst, int src) {
|
|
ScratchRegisterScope ensure_scratch(
|
|
this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters());
|
|
Register temp_reg = static_cast<Register>(ensure_scratch.GetRegister());
|
|
int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0;
|
|
__ movl(temp_reg, Address(ESP, src + stack_offset));
|
|
__ movl(Address(ESP, dst + stack_offset), temp_reg);
|
|
__ movl(temp_reg, Address(ESP, src + stack_offset + kX86WordSize));
|
|
__ movl(Address(ESP, dst + stack_offset + kX86WordSize), temp_reg);
|
|
}
|
|
|
|
void ParallelMoveResolverX86::EmitMove(size_t index) {
|
|
MoveOperands* move = moves_[index];
|
|
Location source = move->GetSource();
|
|
Location destination = move->GetDestination();
|
|
|
|
if (source.IsRegister()) {
|
|
if (destination.IsRegister()) {
|
|
__ movl(destination.AsRegister<Register>(), source.AsRegister<Register>());
|
|
} else if (destination.IsFpuRegister()) {
|
|
__ movd(destination.AsFpuRegister<XmmRegister>(), source.AsRegister<Register>());
|
|
} else {
|
|
DCHECK(destination.IsStackSlot());
|
|
__ movl(Address(ESP, destination.GetStackIndex()), source.AsRegister<Register>());
|
|
}
|
|
} else if (source.IsRegisterPair()) {
|
|
size_t elem_size = Primitive::ComponentSize(Primitive::kPrimInt);
|
|
// Create stack space for 2 elements.
|
|
__ subl(ESP, Immediate(2 * elem_size));
|
|
__ movl(Address(ESP, 0), source.AsRegisterPairLow<Register>());
|
|
__ movl(Address(ESP, elem_size), source.AsRegisterPairHigh<Register>());
|
|
__ movsd(destination.AsFpuRegister<XmmRegister>(), Address(ESP, 0));
|
|
// And remove the temporary stack space we allocated.
|
|
__ addl(ESP, Immediate(2 * elem_size));
|
|
} else if (source.IsFpuRegister()) {
|
|
if (destination.IsRegister()) {
|
|
__ movd(destination.AsRegister<Register>(), source.AsFpuRegister<XmmRegister>());
|
|
} else if (destination.IsFpuRegister()) {
|
|
__ movaps(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>());
|
|
} else if (destination.IsRegisterPair()) {
|
|
XmmRegister src_reg = source.AsFpuRegister<XmmRegister>();
|
|
__ movd(destination.AsRegisterPairLow<Register>(), src_reg);
|
|
__ psrlq(src_reg, Immediate(32));
|
|
__ movd(destination.AsRegisterPairHigh<Register>(), src_reg);
|
|
} else if (destination.IsStackSlot()) {
|
|
__ movss(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>());
|
|
} else {
|
|
DCHECK(destination.IsDoubleStackSlot());
|
|
__ movsd(Address(ESP, destination.GetStackIndex()), source.AsFpuRegister<XmmRegister>());
|
|
}
|
|
} else if (source.IsStackSlot()) {
|
|
if (destination.IsRegister()) {
|
|
__ movl(destination.AsRegister<Register>(), Address(ESP, source.GetStackIndex()));
|
|
} else if (destination.IsFpuRegister()) {
|
|
__ movss(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex()));
|
|
} else {
|
|
DCHECK(destination.IsStackSlot());
|
|
MoveMemoryToMemory32(destination.GetStackIndex(), source.GetStackIndex());
|
|
}
|
|
} else if (source.IsDoubleStackSlot()) {
|
|
if (destination.IsRegisterPair()) {
|
|
__ movl(destination.AsRegisterPairLow<Register>(), Address(ESP, source.GetStackIndex()));
|
|
__ movl(destination.AsRegisterPairHigh<Register>(),
|
|
Address(ESP, source.GetHighStackIndex(kX86WordSize)));
|
|
} else if (destination.IsFpuRegister()) {
|
|
__ movsd(destination.AsFpuRegister<XmmRegister>(), Address(ESP, source.GetStackIndex()));
|
|
} else {
|
|
DCHECK(destination.IsDoubleStackSlot()) << destination;
|
|
MoveMemoryToMemory64(destination.GetStackIndex(), source.GetStackIndex());
|
|
}
|
|
} else if (source.IsConstant()) {
|
|
HConstant* constant = source.GetConstant();
|
|
if (constant->IsIntConstant() || constant->IsNullConstant()) {
|
|
int32_t value = CodeGenerator::GetInt32ValueOf(constant);
|
|
if (destination.IsRegister()) {
|
|
if (value == 0) {
|
|
__ xorl(destination.AsRegister<Register>(), destination.AsRegister<Register>());
|
|
} else {
|
|
__ movl(destination.AsRegister<Register>(), Immediate(value));
|
|
}
|
|
} else {
|
|
DCHECK(destination.IsStackSlot()) << destination;
|
|
__ movl(Address(ESP, destination.GetStackIndex()), Immediate(value));
|
|
}
|
|
} else if (constant->IsFloatConstant()) {
|
|
float fp_value = constant->AsFloatConstant()->GetValue();
|
|
int32_t value = bit_cast<int32_t, float>(fp_value);
|
|
Immediate imm(value);
|
|
if (destination.IsFpuRegister()) {
|
|
XmmRegister dest = destination.AsFpuRegister<XmmRegister>();
|
|
if (value == 0) {
|
|
// Easy handling of 0.0.
|
|
__ xorps(dest, dest);
|
|
} else {
|
|
ScratchRegisterScope ensure_scratch(
|
|
this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters());
|
|
Register temp = static_cast<Register>(ensure_scratch.GetRegister());
|
|
__ movl(temp, Immediate(value));
|
|
__ movd(dest, temp);
|
|
}
|
|
} else {
|
|
DCHECK(destination.IsStackSlot()) << destination;
|
|
__ movl(Address(ESP, destination.GetStackIndex()), imm);
|
|
}
|
|
} else if (constant->IsLongConstant()) {
|
|
int64_t value = constant->AsLongConstant()->GetValue();
|
|
int32_t low_value = Low32Bits(value);
|
|
int32_t high_value = High32Bits(value);
|
|
Immediate low(low_value);
|
|
Immediate high(high_value);
|
|
if (destination.IsDoubleStackSlot()) {
|
|
__ movl(Address(ESP, destination.GetStackIndex()), low);
|
|
__ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)), high);
|
|
} else {
|
|
__ movl(destination.AsRegisterPairLow<Register>(), low);
|
|
__ movl(destination.AsRegisterPairHigh<Register>(), high);
|
|
}
|
|
} else {
|
|
DCHECK(constant->IsDoubleConstant());
|
|
double dbl_value = constant->AsDoubleConstant()->GetValue();
|
|
int64_t value = bit_cast<int64_t, double>(dbl_value);
|
|
int32_t low_value = Low32Bits(value);
|
|
int32_t high_value = High32Bits(value);
|
|
Immediate low(low_value);
|
|
Immediate high(high_value);
|
|
if (destination.IsFpuRegister()) {
|
|
XmmRegister dest = destination.AsFpuRegister<XmmRegister>();
|
|
if (value == 0) {
|
|
// Easy handling of 0.0.
|
|
__ xorpd(dest, dest);
|
|
} else {
|
|
__ pushl(high);
|
|
__ pushl(low);
|
|
__ movsd(dest, Address(ESP, 0));
|
|
__ addl(ESP, Immediate(8));
|
|
}
|
|
} else {
|
|
DCHECK(destination.IsDoubleStackSlot()) << destination;
|
|
__ movl(Address(ESP, destination.GetStackIndex()), low);
|
|
__ movl(Address(ESP, destination.GetHighStackIndex(kX86WordSize)), high);
|
|
}
|
|
}
|
|
} else {
|
|
LOG(FATAL) << "Unimplemented move: " << destination << " <- " << source;
|
|
}
|
|
}
|
|
|
|
void ParallelMoveResolverX86::Exchange(Register reg, int mem) {
|
|
Register suggested_scratch = reg == EAX ? EBX : EAX;
|
|
ScratchRegisterScope ensure_scratch(
|
|
this, reg, suggested_scratch, codegen_->GetNumberOfCoreRegisters());
|
|
|
|
int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0;
|
|
__ movl(static_cast<Register>(ensure_scratch.GetRegister()), Address(ESP, mem + stack_offset));
|
|
__ movl(Address(ESP, mem + stack_offset), reg);
|
|
__ movl(reg, static_cast<Register>(ensure_scratch.GetRegister()));
|
|
}
|
|
|
|
void ParallelMoveResolverX86::Exchange32(XmmRegister reg, int mem) {
|
|
ScratchRegisterScope ensure_scratch(
|
|
this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters());
|
|
|
|
Register temp_reg = static_cast<Register>(ensure_scratch.GetRegister());
|
|
int stack_offset = ensure_scratch.IsSpilled() ? kX86WordSize : 0;
|
|
__ movl(temp_reg, Address(ESP, mem + stack_offset));
|
|
__ movss(Address(ESP, mem + stack_offset), reg);
|
|
__ movd(reg, temp_reg);
|
|
}
|
|
|
|
void ParallelMoveResolverX86::Exchange(int mem1, int mem2) {
|
|
ScratchRegisterScope ensure_scratch1(
|
|
this, kNoRegister, EAX, codegen_->GetNumberOfCoreRegisters());
|
|
|
|
Register suggested_scratch = ensure_scratch1.GetRegister() == EAX ? EBX : EAX;
|
|
ScratchRegisterScope ensure_scratch2(
|
|
this, ensure_scratch1.GetRegister(), suggested_scratch, codegen_->GetNumberOfCoreRegisters());
|
|
|
|
int stack_offset = ensure_scratch1.IsSpilled() ? kX86WordSize : 0;
|
|
stack_offset += ensure_scratch2.IsSpilled() ? kX86WordSize : 0;
|
|
__ movl(static_cast<Register>(ensure_scratch1.GetRegister()), Address(ESP, mem1 + stack_offset));
|
|
__ movl(static_cast<Register>(ensure_scratch2.GetRegister()), Address(ESP, mem2 + stack_offset));
|
|
__ movl(Address(ESP, mem2 + stack_offset), static_cast<Register>(ensure_scratch1.GetRegister()));
|
|
__ movl(Address(ESP, mem1 + stack_offset), static_cast<Register>(ensure_scratch2.GetRegister()));
|
|
}
|
|
|
|
void ParallelMoveResolverX86::EmitSwap(size_t index) {
|
|
MoveOperands* move = moves_[index];
|
|
Location source = move->GetSource();
|
|
Location destination = move->GetDestination();
|
|
|
|
if (source.IsRegister() && destination.IsRegister()) {
|
|
// Use XOR swap algorithm to avoid serializing XCHG instruction or using a temporary.
|
|
DCHECK_NE(destination.AsRegister<Register>(), source.AsRegister<Register>());
|
|
__ xorl(destination.AsRegister<Register>(), source.AsRegister<Register>());
|
|
__ xorl(source.AsRegister<Register>(), destination.AsRegister<Register>());
|
|
__ xorl(destination.AsRegister<Register>(), source.AsRegister<Register>());
|
|
} else if (source.IsRegister() && destination.IsStackSlot()) {
|
|
Exchange(source.AsRegister<Register>(), destination.GetStackIndex());
|
|
} else if (source.IsStackSlot() && destination.IsRegister()) {
|
|
Exchange(destination.AsRegister<Register>(), source.GetStackIndex());
|
|
} else if (source.IsStackSlot() && destination.IsStackSlot()) {
|
|
Exchange(destination.GetStackIndex(), source.GetStackIndex());
|
|
} else if (source.IsFpuRegister() && destination.IsFpuRegister()) {
|
|
// Use XOR Swap algorithm to avoid a temporary.
|
|
DCHECK_NE(source.reg(), destination.reg());
|
|
__ xorpd(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>());
|
|
__ xorpd(source.AsFpuRegister<XmmRegister>(), destination.AsFpuRegister<XmmRegister>());
|
|
__ xorpd(destination.AsFpuRegister<XmmRegister>(), source.AsFpuRegister<XmmRegister>());
|
|
} else if (source.IsFpuRegister() && destination.IsStackSlot()) {
|
|
Exchange32(source.AsFpuRegister<XmmRegister>(), destination.GetStackIndex());
|
|
} else if (destination.IsFpuRegister() && source.IsStackSlot()) {
|
|
Exchange32(destination.AsFpuRegister<XmmRegister>(), source.GetStackIndex());
|
|
} else if (source.IsFpuRegister() && destination.IsDoubleStackSlot()) {
|
|
// Take advantage of the 16 bytes in the XMM register.
|
|
XmmRegister reg = source.AsFpuRegister<XmmRegister>();
|
|
Address stack(ESP, destination.GetStackIndex());
|
|
// Load the double into the high doubleword.
|
|
__ movhpd(reg, stack);
|
|
|
|
// Store the low double into the destination.
|
|
__ movsd(stack, reg);
|
|
|
|
// Move the high double to the low double.
|
|
__ psrldq(reg, Immediate(8));
|
|
} else if (destination.IsFpuRegister() && source.IsDoubleStackSlot()) {
|
|
// Take advantage of the 16 bytes in the XMM register.
|
|
XmmRegister reg = destination.AsFpuRegister<XmmRegister>();
|
|
Address stack(ESP, source.GetStackIndex());
|
|
// Load the double into the high doubleword.
|
|
__ movhpd(reg, stack);
|
|
|
|
// Store the low double into the destination.
|
|
__ movsd(stack, reg);
|
|
|
|
// Move the high double to the low double.
|
|
__ psrldq(reg, Immediate(8));
|
|
} else if (destination.IsDoubleStackSlot() && source.IsDoubleStackSlot()) {
|
|
Exchange(destination.GetStackIndex(), source.GetStackIndex());
|
|
Exchange(destination.GetHighStackIndex(kX86WordSize), source.GetHighStackIndex(kX86WordSize));
|
|
} else {
|
|
LOG(FATAL) << "Unimplemented: source: " << source << ", destination: " << destination;
|
|
}
|
|
}
|
|
|
|
void ParallelMoveResolverX86::SpillScratch(int reg) {
|
|
__ pushl(static_cast<Register>(reg));
|
|
}
|
|
|
|
void ParallelMoveResolverX86::RestoreScratch(int reg) {
|
|
__ popl(static_cast<Register>(reg));
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitLoadClass(HLoadClass* cls) {
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
CodeGenerator::CreateLoadClassLocationSummary(
|
|
cls,
|
|
Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
|
|
Location::RegisterLocation(EAX),
|
|
/* code_generator_supports_read_barrier */ true);
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitLoadClass(HLoadClass* cls) {
|
|
LocationSummary* locations = cls->GetLocations();
|
|
if (cls->NeedsAccessCheck()) {
|
|
codegen_->MoveConstant(locations->GetTemp(0), cls->GetTypeIndex());
|
|
codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pInitializeTypeAndVerifyAccess),
|
|
cls,
|
|
cls->GetDexPc(),
|
|
nullptr);
|
|
CheckEntrypointTypes<kQuickInitializeTypeAndVerifyAccess, void*, uint32_t>();
|
|
return;
|
|
}
|
|
|
|
Location out_loc = locations->Out();
|
|
Register out = out_loc.AsRegister<Register>();
|
|
Register current_method = locations->InAt(0).AsRegister<Register>();
|
|
|
|
if (cls->IsReferrersClass()) {
|
|
DCHECK(!cls->CanCallRuntime());
|
|
DCHECK(!cls->MustGenerateClinitCheck());
|
|
// /* GcRoot<mirror::Class> */ out = current_method->declaring_class_
|
|
GenerateGcRootFieldLoad(
|
|
cls, out_loc, Address(current_method, ArtMethod::DeclaringClassOffset().Int32Value()));
|
|
} else {
|
|
// /* GcRoot<mirror::Class>[] */ out =
|
|
// current_method.ptr_sized_fields_->dex_cache_resolved_types_
|
|
__ movl(out, Address(current_method,
|
|
ArtMethod::DexCacheResolvedTypesOffset(kX86PointerSize).Int32Value()));
|
|
// /* GcRoot<mirror::Class> */ out = out[type_index]
|
|
GenerateGcRootFieldLoad(
|
|
cls, out_loc, Address(out, CodeGenerator::GetCacheOffset(cls->GetTypeIndex())));
|
|
|
|
if (!cls->IsInDexCache() || cls->MustGenerateClinitCheck()) {
|
|
DCHECK(cls->CanCallRuntime());
|
|
SlowPathCode* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathX86(
|
|
cls, cls, cls->GetDexPc(), cls->MustGenerateClinitCheck());
|
|
codegen_->AddSlowPath(slow_path);
|
|
|
|
if (!cls->IsInDexCache()) {
|
|
__ testl(out, out);
|
|
__ j(kEqual, slow_path->GetEntryLabel());
|
|
}
|
|
|
|
if (cls->MustGenerateClinitCheck()) {
|
|
GenerateClassInitializationCheck(slow_path, out);
|
|
} else {
|
|
__ Bind(slow_path->GetExitLabel());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitClinitCheck(HClinitCheck* check) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(check, LocationSummary::kCallOnSlowPath);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
if (check->HasUses()) {
|
|
locations->SetOut(Location::SameAsFirstInput());
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitClinitCheck(HClinitCheck* check) {
|
|
// We assume the class to not be null.
|
|
SlowPathCode* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathX86(
|
|
check->GetLoadClass(), check, check->GetDexPc(), true);
|
|
codegen_->AddSlowPath(slow_path);
|
|
GenerateClassInitializationCheck(slow_path,
|
|
check->GetLocations()->InAt(0).AsRegister<Register>());
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::GenerateClassInitializationCheck(
|
|
SlowPathCode* slow_path, Register class_reg) {
|
|
__ cmpl(Address(class_reg, mirror::Class::StatusOffset().Int32Value()),
|
|
Immediate(mirror::Class::kStatusInitialized));
|
|
__ j(kLess, slow_path->GetEntryLabel());
|
|
__ Bind(slow_path->GetExitLabel());
|
|
// No need for memory fence, thanks to the X86 memory model.
|
|
}
|
|
|
|
HLoadString::LoadKind CodeGeneratorX86::GetSupportedLoadStringKind(
|
|
HLoadString::LoadKind desired_string_load_kind) {
|
|
if (kEmitCompilerReadBarrier) {
|
|
switch (desired_string_load_kind) {
|
|
case HLoadString::LoadKind::kBootImageLinkTimeAddress:
|
|
case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
|
|
case HLoadString::LoadKind::kBootImageAddress:
|
|
// TODO: Implement for read barrier.
|
|
return HLoadString::LoadKind::kDexCacheViaMethod;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
switch (desired_string_load_kind) {
|
|
case HLoadString::LoadKind::kBootImageLinkTimeAddress:
|
|
DCHECK(!GetCompilerOptions().GetCompilePic());
|
|
break;
|
|
case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
|
|
DCHECK(GetCompilerOptions().GetCompilePic());
|
|
FALLTHROUGH_INTENDED;
|
|
case HLoadString::LoadKind::kDexCachePcRelative:
|
|
DCHECK(!Runtime::Current()->UseJitCompilation()); // Note: boot image is also non-JIT.
|
|
// We disable pc-relative load when there is an irreducible loop, as the optimization
|
|
// is incompatible with it.
|
|
// TODO: Create as many X86ComputeBaseMethodAddress instructions as needed for methods
|
|
// with irreducible loops.
|
|
if (GetGraph()->HasIrreducibleLoops()) {
|
|
return HLoadString::LoadKind::kDexCacheViaMethod;
|
|
}
|
|
break;
|
|
case HLoadString::LoadKind::kBootImageAddress:
|
|
break;
|
|
case HLoadString::LoadKind::kDexCacheAddress:
|
|
DCHECK(Runtime::Current()->UseJitCompilation());
|
|
break;
|
|
case HLoadString::LoadKind::kDexCacheViaMethod:
|
|
break;
|
|
}
|
|
return desired_string_load_kind;
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitLoadString(HLoadString* load) {
|
|
LocationSummary::CallKind call_kind = (load->NeedsEnvironment() || kEmitCompilerReadBarrier)
|
|
? LocationSummary::kCallOnSlowPath
|
|
: LocationSummary::kNoCall;
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(load, call_kind);
|
|
HLoadString::LoadKind load_kind = load->GetLoadKind();
|
|
if (load_kind == HLoadString::LoadKind::kDexCacheViaMethod ||
|
|
load_kind == HLoadString::LoadKind::kBootImageLinkTimePcRelative ||
|
|
load_kind == HLoadString::LoadKind::kDexCachePcRelative) {
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
}
|
|
locations->SetOut(Location::RequiresRegister());
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitLoadString(HLoadString* load) {
|
|
LocationSummary* locations = load->GetLocations();
|
|
Location out_loc = locations->Out();
|
|
Register out = out_loc.AsRegister<Register>();
|
|
|
|
switch (load->GetLoadKind()) {
|
|
case HLoadString::LoadKind::kBootImageLinkTimeAddress: {
|
|
DCHECK(!kEmitCompilerReadBarrier);
|
|
__ movl(out, Immediate(/* placeholder */ 0));
|
|
codegen_->RecordStringPatch(load);
|
|
return; // No dex cache slow path.
|
|
}
|
|
case HLoadString::LoadKind::kBootImageLinkTimePcRelative: {
|
|
DCHECK(!kEmitCompilerReadBarrier);
|
|
Register method_address = locations->InAt(0).AsRegister<Register>();
|
|
__ leal(out, Address(method_address, CodeGeneratorX86::kDummy32BitOffset));
|
|
codegen_->RecordStringPatch(load);
|
|
return; // No dex cache slow path.
|
|
}
|
|
case HLoadString::LoadKind::kBootImageAddress: {
|
|
DCHECK(!kEmitCompilerReadBarrier);
|
|
DCHECK_NE(load->GetAddress(), 0u);
|
|
uint32_t address = dchecked_integral_cast<uint32_t>(load->GetAddress());
|
|
__ movl(out, Immediate(address));
|
|
codegen_->RecordSimplePatch();
|
|
return; // No dex cache slow path.
|
|
}
|
|
case HLoadString::LoadKind::kDexCacheAddress: {
|
|
DCHECK_NE(load->GetAddress(), 0u);
|
|
uint32_t address = dchecked_integral_cast<uint32_t>(load->GetAddress());
|
|
GenerateGcRootFieldLoad(load, out_loc, Address::Absolute(address));
|
|
break;
|
|
}
|
|
case HLoadString::LoadKind::kDexCachePcRelative: {
|
|
Register base_reg = locations->InAt(0).AsRegister<Register>();
|
|
uint32_t offset = load->GetDexCacheElementOffset();
|
|
Label* fixup_label = codegen_->NewPcRelativeDexCacheArrayPatch(load->GetDexFile(), offset);
|
|
GenerateGcRootFieldLoad(
|
|
load, out_loc, Address(base_reg, CodeGeneratorX86::kDummy32BitOffset), fixup_label);
|
|
break;
|
|
}
|
|
case HLoadString::LoadKind::kDexCacheViaMethod: {
|
|
Register current_method = locations->InAt(0).AsRegister<Register>();
|
|
|
|
// /* GcRoot<mirror::Class> */ out = current_method->declaring_class_
|
|
GenerateGcRootFieldLoad(
|
|
load, out_loc, Address(current_method, ArtMethod::DeclaringClassOffset().Int32Value()));
|
|
|
|
// /* GcRoot<mirror::String>[] */ out = out->dex_cache_strings_
|
|
__ movl(out, Address(out, mirror::Class::DexCacheStringsOffset().Int32Value()));
|
|
// /* GcRoot<mirror::String> */ out = out[string_index]
|
|
GenerateGcRootFieldLoad(
|
|
load, out_loc, Address(out, CodeGenerator::GetCacheOffset(load->GetStringIndex())));
|
|
break;
|
|
}
|
|
default:
|
|
LOG(FATAL) << "Unexpected load kind: " << load->GetLoadKind();
|
|
UNREACHABLE();
|
|
}
|
|
|
|
if (!load->IsInDexCache()) {
|
|
SlowPathCode* slow_path = new (GetGraph()->GetArena()) LoadStringSlowPathX86(load);
|
|
codegen_->AddSlowPath(slow_path);
|
|
__ testl(out, out);
|
|
__ j(kEqual, slow_path->GetEntryLabel());
|
|
__ Bind(slow_path->GetExitLabel());
|
|
}
|
|
}
|
|
|
|
static Address GetExceptionTlsAddress() {
|
|
return Address::Absolute(Thread::ExceptionOffset<kX86WordSize>().Int32Value());
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitLoadException(HLoadException* load) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kNoCall);
|
|
locations->SetOut(Location::RequiresRegister());
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitLoadException(HLoadException* load) {
|
|
__ fs()->movl(load->GetLocations()->Out().AsRegister<Register>(), GetExceptionTlsAddress());
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitClearException(HClearException* clear) {
|
|
new (GetGraph()->GetArena()) LocationSummary(clear, LocationSummary::kNoCall);
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) {
|
|
__ fs()->movl(GetExceptionTlsAddress(), Immediate(0));
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitThrow(HThrow* instruction) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitThrow(HThrow* instruction) {
|
|
codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pDeliverException),
|
|
instruction,
|
|
instruction->GetDexPc(),
|
|
nullptr);
|
|
CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>();
|
|
}
|
|
|
|
static bool TypeCheckNeedsATemporary(TypeCheckKind type_check_kind) {
|
|
return kEmitCompilerReadBarrier &&
|
|
(kUseBakerReadBarrier ||
|
|
type_check_kind == TypeCheckKind::kAbstractClassCheck ||
|
|
type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
|
|
type_check_kind == TypeCheckKind::kArrayObjectCheck);
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitInstanceOf(HInstanceOf* instruction) {
|
|
LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
|
|
TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
|
|
switch (type_check_kind) {
|
|
case TypeCheckKind::kExactCheck:
|
|
case TypeCheckKind::kAbstractClassCheck:
|
|
case TypeCheckKind::kClassHierarchyCheck:
|
|
case TypeCheckKind::kArrayObjectCheck:
|
|
call_kind =
|
|
kEmitCompilerReadBarrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall;
|
|
break;
|
|
case TypeCheckKind::kArrayCheck:
|
|
case TypeCheckKind::kUnresolvedCheck:
|
|
case TypeCheckKind::kInterfaceCheck:
|
|
call_kind = LocationSummary::kCallOnSlowPath;
|
|
break;
|
|
}
|
|
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::Any());
|
|
// Note that TypeCheckSlowPathX86 uses this "out" register too.
|
|
locations->SetOut(Location::RequiresRegister());
|
|
// When read barriers are enabled, we need a temporary register for
|
|
// some cases.
|
|
if (TypeCheckNeedsATemporary(type_check_kind)) {
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitInstanceOf(HInstanceOf* instruction) {
|
|
TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
Location obj_loc = locations->InAt(0);
|
|
Register obj = obj_loc.AsRegister<Register>();
|
|
Location cls = locations->InAt(1);
|
|
Location out_loc = locations->Out();
|
|
Register out = out_loc.AsRegister<Register>();
|
|
Location maybe_temp_loc = TypeCheckNeedsATemporary(type_check_kind) ?
|
|
locations->GetTemp(0) :
|
|
Location::NoLocation();
|
|
uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
|
|
uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
|
|
uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
|
|
uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
|
|
SlowPathCode* slow_path = nullptr;
|
|
NearLabel done, zero;
|
|
|
|
// Return 0 if `obj` is null.
|
|
// Avoid null check if we know obj is not null.
|
|
if (instruction->MustDoNullCheck()) {
|
|
__ testl(obj, obj);
|
|
__ j(kEqual, &zero);
|
|
}
|
|
|
|
// /* HeapReference<Class> */ out = obj->klass_
|
|
GenerateReferenceLoadTwoRegisters(instruction, out_loc, obj_loc, class_offset, maybe_temp_loc);
|
|
|
|
switch (type_check_kind) {
|
|
case TypeCheckKind::kExactCheck: {
|
|
if (cls.IsRegister()) {
|
|
__ cmpl(out, cls.AsRegister<Register>());
|
|
} else {
|
|
DCHECK(cls.IsStackSlot()) << cls;
|
|
__ cmpl(out, Address(ESP, cls.GetStackIndex()));
|
|
}
|
|
|
|
// Classes must be equal for the instanceof to succeed.
|
|
__ j(kNotEqual, &zero);
|
|
__ movl(out, Immediate(1));
|
|
__ jmp(&done);
|
|
break;
|
|
}
|
|
|
|
case TypeCheckKind::kAbstractClassCheck: {
|
|
// If the class is abstract, we eagerly fetch the super class of the
|
|
// object to avoid doing a comparison we know will fail.
|
|
NearLabel loop;
|
|
__ Bind(&loop);
|
|
// /* HeapReference<Class> */ out = out->super_class_
|
|
GenerateReferenceLoadOneRegister(instruction, out_loc, super_offset, maybe_temp_loc);
|
|
__ testl(out, out);
|
|
// If `out` is null, we use it for the result, and jump to `done`.
|
|
__ j(kEqual, &done);
|
|
if (cls.IsRegister()) {
|
|
__ cmpl(out, cls.AsRegister<Register>());
|
|
} else {
|
|
DCHECK(cls.IsStackSlot()) << cls;
|
|
__ cmpl(out, Address(ESP, cls.GetStackIndex()));
|
|
}
|
|
__ j(kNotEqual, &loop);
|
|
__ movl(out, Immediate(1));
|
|
if (zero.IsLinked()) {
|
|
__ jmp(&done);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case TypeCheckKind::kClassHierarchyCheck: {
|
|
// Walk over the class hierarchy to find a match.
|
|
NearLabel loop, success;
|
|
__ Bind(&loop);
|
|
if (cls.IsRegister()) {
|
|
__ cmpl(out, cls.AsRegister<Register>());
|
|
} else {
|
|
DCHECK(cls.IsStackSlot()) << cls;
|
|
__ cmpl(out, Address(ESP, cls.GetStackIndex()));
|
|
}
|
|
__ j(kEqual, &success);
|
|
// /* HeapReference<Class> */ out = out->super_class_
|
|
GenerateReferenceLoadOneRegister(instruction, out_loc, super_offset, maybe_temp_loc);
|
|
__ testl(out, out);
|
|
__ j(kNotEqual, &loop);
|
|
// If `out` is null, we use it for the result, and jump to `done`.
|
|
__ jmp(&done);
|
|
__ Bind(&success);
|
|
__ movl(out, Immediate(1));
|
|
if (zero.IsLinked()) {
|
|
__ jmp(&done);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case TypeCheckKind::kArrayObjectCheck: {
|
|
// Do an exact check.
|
|
NearLabel exact_check;
|
|
if (cls.IsRegister()) {
|
|
__ cmpl(out, cls.AsRegister<Register>());
|
|
} else {
|
|
DCHECK(cls.IsStackSlot()) << cls;
|
|
__ cmpl(out, Address(ESP, cls.GetStackIndex()));
|
|
}
|
|
__ j(kEqual, &exact_check);
|
|
// Otherwise, we need to check that the object's class is a non-primitive array.
|
|
// /* HeapReference<Class> */ out = out->component_type_
|
|
GenerateReferenceLoadOneRegister(instruction, out_loc, component_offset, maybe_temp_loc);
|
|
__ testl(out, out);
|
|
// If `out` is null, we use it for the result, and jump to `done`.
|
|
__ j(kEqual, &done);
|
|
__ cmpw(Address(out, primitive_offset), Immediate(Primitive::kPrimNot));
|
|
__ j(kNotEqual, &zero);
|
|
__ Bind(&exact_check);
|
|
__ movl(out, Immediate(1));
|
|
__ jmp(&done);
|
|
break;
|
|
}
|
|
|
|
case TypeCheckKind::kArrayCheck: {
|
|
if (cls.IsRegister()) {
|
|
__ cmpl(out, cls.AsRegister<Register>());
|
|
} else {
|
|
DCHECK(cls.IsStackSlot()) << cls;
|
|
__ cmpl(out, Address(ESP, cls.GetStackIndex()));
|
|
}
|
|
DCHECK(locations->OnlyCallsOnSlowPath());
|
|
slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathX86(instruction,
|
|
/* is_fatal */ false);
|
|
codegen_->AddSlowPath(slow_path);
|
|
__ j(kNotEqual, slow_path->GetEntryLabel());
|
|
__ movl(out, Immediate(1));
|
|
if (zero.IsLinked()) {
|
|
__ jmp(&done);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case TypeCheckKind::kUnresolvedCheck:
|
|
case TypeCheckKind::kInterfaceCheck: {
|
|
// Note that we indeed only call on slow path, but we always go
|
|
// into the slow path for the unresolved and interface check
|
|
// cases.
|
|
//
|
|
// We cannot directly call the InstanceofNonTrivial runtime
|
|
// entry point without resorting to a type checking slow path
|
|
// here (i.e. by calling InvokeRuntime directly), as it would
|
|
// require to assign fixed registers for the inputs of this
|
|
// HInstanceOf instruction (following the runtime calling
|
|
// convention), which might be cluttered by the potential first
|
|
// read barrier emission at the beginning of this method.
|
|
//
|
|
// TODO: Introduce a new runtime entry point taking the object
|
|
// to test (instead of its class) as argument, and let it deal
|
|
// with the read barrier issues. This will let us refactor this
|
|
// case of the `switch` code as it was previously (with a direct
|
|
// call to the runtime not using a type checking slow path).
|
|
// This should also be beneficial for the other cases above.
|
|
DCHECK(locations->OnlyCallsOnSlowPath());
|
|
slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathX86(instruction,
|
|
/* is_fatal */ false);
|
|
codegen_->AddSlowPath(slow_path);
|
|
__ jmp(slow_path->GetEntryLabel());
|
|
if (zero.IsLinked()) {
|
|
__ jmp(&done);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (zero.IsLinked()) {
|
|
__ Bind(&zero);
|
|
__ xorl(out, out);
|
|
}
|
|
|
|
if (done.IsLinked()) {
|
|
__ Bind(&done);
|
|
}
|
|
|
|
if (slow_path != nullptr) {
|
|
__ Bind(slow_path->GetExitLabel());
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitCheckCast(HCheckCast* instruction) {
|
|
LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
|
|
bool throws_into_catch = instruction->CanThrowIntoCatchBlock();
|
|
TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
|
|
switch (type_check_kind) {
|
|
case TypeCheckKind::kExactCheck:
|
|
case TypeCheckKind::kAbstractClassCheck:
|
|
case TypeCheckKind::kClassHierarchyCheck:
|
|
case TypeCheckKind::kArrayObjectCheck:
|
|
call_kind = (throws_into_catch || kEmitCompilerReadBarrier) ?
|
|
LocationSummary::kCallOnSlowPath :
|
|
LocationSummary::kNoCall; // In fact, call on a fatal (non-returning) slow path.
|
|
break;
|
|
case TypeCheckKind::kArrayCheck:
|
|
case TypeCheckKind::kUnresolvedCheck:
|
|
case TypeCheckKind::kInterfaceCheck:
|
|
call_kind = LocationSummary::kCallOnSlowPath;
|
|
break;
|
|
}
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::Any());
|
|
// Note that TypeCheckSlowPathX86 uses this "temp" register too.
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
// When read barriers are enabled, we need an additional temporary
|
|
// register for some cases.
|
|
if (TypeCheckNeedsATemporary(type_check_kind)) {
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitCheckCast(HCheckCast* instruction) {
|
|
TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
Location obj_loc = locations->InAt(0);
|
|
Register obj = obj_loc.AsRegister<Register>();
|
|
Location cls = locations->InAt(1);
|
|
Location temp_loc = locations->GetTemp(0);
|
|
Register temp = temp_loc.AsRegister<Register>();
|
|
Location maybe_temp2_loc = TypeCheckNeedsATemporary(type_check_kind) ?
|
|
locations->GetTemp(1) :
|
|
Location::NoLocation();
|
|
uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
|
|
uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
|
|
uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
|
|
uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
|
|
|
|
bool is_type_check_slow_path_fatal =
|
|
(type_check_kind == TypeCheckKind::kExactCheck ||
|
|
type_check_kind == TypeCheckKind::kAbstractClassCheck ||
|
|
type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
|
|
type_check_kind == TypeCheckKind::kArrayObjectCheck) &&
|
|
!instruction->CanThrowIntoCatchBlock();
|
|
SlowPathCode* type_check_slow_path =
|
|
new (GetGraph()->GetArena()) TypeCheckSlowPathX86(instruction,
|
|
is_type_check_slow_path_fatal);
|
|
codegen_->AddSlowPath(type_check_slow_path);
|
|
|
|
NearLabel done;
|
|
// Avoid null check if we know obj is not null.
|
|
if (instruction->MustDoNullCheck()) {
|
|
__ testl(obj, obj);
|
|
__ j(kEqual, &done);
|
|
}
|
|
|
|
// /* HeapReference<Class> */ temp = obj->klass_
|
|
GenerateReferenceLoadTwoRegisters(instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
|
|
|
|
switch (type_check_kind) {
|
|
case TypeCheckKind::kExactCheck:
|
|
case TypeCheckKind::kArrayCheck: {
|
|
if (cls.IsRegister()) {
|
|
__ cmpl(temp, cls.AsRegister<Register>());
|
|
} else {
|
|
DCHECK(cls.IsStackSlot()) << cls;
|
|
__ cmpl(temp, Address(ESP, cls.GetStackIndex()));
|
|
}
|
|
// Jump to slow path for throwing the exception or doing a
|
|
// more involved array check.
|
|
__ j(kNotEqual, type_check_slow_path->GetEntryLabel());
|
|
break;
|
|
}
|
|
|
|
case TypeCheckKind::kAbstractClassCheck: {
|
|
// If the class is abstract, we eagerly fetch the super class of the
|
|
// object to avoid doing a comparison we know will fail.
|
|
NearLabel loop, compare_classes;
|
|
__ Bind(&loop);
|
|
// /* HeapReference<Class> */ temp = temp->super_class_
|
|
GenerateReferenceLoadOneRegister(instruction, temp_loc, super_offset, maybe_temp2_loc);
|
|
|
|
// If the class reference currently in `temp` is not null, jump
|
|
// to the `compare_classes` label to compare it with the checked
|
|
// class.
|
|
__ testl(temp, temp);
|
|
__ j(kNotEqual, &compare_classes);
|
|
// Otherwise, jump to the slow path to throw the exception.
|
|
//
|
|
// But before, move back the object's class into `temp` before
|
|
// going into the slow path, as it has been overwritten in the
|
|
// meantime.
|
|
// /* HeapReference<Class> */ temp = obj->klass_
|
|
GenerateReferenceLoadTwoRegisters(
|
|
instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
|
|
__ jmp(type_check_slow_path->GetEntryLabel());
|
|
|
|
__ Bind(&compare_classes);
|
|
if (cls.IsRegister()) {
|
|
__ cmpl(temp, cls.AsRegister<Register>());
|
|
} else {
|
|
DCHECK(cls.IsStackSlot()) << cls;
|
|
__ cmpl(temp, Address(ESP, cls.GetStackIndex()));
|
|
}
|
|
__ j(kNotEqual, &loop);
|
|
break;
|
|
}
|
|
|
|
case TypeCheckKind::kClassHierarchyCheck: {
|
|
// Walk over the class hierarchy to find a match.
|
|
NearLabel loop;
|
|
__ Bind(&loop);
|
|
if (cls.IsRegister()) {
|
|
__ cmpl(temp, cls.AsRegister<Register>());
|
|
} else {
|
|
DCHECK(cls.IsStackSlot()) << cls;
|
|
__ cmpl(temp, Address(ESP, cls.GetStackIndex()));
|
|
}
|
|
__ j(kEqual, &done);
|
|
|
|
// /* HeapReference<Class> */ temp = temp->super_class_
|
|
GenerateReferenceLoadOneRegister(instruction, temp_loc, super_offset, maybe_temp2_loc);
|
|
|
|
// If the class reference currently in `temp` is not null, jump
|
|
// back at the beginning of the loop.
|
|
__ testl(temp, temp);
|
|
__ j(kNotEqual, &loop);
|
|
// Otherwise, jump to the slow path to throw the exception.
|
|
//
|
|
// But before, move back the object's class into `temp` before
|
|
// going into the slow path, as it has been overwritten in the
|
|
// meantime.
|
|
// /* HeapReference<Class> */ temp = obj->klass_
|
|
GenerateReferenceLoadTwoRegisters(
|
|
instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
|
|
__ jmp(type_check_slow_path->GetEntryLabel());
|
|
break;
|
|
}
|
|
|
|
case TypeCheckKind::kArrayObjectCheck: {
|
|
// Do an exact check.
|
|
NearLabel check_non_primitive_component_type;
|
|
if (cls.IsRegister()) {
|
|
__ cmpl(temp, cls.AsRegister<Register>());
|
|
} else {
|
|
DCHECK(cls.IsStackSlot()) << cls;
|
|
__ cmpl(temp, Address(ESP, cls.GetStackIndex()));
|
|
}
|
|
__ j(kEqual, &done);
|
|
|
|
// Otherwise, we need to check that the object's class is a non-primitive array.
|
|
// /* HeapReference<Class> */ temp = temp->component_type_
|
|
GenerateReferenceLoadOneRegister(instruction, temp_loc, component_offset, maybe_temp2_loc);
|
|
|
|
// If the component type is not null (i.e. the object is indeed
|
|
// an array), jump to label `check_non_primitive_component_type`
|
|
// to further check that this component type is not a primitive
|
|
// type.
|
|
__ testl(temp, temp);
|
|
__ j(kNotEqual, &check_non_primitive_component_type);
|
|
// Otherwise, jump to the slow path to throw the exception.
|
|
//
|
|
// But before, move back the object's class into `temp` before
|
|
// going into the slow path, as it has been overwritten in the
|
|
// meantime.
|
|
// /* HeapReference<Class> */ temp = obj->klass_
|
|
GenerateReferenceLoadTwoRegisters(
|
|
instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
|
|
__ jmp(type_check_slow_path->GetEntryLabel());
|
|
|
|
__ Bind(&check_non_primitive_component_type);
|
|
__ cmpw(Address(temp, primitive_offset), Immediate(Primitive::kPrimNot));
|
|
__ j(kEqual, &done);
|
|
// Same comment as above regarding `temp` and the slow path.
|
|
// /* HeapReference<Class> */ temp = obj->klass_
|
|
GenerateReferenceLoadTwoRegisters(
|
|
instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
|
|
__ jmp(type_check_slow_path->GetEntryLabel());
|
|
break;
|
|
}
|
|
|
|
case TypeCheckKind::kUnresolvedCheck:
|
|
case TypeCheckKind::kInterfaceCheck:
|
|
// We always go into the type check slow path for the unresolved
|
|
// and interface check cases.
|
|
//
|
|
// We cannot directly call the CheckCast runtime entry point
|
|
// without resorting to a type checking slow path here (i.e. by
|
|
// calling InvokeRuntime directly), as it would require to
|
|
// assign fixed registers for the inputs of this HInstanceOf
|
|
// instruction (following the runtime calling convention), which
|
|
// might be cluttered by the potential first read barrier
|
|
// emission at the beginning of this method.
|
|
//
|
|
// TODO: Introduce a new runtime entry point taking the object
|
|
// to test (instead of its class) as argument, and let it deal
|
|
// with the read barrier issues. This will let us refactor this
|
|
// case of the `switch` code as it was previously (with a direct
|
|
// call to the runtime not using a type checking slow path).
|
|
// This should also be beneficial for the other cases above.
|
|
__ jmp(type_check_slow_path->GetEntryLabel());
|
|
break;
|
|
}
|
|
__ Bind(&done);
|
|
|
|
__ Bind(type_check_slow_path->GetExitLabel());
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitMonitorOperation(HMonitorOperation* instruction) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitMonitorOperation(HMonitorOperation* instruction) {
|
|
codegen_->InvokeRuntime(instruction->IsEnter() ? QUICK_ENTRY_POINT(pLockObject)
|
|
: QUICK_ENTRY_POINT(pUnlockObject),
|
|
instruction,
|
|
instruction->GetDexPc(),
|
|
nullptr);
|
|
if (instruction->IsEnter()) {
|
|
CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>();
|
|
} else {
|
|
CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>();
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitAnd(HAnd* instruction) { HandleBitwiseOperation(instruction); }
|
|
void LocationsBuilderX86::VisitOr(HOr* instruction) { HandleBitwiseOperation(instruction); }
|
|
void LocationsBuilderX86::VisitXor(HXor* instruction) { HandleBitwiseOperation(instruction); }
|
|
|
|
void LocationsBuilderX86::HandleBitwiseOperation(HBinaryOperation* instruction) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
|
|
DCHECK(instruction->GetResultType() == Primitive::kPrimInt
|
|
|| instruction->GetResultType() == Primitive::kPrimLong);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::Any());
|
|
locations->SetOut(Location::SameAsFirstInput());
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitAnd(HAnd* instruction) {
|
|
HandleBitwiseOperation(instruction);
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitOr(HOr* instruction) {
|
|
HandleBitwiseOperation(instruction);
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitXor(HXor* instruction) {
|
|
HandleBitwiseOperation(instruction);
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::HandleBitwiseOperation(HBinaryOperation* instruction) {
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
Location first = locations->InAt(0);
|
|
Location second = locations->InAt(1);
|
|
DCHECK(first.Equals(locations->Out()));
|
|
|
|
if (instruction->GetResultType() == Primitive::kPrimInt) {
|
|
if (second.IsRegister()) {
|
|
if (instruction->IsAnd()) {
|
|
__ andl(first.AsRegister<Register>(), second.AsRegister<Register>());
|
|
} else if (instruction->IsOr()) {
|
|
__ orl(first.AsRegister<Register>(), second.AsRegister<Register>());
|
|
} else {
|
|
DCHECK(instruction->IsXor());
|
|
__ xorl(first.AsRegister<Register>(), second.AsRegister<Register>());
|
|
}
|
|
} else if (second.IsConstant()) {
|
|
if (instruction->IsAnd()) {
|
|
__ andl(first.AsRegister<Register>(),
|
|
Immediate(second.GetConstant()->AsIntConstant()->GetValue()));
|
|
} else if (instruction->IsOr()) {
|
|
__ orl(first.AsRegister<Register>(),
|
|
Immediate(second.GetConstant()->AsIntConstant()->GetValue()));
|
|
} else {
|
|
DCHECK(instruction->IsXor());
|
|
__ xorl(first.AsRegister<Register>(),
|
|
Immediate(second.GetConstant()->AsIntConstant()->GetValue()));
|
|
}
|
|
} else {
|
|
if (instruction->IsAnd()) {
|
|
__ andl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex()));
|
|
} else if (instruction->IsOr()) {
|
|
__ orl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex()));
|
|
} else {
|
|
DCHECK(instruction->IsXor());
|
|
__ xorl(first.AsRegister<Register>(), Address(ESP, second.GetStackIndex()));
|
|
}
|
|
}
|
|
} else {
|
|
DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimLong);
|
|
if (second.IsRegisterPair()) {
|
|
if (instruction->IsAnd()) {
|
|
__ andl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>());
|
|
__ andl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>());
|
|
} else if (instruction->IsOr()) {
|
|
__ orl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>());
|
|
__ orl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>());
|
|
} else {
|
|
DCHECK(instruction->IsXor());
|
|
__ xorl(first.AsRegisterPairLow<Register>(), second.AsRegisterPairLow<Register>());
|
|
__ xorl(first.AsRegisterPairHigh<Register>(), second.AsRegisterPairHigh<Register>());
|
|
}
|
|
} else if (second.IsDoubleStackSlot()) {
|
|
if (instruction->IsAnd()) {
|
|
__ andl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex()));
|
|
__ andl(first.AsRegisterPairHigh<Register>(),
|
|
Address(ESP, second.GetHighStackIndex(kX86WordSize)));
|
|
} else if (instruction->IsOr()) {
|
|
__ orl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex()));
|
|
__ orl(first.AsRegisterPairHigh<Register>(),
|
|
Address(ESP, second.GetHighStackIndex(kX86WordSize)));
|
|
} else {
|
|
DCHECK(instruction->IsXor());
|
|
__ xorl(first.AsRegisterPairLow<Register>(), Address(ESP, second.GetStackIndex()));
|
|
__ xorl(first.AsRegisterPairHigh<Register>(),
|
|
Address(ESP, second.GetHighStackIndex(kX86WordSize)));
|
|
}
|
|
} else {
|
|
DCHECK(second.IsConstant()) << second;
|
|
int64_t value = second.GetConstant()->AsLongConstant()->GetValue();
|
|
int32_t low_value = Low32Bits(value);
|
|
int32_t high_value = High32Bits(value);
|
|
Immediate low(low_value);
|
|
Immediate high(high_value);
|
|
Register first_low = first.AsRegisterPairLow<Register>();
|
|
Register first_high = first.AsRegisterPairHigh<Register>();
|
|
if (instruction->IsAnd()) {
|
|
if (low_value == 0) {
|
|
__ xorl(first_low, first_low);
|
|
} else if (low_value != -1) {
|
|
__ andl(first_low, low);
|
|
}
|
|
if (high_value == 0) {
|
|
__ xorl(first_high, first_high);
|
|
} else if (high_value != -1) {
|
|
__ andl(first_high, high);
|
|
}
|
|
} else if (instruction->IsOr()) {
|
|
if (low_value != 0) {
|
|
__ orl(first_low, low);
|
|
}
|
|
if (high_value != 0) {
|
|
__ orl(first_high, high);
|
|
}
|
|
} else {
|
|
DCHECK(instruction->IsXor());
|
|
if (low_value != 0) {
|
|
__ xorl(first_low, low);
|
|
}
|
|
if (high_value != 0) {
|
|
__ xorl(first_high, high);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::GenerateReferenceLoadOneRegister(HInstruction* instruction,
|
|
Location out,
|
|
uint32_t offset,
|
|
Location maybe_temp) {
|
|
Register out_reg = out.AsRegister<Register>();
|
|
if (kEmitCompilerReadBarrier) {
|
|
DCHECK(maybe_temp.IsRegister()) << maybe_temp;
|
|
if (kUseBakerReadBarrier) {
|
|
// Load with fast path based Baker's read barrier.
|
|
// /* HeapReference<Object> */ out = *(out + offset)
|
|
codegen_->GenerateFieldLoadWithBakerReadBarrier(
|
|
instruction, out, out_reg, offset, maybe_temp, /* needs_null_check */ false);
|
|
} else {
|
|
// Load with slow path based read barrier.
|
|
// Save the value of `out` into `maybe_temp` before overwriting it
|
|
// in the following move operation, as we will need it for the
|
|
// read barrier below.
|
|
__ movl(maybe_temp.AsRegister<Register>(), out_reg);
|
|
// /* HeapReference<Object> */ out = *(out + offset)
|
|
__ movl(out_reg, Address(out_reg, offset));
|
|
codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset);
|
|
}
|
|
} else {
|
|
// Plain load with no read barrier.
|
|
// /* HeapReference<Object> */ out = *(out + offset)
|
|
__ movl(out_reg, Address(out_reg, offset));
|
|
__ MaybeUnpoisonHeapReference(out_reg);
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::GenerateReferenceLoadTwoRegisters(HInstruction* instruction,
|
|
Location out,
|
|
Location obj,
|
|
uint32_t offset,
|
|
Location maybe_temp) {
|
|
Register out_reg = out.AsRegister<Register>();
|
|
Register obj_reg = obj.AsRegister<Register>();
|
|
if (kEmitCompilerReadBarrier) {
|
|
if (kUseBakerReadBarrier) {
|
|
DCHECK(maybe_temp.IsRegister()) << maybe_temp;
|
|
// Load with fast path based Baker's read barrier.
|
|
// /* HeapReference<Object> */ out = *(obj + offset)
|
|
codegen_->GenerateFieldLoadWithBakerReadBarrier(
|
|
instruction, out, obj_reg, offset, maybe_temp, /* needs_null_check */ false);
|
|
} else {
|
|
// Load with slow path based read barrier.
|
|
// /* HeapReference<Object> */ out = *(obj + offset)
|
|
__ movl(out_reg, Address(obj_reg, offset));
|
|
codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset);
|
|
}
|
|
} else {
|
|
// Plain load with no read barrier.
|
|
// /* HeapReference<Object> */ out = *(obj + offset)
|
|
__ movl(out_reg, Address(obj_reg, offset));
|
|
__ MaybeUnpoisonHeapReference(out_reg);
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::GenerateGcRootFieldLoad(HInstruction* instruction,
|
|
Location root,
|
|
const Address& address,
|
|
Label* fixup_label) {
|
|
Register root_reg = root.AsRegister<Register>();
|
|
if (kEmitCompilerReadBarrier) {
|
|
if (kUseBakerReadBarrier) {
|
|
// Fast path implementation of art::ReadBarrier::BarrierForRoot when
|
|
// Baker's read barrier are used:
|
|
//
|
|
// root = *address;
|
|
// if (Thread::Current()->GetIsGcMarking()) {
|
|
// root = ReadBarrier::Mark(root)
|
|
// }
|
|
|
|
// /* GcRoot<mirror::Object> */ root = *address
|
|
__ movl(root_reg, address);
|
|
if (fixup_label != nullptr) {
|
|
__ Bind(fixup_label);
|
|
}
|
|
static_assert(
|
|
sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(GcRoot<mirror::Object>),
|
|
"art::mirror::CompressedReference<mirror::Object> and art::GcRoot<mirror::Object> "
|
|
"have different sizes.");
|
|
static_assert(sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(int32_t),
|
|
"art::mirror::CompressedReference<mirror::Object> and int32_t "
|
|
"have different sizes.");
|
|
|
|
// Slow path used to mark the GC root `root`.
|
|
SlowPathCode* slow_path =
|
|
new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathX86(instruction, root, root);
|
|
codegen_->AddSlowPath(slow_path);
|
|
|
|
__ fs()->cmpl(Address::Absolute(Thread::IsGcMarkingOffset<kX86WordSize>().Int32Value()),
|
|
Immediate(0));
|
|
__ j(kNotEqual, slow_path->GetEntryLabel());
|
|
__ Bind(slow_path->GetExitLabel());
|
|
} else {
|
|
// GC root loaded through a slow path for read barriers other
|
|
// than Baker's.
|
|
// /* GcRoot<mirror::Object>* */ root = address
|
|
__ leal(root_reg, address);
|
|
if (fixup_label != nullptr) {
|
|
__ Bind(fixup_label);
|
|
}
|
|
// /* mirror::Object* */ root = root->Read()
|
|
codegen_->GenerateReadBarrierForRootSlow(instruction, root, root);
|
|
}
|
|
} else {
|
|
// Plain GC root load with no read barrier.
|
|
// /* GcRoot<mirror::Object> */ root = *address
|
|
__ movl(root_reg, address);
|
|
if (fixup_label != nullptr) {
|
|
__ Bind(fixup_label);
|
|
}
|
|
// Note that GC roots are not affected by heap poisoning, thus we
|
|
// do not have to unpoison `root_reg` here.
|
|
}
|
|
}
|
|
|
|
void CodeGeneratorX86::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
|
|
Location ref,
|
|
Register obj,
|
|
uint32_t offset,
|
|
Location temp,
|
|
bool needs_null_check) {
|
|
DCHECK(kEmitCompilerReadBarrier);
|
|
DCHECK(kUseBakerReadBarrier);
|
|
|
|
// /* HeapReference<Object> */ ref = *(obj + offset)
|
|
Address src(obj, offset);
|
|
GenerateReferenceLoadWithBakerReadBarrier(instruction, ref, obj, src, temp, needs_null_check);
|
|
}
|
|
|
|
void CodeGeneratorX86::GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction,
|
|
Location ref,
|
|
Register obj,
|
|
uint32_t data_offset,
|
|
Location index,
|
|
Location temp,
|
|
bool needs_null_check) {
|
|
DCHECK(kEmitCompilerReadBarrier);
|
|
DCHECK(kUseBakerReadBarrier);
|
|
|
|
// /* HeapReference<Object> */ ref =
|
|
// *(obj + data_offset + index * sizeof(HeapReference<Object>))
|
|
Address src = index.IsConstant() ?
|
|
Address(obj, (index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset) :
|
|
Address(obj, index.AsRegister<Register>(), TIMES_4, data_offset);
|
|
GenerateReferenceLoadWithBakerReadBarrier(instruction, ref, obj, src, temp, needs_null_check);
|
|
}
|
|
|
|
void CodeGeneratorX86::GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction,
|
|
Location ref,
|
|
Register obj,
|
|
const Address& src,
|
|
Location temp,
|
|
bool needs_null_check) {
|
|
DCHECK(kEmitCompilerReadBarrier);
|
|
DCHECK(kUseBakerReadBarrier);
|
|
|
|
// In slow path based read barriers, the read barrier call is
|
|
// inserted after the original load. However, in fast path based
|
|
// Baker's read barriers, we need to perform the load of
|
|
// mirror::Object::monitor_ *before* the original reference load.
|
|
// This load-load ordering is required by the read barrier.
|
|
// The fast path/slow path (for Baker's algorithm) should look like:
|
|
//
|
|
// uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState();
|
|
// lfence; // Load fence or artificial data dependency to prevent load-load reordering
|
|
// HeapReference<Object> ref = *src; // Original reference load.
|
|
// bool is_gray = (rb_state == ReadBarrier::gray_ptr_);
|
|
// if (is_gray) {
|
|
// ref = ReadBarrier::Mark(ref); // Performed by runtime entrypoint slow path.
|
|
// }
|
|
//
|
|
// Note: the original implementation in ReadBarrier::Barrier is
|
|
// slightly more complex as:
|
|
// - it implements the load-load fence using a data dependency on
|
|
// the high-bits of rb_state, which are expected to be all zeroes
|
|
// (we use CodeGeneratorX86::GenerateMemoryBarrier instead here,
|
|
// which is a no-op thanks to the x86 memory model);
|
|
// - it performs additional checks that we do not do here for
|
|
// performance reasons.
|
|
|
|
Register ref_reg = ref.AsRegister<Register>();
|
|
Register temp_reg = temp.AsRegister<Register>();
|
|
uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value();
|
|
|
|
// /* int32_t */ monitor = obj->monitor_
|
|
__ movl(temp_reg, Address(obj, monitor_offset));
|
|
if (needs_null_check) {
|
|
MaybeRecordImplicitNullCheck(instruction);
|
|
}
|
|
// /* LockWord */ lock_word = LockWord(monitor)
|
|
static_assert(sizeof(LockWord) == sizeof(int32_t),
|
|
"art::LockWord and int32_t have different sizes.");
|
|
// /* uint32_t */ rb_state = lock_word.ReadBarrierState()
|
|
__ shrl(temp_reg, Immediate(LockWord::kReadBarrierStateShift));
|
|
__ andl(temp_reg, Immediate(LockWord::kReadBarrierStateMask));
|
|
static_assert(
|
|
LockWord::kReadBarrierStateMask == ReadBarrier::rb_ptr_mask_,
|
|
"art::LockWord::kReadBarrierStateMask is not equal to art::ReadBarrier::rb_ptr_mask_.");
|
|
|
|
// Load fence to prevent load-load reordering.
|
|
// Note that this is a no-op, thanks to the x86 memory model.
|
|
GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
|
|
|
|
// The actual reference load.
|
|
// /* HeapReference<Object> */ ref = *src
|
|
__ movl(ref_reg, src);
|
|
|
|
// Object* ref = ref_addr->AsMirrorPtr()
|
|
__ MaybeUnpoisonHeapReference(ref_reg);
|
|
|
|
// Slow path used to mark the object `ref` when it is gray.
|
|
SlowPathCode* slow_path =
|
|
new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathX86(instruction, ref, ref);
|
|
AddSlowPath(slow_path);
|
|
|
|
// if (rb_state == ReadBarrier::gray_ptr_)
|
|
// ref = ReadBarrier::Mark(ref);
|
|
__ cmpl(temp_reg, Immediate(ReadBarrier::gray_ptr_));
|
|
__ j(kEqual, slow_path->GetEntryLabel());
|
|
__ Bind(slow_path->GetExitLabel());
|
|
}
|
|
|
|
void CodeGeneratorX86::GenerateReadBarrierSlow(HInstruction* instruction,
|
|
Location out,
|
|
Location ref,
|
|
Location obj,
|
|
uint32_t offset,
|
|
Location index) {
|
|
DCHECK(kEmitCompilerReadBarrier);
|
|
|
|
// Insert a slow path based read barrier *after* the reference load.
|
|
//
|
|
// If heap poisoning is enabled, the unpoisoning of the loaded
|
|
// reference will be carried out by the runtime within the slow
|
|
// path.
|
|
//
|
|
// Note that `ref` currently does not get unpoisoned (when heap
|
|
// poisoning is enabled), which is alright as the `ref` argument is
|
|
// not used by the artReadBarrierSlow entry point.
|
|
//
|
|
// TODO: Unpoison `ref` when it is used by artReadBarrierSlow.
|
|
SlowPathCode* slow_path = new (GetGraph()->GetArena())
|
|
ReadBarrierForHeapReferenceSlowPathX86(instruction, out, ref, obj, offset, index);
|
|
AddSlowPath(slow_path);
|
|
|
|
__ jmp(slow_path->GetEntryLabel());
|
|
__ Bind(slow_path->GetExitLabel());
|
|
}
|
|
|
|
void CodeGeneratorX86::MaybeGenerateReadBarrierSlow(HInstruction* instruction,
|
|
Location out,
|
|
Location ref,
|
|
Location obj,
|
|
uint32_t offset,
|
|
Location index) {
|
|
if (kEmitCompilerReadBarrier) {
|
|
// Baker's read barriers shall be handled by the fast path
|
|
// (CodeGeneratorX86::GenerateReferenceLoadWithBakerReadBarrier).
|
|
DCHECK(!kUseBakerReadBarrier);
|
|
// If heap poisoning is enabled, unpoisoning will be taken care of
|
|
// by the runtime within the slow path.
|
|
GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index);
|
|
} else if (kPoisonHeapReferences) {
|
|
__ UnpoisonHeapReference(out.AsRegister<Register>());
|
|
}
|
|
}
|
|
|
|
void CodeGeneratorX86::GenerateReadBarrierForRootSlow(HInstruction* instruction,
|
|
Location out,
|
|
Location root) {
|
|
DCHECK(kEmitCompilerReadBarrier);
|
|
|
|
// Insert a slow path based read barrier *after* the GC root load.
|
|
//
|
|
// Note that GC roots are not affected by heap poisoning, so we do
|
|
// not need to do anything special for this here.
|
|
SlowPathCode* slow_path =
|
|
new (GetGraph()->GetArena()) ReadBarrierForRootSlowPathX86(instruction, out, root);
|
|
AddSlowPath(slow_path);
|
|
|
|
__ jmp(slow_path->GetEntryLabel());
|
|
__ Bind(slow_path->GetExitLabel());
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
|
|
// Nothing to do, this should be removed during prepare for register allocator.
|
|
LOG(FATAL) << "Unreachable";
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
|
|
// Nothing to do, this should be removed during prepare for register allocator.
|
|
LOG(FATAL) << "Unreachable";
|
|
}
|
|
|
|
// Simple implementation of packed switch - generate cascaded compare/jumps.
|
|
void LocationsBuilderX86::VisitPackedSwitch(HPackedSwitch* switch_instr) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(switch_instr, LocationSummary::kNoCall);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::GenPackedSwitchWithCompares(Register value_reg,
|
|
int32_t lower_bound,
|
|
uint32_t num_entries,
|
|
HBasicBlock* switch_block,
|
|
HBasicBlock* default_block) {
|
|
// Figure out the correct compare values and jump conditions.
|
|
// Handle the first compare/branch as a special case because it might
|
|
// jump to the default case.
|
|
DCHECK_GT(num_entries, 2u);
|
|
Condition first_condition;
|
|
uint32_t index;
|
|
const ArenaVector<HBasicBlock*>& successors = switch_block->GetSuccessors();
|
|
if (lower_bound != 0) {
|
|
first_condition = kLess;
|
|
__ cmpl(value_reg, Immediate(lower_bound));
|
|
__ j(first_condition, codegen_->GetLabelOf(default_block));
|
|
__ j(kEqual, codegen_->GetLabelOf(successors[0]));
|
|
|
|
index = 1;
|
|
} else {
|
|
// Handle all the compare/jumps below.
|
|
first_condition = kBelow;
|
|
index = 0;
|
|
}
|
|
|
|
// Handle the rest of the compare/jumps.
|
|
for (; index + 1 < num_entries; index += 2) {
|
|
int32_t compare_to_value = lower_bound + index + 1;
|
|
__ cmpl(value_reg, Immediate(compare_to_value));
|
|
// Jump to successors[index] if value < case_value[index].
|
|
__ j(first_condition, codegen_->GetLabelOf(successors[index]));
|
|
// Jump to successors[index + 1] if value == case_value[index + 1].
|
|
__ j(kEqual, codegen_->GetLabelOf(successors[index + 1]));
|
|
}
|
|
|
|
if (index != num_entries) {
|
|
// There are an odd number of entries. Handle the last one.
|
|
DCHECK_EQ(index + 1, num_entries);
|
|
__ cmpl(value_reg, Immediate(lower_bound + index));
|
|
__ j(kEqual, codegen_->GetLabelOf(successors[index]));
|
|
}
|
|
|
|
// And the default for any other value.
|
|
if (!codegen_->GoesToNextBlock(switch_block, default_block)) {
|
|
__ jmp(codegen_->GetLabelOf(default_block));
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitPackedSwitch(HPackedSwitch* switch_instr) {
|
|
int32_t lower_bound = switch_instr->GetStartValue();
|
|
uint32_t num_entries = switch_instr->GetNumEntries();
|
|
LocationSummary* locations = switch_instr->GetLocations();
|
|
Register value_reg = locations->InAt(0).AsRegister<Register>();
|
|
|
|
GenPackedSwitchWithCompares(value_reg,
|
|
lower_bound,
|
|
num_entries,
|
|
switch_instr->GetBlock(),
|
|
switch_instr->GetDefaultBlock());
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitX86PackedSwitch(HX86PackedSwitch* switch_instr) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(switch_instr, LocationSummary::kNoCall);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
|
|
// Constant area pointer.
|
|
locations->SetInAt(1, Location::RequiresRegister());
|
|
|
|
// And the temporary we need.
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitX86PackedSwitch(HX86PackedSwitch* switch_instr) {
|
|
int32_t lower_bound = switch_instr->GetStartValue();
|
|
uint32_t num_entries = switch_instr->GetNumEntries();
|
|
LocationSummary* locations = switch_instr->GetLocations();
|
|
Register value_reg = locations->InAt(0).AsRegister<Register>();
|
|
HBasicBlock* default_block = switch_instr->GetDefaultBlock();
|
|
|
|
if (num_entries <= kPackedSwitchJumpTableThreshold) {
|
|
GenPackedSwitchWithCompares(value_reg,
|
|
lower_bound,
|
|
num_entries,
|
|
switch_instr->GetBlock(),
|
|
default_block);
|
|
return;
|
|
}
|
|
|
|
// Optimizing has a jump area.
|
|
Register temp_reg = locations->GetTemp(0).AsRegister<Register>();
|
|
Register constant_area = locations->InAt(1).AsRegister<Register>();
|
|
|
|
// Remove the bias, if needed.
|
|
if (lower_bound != 0) {
|
|
__ leal(temp_reg, Address(value_reg, -lower_bound));
|
|
value_reg = temp_reg;
|
|
}
|
|
|
|
// Is the value in range?
|
|
DCHECK_GE(num_entries, 1u);
|
|
__ cmpl(value_reg, Immediate(num_entries - 1));
|
|
__ j(kAbove, codegen_->GetLabelOf(default_block));
|
|
|
|
// We are in the range of the table.
|
|
// Load (target-constant_area) from the jump table, indexing by the value.
|
|
__ movl(temp_reg, codegen_->LiteralCaseTable(switch_instr, constant_area, value_reg));
|
|
|
|
// Compute the actual target address by adding in constant_area.
|
|
__ addl(temp_reg, constant_area);
|
|
|
|
// And jump.
|
|
__ jmp(temp_reg);
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitX86ComputeBaseMethodAddress(
|
|
HX86ComputeBaseMethodAddress* insn) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(insn, LocationSummary::kNoCall);
|
|
locations->SetOut(Location::RequiresRegister());
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitX86ComputeBaseMethodAddress(
|
|
HX86ComputeBaseMethodAddress* insn) {
|
|
LocationSummary* locations = insn->GetLocations();
|
|
Register reg = locations->Out().AsRegister<Register>();
|
|
|
|
// Generate call to next instruction.
|
|
Label next_instruction;
|
|
__ call(&next_instruction);
|
|
__ Bind(&next_instruction);
|
|
|
|
// Remember this offset for later use with constant area.
|
|
codegen_->SetMethodAddressOffset(GetAssembler()->CodeSize());
|
|
|
|
// Grab the return address off the stack.
|
|
__ popl(reg);
|
|
}
|
|
|
|
void LocationsBuilderX86::VisitX86LoadFromConstantTable(
|
|
HX86LoadFromConstantTable* insn) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(insn, LocationSummary::kNoCall);
|
|
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::ConstantLocation(insn->GetConstant()));
|
|
|
|
// If we don't need to be materialized, we only need the inputs to be set.
|
|
if (insn->IsEmittedAtUseSite()) {
|
|
return;
|
|
}
|
|
|
|
switch (insn->GetType()) {
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimDouble:
|
|
locations->SetOut(Location::RequiresFpuRegister());
|
|
break;
|
|
|
|
case Primitive::kPrimInt:
|
|
locations->SetOut(Location::RequiresRegister());
|
|
break;
|
|
|
|
default:
|
|
LOG(FATAL) << "Unsupported x86 constant area type " << insn->GetType();
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorX86::VisitX86LoadFromConstantTable(HX86LoadFromConstantTable* insn) {
|
|
if (insn->IsEmittedAtUseSite()) {
|
|
return;
|
|
}
|
|
|
|
LocationSummary* locations = insn->GetLocations();
|
|
Location out = locations->Out();
|
|
Register const_area = locations->InAt(0).AsRegister<Register>();
|
|
HConstant *value = insn->GetConstant();
|
|
|
|
switch (insn->GetType()) {
|
|
case Primitive::kPrimFloat:
|
|
__ movss(out.AsFpuRegister<XmmRegister>(),
|
|
codegen_->LiteralFloatAddress(value->AsFloatConstant()->GetValue(), const_area));
|
|
break;
|
|
|
|
case Primitive::kPrimDouble:
|
|
__ movsd(out.AsFpuRegister<XmmRegister>(),
|
|
codegen_->LiteralDoubleAddress(value->AsDoubleConstant()->GetValue(), const_area));
|
|
break;
|
|
|
|
case Primitive::kPrimInt:
|
|
__ movl(out.AsRegister<Register>(),
|
|
codegen_->LiteralInt32Address(value->AsIntConstant()->GetValue(), const_area));
|
|
break;
|
|
|
|
default:
|
|
LOG(FATAL) << "Unsupported x86 constant area type " << insn->GetType();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Class to handle late fixup of offsets into constant area.
|
|
*/
|
|
class RIPFixup : public AssemblerFixup, public ArenaObject<kArenaAllocCodeGenerator> {
|
|
public:
|
|
RIPFixup(CodeGeneratorX86& codegen, size_t offset)
|
|
: codegen_(&codegen), offset_into_constant_area_(offset) {}
|
|
|
|
protected:
|
|
void SetOffset(size_t offset) { offset_into_constant_area_ = offset; }
|
|
|
|
CodeGeneratorX86* codegen_;
|
|
|
|
private:
|
|
void Process(const MemoryRegion& region, int pos) OVERRIDE {
|
|
// Patch the correct offset for the instruction. The place to patch is the
|
|
// last 4 bytes of the instruction.
|
|
// The value to patch is the distance from the offset in the constant area
|
|
// from the address computed by the HX86ComputeBaseMethodAddress instruction.
|
|
int32_t constant_offset = codegen_->ConstantAreaStart() + offset_into_constant_area_;
|
|
int32_t relative_position = constant_offset - codegen_->GetMethodAddressOffset();;
|
|
|
|
// Patch in the right value.
|
|
region.StoreUnaligned<int32_t>(pos - 4, relative_position);
|
|
}
|
|
|
|
// Location in constant area that the fixup refers to.
|
|
int32_t offset_into_constant_area_;
|
|
};
|
|
|
|
/**
|
|
* Class to handle late fixup of offsets to a jump table that will be created in the
|
|
* constant area.
|
|
*/
|
|
class JumpTableRIPFixup : public RIPFixup {
|
|
public:
|
|
JumpTableRIPFixup(CodeGeneratorX86& codegen, HX86PackedSwitch* switch_instr)
|
|
: RIPFixup(codegen, static_cast<size_t>(-1)), switch_instr_(switch_instr) {}
|
|
|
|
void CreateJumpTable() {
|
|
X86Assembler* assembler = codegen_->GetAssembler();
|
|
|
|
// Ensure that the reference to the jump table has the correct offset.
|
|
const int32_t offset_in_constant_table = assembler->ConstantAreaSize();
|
|
SetOffset(offset_in_constant_table);
|
|
|
|
// The label values in the jump table are computed relative to the
|
|
// instruction addressing the constant area.
|
|
const int32_t relative_offset = codegen_->GetMethodAddressOffset();
|
|
|
|
// Populate the jump table with the correct values for the jump table.
|
|
int32_t num_entries = switch_instr_->GetNumEntries();
|
|
HBasicBlock* block = switch_instr_->GetBlock();
|
|
const ArenaVector<HBasicBlock*>& successors = block->GetSuccessors();
|
|
// The value that we want is the target offset - the position of the table.
|
|
for (int32_t i = 0; i < num_entries; i++) {
|
|
HBasicBlock* b = successors[i];
|
|
Label* l = codegen_->GetLabelOf(b);
|
|
DCHECK(l->IsBound());
|
|
int32_t offset_to_block = l->Position() - relative_offset;
|
|
assembler->AppendInt32(offset_to_block);
|
|
}
|
|
}
|
|
|
|
private:
|
|
const HX86PackedSwitch* switch_instr_;
|
|
};
|
|
|
|
void CodeGeneratorX86::Finalize(CodeAllocator* allocator) {
|
|
// Generate the constant area if needed.
|
|
X86Assembler* assembler = GetAssembler();
|
|
if (!assembler->IsConstantAreaEmpty() || !fixups_to_jump_tables_.empty()) {
|
|
// Align to 4 byte boundary to reduce cache misses, as the data is 4 and 8
|
|
// byte values.
|
|
assembler->Align(4, 0);
|
|
constant_area_start_ = assembler->CodeSize();
|
|
|
|
// Populate any jump tables.
|
|
for (auto jump_table : fixups_to_jump_tables_) {
|
|
jump_table->CreateJumpTable();
|
|
}
|
|
|
|
// And now add the constant area to the generated code.
|
|
assembler->AddConstantArea();
|
|
}
|
|
|
|
// And finish up.
|
|
CodeGenerator::Finalize(allocator);
|
|
}
|
|
|
|
Address CodeGeneratorX86::LiteralDoubleAddress(double v, Register reg) {
|
|
AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, __ AddDouble(v));
|
|
return Address(reg, kDummy32BitOffset, fixup);
|
|
}
|
|
|
|
Address CodeGeneratorX86::LiteralFloatAddress(float v, Register reg) {
|
|
AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, __ AddFloat(v));
|
|
return Address(reg, kDummy32BitOffset, fixup);
|
|
}
|
|
|
|
Address CodeGeneratorX86::LiteralInt32Address(int32_t v, Register reg) {
|
|
AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, __ AddInt32(v));
|
|
return Address(reg, kDummy32BitOffset, fixup);
|
|
}
|
|
|
|
Address CodeGeneratorX86::LiteralInt64Address(int64_t v, Register reg) {
|
|
AssemblerFixup* fixup = new (GetGraph()->GetArena()) RIPFixup(*this, __ AddInt64(v));
|
|
return Address(reg, kDummy32BitOffset, fixup);
|
|
}
|
|
|
|
void CodeGeneratorX86::Load32BitValue(Register dest, int32_t value) {
|
|
if (value == 0) {
|
|
__ xorl(dest, dest);
|
|
} else {
|
|
__ movl(dest, Immediate(value));
|
|
}
|
|
}
|
|
|
|
void CodeGeneratorX86::Compare32BitValue(Register dest, int32_t value) {
|
|
if (value == 0) {
|
|
__ testl(dest, dest);
|
|
} else {
|
|
__ cmpl(dest, Immediate(value));
|
|
}
|
|
}
|
|
|
|
Address CodeGeneratorX86::LiteralCaseTable(HX86PackedSwitch* switch_instr,
|
|
Register reg,
|
|
Register value) {
|
|
// Create a fixup to be used to create and address the jump table.
|
|
JumpTableRIPFixup* table_fixup =
|
|
new (GetGraph()->GetArena()) JumpTableRIPFixup(*this, switch_instr);
|
|
|
|
// We have to populate the jump tables.
|
|
fixups_to_jump_tables_.push_back(table_fixup);
|
|
|
|
// We want a scaled address, as we are extracting the correct offset from the table.
|
|
return Address(reg, value, TIMES_4, kDummy32BitOffset, table_fixup);
|
|
}
|
|
|
|
// TODO: target as memory.
|
|
void CodeGeneratorX86::MoveFromReturnRegister(Location target, Primitive::Type type) {
|
|
if (!target.IsValid()) {
|
|
DCHECK_EQ(type, Primitive::kPrimVoid);
|
|
return;
|
|
}
|
|
|
|
DCHECK_NE(type, Primitive::kPrimVoid);
|
|
|
|
Location return_loc = InvokeDexCallingConventionVisitorX86().GetReturnLocation(type);
|
|
if (target.Equals(return_loc)) {
|
|
return;
|
|
}
|
|
|
|
// TODO: Consider pairs in the parallel move resolver, then this could be nicely merged
|
|
// with the else branch.
|
|
if (type == Primitive::kPrimLong) {
|
|
HParallelMove parallel_move(GetGraph()->GetArena());
|
|
parallel_move.AddMove(return_loc.ToLow(), target.ToLow(), Primitive::kPrimInt, nullptr);
|
|
parallel_move.AddMove(return_loc.ToHigh(), target.ToHigh(), Primitive::kPrimInt, nullptr);
|
|
GetMoveResolver()->EmitNativeCode(¶llel_move);
|
|
} else {
|
|
// Let the parallel move resolver take care of all of this.
|
|
HParallelMove parallel_move(GetGraph()->GetArena());
|
|
parallel_move.AddMove(return_loc, target, type, nullptr);
|
|
GetMoveResolver()->EmitNativeCode(¶llel_move);
|
|
}
|
|
}
|
|
|
|
#undef __
|
|
|
|
} // namespace x86
|
|
} // namespace art
|