5206 lines
210 KiB
C++
5206 lines
210 KiB
C++
/*
|
|
* Copyright (C) 2014 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "code_generator_arm64.h"
|
|
|
|
#include "arch/arm64/instruction_set_features_arm64.h"
|
|
#include "art_method.h"
|
|
#include "code_generator_utils.h"
|
|
#include "compiled_method.h"
|
|
#include "entrypoints/quick/quick_entrypoints.h"
|
|
#include "entrypoints/quick/quick_entrypoints_enum.h"
|
|
#include "gc/accounting/card_table.h"
|
|
#include "intrinsics.h"
|
|
#include "intrinsics_arm64.h"
|
|
#include "mirror/array-inl.h"
|
|
#include "mirror/class-inl.h"
|
|
#include "offsets.h"
|
|
#include "thread.h"
|
|
#include "utils/arm64/assembler_arm64.h"
|
|
#include "utils/assembler.h"
|
|
#include "utils/stack_checks.h"
|
|
|
|
|
|
using namespace vixl; // NOLINT(build/namespaces)
|
|
|
|
#ifdef __
|
|
#error "ARM64 Codegen VIXL macro-assembler macro already defined."
|
|
#endif
|
|
|
|
namespace art {
|
|
|
|
template<class MirrorType>
|
|
class GcRoot;
|
|
|
|
namespace arm64 {
|
|
|
|
using helpers::CPURegisterFrom;
|
|
using helpers::DRegisterFrom;
|
|
using helpers::FPRegisterFrom;
|
|
using helpers::HeapOperand;
|
|
using helpers::HeapOperandFrom;
|
|
using helpers::InputCPURegisterAt;
|
|
using helpers::InputFPRegisterAt;
|
|
using helpers::InputRegisterAt;
|
|
using helpers::InputOperandAt;
|
|
using helpers::Int64ConstantFrom;
|
|
using helpers::LocationFrom;
|
|
using helpers::OperandFromMemOperand;
|
|
using helpers::OutputCPURegister;
|
|
using helpers::OutputFPRegister;
|
|
using helpers::OutputRegister;
|
|
using helpers::RegisterFrom;
|
|
using helpers::StackOperandFrom;
|
|
using helpers::VIXLRegCodeFromART;
|
|
using helpers::WRegisterFrom;
|
|
using helpers::XRegisterFrom;
|
|
using helpers::ARM64EncodableConstantOrRegister;
|
|
using helpers::ArtVixlRegCodeCoherentForRegSet;
|
|
|
|
static constexpr int kCurrentMethodStackOffset = 0;
|
|
// The compare/jump sequence will generate about (1.5 * num_entries + 3) instructions. While jump
|
|
// table version generates 7 instructions and num_entries literals. Compare/jump sequence will
|
|
// generates less code/data with a small num_entries.
|
|
static constexpr uint32_t kPackedSwitchCompareJumpThreshold = 7;
|
|
|
|
inline Condition ARM64Condition(IfCondition cond) {
|
|
switch (cond) {
|
|
case kCondEQ: return eq;
|
|
case kCondNE: return ne;
|
|
case kCondLT: return lt;
|
|
case kCondLE: return le;
|
|
case kCondGT: return gt;
|
|
case kCondGE: return ge;
|
|
case kCondB: return lo;
|
|
case kCondBE: return ls;
|
|
case kCondA: return hi;
|
|
case kCondAE: return hs;
|
|
}
|
|
LOG(FATAL) << "Unreachable";
|
|
UNREACHABLE();
|
|
}
|
|
|
|
inline Condition ARM64FPCondition(IfCondition cond, bool gt_bias) {
|
|
// The ARM64 condition codes can express all the necessary branches, see the
|
|
// "Meaning (floating-point)" column in the table C1-1 in the ARMv8 reference manual.
|
|
// There is no dex instruction or HIR that would need the missing conditions
|
|
// "equal or unordered" or "not equal".
|
|
switch (cond) {
|
|
case kCondEQ: return eq;
|
|
case kCondNE: return ne /* unordered */;
|
|
case kCondLT: return gt_bias ? cc : lt /* unordered */;
|
|
case kCondLE: return gt_bias ? ls : le /* unordered */;
|
|
case kCondGT: return gt_bias ? hi /* unordered */ : gt;
|
|
case kCondGE: return gt_bias ? cs /* unordered */ : ge;
|
|
default:
|
|
LOG(FATAL) << "UNREACHABLE";
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
Location ARM64ReturnLocation(Primitive::Type return_type) {
|
|
// Note that in practice, `LocationFrom(x0)` and `LocationFrom(w0)` create the
|
|
// same Location object, and so do `LocationFrom(d0)` and `LocationFrom(s0)`,
|
|
// but we use the exact registers for clarity.
|
|
if (return_type == Primitive::kPrimFloat) {
|
|
return LocationFrom(s0);
|
|
} else if (return_type == Primitive::kPrimDouble) {
|
|
return LocationFrom(d0);
|
|
} else if (return_type == Primitive::kPrimLong) {
|
|
return LocationFrom(x0);
|
|
} else if (return_type == Primitive::kPrimVoid) {
|
|
return Location::NoLocation();
|
|
} else {
|
|
return LocationFrom(w0);
|
|
}
|
|
}
|
|
|
|
Location InvokeRuntimeCallingConvention::GetReturnLocation(Primitive::Type return_type) {
|
|
return ARM64ReturnLocation(return_type);
|
|
}
|
|
|
|
#define __ down_cast<CodeGeneratorARM64*>(codegen)->GetVIXLAssembler()->
|
|
#define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kArm64WordSize, x).Int32Value()
|
|
|
|
// Calculate memory accessing operand for save/restore live registers.
|
|
static void SaveRestoreLiveRegistersHelper(CodeGenerator* codegen,
|
|
RegisterSet* register_set,
|
|
int64_t spill_offset,
|
|
bool is_save) {
|
|
DCHECK(ArtVixlRegCodeCoherentForRegSet(register_set->GetCoreRegisters(),
|
|
codegen->GetNumberOfCoreRegisters(),
|
|
register_set->GetFloatingPointRegisters(),
|
|
codegen->GetNumberOfFloatingPointRegisters()));
|
|
|
|
CPURegList core_list = CPURegList(CPURegister::kRegister, kXRegSize,
|
|
register_set->GetCoreRegisters() & (~callee_saved_core_registers.list()));
|
|
CPURegList fp_list = CPURegList(CPURegister::kFPRegister, kDRegSize,
|
|
register_set->GetFloatingPointRegisters() & (~callee_saved_fp_registers.list()));
|
|
|
|
MacroAssembler* masm = down_cast<CodeGeneratorARM64*>(codegen)->GetVIXLAssembler();
|
|
UseScratchRegisterScope temps(masm);
|
|
|
|
Register base = masm->StackPointer();
|
|
int64_t core_spill_size = core_list.TotalSizeInBytes();
|
|
int64_t fp_spill_size = fp_list.TotalSizeInBytes();
|
|
int64_t reg_size = kXRegSizeInBytes;
|
|
int64_t max_ls_pair_offset = spill_offset + core_spill_size + fp_spill_size - 2 * reg_size;
|
|
uint32_t ls_access_size = WhichPowerOf2(reg_size);
|
|
if (((core_list.Count() > 1) || (fp_list.Count() > 1)) &&
|
|
!masm->IsImmLSPair(max_ls_pair_offset, ls_access_size)) {
|
|
// If the offset does not fit in the instruction's immediate field, use an alternate register
|
|
// to compute the base address(float point registers spill base address).
|
|
Register new_base = temps.AcquireSameSizeAs(base);
|
|
__ Add(new_base, base, Operand(spill_offset + core_spill_size));
|
|
base = new_base;
|
|
spill_offset = -core_spill_size;
|
|
int64_t new_max_ls_pair_offset = fp_spill_size - 2 * reg_size;
|
|
DCHECK(masm->IsImmLSPair(spill_offset, ls_access_size));
|
|
DCHECK(masm->IsImmLSPair(new_max_ls_pair_offset, ls_access_size));
|
|
}
|
|
|
|
if (is_save) {
|
|
__ StoreCPURegList(core_list, MemOperand(base, spill_offset));
|
|
__ StoreCPURegList(fp_list, MemOperand(base, spill_offset + core_spill_size));
|
|
} else {
|
|
__ LoadCPURegList(core_list, MemOperand(base, spill_offset));
|
|
__ LoadCPURegList(fp_list, MemOperand(base, spill_offset + core_spill_size));
|
|
}
|
|
}
|
|
|
|
void SlowPathCodeARM64::SaveLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
|
|
RegisterSet* register_set = locations->GetLiveRegisters();
|
|
size_t stack_offset = codegen->GetFirstRegisterSlotInSlowPath();
|
|
for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) {
|
|
if (!codegen->IsCoreCalleeSaveRegister(i) && register_set->ContainsCoreRegister(i)) {
|
|
// If the register holds an object, update the stack mask.
|
|
if (locations->RegisterContainsObject(i)) {
|
|
locations->SetStackBit(stack_offset / kVRegSize);
|
|
}
|
|
DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
|
|
DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
|
|
saved_core_stack_offsets_[i] = stack_offset;
|
|
stack_offset += kXRegSizeInBytes;
|
|
}
|
|
}
|
|
|
|
for (size_t i = 0, e = codegen->GetNumberOfFloatingPointRegisters(); i < e; ++i) {
|
|
if (!codegen->IsFloatingPointCalleeSaveRegister(i) &&
|
|
register_set->ContainsFloatingPointRegister(i)) {
|
|
DCHECK_LT(stack_offset, codegen->GetFrameSize() - codegen->FrameEntrySpillSize());
|
|
DCHECK_LT(i, kMaximumNumberOfExpectedRegisters);
|
|
saved_fpu_stack_offsets_[i] = stack_offset;
|
|
stack_offset += kDRegSizeInBytes;
|
|
}
|
|
}
|
|
|
|
SaveRestoreLiveRegistersHelper(codegen, register_set,
|
|
codegen->GetFirstRegisterSlotInSlowPath(), true /* is_save */);
|
|
}
|
|
|
|
void SlowPathCodeARM64::RestoreLiveRegisters(CodeGenerator* codegen, LocationSummary* locations) {
|
|
RegisterSet* register_set = locations->GetLiveRegisters();
|
|
SaveRestoreLiveRegistersHelper(codegen, register_set,
|
|
codegen->GetFirstRegisterSlotInSlowPath(), false /* is_save */);
|
|
}
|
|
|
|
class BoundsCheckSlowPathARM64 : public SlowPathCodeARM64 {
|
|
public:
|
|
explicit BoundsCheckSlowPathARM64(HBoundsCheck* instruction) : SlowPathCodeARM64(instruction) {}
|
|
|
|
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
|
|
LocationSummary* locations = instruction_->GetLocations();
|
|
CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
|
|
|
|
__ Bind(GetEntryLabel());
|
|
if (instruction_->CanThrowIntoCatchBlock()) {
|
|
// Live registers will be restored in the catch block if caught.
|
|
SaveLiveRegisters(codegen, instruction_->GetLocations());
|
|
}
|
|
// We're moving two locations to locations that could overlap, so we need a parallel
|
|
// move resolver.
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
codegen->EmitParallelMoves(
|
|
locations->InAt(0), LocationFrom(calling_convention.GetRegisterAt(0)), Primitive::kPrimInt,
|
|
locations->InAt(1), LocationFrom(calling_convention.GetRegisterAt(1)), Primitive::kPrimInt);
|
|
arm64_codegen->InvokeRuntime(
|
|
QUICK_ENTRY_POINT(pThrowArrayBounds), instruction_, instruction_->GetDexPc(), this);
|
|
CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>();
|
|
}
|
|
|
|
bool IsFatal() const OVERRIDE { return true; }
|
|
|
|
const char* GetDescription() const OVERRIDE { return "BoundsCheckSlowPathARM64"; }
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathARM64);
|
|
};
|
|
|
|
class DivZeroCheckSlowPathARM64 : public SlowPathCodeARM64 {
|
|
public:
|
|
explicit DivZeroCheckSlowPathARM64(HDivZeroCheck* instruction) : SlowPathCodeARM64(instruction) {}
|
|
|
|
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
|
|
CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
|
|
__ Bind(GetEntryLabel());
|
|
if (instruction_->CanThrowIntoCatchBlock()) {
|
|
// Live registers will be restored in the catch block if caught.
|
|
SaveLiveRegisters(codegen, instruction_->GetLocations());
|
|
}
|
|
arm64_codegen->InvokeRuntime(
|
|
QUICK_ENTRY_POINT(pThrowDivZero), instruction_, instruction_->GetDexPc(), this);
|
|
CheckEntrypointTypes<kQuickThrowDivZero, void, void>();
|
|
}
|
|
|
|
bool IsFatal() const OVERRIDE { return true; }
|
|
|
|
const char* GetDescription() const OVERRIDE { return "DivZeroCheckSlowPathARM64"; }
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathARM64);
|
|
};
|
|
|
|
class LoadClassSlowPathARM64 : public SlowPathCodeARM64 {
|
|
public:
|
|
LoadClassSlowPathARM64(HLoadClass* cls,
|
|
HInstruction* at,
|
|
uint32_t dex_pc,
|
|
bool do_clinit)
|
|
: SlowPathCodeARM64(at), cls_(cls), at_(at), dex_pc_(dex_pc), do_clinit_(do_clinit) {
|
|
DCHECK(at->IsLoadClass() || at->IsClinitCheck());
|
|
}
|
|
|
|
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
|
|
LocationSummary* locations = at_->GetLocations();
|
|
CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
|
|
|
|
__ Bind(GetEntryLabel());
|
|
SaveLiveRegisters(codegen, locations);
|
|
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
__ Mov(calling_convention.GetRegisterAt(0).W(), cls_->GetTypeIndex());
|
|
int32_t entry_point_offset = do_clinit_ ? QUICK_ENTRY_POINT(pInitializeStaticStorage)
|
|
: QUICK_ENTRY_POINT(pInitializeType);
|
|
arm64_codegen->InvokeRuntime(entry_point_offset, at_, dex_pc_, this);
|
|
if (do_clinit_) {
|
|
CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, uint32_t>();
|
|
} else {
|
|
CheckEntrypointTypes<kQuickInitializeType, void*, uint32_t>();
|
|
}
|
|
|
|
// Move the class to the desired location.
|
|
Location out = locations->Out();
|
|
if (out.IsValid()) {
|
|
DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
|
|
Primitive::Type type = at_->GetType();
|
|
arm64_codegen->MoveLocation(out, calling_convention.GetReturnLocation(type), type);
|
|
}
|
|
|
|
RestoreLiveRegisters(codegen, locations);
|
|
__ B(GetExitLabel());
|
|
}
|
|
|
|
const char* GetDescription() const OVERRIDE { return "LoadClassSlowPathARM64"; }
|
|
|
|
private:
|
|
// The class this slow path will load.
|
|
HLoadClass* const cls_;
|
|
|
|
// The instruction where this slow path is happening.
|
|
// (Might be the load class or an initialization check).
|
|
HInstruction* const at_;
|
|
|
|
// The dex PC of `at_`.
|
|
const uint32_t dex_pc_;
|
|
|
|
// Whether to initialize the class.
|
|
const bool do_clinit_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathARM64);
|
|
};
|
|
|
|
class LoadStringSlowPathARM64 : public SlowPathCodeARM64 {
|
|
public:
|
|
explicit LoadStringSlowPathARM64(HLoadString* instruction) : SlowPathCodeARM64(instruction) {}
|
|
|
|
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
|
|
LocationSummary* locations = instruction_->GetLocations();
|
|
DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
|
|
CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
|
|
|
|
__ Bind(GetEntryLabel());
|
|
SaveLiveRegisters(codegen, locations);
|
|
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
const uint32_t string_index = instruction_->AsLoadString()->GetStringIndex();
|
|
__ Mov(calling_convention.GetRegisterAt(0).W(), string_index);
|
|
arm64_codegen->InvokeRuntime(
|
|
QUICK_ENTRY_POINT(pResolveString), instruction_, instruction_->GetDexPc(), this);
|
|
CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
|
|
Primitive::Type type = instruction_->GetType();
|
|
arm64_codegen->MoveLocation(locations->Out(), calling_convention.GetReturnLocation(type), type);
|
|
|
|
RestoreLiveRegisters(codegen, locations);
|
|
__ B(GetExitLabel());
|
|
}
|
|
|
|
const char* GetDescription() const OVERRIDE { return "LoadStringSlowPathARM64"; }
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathARM64);
|
|
};
|
|
|
|
class NullCheckSlowPathARM64 : public SlowPathCodeARM64 {
|
|
public:
|
|
explicit NullCheckSlowPathARM64(HNullCheck* instr) : SlowPathCodeARM64(instr) {}
|
|
|
|
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
|
|
CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
|
|
__ Bind(GetEntryLabel());
|
|
if (instruction_->CanThrowIntoCatchBlock()) {
|
|
// Live registers will be restored in the catch block if caught.
|
|
SaveLiveRegisters(codegen, instruction_->GetLocations());
|
|
}
|
|
arm64_codegen->InvokeRuntime(
|
|
QUICK_ENTRY_POINT(pThrowNullPointer), instruction_, instruction_->GetDexPc(), this);
|
|
CheckEntrypointTypes<kQuickThrowNullPointer, void, void>();
|
|
}
|
|
|
|
bool IsFatal() const OVERRIDE { return true; }
|
|
|
|
const char* GetDescription() const OVERRIDE { return "NullCheckSlowPathARM64"; }
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathARM64);
|
|
};
|
|
|
|
class SuspendCheckSlowPathARM64 : public SlowPathCodeARM64 {
|
|
public:
|
|
SuspendCheckSlowPathARM64(HSuspendCheck* instruction, HBasicBlock* successor)
|
|
: SlowPathCodeARM64(instruction), successor_(successor) {}
|
|
|
|
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
|
|
CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
|
|
__ Bind(GetEntryLabel());
|
|
SaveLiveRegisters(codegen, instruction_->GetLocations());
|
|
arm64_codegen->InvokeRuntime(
|
|
QUICK_ENTRY_POINT(pTestSuspend), instruction_, instruction_->GetDexPc(), this);
|
|
CheckEntrypointTypes<kQuickTestSuspend, void, void>();
|
|
RestoreLiveRegisters(codegen, instruction_->GetLocations());
|
|
if (successor_ == nullptr) {
|
|
__ B(GetReturnLabel());
|
|
} else {
|
|
__ B(arm64_codegen->GetLabelOf(successor_));
|
|
}
|
|
}
|
|
|
|
vixl::Label* GetReturnLabel() {
|
|
DCHECK(successor_ == nullptr);
|
|
return &return_label_;
|
|
}
|
|
|
|
HBasicBlock* GetSuccessor() const {
|
|
return successor_;
|
|
}
|
|
|
|
const char* GetDescription() const OVERRIDE { return "SuspendCheckSlowPathARM64"; }
|
|
|
|
private:
|
|
// If not null, the block to branch to after the suspend check.
|
|
HBasicBlock* const successor_;
|
|
|
|
// If `successor_` is null, the label to branch to after the suspend check.
|
|
vixl::Label return_label_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathARM64);
|
|
};
|
|
|
|
class TypeCheckSlowPathARM64 : public SlowPathCodeARM64 {
|
|
public:
|
|
TypeCheckSlowPathARM64(HInstruction* instruction, bool is_fatal)
|
|
: SlowPathCodeARM64(instruction), is_fatal_(is_fatal) {}
|
|
|
|
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
|
|
LocationSummary* locations = instruction_->GetLocations();
|
|
Location class_to_check = locations->InAt(1);
|
|
Location object_class = instruction_->IsCheckCast() ? locations->GetTemp(0)
|
|
: locations->Out();
|
|
DCHECK(instruction_->IsCheckCast()
|
|
|| !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
|
|
CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
|
|
uint32_t dex_pc = instruction_->GetDexPc();
|
|
|
|
__ Bind(GetEntryLabel());
|
|
|
|
if (!is_fatal_) {
|
|
SaveLiveRegisters(codegen, locations);
|
|
}
|
|
|
|
// We're moving two locations to locations that could overlap, so we need a parallel
|
|
// move resolver.
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
codegen->EmitParallelMoves(
|
|
class_to_check, LocationFrom(calling_convention.GetRegisterAt(0)), Primitive::kPrimNot,
|
|
object_class, LocationFrom(calling_convention.GetRegisterAt(1)), Primitive::kPrimNot);
|
|
|
|
if (instruction_->IsInstanceOf()) {
|
|
arm64_codegen->InvokeRuntime(
|
|
QUICK_ENTRY_POINT(pInstanceofNonTrivial), instruction_, dex_pc, this);
|
|
CheckEntrypointTypes<kQuickInstanceofNonTrivial, uint32_t,
|
|
const mirror::Class*, const mirror::Class*>();
|
|
Primitive::Type ret_type = instruction_->GetType();
|
|
Location ret_loc = calling_convention.GetReturnLocation(ret_type);
|
|
arm64_codegen->MoveLocation(locations->Out(), ret_loc, ret_type);
|
|
} else {
|
|
DCHECK(instruction_->IsCheckCast());
|
|
arm64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pCheckCast), instruction_, dex_pc, this);
|
|
CheckEntrypointTypes<kQuickCheckCast, void, const mirror::Class*, const mirror::Class*>();
|
|
}
|
|
|
|
if (!is_fatal_) {
|
|
RestoreLiveRegisters(codegen, locations);
|
|
__ B(GetExitLabel());
|
|
}
|
|
}
|
|
|
|
const char* GetDescription() const OVERRIDE { return "TypeCheckSlowPathARM64"; }
|
|
bool IsFatal() const { return is_fatal_; }
|
|
|
|
private:
|
|
const bool is_fatal_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathARM64);
|
|
};
|
|
|
|
class DeoptimizationSlowPathARM64 : public SlowPathCodeARM64 {
|
|
public:
|
|
explicit DeoptimizationSlowPathARM64(HDeoptimize* instruction)
|
|
: SlowPathCodeARM64(instruction) {}
|
|
|
|
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
|
|
CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
|
|
__ Bind(GetEntryLabel());
|
|
SaveLiveRegisters(codegen, instruction_->GetLocations());
|
|
arm64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pDeoptimize),
|
|
instruction_,
|
|
instruction_->GetDexPc(),
|
|
this);
|
|
CheckEntrypointTypes<kQuickDeoptimize, void, void>();
|
|
}
|
|
|
|
const char* GetDescription() const OVERRIDE { return "DeoptimizationSlowPathARM64"; }
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathARM64);
|
|
};
|
|
|
|
class ArraySetSlowPathARM64 : public SlowPathCodeARM64 {
|
|
public:
|
|
explicit ArraySetSlowPathARM64(HInstruction* instruction) : SlowPathCodeARM64(instruction) {}
|
|
|
|
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
|
|
LocationSummary* locations = instruction_->GetLocations();
|
|
__ Bind(GetEntryLabel());
|
|
SaveLiveRegisters(codegen, locations);
|
|
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
HParallelMove parallel_move(codegen->GetGraph()->GetArena());
|
|
parallel_move.AddMove(
|
|
locations->InAt(0),
|
|
LocationFrom(calling_convention.GetRegisterAt(0)),
|
|
Primitive::kPrimNot,
|
|
nullptr);
|
|
parallel_move.AddMove(
|
|
locations->InAt(1),
|
|
LocationFrom(calling_convention.GetRegisterAt(1)),
|
|
Primitive::kPrimInt,
|
|
nullptr);
|
|
parallel_move.AddMove(
|
|
locations->InAt(2),
|
|
LocationFrom(calling_convention.GetRegisterAt(2)),
|
|
Primitive::kPrimNot,
|
|
nullptr);
|
|
codegen->GetMoveResolver()->EmitNativeCode(¶llel_move);
|
|
|
|
CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
|
|
arm64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pAputObject),
|
|
instruction_,
|
|
instruction_->GetDexPc(),
|
|
this);
|
|
CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>();
|
|
RestoreLiveRegisters(codegen, locations);
|
|
__ B(GetExitLabel());
|
|
}
|
|
|
|
const char* GetDescription() const OVERRIDE { return "ArraySetSlowPathARM64"; }
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathARM64);
|
|
};
|
|
|
|
void JumpTableARM64::EmitTable(CodeGeneratorARM64* codegen) {
|
|
uint32_t num_entries = switch_instr_->GetNumEntries();
|
|
DCHECK_GE(num_entries, kPackedSwitchCompareJumpThreshold);
|
|
|
|
// We are about to use the assembler to place literals directly. Make sure we have enough
|
|
// underlying code buffer and we have generated the jump table with right size.
|
|
CodeBufferCheckScope scope(codegen->GetVIXLAssembler(), num_entries * sizeof(int32_t),
|
|
CodeBufferCheckScope::kCheck, CodeBufferCheckScope::kExactSize);
|
|
|
|
__ Bind(&table_start_);
|
|
const ArenaVector<HBasicBlock*>& successors = switch_instr_->GetBlock()->GetSuccessors();
|
|
for (uint32_t i = 0; i < num_entries; i++) {
|
|
vixl::Label* target_label = codegen->GetLabelOf(successors[i]);
|
|
DCHECK(target_label->IsBound());
|
|
ptrdiff_t jump_offset = target_label->location() - table_start_.location();
|
|
DCHECK_GT(jump_offset, std::numeric_limits<int32_t>::min());
|
|
DCHECK_LE(jump_offset, std::numeric_limits<int32_t>::max());
|
|
Literal<int32_t> literal(jump_offset);
|
|
__ place(&literal);
|
|
}
|
|
}
|
|
|
|
// Slow path marking an object during a read barrier.
|
|
class ReadBarrierMarkSlowPathARM64 : public SlowPathCodeARM64 {
|
|
public:
|
|
ReadBarrierMarkSlowPathARM64(HInstruction* instruction, Location out, Location obj)
|
|
: SlowPathCodeARM64(instruction), out_(out), obj_(obj) {
|
|
DCHECK(kEmitCompilerReadBarrier);
|
|
}
|
|
|
|
const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkSlowPathARM64"; }
|
|
|
|
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
|
|
LocationSummary* locations = instruction_->GetLocations();
|
|
Primitive::Type type = Primitive::kPrimNot;
|
|
DCHECK(locations->CanCall());
|
|
DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(out_.reg()));
|
|
DCHECK(instruction_->IsInstanceFieldGet() ||
|
|
instruction_->IsStaticFieldGet() ||
|
|
instruction_->IsArrayGet() ||
|
|
instruction_->IsLoadClass() ||
|
|
instruction_->IsLoadString() ||
|
|
instruction_->IsInstanceOf() ||
|
|
instruction_->IsCheckCast())
|
|
<< "Unexpected instruction in read barrier marking slow path: "
|
|
<< instruction_->DebugName();
|
|
|
|
__ Bind(GetEntryLabel());
|
|
SaveLiveRegisters(codegen, locations);
|
|
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
|
|
arm64_codegen->MoveLocation(LocationFrom(calling_convention.GetRegisterAt(0)), obj_, type);
|
|
arm64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pReadBarrierMark),
|
|
instruction_,
|
|
instruction_->GetDexPc(),
|
|
this);
|
|
CheckEntrypointTypes<kQuickReadBarrierMark, mirror::Object*, mirror::Object*>();
|
|
arm64_codegen->MoveLocation(out_, calling_convention.GetReturnLocation(type), type);
|
|
|
|
RestoreLiveRegisters(codegen, locations);
|
|
__ B(GetExitLabel());
|
|
}
|
|
|
|
private:
|
|
const Location out_;
|
|
const Location obj_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathARM64);
|
|
};
|
|
|
|
// Slow path generating a read barrier for a heap reference.
|
|
class ReadBarrierForHeapReferenceSlowPathARM64 : public SlowPathCodeARM64 {
|
|
public:
|
|
ReadBarrierForHeapReferenceSlowPathARM64(HInstruction* instruction,
|
|
Location out,
|
|
Location ref,
|
|
Location obj,
|
|
uint32_t offset,
|
|
Location index)
|
|
: SlowPathCodeARM64(instruction),
|
|
out_(out),
|
|
ref_(ref),
|
|
obj_(obj),
|
|
offset_(offset),
|
|
index_(index) {
|
|
DCHECK(kEmitCompilerReadBarrier);
|
|
// If `obj` is equal to `out` or `ref`, it means the initial object
|
|
// has been overwritten by (or after) the heap object reference load
|
|
// to be instrumented, e.g.:
|
|
//
|
|
// __ Ldr(out, HeapOperand(out, class_offset);
|
|
// codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset);
|
|
//
|
|
// In that case, we have lost the information about the original
|
|
// object, and the emitted read barrier cannot work properly.
|
|
DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out;
|
|
DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref;
|
|
}
|
|
|
|
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
|
|
CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
|
|
LocationSummary* locations = instruction_->GetLocations();
|
|
Primitive::Type type = Primitive::kPrimNot;
|
|
DCHECK(locations->CanCall());
|
|
DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(out_.reg()));
|
|
DCHECK(!instruction_->IsInvoke() ||
|
|
(instruction_->IsInvokeStaticOrDirect() &&
|
|
instruction_->GetLocations()->Intrinsified()))
|
|
<< "Unexpected instruction in read barrier for heap reference slow path: "
|
|
<< instruction_->DebugName();
|
|
// The read barrier instrumentation does not support the
|
|
// HArm64IntermediateAddress instruction yet.
|
|
DCHECK(!(instruction_->IsArrayGet() &&
|
|
instruction_->AsArrayGet()->GetArray()->IsArm64IntermediateAddress()));
|
|
|
|
__ Bind(GetEntryLabel());
|
|
|
|
SaveLiveRegisters(codegen, locations);
|
|
|
|
// We may have to change the index's value, but as `index_` is a
|
|
// constant member (like other "inputs" of this slow path),
|
|
// introduce a copy of it, `index`.
|
|
Location index = index_;
|
|
if (index_.IsValid()) {
|
|
// Handle `index_` for HArrayGet and intrinsic UnsafeGetObject.
|
|
if (instruction_->IsArrayGet()) {
|
|
// Compute the actual memory offset and store it in `index`.
|
|
Register index_reg = RegisterFrom(index_, Primitive::kPrimInt);
|
|
DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_.reg()));
|
|
if (codegen->IsCoreCalleeSaveRegister(index_.reg())) {
|
|
// We are about to change the value of `index_reg` (see the
|
|
// calls to vixl::MacroAssembler::Lsl and
|
|
// vixl::MacroAssembler::Mov below), but it has
|
|
// not been saved by the previous call to
|
|
// art::SlowPathCode::SaveLiveRegisters, as it is a
|
|
// callee-save register --
|
|
// art::SlowPathCode::SaveLiveRegisters does not consider
|
|
// callee-save registers, as it has been designed with the
|
|
// assumption that callee-save registers are supposed to be
|
|
// handled by the called function. So, as a callee-save
|
|
// register, `index_reg` _would_ eventually be saved onto
|
|
// the stack, but it would be too late: we would have
|
|
// changed its value earlier. Therefore, we manually save
|
|
// it here into another freely available register,
|
|
// `free_reg`, chosen of course among the caller-save
|
|
// registers (as a callee-save `free_reg` register would
|
|
// exhibit the same problem).
|
|
//
|
|
// Note we could have requested a temporary register from
|
|
// the register allocator instead; but we prefer not to, as
|
|
// this is a slow path, and we know we can find a
|
|
// caller-save register that is available.
|
|
Register free_reg = FindAvailableCallerSaveRegister(codegen);
|
|
__ Mov(free_reg.W(), index_reg);
|
|
index_reg = free_reg;
|
|
index = LocationFrom(index_reg);
|
|
} else {
|
|
// The initial register stored in `index_` has already been
|
|
// saved in the call to art::SlowPathCode::SaveLiveRegisters
|
|
// (as it is not a callee-save register), so we can freely
|
|
// use it.
|
|
}
|
|
// Shifting the index value contained in `index_reg` by the scale
|
|
// factor (2) cannot overflow in practice, as the runtime is
|
|
// unable to allocate object arrays with a size larger than
|
|
// 2^26 - 1 (that is, 2^28 - 4 bytes).
|
|
__ Lsl(index_reg, index_reg, Primitive::ComponentSizeShift(type));
|
|
static_assert(
|
|
sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
|
|
"art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
|
|
__ Add(index_reg, index_reg, Operand(offset_));
|
|
} else {
|
|
DCHECK(instruction_->IsInvoke());
|
|
DCHECK(instruction_->GetLocations()->Intrinsified());
|
|
DCHECK((instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObject) ||
|
|
(instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile))
|
|
<< instruction_->AsInvoke()->GetIntrinsic();
|
|
DCHECK_EQ(offset_, 0U);
|
|
DCHECK(index_.IsRegisterPair());
|
|
// UnsafeGet's offset location is a register pair, the low
|
|
// part contains the correct offset.
|
|
index = index_.ToLow();
|
|
}
|
|
}
|
|
|
|
// We're moving two or three locations to locations that could
|
|
// overlap, so we need a parallel move resolver.
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
HParallelMove parallel_move(codegen->GetGraph()->GetArena());
|
|
parallel_move.AddMove(ref_,
|
|
LocationFrom(calling_convention.GetRegisterAt(0)),
|
|
type,
|
|
nullptr);
|
|
parallel_move.AddMove(obj_,
|
|
LocationFrom(calling_convention.GetRegisterAt(1)),
|
|
type,
|
|
nullptr);
|
|
if (index.IsValid()) {
|
|
parallel_move.AddMove(index,
|
|
LocationFrom(calling_convention.GetRegisterAt(2)),
|
|
Primitive::kPrimInt,
|
|
nullptr);
|
|
codegen->GetMoveResolver()->EmitNativeCode(¶llel_move);
|
|
} else {
|
|
codegen->GetMoveResolver()->EmitNativeCode(¶llel_move);
|
|
arm64_codegen->MoveConstant(LocationFrom(calling_convention.GetRegisterAt(2)), offset_);
|
|
}
|
|
arm64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pReadBarrierSlow),
|
|
instruction_,
|
|
instruction_->GetDexPc(),
|
|
this);
|
|
CheckEntrypointTypes<
|
|
kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>();
|
|
arm64_codegen->MoveLocation(out_, calling_convention.GetReturnLocation(type), type);
|
|
|
|
RestoreLiveRegisters(codegen, locations);
|
|
|
|
__ B(GetExitLabel());
|
|
}
|
|
|
|
const char* GetDescription() const OVERRIDE { return "ReadBarrierForHeapReferenceSlowPathARM64"; }
|
|
|
|
private:
|
|
Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) {
|
|
size_t ref = static_cast<int>(XRegisterFrom(ref_).code());
|
|
size_t obj = static_cast<int>(XRegisterFrom(obj_).code());
|
|
for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) {
|
|
if (i != ref && i != obj && !codegen->IsCoreCalleeSaveRegister(i)) {
|
|
return Register(VIXLRegCodeFromART(i), kXRegSize);
|
|
}
|
|
}
|
|
// We shall never fail to find a free caller-save register, as
|
|
// there are more than two core caller-save registers on ARM64
|
|
// (meaning it is possible to find one which is different from
|
|
// `ref` and `obj`).
|
|
DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u);
|
|
LOG(FATAL) << "Could not find a free register";
|
|
UNREACHABLE();
|
|
}
|
|
|
|
const Location out_;
|
|
const Location ref_;
|
|
const Location obj_;
|
|
const uint32_t offset_;
|
|
// An additional location containing an index to an array.
|
|
// Only used for HArrayGet and the UnsafeGetObject &
|
|
// UnsafeGetObjectVolatile intrinsics.
|
|
const Location index_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathARM64);
|
|
};
|
|
|
|
// Slow path generating a read barrier for a GC root.
|
|
class ReadBarrierForRootSlowPathARM64 : public SlowPathCodeARM64 {
|
|
public:
|
|
ReadBarrierForRootSlowPathARM64(HInstruction* instruction, Location out, Location root)
|
|
: SlowPathCodeARM64(instruction), out_(out), root_(root) {
|
|
DCHECK(kEmitCompilerReadBarrier);
|
|
}
|
|
|
|
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
|
|
LocationSummary* locations = instruction_->GetLocations();
|
|
Primitive::Type type = Primitive::kPrimNot;
|
|
DCHECK(locations->CanCall());
|
|
DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(out_.reg()));
|
|
DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString())
|
|
<< "Unexpected instruction in read barrier for GC root slow path: "
|
|
<< instruction_->DebugName();
|
|
|
|
__ Bind(GetEntryLabel());
|
|
SaveLiveRegisters(codegen, locations);
|
|
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
CodeGeneratorARM64* arm64_codegen = down_cast<CodeGeneratorARM64*>(codegen);
|
|
// The argument of the ReadBarrierForRootSlow is not a managed
|
|
// reference (`mirror::Object*`), but a `GcRoot<mirror::Object>*`;
|
|
// thus we need a 64-bit move here, and we cannot use
|
|
//
|
|
// arm64_codegen->MoveLocation(
|
|
// LocationFrom(calling_convention.GetRegisterAt(0)),
|
|
// root_,
|
|
// type);
|
|
//
|
|
// which would emit a 32-bit move, as `type` is a (32-bit wide)
|
|
// reference type (`Primitive::kPrimNot`).
|
|
__ Mov(calling_convention.GetRegisterAt(0), XRegisterFrom(out_));
|
|
arm64_codegen->InvokeRuntime(QUICK_ENTRY_POINT(pReadBarrierForRootSlow),
|
|
instruction_,
|
|
instruction_->GetDexPc(),
|
|
this);
|
|
CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>();
|
|
arm64_codegen->MoveLocation(out_, calling_convention.GetReturnLocation(type), type);
|
|
|
|
RestoreLiveRegisters(codegen, locations);
|
|
__ B(GetExitLabel());
|
|
}
|
|
|
|
const char* GetDescription() const OVERRIDE { return "ReadBarrierForRootSlowPathARM64"; }
|
|
|
|
private:
|
|
const Location out_;
|
|
const Location root_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathARM64);
|
|
};
|
|
|
|
#undef __
|
|
|
|
Location InvokeDexCallingConventionVisitorARM64::GetNextLocation(Primitive::Type type) {
|
|
Location next_location;
|
|
if (type == Primitive::kPrimVoid) {
|
|
LOG(FATAL) << "Unreachable type " << type;
|
|
}
|
|
|
|
if (Primitive::IsFloatingPointType(type) &&
|
|
(float_index_ < calling_convention.GetNumberOfFpuRegisters())) {
|
|
next_location = LocationFrom(calling_convention.GetFpuRegisterAt(float_index_++));
|
|
} else if (!Primitive::IsFloatingPointType(type) &&
|
|
(gp_index_ < calling_convention.GetNumberOfRegisters())) {
|
|
next_location = LocationFrom(calling_convention.GetRegisterAt(gp_index_++));
|
|
} else {
|
|
size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_);
|
|
next_location = Primitive::Is64BitType(type) ? Location::DoubleStackSlot(stack_offset)
|
|
: Location::StackSlot(stack_offset);
|
|
}
|
|
|
|
// Space on the stack is reserved for all arguments.
|
|
stack_index_ += Primitive::Is64BitType(type) ? 2 : 1;
|
|
return next_location;
|
|
}
|
|
|
|
Location InvokeDexCallingConventionVisitorARM64::GetMethodLocation() const {
|
|
return LocationFrom(kArtMethodRegister);
|
|
}
|
|
|
|
CodeGeneratorARM64::CodeGeneratorARM64(HGraph* graph,
|
|
const Arm64InstructionSetFeatures& isa_features,
|
|
const CompilerOptions& compiler_options,
|
|
OptimizingCompilerStats* stats)
|
|
: CodeGenerator(graph,
|
|
kNumberOfAllocatableRegisters,
|
|
kNumberOfAllocatableFPRegisters,
|
|
kNumberOfAllocatableRegisterPairs,
|
|
callee_saved_core_registers.list(),
|
|
callee_saved_fp_registers.list(),
|
|
compiler_options,
|
|
stats),
|
|
block_labels_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
|
|
jump_tables_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
|
|
location_builder_(graph, this),
|
|
instruction_visitor_(graph, this),
|
|
move_resolver_(graph->GetArena(), this),
|
|
assembler_(graph->GetArena()),
|
|
isa_features_(isa_features),
|
|
uint32_literals_(std::less<uint32_t>(),
|
|
graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
|
|
uint64_literals_(std::less<uint64_t>(),
|
|
graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
|
|
method_patches_(MethodReferenceComparator(),
|
|
graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
|
|
call_patches_(MethodReferenceComparator(),
|
|
graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
|
|
relative_call_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
|
|
pc_relative_dex_cache_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
|
|
boot_image_string_patches_(StringReferenceValueComparator(),
|
|
graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
|
|
pc_relative_string_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
|
|
boot_image_address_patches_(std::less<uint32_t>(),
|
|
graph->GetArena()->Adapter(kArenaAllocCodeGenerator)) {
|
|
// Save the link register (containing the return address) to mimic Quick.
|
|
AddAllocatedRegister(LocationFrom(lr));
|
|
}
|
|
|
|
#define __ GetVIXLAssembler()->
|
|
|
|
void CodeGeneratorARM64::EmitJumpTables() {
|
|
for (auto&& jump_table : jump_tables_) {
|
|
jump_table->EmitTable(this);
|
|
}
|
|
}
|
|
|
|
void CodeGeneratorARM64::Finalize(CodeAllocator* allocator) {
|
|
EmitJumpTables();
|
|
// Ensure we emit the literal pool.
|
|
__ FinalizeCode();
|
|
|
|
CodeGenerator::Finalize(allocator);
|
|
}
|
|
|
|
void ParallelMoveResolverARM64::PrepareForEmitNativeCode() {
|
|
// Note: There are 6 kinds of moves:
|
|
// 1. constant -> GPR/FPR (non-cycle)
|
|
// 2. constant -> stack (non-cycle)
|
|
// 3. GPR/FPR -> GPR/FPR
|
|
// 4. GPR/FPR -> stack
|
|
// 5. stack -> GPR/FPR
|
|
// 6. stack -> stack (non-cycle)
|
|
// Case 1, 2 and 6 should never be included in a dependency cycle on ARM64. For case 3, 4, and 5
|
|
// VIXL uses at most 1 GPR. VIXL has 2 GPR and 1 FPR temps, and there should be no intersecting
|
|
// cycles on ARM64, so we always have 1 GPR and 1 FPR available VIXL temps to resolve the
|
|
// dependency.
|
|
vixl_temps_.Open(GetVIXLAssembler());
|
|
}
|
|
|
|
void ParallelMoveResolverARM64::FinishEmitNativeCode() {
|
|
vixl_temps_.Close();
|
|
}
|
|
|
|
Location ParallelMoveResolverARM64::AllocateScratchLocationFor(Location::Kind kind) {
|
|
DCHECK(kind == Location::kRegister || kind == Location::kFpuRegister ||
|
|
kind == Location::kStackSlot || kind == Location::kDoubleStackSlot);
|
|
kind = (kind == Location::kFpuRegister) ? Location::kFpuRegister : Location::kRegister;
|
|
Location scratch = GetScratchLocation(kind);
|
|
if (!scratch.Equals(Location::NoLocation())) {
|
|
return scratch;
|
|
}
|
|
// Allocate from VIXL temp registers.
|
|
if (kind == Location::kRegister) {
|
|
scratch = LocationFrom(vixl_temps_.AcquireX());
|
|
} else {
|
|
DCHECK(kind == Location::kFpuRegister);
|
|
scratch = LocationFrom(vixl_temps_.AcquireD());
|
|
}
|
|
AddScratchLocation(scratch);
|
|
return scratch;
|
|
}
|
|
|
|
void ParallelMoveResolverARM64::FreeScratchLocation(Location loc) {
|
|
if (loc.IsRegister()) {
|
|
vixl_temps_.Release(XRegisterFrom(loc));
|
|
} else {
|
|
DCHECK(loc.IsFpuRegister());
|
|
vixl_temps_.Release(DRegisterFrom(loc));
|
|
}
|
|
RemoveScratchLocation(loc);
|
|
}
|
|
|
|
void ParallelMoveResolverARM64::EmitMove(size_t index) {
|
|
MoveOperands* move = moves_[index];
|
|
codegen_->MoveLocation(move->GetDestination(), move->GetSource(), Primitive::kPrimVoid);
|
|
}
|
|
|
|
void CodeGeneratorARM64::GenerateFrameEntry() {
|
|
MacroAssembler* masm = GetVIXLAssembler();
|
|
BlockPoolsScope block_pools(masm);
|
|
__ Bind(&frame_entry_label_);
|
|
|
|
bool do_overflow_check = FrameNeedsStackCheck(GetFrameSize(), kArm64) || !IsLeafMethod();
|
|
if (do_overflow_check) {
|
|
UseScratchRegisterScope temps(masm);
|
|
Register temp = temps.AcquireX();
|
|
DCHECK(GetCompilerOptions().GetImplicitStackOverflowChecks());
|
|
__ Sub(temp, sp, static_cast<int32_t>(GetStackOverflowReservedBytes(kArm64)));
|
|
__ Ldr(wzr, MemOperand(temp, 0));
|
|
RecordPcInfo(nullptr, 0);
|
|
}
|
|
|
|
if (!HasEmptyFrame()) {
|
|
int frame_size = GetFrameSize();
|
|
// Stack layout:
|
|
// sp[frame_size - 8] : lr.
|
|
// ... : other preserved core registers.
|
|
// ... : other preserved fp registers.
|
|
// ... : reserved frame space.
|
|
// sp[0] : current method.
|
|
__ Str(kArtMethodRegister, MemOperand(sp, -frame_size, PreIndex));
|
|
GetAssembler()->cfi().AdjustCFAOffset(frame_size);
|
|
GetAssembler()->SpillRegisters(GetFramePreservedCoreRegisters(),
|
|
frame_size - GetCoreSpillSize());
|
|
GetAssembler()->SpillRegisters(GetFramePreservedFPRegisters(),
|
|
frame_size - FrameEntrySpillSize());
|
|
}
|
|
}
|
|
|
|
void CodeGeneratorARM64::GenerateFrameExit() {
|
|
BlockPoolsScope block_pools(GetVIXLAssembler());
|
|
GetAssembler()->cfi().RememberState();
|
|
if (!HasEmptyFrame()) {
|
|
int frame_size = GetFrameSize();
|
|
GetAssembler()->UnspillRegisters(GetFramePreservedFPRegisters(),
|
|
frame_size - FrameEntrySpillSize());
|
|
GetAssembler()->UnspillRegisters(GetFramePreservedCoreRegisters(),
|
|
frame_size - GetCoreSpillSize());
|
|
__ Drop(frame_size);
|
|
GetAssembler()->cfi().AdjustCFAOffset(-frame_size);
|
|
}
|
|
__ Ret();
|
|
GetAssembler()->cfi().RestoreState();
|
|
GetAssembler()->cfi().DefCFAOffset(GetFrameSize());
|
|
}
|
|
|
|
vixl::CPURegList CodeGeneratorARM64::GetFramePreservedCoreRegisters() const {
|
|
DCHECK(ArtVixlRegCodeCoherentForRegSet(core_spill_mask_, GetNumberOfCoreRegisters(), 0, 0));
|
|
return vixl::CPURegList(vixl::CPURegister::kRegister, vixl::kXRegSize,
|
|
core_spill_mask_);
|
|
}
|
|
|
|
vixl::CPURegList CodeGeneratorARM64::GetFramePreservedFPRegisters() const {
|
|
DCHECK(ArtVixlRegCodeCoherentForRegSet(0, 0, fpu_spill_mask_,
|
|
GetNumberOfFloatingPointRegisters()));
|
|
return vixl::CPURegList(vixl::CPURegister::kFPRegister, vixl::kDRegSize,
|
|
fpu_spill_mask_);
|
|
}
|
|
|
|
void CodeGeneratorARM64::Bind(HBasicBlock* block) {
|
|
__ Bind(GetLabelOf(block));
|
|
}
|
|
|
|
void CodeGeneratorARM64::MoveConstant(Location location, int32_t value) {
|
|
DCHECK(location.IsRegister());
|
|
__ Mov(RegisterFrom(location, Primitive::kPrimInt), value);
|
|
}
|
|
|
|
void CodeGeneratorARM64::AddLocationAsTemp(Location location, LocationSummary* locations) {
|
|
if (location.IsRegister()) {
|
|
locations->AddTemp(location);
|
|
} else {
|
|
UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location;
|
|
}
|
|
}
|
|
|
|
void CodeGeneratorARM64::MarkGCCard(Register object, Register value, bool value_can_be_null) {
|
|
UseScratchRegisterScope temps(GetVIXLAssembler());
|
|
Register card = temps.AcquireX();
|
|
Register temp = temps.AcquireW(); // Index within the CardTable - 32bit.
|
|
vixl::Label done;
|
|
if (value_can_be_null) {
|
|
__ Cbz(value, &done);
|
|
}
|
|
__ Ldr(card, MemOperand(tr, Thread::CardTableOffset<kArm64WordSize>().Int32Value()));
|
|
__ Lsr(temp, object, gc::accounting::CardTable::kCardShift);
|
|
__ Strb(card, MemOperand(card, temp.X()));
|
|
if (value_can_be_null) {
|
|
__ Bind(&done);
|
|
}
|
|
}
|
|
|
|
void CodeGeneratorARM64::SetupBlockedRegisters() const {
|
|
// Blocked core registers:
|
|
// lr : Runtime reserved.
|
|
// tr : Runtime reserved.
|
|
// xSuspend : Runtime reserved. TODO: Unblock this when the runtime stops using it.
|
|
// ip1 : VIXL core temp.
|
|
// ip0 : VIXL core temp.
|
|
//
|
|
// Blocked fp registers:
|
|
// d31 : VIXL fp temp.
|
|
CPURegList reserved_core_registers = vixl_reserved_core_registers;
|
|
reserved_core_registers.Combine(runtime_reserved_core_registers);
|
|
while (!reserved_core_registers.IsEmpty()) {
|
|
blocked_core_registers_[reserved_core_registers.PopLowestIndex().code()] = true;
|
|
}
|
|
|
|
CPURegList reserved_fp_registers = vixl_reserved_fp_registers;
|
|
while (!reserved_fp_registers.IsEmpty()) {
|
|
blocked_fpu_registers_[reserved_fp_registers.PopLowestIndex().code()] = true;
|
|
}
|
|
|
|
if (GetGraph()->IsDebuggable()) {
|
|
// Stubs do not save callee-save floating point registers. If the graph
|
|
// is debuggable, we need to deal with these registers differently. For
|
|
// now, just block them.
|
|
CPURegList reserved_fp_registers_debuggable = callee_saved_fp_registers;
|
|
while (!reserved_fp_registers_debuggable.IsEmpty()) {
|
|
blocked_fpu_registers_[reserved_fp_registers_debuggable.PopLowestIndex().code()] = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
size_t CodeGeneratorARM64::SaveCoreRegister(size_t stack_index, uint32_t reg_id) {
|
|
Register reg = Register(VIXLRegCodeFromART(reg_id), kXRegSize);
|
|
__ Str(reg, MemOperand(sp, stack_index));
|
|
return kArm64WordSize;
|
|
}
|
|
|
|
size_t CodeGeneratorARM64::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) {
|
|
Register reg = Register(VIXLRegCodeFromART(reg_id), kXRegSize);
|
|
__ Ldr(reg, MemOperand(sp, stack_index));
|
|
return kArm64WordSize;
|
|
}
|
|
|
|
size_t CodeGeneratorARM64::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
|
|
FPRegister reg = FPRegister(reg_id, kDRegSize);
|
|
__ Str(reg, MemOperand(sp, stack_index));
|
|
return kArm64WordSize;
|
|
}
|
|
|
|
size_t CodeGeneratorARM64::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
|
|
FPRegister reg = FPRegister(reg_id, kDRegSize);
|
|
__ Ldr(reg, MemOperand(sp, stack_index));
|
|
return kArm64WordSize;
|
|
}
|
|
|
|
void CodeGeneratorARM64::DumpCoreRegister(std::ostream& stream, int reg) const {
|
|
stream << XRegister(reg);
|
|
}
|
|
|
|
void CodeGeneratorARM64::DumpFloatingPointRegister(std::ostream& stream, int reg) const {
|
|
stream << DRegister(reg);
|
|
}
|
|
|
|
void CodeGeneratorARM64::MoveConstant(CPURegister destination, HConstant* constant) {
|
|
if (constant->IsIntConstant()) {
|
|
__ Mov(Register(destination), constant->AsIntConstant()->GetValue());
|
|
} else if (constant->IsLongConstant()) {
|
|
__ Mov(Register(destination), constant->AsLongConstant()->GetValue());
|
|
} else if (constant->IsNullConstant()) {
|
|
__ Mov(Register(destination), 0);
|
|
} else if (constant->IsFloatConstant()) {
|
|
__ Fmov(FPRegister(destination), constant->AsFloatConstant()->GetValue());
|
|
} else {
|
|
DCHECK(constant->IsDoubleConstant());
|
|
__ Fmov(FPRegister(destination), constant->AsDoubleConstant()->GetValue());
|
|
}
|
|
}
|
|
|
|
|
|
static bool CoherentConstantAndType(Location constant, Primitive::Type type) {
|
|
DCHECK(constant.IsConstant());
|
|
HConstant* cst = constant.GetConstant();
|
|
return (cst->IsIntConstant() && type == Primitive::kPrimInt) ||
|
|
// Null is mapped to a core W register, which we associate with kPrimInt.
|
|
(cst->IsNullConstant() && type == Primitive::kPrimInt) ||
|
|
(cst->IsLongConstant() && type == Primitive::kPrimLong) ||
|
|
(cst->IsFloatConstant() && type == Primitive::kPrimFloat) ||
|
|
(cst->IsDoubleConstant() && type == Primitive::kPrimDouble);
|
|
}
|
|
|
|
void CodeGeneratorARM64::MoveLocation(Location destination,
|
|
Location source,
|
|
Primitive::Type dst_type) {
|
|
if (source.Equals(destination)) {
|
|
return;
|
|
}
|
|
|
|
// A valid move can always be inferred from the destination and source
|
|
// locations. When moving from and to a register, the argument type can be
|
|
// used to generate 32bit instead of 64bit moves. In debug mode we also
|
|
// checks the coherency of the locations and the type.
|
|
bool unspecified_type = (dst_type == Primitive::kPrimVoid);
|
|
|
|
if (destination.IsRegister() || destination.IsFpuRegister()) {
|
|
if (unspecified_type) {
|
|
HConstant* src_cst = source.IsConstant() ? source.GetConstant() : nullptr;
|
|
if (source.IsStackSlot() ||
|
|
(src_cst != nullptr && (src_cst->IsIntConstant()
|
|
|| src_cst->IsFloatConstant()
|
|
|| src_cst->IsNullConstant()))) {
|
|
// For stack slots and 32bit constants, a 64bit type is appropriate.
|
|
dst_type = destination.IsRegister() ? Primitive::kPrimInt : Primitive::kPrimFloat;
|
|
} else {
|
|
// If the source is a double stack slot or a 64bit constant, a 64bit
|
|
// type is appropriate. Else the source is a register, and since the
|
|
// type has not been specified, we chose a 64bit type to force a 64bit
|
|
// move.
|
|
dst_type = destination.IsRegister() ? Primitive::kPrimLong : Primitive::kPrimDouble;
|
|
}
|
|
}
|
|
DCHECK((destination.IsFpuRegister() && Primitive::IsFloatingPointType(dst_type)) ||
|
|
(destination.IsRegister() && !Primitive::IsFloatingPointType(dst_type)));
|
|
CPURegister dst = CPURegisterFrom(destination, dst_type);
|
|
if (source.IsStackSlot() || source.IsDoubleStackSlot()) {
|
|
DCHECK(dst.Is64Bits() == source.IsDoubleStackSlot());
|
|
__ Ldr(dst, StackOperandFrom(source));
|
|
} else if (source.IsConstant()) {
|
|
DCHECK(CoherentConstantAndType(source, dst_type));
|
|
MoveConstant(dst, source.GetConstant());
|
|
} else if (source.IsRegister()) {
|
|
if (destination.IsRegister()) {
|
|
__ Mov(Register(dst), RegisterFrom(source, dst_type));
|
|
} else {
|
|
DCHECK(destination.IsFpuRegister());
|
|
Primitive::Type source_type = Primitive::Is64BitType(dst_type)
|
|
? Primitive::kPrimLong
|
|
: Primitive::kPrimInt;
|
|
__ Fmov(FPRegisterFrom(destination, dst_type), RegisterFrom(source, source_type));
|
|
}
|
|
} else {
|
|
DCHECK(source.IsFpuRegister());
|
|
if (destination.IsRegister()) {
|
|
Primitive::Type source_type = Primitive::Is64BitType(dst_type)
|
|
? Primitive::kPrimDouble
|
|
: Primitive::kPrimFloat;
|
|
__ Fmov(RegisterFrom(destination, dst_type), FPRegisterFrom(source, source_type));
|
|
} else {
|
|
DCHECK(destination.IsFpuRegister());
|
|
__ Fmov(FPRegister(dst), FPRegisterFrom(source, dst_type));
|
|
}
|
|
}
|
|
} else { // The destination is not a register. It must be a stack slot.
|
|
DCHECK(destination.IsStackSlot() || destination.IsDoubleStackSlot());
|
|
if (source.IsRegister() || source.IsFpuRegister()) {
|
|
if (unspecified_type) {
|
|
if (source.IsRegister()) {
|
|
dst_type = destination.IsStackSlot() ? Primitive::kPrimInt : Primitive::kPrimLong;
|
|
} else {
|
|
dst_type = destination.IsStackSlot() ? Primitive::kPrimFloat : Primitive::kPrimDouble;
|
|
}
|
|
}
|
|
DCHECK((destination.IsDoubleStackSlot() == Primitive::Is64BitType(dst_type)) &&
|
|
(source.IsFpuRegister() == Primitive::IsFloatingPointType(dst_type)));
|
|
__ Str(CPURegisterFrom(source, dst_type), StackOperandFrom(destination));
|
|
} else if (source.IsConstant()) {
|
|
DCHECK(unspecified_type || CoherentConstantAndType(source, dst_type))
|
|
<< source << " " << dst_type;
|
|
UseScratchRegisterScope temps(GetVIXLAssembler());
|
|
HConstant* src_cst = source.GetConstant();
|
|
CPURegister temp;
|
|
if (src_cst->IsIntConstant() || src_cst->IsNullConstant()) {
|
|
temp = temps.AcquireW();
|
|
} else if (src_cst->IsLongConstant()) {
|
|
temp = temps.AcquireX();
|
|
} else if (src_cst->IsFloatConstant()) {
|
|
temp = temps.AcquireS();
|
|
} else {
|
|
DCHECK(src_cst->IsDoubleConstant());
|
|
temp = temps.AcquireD();
|
|
}
|
|
MoveConstant(temp, src_cst);
|
|
__ Str(temp, StackOperandFrom(destination));
|
|
} else {
|
|
DCHECK(source.IsStackSlot() || source.IsDoubleStackSlot());
|
|
DCHECK(source.IsDoubleStackSlot() == destination.IsDoubleStackSlot());
|
|
UseScratchRegisterScope temps(GetVIXLAssembler());
|
|
// There is generally less pressure on FP registers.
|
|
FPRegister temp = destination.IsDoubleStackSlot() ? temps.AcquireD() : temps.AcquireS();
|
|
__ Ldr(temp, StackOperandFrom(source));
|
|
__ Str(temp, StackOperandFrom(destination));
|
|
}
|
|
}
|
|
}
|
|
|
|
void CodeGeneratorARM64::Load(Primitive::Type type,
|
|
CPURegister dst,
|
|
const MemOperand& src) {
|
|
switch (type) {
|
|
case Primitive::kPrimBoolean:
|
|
__ Ldrb(Register(dst), src);
|
|
break;
|
|
case Primitive::kPrimByte:
|
|
__ Ldrsb(Register(dst), src);
|
|
break;
|
|
case Primitive::kPrimShort:
|
|
__ Ldrsh(Register(dst), src);
|
|
break;
|
|
case Primitive::kPrimChar:
|
|
__ Ldrh(Register(dst), src);
|
|
break;
|
|
case Primitive::kPrimInt:
|
|
case Primitive::kPrimNot:
|
|
case Primitive::kPrimLong:
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimDouble:
|
|
DCHECK_EQ(dst.Is64Bits(), Primitive::Is64BitType(type));
|
|
__ Ldr(dst, src);
|
|
break;
|
|
case Primitive::kPrimVoid:
|
|
LOG(FATAL) << "Unreachable type " << type;
|
|
}
|
|
}
|
|
|
|
void CodeGeneratorARM64::LoadAcquire(HInstruction* instruction,
|
|
CPURegister dst,
|
|
const MemOperand& src,
|
|
bool needs_null_check) {
|
|
MacroAssembler* masm = GetVIXLAssembler();
|
|
BlockPoolsScope block_pools(masm);
|
|
UseScratchRegisterScope temps(masm);
|
|
Register temp_base = temps.AcquireX();
|
|
Primitive::Type type = instruction->GetType();
|
|
|
|
DCHECK(!src.IsPreIndex());
|
|
DCHECK(!src.IsPostIndex());
|
|
|
|
// TODO(vixl): Let the MacroAssembler handle MemOperand.
|
|
__ Add(temp_base, src.base(), OperandFromMemOperand(src));
|
|
MemOperand base = MemOperand(temp_base);
|
|
switch (type) {
|
|
case Primitive::kPrimBoolean:
|
|
__ Ldarb(Register(dst), base);
|
|
if (needs_null_check) {
|
|
MaybeRecordImplicitNullCheck(instruction);
|
|
}
|
|
break;
|
|
case Primitive::kPrimByte:
|
|
__ Ldarb(Register(dst), base);
|
|
if (needs_null_check) {
|
|
MaybeRecordImplicitNullCheck(instruction);
|
|
}
|
|
__ Sbfx(Register(dst), Register(dst), 0, Primitive::ComponentSize(type) * kBitsPerByte);
|
|
break;
|
|
case Primitive::kPrimChar:
|
|
__ Ldarh(Register(dst), base);
|
|
if (needs_null_check) {
|
|
MaybeRecordImplicitNullCheck(instruction);
|
|
}
|
|
break;
|
|
case Primitive::kPrimShort:
|
|
__ Ldarh(Register(dst), base);
|
|
if (needs_null_check) {
|
|
MaybeRecordImplicitNullCheck(instruction);
|
|
}
|
|
__ Sbfx(Register(dst), Register(dst), 0, Primitive::ComponentSize(type) * kBitsPerByte);
|
|
break;
|
|
case Primitive::kPrimInt:
|
|
case Primitive::kPrimNot:
|
|
case Primitive::kPrimLong:
|
|
DCHECK_EQ(dst.Is64Bits(), Primitive::Is64BitType(type));
|
|
__ Ldar(Register(dst), base);
|
|
if (needs_null_check) {
|
|
MaybeRecordImplicitNullCheck(instruction);
|
|
}
|
|
break;
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimDouble: {
|
|
DCHECK(dst.IsFPRegister());
|
|
DCHECK_EQ(dst.Is64Bits(), Primitive::Is64BitType(type));
|
|
|
|
Register temp = dst.Is64Bits() ? temps.AcquireX() : temps.AcquireW();
|
|
__ Ldar(temp, base);
|
|
if (needs_null_check) {
|
|
MaybeRecordImplicitNullCheck(instruction);
|
|
}
|
|
__ Fmov(FPRegister(dst), temp);
|
|
break;
|
|
}
|
|
case Primitive::kPrimVoid:
|
|
LOG(FATAL) << "Unreachable type " << type;
|
|
}
|
|
}
|
|
|
|
void CodeGeneratorARM64::Store(Primitive::Type type,
|
|
CPURegister src,
|
|
const MemOperand& dst) {
|
|
switch (type) {
|
|
case Primitive::kPrimBoolean:
|
|
case Primitive::kPrimByte:
|
|
__ Strb(Register(src), dst);
|
|
break;
|
|
case Primitive::kPrimChar:
|
|
case Primitive::kPrimShort:
|
|
__ Strh(Register(src), dst);
|
|
break;
|
|
case Primitive::kPrimInt:
|
|
case Primitive::kPrimNot:
|
|
case Primitive::kPrimLong:
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimDouble:
|
|
DCHECK_EQ(src.Is64Bits(), Primitive::Is64BitType(type));
|
|
__ Str(src, dst);
|
|
break;
|
|
case Primitive::kPrimVoid:
|
|
LOG(FATAL) << "Unreachable type " << type;
|
|
}
|
|
}
|
|
|
|
void CodeGeneratorARM64::StoreRelease(Primitive::Type type,
|
|
CPURegister src,
|
|
const MemOperand& dst) {
|
|
UseScratchRegisterScope temps(GetVIXLAssembler());
|
|
Register temp_base = temps.AcquireX();
|
|
|
|
DCHECK(!dst.IsPreIndex());
|
|
DCHECK(!dst.IsPostIndex());
|
|
|
|
// TODO(vixl): Let the MacroAssembler handle this.
|
|
Operand op = OperandFromMemOperand(dst);
|
|
__ Add(temp_base, dst.base(), op);
|
|
MemOperand base = MemOperand(temp_base);
|
|
switch (type) {
|
|
case Primitive::kPrimBoolean:
|
|
case Primitive::kPrimByte:
|
|
__ Stlrb(Register(src), base);
|
|
break;
|
|
case Primitive::kPrimChar:
|
|
case Primitive::kPrimShort:
|
|
__ Stlrh(Register(src), base);
|
|
break;
|
|
case Primitive::kPrimInt:
|
|
case Primitive::kPrimNot:
|
|
case Primitive::kPrimLong:
|
|
DCHECK_EQ(src.Is64Bits(), Primitive::Is64BitType(type));
|
|
__ Stlr(Register(src), base);
|
|
break;
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimDouble: {
|
|
DCHECK(src.IsFPRegister());
|
|
DCHECK_EQ(src.Is64Bits(), Primitive::Is64BitType(type));
|
|
|
|
Register temp = src.Is64Bits() ? temps.AcquireX() : temps.AcquireW();
|
|
__ Fmov(temp, FPRegister(src));
|
|
__ Stlr(temp, base);
|
|
break;
|
|
}
|
|
case Primitive::kPrimVoid:
|
|
LOG(FATAL) << "Unreachable type " << type;
|
|
}
|
|
}
|
|
|
|
void CodeGeneratorARM64::InvokeRuntime(QuickEntrypointEnum entrypoint,
|
|
HInstruction* instruction,
|
|
uint32_t dex_pc,
|
|
SlowPathCode* slow_path) {
|
|
InvokeRuntime(GetThreadOffset<kArm64WordSize>(entrypoint).Int32Value(),
|
|
instruction,
|
|
dex_pc,
|
|
slow_path);
|
|
}
|
|
|
|
void CodeGeneratorARM64::InvokeRuntime(int32_t entry_point_offset,
|
|
HInstruction* instruction,
|
|
uint32_t dex_pc,
|
|
SlowPathCode* slow_path) {
|
|
ValidateInvokeRuntime(instruction, slow_path);
|
|
BlockPoolsScope block_pools(GetVIXLAssembler());
|
|
__ Ldr(lr, MemOperand(tr, entry_point_offset));
|
|
__ Blr(lr);
|
|
RecordPcInfo(instruction, dex_pc, slow_path);
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::GenerateClassInitializationCheck(SlowPathCodeARM64* slow_path,
|
|
vixl::Register class_reg) {
|
|
UseScratchRegisterScope temps(GetVIXLAssembler());
|
|
Register temp = temps.AcquireW();
|
|
size_t status_offset = mirror::Class::StatusOffset().SizeValue();
|
|
|
|
// Even if the initialized flag is set, we need to ensure consistent memory ordering.
|
|
// TODO(vixl): Let the MacroAssembler handle MemOperand.
|
|
__ Add(temp, class_reg, status_offset);
|
|
__ Ldar(temp, HeapOperand(temp));
|
|
__ Cmp(temp, mirror::Class::kStatusInitialized);
|
|
__ B(lt, slow_path->GetEntryLabel());
|
|
__ Bind(slow_path->GetExitLabel());
|
|
}
|
|
|
|
void CodeGeneratorARM64::GenerateMemoryBarrier(MemBarrierKind kind) {
|
|
BarrierType type = BarrierAll;
|
|
|
|
switch (kind) {
|
|
case MemBarrierKind::kAnyAny:
|
|
case MemBarrierKind::kAnyStore: {
|
|
type = BarrierAll;
|
|
break;
|
|
}
|
|
case MemBarrierKind::kLoadAny: {
|
|
type = BarrierReads;
|
|
break;
|
|
}
|
|
case MemBarrierKind::kStoreStore: {
|
|
type = BarrierWrites;
|
|
break;
|
|
}
|
|
default:
|
|
LOG(FATAL) << "Unexpected memory barrier " << kind;
|
|
}
|
|
__ Dmb(InnerShareable, type);
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::GenerateSuspendCheck(HSuspendCheck* instruction,
|
|
HBasicBlock* successor) {
|
|
SuspendCheckSlowPathARM64* slow_path =
|
|
down_cast<SuspendCheckSlowPathARM64*>(instruction->GetSlowPath());
|
|
if (slow_path == nullptr) {
|
|
slow_path = new (GetGraph()->GetArena()) SuspendCheckSlowPathARM64(instruction, successor);
|
|
instruction->SetSlowPath(slow_path);
|
|
codegen_->AddSlowPath(slow_path);
|
|
if (successor != nullptr) {
|
|
DCHECK(successor->IsLoopHeader());
|
|
codegen_->ClearSpillSlotsFromLoopPhisInStackMap(instruction);
|
|
}
|
|
} else {
|
|
DCHECK_EQ(slow_path->GetSuccessor(), successor);
|
|
}
|
|
|
|
UseScratchRegisterScope temps(codegen_->GetVIXLAssembler());
|
|
Register temp = temps.AcquireW();
|
|
|
|
__ Ldrh(temp, MemOperand(tr, Thread::ThreadFlagsOffset<kArm64WordSize>().SizeValue()));
|
|
if (successor == nullptr) {
|
|
__ Cbnz(temp, slow_path->GetEntryLabel());
|
|
__ Bind(slow_path->GetReturnLabel());
|
|
} else {
|
|
__ Cbz(temp, codegen_->GetLabelOf(successor));
|
|
__ B(slow_path->GetEntryLabel());
|
|
// slow_path will return to GetLabelOf(successor).
|
|
}
|
|
}
|
|
|
|
InstructionCodeGeneratorARM64::InstructionCodeGeneratorARM64(HGraph* graph,
|
|
CodeGeneratorARM64* codegen)
|
|
: InstructionCodeGenerator(graph, codegen),
|
|
assembler_(codegen->GetAssembler()),
|
|
codegen_(codegen) {}
|
|
|
|
#define FOR_EACH_UNIMPLEMENTED_INSTRUCTION(M) \
|
|
/* No unimplemented IR. */
|
|
|
|
#define UNIMPLEMENTED_INSTRUCTION_BREAK_CODE(name) name##UnimplementedInstructionBreakCode
|
|
|
|
enum UnimplementedInstructionBreakCode {
|
|
// Using a base helps identify when we hit such breakpoints.
|
|
UnimplementedInstructionBreakCodeBaseCode = 0x900,
|
|
#define ENUM_UNIMPLEMENTED_INSTRUCTION(name) UNIMPLEMENTED_INSTRUCTION_BREAK_CODE(name),
|
|
FOR_EACH_UNIMPLEMENTED_INSTRUCTION(ENUM_UNIMPLEMENTED_INSTRUCTION)
|
|
#undef ENUM_UNIMPLEMENTED_INSTRUCTION
|
|
};
|
|
|
|
#define DEFINE_UNIMPLEMENTED_INSTRUCTION_VISITORS(name) \
|
|
void InstructionCodeGeneratorARM64::Visit##name(H##name* instr ATTRIBUTE_UNUSED) { \
|
|
__ Brk(UNIMPLEMENTED_INSTRUCTION_BREAK_CODE(name)); \
|
|
} \
|
|
void LocationsBuilderARM64::Visit##name(H##name* instr) { \
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instr); \
|
|
locations->SetOut(Location::Any()); \
|
|
}
|
|
FOR_EACH_UNIMPLEMENTED_INSTRUCTION(DEFINE_UNIMPLEMENTED_INSTRUCTION_VISITORS)
|
|
#undef DEFINE_UNIMPLEMENTED_INSTRUCTION_VISITORS
|
|
|
|
#undef UNIMPLEMENTED_INSTRUCTION_BREAK_CODE
|
|
#undef FOR_EACH_UNIMPLEMENTED_INSTRUCTION
|
|
|
|
void LocationsBuilderARM64::HandleBinaryOp(HBinaryOperation* instr) {
|
|
DCHECK_EQ(instr->InputCount(), 2U);
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instr);
|
|
Primitive::Type type = instr->GetResultType();
|
|
switch (type) {
|
|
case Primitive::kPrimInt:
|
|
case Primitive::kPrimLong:
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, ARM64EncodableConstantOrRegister(instr->InputAt(1), instr));
|
|
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
|
|
break;
|
|
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimDouble:
|
|
locations->SetInAt(0, Location::RequiresFpuRegister());
|
|
locations->SetInAt(1, Location::RequiresFpuRegister());
|
|
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
|
|
break;
|
|
|
|
default:
|
|
LOG(FATAL) << "Unexpected " << instr->DebugName() << " type " << type;
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderARM64::HandleFieldGet(HInstruction* instruction) {
|
|
DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
|
|
|
|
bool object_field_get_with_read_barrier =
|
|
kEmitCompilerReadBarrier && (instruction->GetType() == Primitive::kPrimNot);
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(instruction,
|
|
object_field_get_with_read_barrier ?
|
|
LocationSummary::kCallOnSlowPath :
|
|
LocationSummary::kNoCall);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
if (Primitive::IsFloatingPointType(instruction->GetType())) {
|
|
locations->SetOut(Location::RequiresFpuRegister());
|
|
} else {
|
|
// The output overlaps for an object field get when read barriers
|
|
// are enabled: we do not want the load to overwrite the object's
|
|
// location, as we need it to emit the read barrier.
|
|
locations->SetOut(
|
|
Location::RequiresRegister(),
|
|
object_field_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap);
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::HandleFieldGet(HInstruction* instruction,
|
|
const FieldInfo& field_info) {
|
|
DCHECK(instruction->IsInstanceFieldGet() || instruction->IsStaticFieldGet());
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
Location base_loc = locations->InAt(0);
|
|
Location out = locations->Out();
|
|
uint32_t offset = field_info.GetFieldOffset().Uint32Value();
|
|
Primitive::Type field_type = field_info.GetFieldType();
|
|
BlockPoolsScope block_pools(GetVIXLAssembler());
|
|
MemOperand field = HeapOperand(InputRegisterAt(instruction, 0), field_info.GetFieldOffset());
|
|
|
|
if (field_type == Primitive::kPrimNot && kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
|
|
// Object FieldGet with Baker's read barrier case.
|
|
MacroAssembler* masm = GetVIXLAssembler();
|
|
UseScratchRegisterScope temps(masm);
|
|
// /* HeapReference<Object> */ out = *(base + offset)
|
|
Register base = RegisterFrom(base_loc, Primitive::kPrimNot);
|
|
Register temp = temps.AcquireW();
|
|
// Note that potential implicit null checks are handled in this
|
|
// CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier call.
|
|
codegen_->GenerateFieldLoadWithBakerReadBarrier(
|
|
instruction,
|
|
out,
|
|
base,
|
|
offset,
|
|
temp,
|
|
/* needs_null_check */ true,
|
|
field_info.IsVolatile());
|
|
} else {
|
|
// General case.
|
|
if (field_info.IsVolatile()) {
|
|
// Note that a potential implicit null check is handled in this
|
|
// CodeGeneratorARM64::LoadAcquire call.
|
|
// NB: LoadAcquire will record the pc info if needed.
|
|
codegen_->LoadAcquire(
|
|
instruction, OutputCPURegister(instruction), field, /* needs_null_check */ true);
|
|
} else {
|
|
codegen_->Load(field_type, OutputCPURegister(instruction), field);
|
|
codegen_->MaybeRecordImplicitNullCheck(instruction);
|
|
}
|
|
if (field_type == Primitive::kPrimNot) {
|
|
// If read barriers are enabled, emit read barriers other than
|
|
// Baker's using a slow path (and also unpoison the loaded
|
|
// reference, if heap poisoning is enabled).
|
|
codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, base_loc, offset);
|
|
}
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderARM64::HandleFieldSet(HInstruction* instruction) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
if (Primitive::IsFloatingPointType(instruction->InputAt(1)->GetType())) {
|
|
locations->SetInAt(1, Location::RequiresFpuRegister());
|
|
} else {
|
|
locations->SetInAt(1, Location::RequiresRegister());
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::HandleFieldSet(HInstruction* instruction,
|
|
const FieldInfo& field_info,
|
|
bool value_can_be_null) {
|
|
DCHECK(instruction->IsInstanceFieldSet() || instruction->IsStaticFieldSet());
|
|
BlockPoolsScope block_pools(GetVIXLAssembler());
|
|
|
|
Register obj = InputRegisterAt(instruction, 0);
|
|
CPURegister value = InputCPURegisterAt(instruction, 1);
|
|
CPURegister source = value;
|
|
Offset offset = field_info.GetFieldOffset();
|
|
Primitive::Type field_type = field_info.GetFieldType();
|
|
|
|
{
|
|
// We use a block to end the scratch scope before the write barrier, thus
|
|
// freeing the temporary registers so they can be used in `MarkGCCard`.
|
|
UseScratchRegisterScope temps(GetVIXLAssembler());
|
|
|
|
if (kPoisonHeapReferences && field_type == Primitive::kPrimNot) {
|
|
DCHECK(value.IsW());
|
|
Register temp = temps.AcquireW();
|
|
__ Mov(temp, value.W());
|
|
GetAssembler()->PoisonHeapReference(temp.W());
|
|
source = temp;
|
|
}
|
|
|
|
if (field_info.IsVolatile()) {
|
|
codegen_->StoreRelease(field_type, source, HeapOperand(obj, offset));
|
|
codegen_->MaybeRecordImplicitNullCheck(instruction);
|
|
} else {
|
|
codegen_->Store(field_type, source, HeapOperand(obj, offset));
|
|
codegen_->MaybeRecordImplicitNullCheck(instruction);
|
|
}
|
|
}
|
|
|
|
if (CodeGenerator::StoreNeedsWriteBarrier(field_type, instruction->InputAt(1))) {
|
|
codegen_->MarkGCCard(obj, Register(value), value_can_be_null);
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::HandleBinaryOp(HBinaryOperation* instr) {
|
|
Primitive::Type type = instr->GetType();
|
|
|
|
switch (type) {
|
|
case Primitive::kPrimInt:
|
|
case Primitive::kPrimLong: {
|
|
Register dst = OutputRegister(instr);
|
|
Register lhs = InputRegisterAt(instr, 0);
|
|
Operand rhs = InputOperandAt(instr, 1);
|
|
if (instr->IsAdd()) {
|
|
__ Add(dst, lhs, rhs);
|
|
} else if (instr->IsAnd()) {
|
|
__ And(dst, lhs, rhs);
|
|
} else if (instr->IsOr()) {
|
|
__ Orr(dst, lhs, rhs);
|
|
} else if (instr->IsSub()) {
|
|
__ Sub(dst, lhs, rhs);
|
|
} else if (instr->IsRor()) {
|
|
if (rhs.IsImmediate()) {
|
|
uint32_t shift = rhs.immediate() & (lhs.SizeInBits() - 1);
|
|
__ Ror(dst, lhs, shift);
|
|
} else {
|
|
// Ensure shift distance is in the same size register as the result. If
|
|
// we are rotating a long and the shift comes in a w register originally,
|
|
// we don't need to sxtw for use as an x since the shift distances are
|
|
// all & reg_bits - 1.
|
|
__ Ror(dst, lhs, RegisterFrom(instr->GetLocations()->InAt(1), type));
|
|
}
|
|
} else {
|
|
DCHECK(instr->IsXor());
|
|
__ Eor(dst, lhs, rhs);
|
|
}
|
|
break;
|
|
}
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimDouble: {
|
|
FPRegister dst = OutputFPRegister(instr);
|
|
FPRegister lhs = InputFPRegisterAt(instr, 0);
|
|
FPRegister rhs = InputFPRegisterAt(instr, 1);
|
|
if (instr->IsAdd()) {
|
|
__ Fadd(dst, lhs, rhs);
|
|
} else if (instr->IsSub()) {
|
|
__ Fsub(dst, lhs, rhs);
|
|
} else {
|
|
LOG(FATAL) << "Unexpected floating-point binary operation";
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
LOG(FATAL) << "Unexpected binary operation type " << type;
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderARM64::HandleShift(HBinaryOperation* instr) {
|
|
DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr());
|
|
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instr);
|
|
Primitive::Type type = instr->GetResultType();
|
|
switch (type) {
|
|
case Primitive::kPrimInt:
|
|
case Primitive::kPrimLong: {
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::RegisterOrConstant(instr->InputAt(1)));
|
|
locations->SetOut(Location::RequiresRegister());
|
|
break;
|
|
}
|
|
default:
|
|
LOG(FATAL) << "Unexpected shift type " << type;
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::HandleShift(HBinaryOperation* instr) {
|
|
DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr());
|
|
|
|
Primitive::Type type = instr->GetType();
|
|
switch (type) {
|
|
case Primitive::kPrimInt:
|
|
case Primitive::kPrimLong: {
|
|
Register dst = OutputRegister(instr);
|
|
Register lhs = InputRegisterAt(instr, 0);
|
|
Operand rhs = InputOperandAt(instr, 1);
|
|
if (rhs.IsImmediate()) {
|
|
uint32_t shift_value = rhs.immediate() &
|
|
(type == Primitive::kPrimInt ? kMaxIntShiftDistance : kMaxLongShiftDistance);
|
|
if (instr->IsShl()) {
|
|
__ Lsl(dst, lhs, shift_value);
|
|
} else if (instr->IsShr()) {
|
|
__ Asr(dst, lhs, shift_value);
|
|
} else {
|
|
__ Lsr(dst, lhs, shift_value);
|
|
}
|
|
} else {
|
|
Register rhs_reg = dst.IsX() ? rhs.reg().X() : rhs.reg().W();
|
|
|
|
if (instr->IsShl()) {
|
|
__ Lsl(dst, lhs, rhs_reg);
|
|
} else if (instr->IsShr()) {
|
|
__ Asr(dst, lhs, rhs_reg);
|
|
} else {
|
|
__ Lsr(dst, lhs, rhs_reg);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
LOG(FATAL) << "Unexpected shift operation type " << type;
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitAdd(HAdd* instruction) {
|
|
HandleBinaryOp(instruction);
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitAdd(HAdd* instruction) {
|
|
HandleBinaryOp(instruction);
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitAnd(HAnd* instruction) {
|
|
HandleBinaryOp(instruction);
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitAnd(HAnd* instruction) {
|
|
HandleBinaryOp(instruction);
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instr) {
|
|
DCHECK(Primitive::IsIntegralType(instr->GetType())) << instr->GetType();
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instr);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
// There is no immediate variant of negated bitwise instructions in AArch64.
|
|
locations->SetInAt(1, Location::RequiresRegister());
|
|
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitBitwiseNegatedRight(HBitwiseNegatedRight* instr) {
|
|
Register dst = OutputRegister(instr);
|
|
Register lhs = InputRegisterAt(instr, 0);
|
|
Register rhs = InputRegisterAt(instr, 1);
|
|
|
|
switch (instr->GetOpKind()) {
|
|
case HInstruction::kAnd:
|
|
__ Bic(dst, lhs, rhs);
|
|
break;
|
|
case HInstruction::kOr:
|
|
__ Orn(dst, lhs, rhs);
|
|
break;
|
|
case HInstruction::kXor:
|
|
__ Eon(dst, lhs, rhs);
|
|
break;
|
|
default:
|
|
LOG(FATAL) << "Unreachable";
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitArm64DataProcWithShifterOp(
|
|
HArm64DataProcWithShifterOp* instruction) {
|
|
DCHECK(instruction->GetType() == Primitive::kPrimInt ||
|
|
instruction->GetType() == Primitive::kPrimLong);
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
|
|
if (instruction->GetInstrKind() == HInstruction::kNeg) {
|
|
locations->SetInAt(0, Location::ConstantLocation(instruction->InputAt(0)->AsConstant()));
|
|
} else {
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
}
|
|
locations->SetInAt(1, Location::RequiresRegister());
|
|
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitArm64DataProcWithShifterOp(
|
|
HArm64DataProcWithShifterOp* instruction) {
|
|
Primitive::Type type = instruction->GetType();
|
|
HInstruction::InstructionKind kind = instruction->GetInstrKind();
|
|
DCHECK(type == Primitive::kPrimInt || type == Primitive::kPrimLong);
|
|
Register out = OutputRegister(instruction);
|
|
Register left;
|
|
if (kind != HInstruction::kNeg) {
|
|
left = InputRegisterAt(instruction, 0);
|
|
}
|
|
// If this `HArm64DataProcWithShifterOp` was created by merging a type conversion as the
|
|
// shifter operand operation, the IR generating `right_reg` (input to the type
|
|
// conversion) can have a different type from the current instruction's type,
|
|
// so we manually indicate the type.
|
|
Register right_reg = RegisterFrom(instruction->GetLocations()->InAt(1), type);
|
|
int64_t shift_amount = instruction->GetShiftAmount() &
|
|
(type == Primitive::kPrimInt ? kMaxIntShiftDistance : kMaxLongShiftDistance);
|
|
|
|
Operand right_operand(0);
|
|
|
|
HArm64DataProcWithShifterOp::OpKind op_kind = instruction->GetOpKind();
|
|
if (HArm64DataProcWithShifterOp::IsExtensionOp(op_kind)) {
|
|
right_operand = Operand(right_reg, helpers::ExtendFromOpKind(op_kind));
|
|
} else {
|
|
right_operand = Operand(right_reg, helpers::ShiftFromOpKind(op_kind), shift_amount);
|
|
}
|
|
|
|
// Logical binary operations do not support extension operations in the
|
|
// operand. Note that VIXL would still manage if it was passed by generating
|
|
// the extension as a separate instruction.
|
|
// `HNeg` also does not support extension. See comments in `ShifterOperandSupportsExtension()`.
|
|
DCHECK(!right_operand.IsExtendedRegister() ||
|
|
(kind != HInstruction::kAnd && kind != HInstruction::kOr && kind != HInstruction::kXor &&
|
|
kind != HInstruction::kNeg));
|
|
switch (kind) {
|
|
case HInstruction::kAdd:
|
|
__ Add(out, left, right_operand);
|
|
break;
|
|
case HInstruction::kAnd:
|
|
__ And(out, left, right_operand);
|
|
break;
|
|
case HInstruction::kNeg:
|
|
DCHECK(instruction->InputAt(0)->AsConstant()->IsArithmeticZero());
|
|
__ Neg(out, right_operand);
|
|
break;
|
|
case HInstruction::kOr:
|
|
__ Orr(out, left, right_operand);
|
|
break;
|
|
case HInstruction::kSub:
|
|
__ Sub(out, left, right_operand);
|
|
break;
|
|
case HInstruction::kXor:
|
|
__ Eor(out, left, right_operand);
|
|
break;
|
|
default:
|
|
LOG(FATAL) << "Unexpected operation kind: " << kind;
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitArm64IntermediateAddress(HArm64IntermediateAddress* instruction) {
|
|
// The read barrier instrumentation does not support the
|
|
// HArm64IntermediateAddress instruction yet.
|
|
DCHECK(!kEmitCompilerReadBarrier);
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, ARM64EncodableConstantOrRegister(instruction->GetOffset(), instruction));
|
|
locations->SetOut(Location::RequiresRegister());
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitArm64IntermediateAddress(
|
|
HArm64IntermediateAddress* instruction) {
|
|
// The read barrier instrumentation does not support the
|
|
// HArm64IntermediateAddress instruction yet.
|
|
DCHECK(!kEmitCompilerReadBarrier);
|
|
__ Add(OutputRegister(instruction),
|
|
InputRegisterAt(instruction, 0),
|
|
Operand(InputOperandAt(instruction, 1)));
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(instr, LocationSummary::kNoCall);
|
|
HInstruction* accumulator = instr->InputAt(HMultiplyAccumulate::kInputAccumulatorIndex);
|
|
if (instr->GetOpKind() == HInstruction::kSub &&
|
|
accumulator->IsConstant() &&
|
|
accumulator->AsConstant()->IsArithmeticZero()) {
|
|
// Don't allocate register for Mneg instruction.
|
|
} else {
|
|
locations->SetInAt(HMultiplyAccumulate::kInputAccumulatorIndex,
|
|
Location::RequiresRegister());
|
|
}
|
|
locations->SetInAt(HMultiplyAccumulate::kInputMulLeftIndex, Location::RequiresRegister());
|
|
locations->SetInAt(HMultiplyAccumulate::kInputMulRightIndex, Location::RequiresRegister());
|
|
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitMultiplyAccumulate(HMultiplyAccumulate* instr) {
|
|
Register res = OutputRegister(instr);
|
|
Register mul_left = InputRegisterAt(instr, HMultiplyAccumulate::kInputMulLeftIndex);
|
|
Register mul_right = InputRegisterAt(instr, HMultiplyAccumulate::kInputMulRightIndex);
|
|
|
|
// Avoid emitting code that could trigger Cortex A53's erratum 835769.
|
|
// This fixup should be carried out for all multiply-accumulate instructions:
|
|
// madd, msub, smaddl, smsubl, umaddl and umsubl.
|
|
if (instr->GetType() == Primitive::kPrimLong &&
|
|
codegen_->GetInstructionSetFeatures().NeedFixCortexA53_835769()) {
|
|
MacroAssembler* masm = down_cast<CodeGeneratorARM64*>(codegen_)->GetVIXLAssembler();
|
|
vixl::Instruction* prev = masm->GetCursorAddress<vixl::Instruction*>() - vixl::kInstructionSize;
|
|
if (prev->IsLoadOrStore()) {
|
|
// Make sure we emit only exactly one nop.
|
|
vixl::CodeBufferCheckScope scope(masm,
|
|
vixl::kInstructionSize,
|
|
vixl::CodeBufferCheckScope::kCheck,
|
|
vixl::CodeBufferCheckScope::kExactSize);
|
|
__ nop();
|
|
}
|
|
}
|
|
|
|
if (instr->GetOpKind() == HInstruction::kAdd) {
|
|
Register accumulator = InputRegisterAt(instr, HMultiplyAccumulate::kInputAccumulatorIndex);
|
|
__ Madd(res, mul_left, mul_right, accumulator);
|
|
} else {
|
|
DCHECK(instr->GetOpKind() == HInstruction::kSub);
|
|
HInstruction* accum_instr = instr->InputAt(HMultiplyAccumulate::kInputAccumulatorIndex);
|
|
if (accum_instr->IsConstant() && accum_instr->AsConstant()->IsArithmeticZero()) {
|
|
__ Mneg(res, mul_left, mul_right);
|
|
} else {
|
|
Register accumulator = InputRegisterAt(instr, HMultiplyAccumulate::kInputAccumulatorIndex);
|
|
__ Msub(res, mul_left, mul_right, accumulator);
|
|
}
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitArrayGet(HArrayGet* instruction) {
|
|
bool object_array_get_with_read_barrier =
|
|
kEmitCompilerReadBarrier && (instruction->GetType() == Primitive::kPrimNot);
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(instruction,
|
|
object_array_get_with_read_barrier ?
|
|
LocationSummary::kCallOnSlowPath :
|
|
LocationSummary::kNoCall);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
|
|
if (Primitive::IsFloatingPointType(instruction->GetType())) {
|
|
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
|
|
} else {
|
|
// The output overlaps in the case of an object array get with
|
|
// read barriers enabled: we do not want the move to overwrite the
|
|
// array's location, as we need it to emit the read barrier.
|
|
locations->SetOut(
|
|
Location::RequiresRegister(),
|
|
object_array_get_with_read_barrier ? Location::kOutputOverlap : Location::kNoOutputOverlap);
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitArrayGet(HArrayGet* instruction) {
|
|
Primitive::Type type = instruction->GetType();
|
|
Register obj = InputRegisterAt(instruction, 0);
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
Location index = locations->InAt(1);
|
|
uint32_t offset = mirror::Array::DataOffset(Primitive::ComponentSize(type)).Uint32Value();
|
|
Location out = locations->Out();
|
|
|
|
MacroAssembler* masm = GetVIXLAssembler();
|
|
UseScratchRegisterScope temps(masm);
|
|
// Block pools between `Load` and `MaybeRecordImplicitNullCheck`.
|
|
BlockPoolsScope block_pools(masm);
|
|
|
|
if (type == Primitive::kPrimNot && kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
|
|
// Object ArrayGet with Baker's read barrier case.
|
|
Register temp = temps.AcquireW();
|
|
// The read barrier instrumentation does not support the
|
|
// HArm64IntermediateAddress instruction yet.
|
|
DCHECK(!instruction->GetArray()->IsArm64IntermediateAddress());
|
|
// Note that a potential implicit null check is handled in the
|
|
// CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier call.
|
|
codegen_->GenerateArrayLoadWithBakerReadBarrier(
|
|
instruction, out, obj.W(), offset, index, temp, /* needs_null_check */ true);
|
|
} else {
|
|
// General case.
|
|
MemOperand source = HeapOperand(obj);
|
|
if (index.IsConstant()) {
|
|
offset += Int64ConstantFrom(index) << Primitive::ComponentSizeShift(type);
|
|
source = HeapOperand(obj, offset);
|
|
} else {
|
|
Register temp = temps.AcquireSameSizeAs(obj);
|
|
if (instruction->GetArray()->IsArm64IntermediateAddress()) {
|
|
// The read barrier instrumentation does not support the
|
|
// HArm64IntermediateAddress instruction yet.
|
|
DCHECK(!kEmitCompilerReadBarrier);
|
|
// We do not need to compute the intermediate address from the array: the
|
|
// input instruction has done it already. See the comment in
|
|
// `InstructionSimplifierArm64::TryExtractArrayAccessAddress()`.
|
|
if (kIsDebugBuild) {
|
|
HArm64IntermediateAddress* tmp = instruction->GetArray()->AsArm64IntermediateAddress();
|
|
DCHECK_EQ(tmp->GetOffset()->AsIntConstant()->GetValueAsUint64(), offset);
|
|
}
|
|
temp = obj;
|
|
} else {
|
|
__ Add(temp, obj, offset);
|
|
}
|
|
source = HeapOperand(temp, XRegisterFrom(index), LSL, Primitive::ComponentSizeShift(type));
|
|
}
|
|
|
|
codegen_->Load(type, OutputCPURegister(instruction), source);
|
|
codegen_->MaybeRecordImplicitNullCheck(instruction);
|
|
|
|
if (type == Primitive::kPrimNot) {
|
|
static_assert(
|
|
sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
|
|
"art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
|
|
Location obj_loc = locations->InAt(0);
|
|
if (index.IsConstant()) {
|
|
codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, obj_loc, offset);
|
|
} else {
|
|
codegen_->MaybeGenerateReadBarrierSlow(instruction, out, out, obj_loc, offset, index);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitArrayLength(HArrayLength* instruction) {
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitArrayLength(HArrayLength* instruction) {
|
|
BlockPoolsScope block_pools(GetVIXLAssembler());
|
|
__ Ldr(OutputRegister(instruction),
|
|
HeapOperand(InputRegisterAt(instruction, 0), mirror::Array::LengthOffset()));
|
|
codegen_->MaybeRecordImplicitNullCheck(instruction);
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitArraySet(HArraySet* instruction) {
|
|
Primitive::Type value_type = instruction->GetComponentType();
|
|
|
|
bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck();
|
|
bool object_array_set_with_read_barrier =
|
|
kEmitCompilerReadBarrier && (value_type == Primitive::kPrimNot);
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(
|
|
instruction,
|
|
(may_need_runtime_call_for_type_check || object_array_set_with_read_barrier) ?
|
|
LocationSummary::kCallOnSlowPath :
|
|
LocationSummary::kNoCall);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
|
|
if (Primitive::IsFloatingPointType(value_type)) {
|
|
locations->SetInAt(2, Location::RequiresFpuRegister());
|
|
} else {
|
|
locations->SetInAt(2, Location::RequiresRegister());
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitArraySet(HArraySet* instruction) {
|
|
Primitive::Type value_type = instruction->GetComponentType();
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck();
|
|
bool needs_write_barrier =
|
|
CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
|
|
|
|
Register array = InputRegisterAt(instruction, 0);
|
|
CPURegister value = InputCPURegisterAt(instruction, 2);
|
|
CPURegister source = value;
|
|
Location index = locations->InAt(1);
|
|
size_t offset = mirror::Array::DataOffset(Primitive::ComponentSize(value_type)).Uint32Value();
|
|
MemOperand destination = HeapOperand(array);
|
|
MacroAssembler* masm = GetVIXLAssembler();
|
|
BlockPoolsScope block_pools(masm);
|
|
|
|
if (!needs_write_barrier) {
|
|
DCHECK(!may_need_runtime_call_for_type_check);
|
|
if (index.IsConstant()) {
|
|
offset += Int64ConstantFrom(index) << Primitive::ComponentSizeShift(value_type);
|
|
destination = HeapOperand(array, offset);
|
|
} else {
|
|
UseScratchRegisterScope temps(masm);
|
|
Register temp = temps.AcquireSameSizeAs(array);
|
|
if (instruction->GetArray()->IsArm64IntermediateAddress()) {
|
|
// The read barrier instrumentation does not support the
|
|
// HArm64IntermediateAddress instruction yet.
|
|
DCHECK(!kEmitCompilerReadBarrier);
|
|
// We do not need to compute the intermediate address from the array: the
|
|
// input instruction has done it already. See the comment in
|
|
// `InstructionSimplifierArm64::TryExtractArrayAccessAddress()`.
|
|
if (kIsDebugBuild) {
|
|
HArm64IntermediateAddress* tmp = instruction->GetArray()->AsArm64IntermediateAddress();
|
|
DCHECK(tmp->GetOffset()->AsIntConstant()->GetValueAsUint64() == offset);
|
|
}
|
|
temp = array;
|
|
} else {
|
|
__ Add(temp, array, offset);
|
|
}
|
|
destination = HeapOperand(temp,
|
|
XRegisterFrom(index),
|
|
LSL,
|
|
Primitive::ComponentSizeShift(value_type));
|
|
}
|
|
codegen_->Store(value_type, value, destination);
|
|
codegen_->MaybeRecordImplicitNullCheck(instruction);
|
|
} else {
|
|
DCHECK(needs_write_barrier);
|
|
DCHECK(!instruction->GetArray()->IsArm64IntermediateAddress());
|
|
vixl::Label done;
|
|
SlowPathCodeARM64* slow_path = nullptr;
|
|
{
|
|
// We use a block to end the scratch scope before the write barrier, thus
|
|
// freeing the temporary registers so they can be used in `MarkGCCard`.
|
|
UseScratchRegisterScope temps(masm);
|
|
Register temp = temps.AcquireSameSizeAs(array);
|
|
if (index.IsConstant()) {
|
|
offset += Int64ConstantFrom(index) << Primitive::ComponentSizeShift(value_type);
|
|
destination = HeapOperand(array, offset);
|
|
} else {
|
|
destination = HeapOperand(temp,
|
|
XRegisterFrom(index),
|
|
LSL,
|
|
Primitive::ComponentSizeShift(value_type));
|
|
}
|
|
|
|
uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
|
|
uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
|
|
uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
|
|
|
|
if (may_need_runtime_call_for_type_check) {
|
|
slow_path = new (GetGraph()->GetArena()) ArraySetSlowPathARM64(instruction);
|
|
codegen_->AddSlowPath(slow_path);
|
|
if (instruction->GetValueCanBeNull()) {
|
|
vixl::Label non_zero;
|
|
__ Cbnz(Register(value), &non_zero);
|
|
if (!index.IsConstant()) {
|
|
__ Add(temp, array, offset);
|
|
}
|
|
__ Str(wzr, destination);
|
|
codegen_->MaybeRecordImplicitNullCheck(instruction);
|
|
__ B(&done);
|
|
__ Bind(&non_zero);
|
|
}
|
|
|
|
if (kEmitCompilerReadBarrier) {
|
|
// When read barriers are enabled, the type checking
|
|
// instrumentation requires two read barriers:
|
|
//
|
|
// __ Mov(temp2, temp);
|
|
// // /* HeapReference<Class> */ temp = temp->component_type_
|
|
// __ Ldr(temp, HeapOperand(temp, component_offset));
|
|
// codegen_->GenerateReadBarrierSlow(
|
|
// instruction, temp_loc, temp_loc, temp2_loc, component_offset);
|
|
//
|
|
// // /* HeapReference<Class> */ temp2 = value->klass_
|
|
// __ Ldr(temp2, HeapOperand(Register(value), class_offset));
|
|
// codegen_->GenerateReadBarrierSlow(
|
|
// instruction, temp2_loc, temp2_loc, value_loc, class_offset, temp_loc);
|
|
//
|
|
// __ Cmp(temp, temp2);
|
|
//
|
|
// However, the second read barrier may trash `temp`, as it
|
|
// is a temporary register, and as such would not be saved
|
|
// along with live registers before calling the runtime (nor
|
|
// restored afterwards). So in this case, we bail out and
|
|
// delegate the work to the array set slow path.
|
|
//
|
|
// TODO: Extend the register allocator to support a new
|
|
// "(locally) live temp" location so as to avoid always
|
|
// going into the slow path when read barriers are enabled.
|
|
__ B(slow_path->GetEntryLabel());
|
|
} else {
|
|
Register temp2 = temps.AcquireSameSizeAs(array);
|
|
// /* HeapReference<Class> */ temp = array->klass_
|
|
__ Ldr(temp, HeapOperand(array, class_offset));
|
|
codegen_->MaybeRecordImplicitNullCheck(instruction);
|
|
GetAssembler()->MaybeUnpoisonHeapReference(temp);
|
|
|
|
// /* HeapReference<Class> */ temp = temp->component_type_
|
|
__ Ldr(temp, HeapOperand(temp, component_offset));
|
|
// /* HeapReference<Class> */ temp2 = value->klass_
|
|
__ Ldr(temp2, HeapOperand(Register(value), class_offset));
|
|
// If heap poisoning is enabled, no need to unpoison `temp`
|
|
// nor `temp2`, as we are comparing two poisoned references.
|
|
__ Cmp(temp, temp2);
|
|
|
|
if (instruction->StaticTypeOfArrayIsObjectArray()) {
|
|
vixl::Label do_put;
|
|
__ B(eq, &do_put);
|
|
// If heap poisoning is enabled, the `temp` reference has
|
|
// not been unpoisoned yet; unpoison it now.
|
|
GetAssembler()->MaybeUnpoisonHeapReference(temp);
|
|
|
|
// /* HeapReference<Class> */ temp = temp->super_class_
|
|
__ Ldr(temp, HeapOperand(temp, super_offset));
|
|
// If heap poisoning is enabled, no need to unpoison
|
|
// `temp`, as we are comparing against null below.
|
|
__ Cbnz(temp, slow_path->GetEntryLabel());
|
|
__ Bind(&do_put);
|
|
} else {
|
|
__ B(ne, slow_path->GetEntryLabel());
|
|
}
|
|
temps.Release(temp2);
|
|
}
|
|
}
|
|
|
|
if (kPoisonHeapReferences) {
|
|
Register temp2 = temps.AcquireSameSizeAs(array);
|
|
DCHECK(value.IsW());
|
|
__ Mov(temp2, value.W());
|
|
GetAssembler()->PoisonHeapReference(temp2);
|
|
source = temp2;
|
|
}
|
|
|
|
if (!index.IsConstant()) {
|
|
__ Add(temp, array, offset);
|
|
}
|
|
__ Str(source, destination);
|
|
|
|
if (!may_need_runtime_call_for_type_check) {
|
|
codegen_->MaybeRecordImplicitNullCheck(instruction);
|
|
}
|
|
}
|
|
|
|
codegen_->MarkGCCard(array, value.W(), instruction->GetValueCanBeNull());
|
|
|
|
if (done.IsLinked()) {
|
|
__ Bind(&done);
|
|
}
|
|
|
|
if (slow_path != nullptr) {
|
|
__ Bind(slow_path->GetExitLabel());
|
|
}
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitBoundsCheck(HBoundsCheck* instruction) {
|
|
LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock()
|
|
? LocationSummary::kCallOnSlowPath
|
|
: LocationSummary::kNoCall;
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, ARM64EncodableConstantOrRegister(instruction->InputAt(1), instruction));
|
|
if (instruction->HasUses()) {
|
|
locations->SetOut(Location::SameAsFirstInput());
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitBoundsCheck(HBoundsCheck* instruction) {
|
|
BoundsCheckSlowPathARM64* slow_path =
|
|
new (GetGraph()->GetArena()) BoundsCheckSlowPathARM64(instruction);
|
|
codegen_->AddSlowPath(slow_path);
|
|
|
|
__ Cmp(InputRegisterAt(instruction, 0), InputOperandAt(instruction, 1));
|
|
__ B(slow_path->GetEntryLabel(), hs);
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitClinitCheck(HClinitCheck* check) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(check, LocationSummary::kCallOnSlowPath);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
if (check->HasUses()) {
|
|
locations->SetOut(Location::SameAsFirstInput());
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitClinitCheck(HClinitCheck* check) {
|
|
// We assume the class is not null.
|
|
SlowPathCodeARM64* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathARM64(
|
|
check->GetLoadClass(), check, check->GetDexPc(), true);
|
|
codegen_->AddSlowPath(slow_path);
|
|
GenerateClassInitializationCheck(slow_path, InputRegisterAt(check, 0));
|
|
}
|
|
|
|
static bool IsFloatingPointZeroConstant(HInstruction* inst) {
|
|
return (inst->IsFloatConstant() && (inst->AsFloatConstant()->IsArithmeticZero()))
|
|
|| (inst->IsDoubleConstant() && (inst->AsDoubleConstant()->IsArithmeticZero()));
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::GenerateFcmp(HInstruction* instruction) {
|
|
FPRegister lhs_reg = InputFPRegisterAt(instruction, 0);
|
|
Location rhs_loc = instruction->GetLocations()->InAt(1);
|
|
if (rhs_loc.IsConstant()) {
|
|
// 0.0 is the only immediate that can be encoded directly in
|
|
// an FCMP instruction.
|
|
//
|
|
// Both the JLS (section 15.20.1) and the JVMS (section 6.5)
|
|
// specify that in a floating-point comparison, positive zero
|
|
// and negative zero are considered equal, so we can use the
|
|
// literal 0.0 for both cases here.
|
|
//
|
|
// Note however that some methods (Float.equal, Float.compare,
|
|
// Float.compareTo, Double.equal, Double.compare,
|
|
// Double.compareTo, Math.max, Math.min, StrictMath.max,
|
|
// StrictMath.min) consider 0.0 to be (strictly) greater than
|
|
// -0.0. So if we ever translate calls to these methods into a
|
|
// HCompare instruction, we must handle the -0.0 case with
|
|
// care here.
|
|
DCHECK(IsFloatingPointZeroConstant(rhs_loc.GetConstant()));
|
|
__ Fcmp(lhs_reg, 0.0);
|
|
} else {
|
|
__ Fcmp(lhs_reg, InputFPRegisterAt(instruction, 1));
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitCompare(HCompare* compare) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(compare, LocationSummary::kNoCall);
|
|
Primitive::Type in_type = compare->InputAt(0)->GetType();
|
|
switch (in_type) {
|
|
case Primitive::kPrimBoolean:
|
|
case Primitive::kPrimByte:
|
|
case Primitive::kPrimShort:
|
|
case Primitive::kPrimChar:
|
|
case Primitive::kPrimInt:
|
|
case Primitive::kPrimLong: {
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, ARM64EncodableConstantOrRegister(compare->InputAt(1), compare));
|
|
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
|
|
break;
|
|
}
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimDouble: {
|
|
locations->SetInAt(0, Location::RequiresFpuRegister());
|
|
locations->SetInAt(1,
|
|
IsFloatingPointZeroConstant(compare->InputAt(1))
|
|
? Location::ConstantLocation(compare->InputAt(1)->AsConstant())
|
|
: Location::RequiresFpuRegister());
|
|
locations->SetOut(Location::RequiresRegister());
|
|
break;
|
|
}
|
|
default:
|
|
LOG(FATAL) << "Unexpected type for compare operation " << in_type;
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitCompare(HCompare* compare) {
|
|
Primitive::Type in_type = compare->InputAt(0)->GetType();
|
|
|
|
// 0 if: left == right
|
|
// 1 if: left > right
|
|
// -1 if: left < right
|
|
switch (in_type) {
|
|
case Primitive::kPrimBoolean:
|
|
case Primitive::kPrimByte:
|
|
case Primitive::kPrimShort:
|
|
case Primitive::kPrimChar:
|
|
case Primitive::kPrimInt:
|
|
case Primitive::kPrimLong: {
|
|
Register result = OutputRegister(compare);
|
|
Register left = InputRegisterAt(compare, 0);
|
|
Operand right = InputOperandAt(compare, 1);
|
|
__ Cmp(left, right);
|
|
__ Cset(result, ne); // result == +1 if NE or 0 otherwise
|
|
__ Cneg(result, result, lt); // result == -1 if LT or unchanged otherwise
|
|
break;
|
|
}
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimDouble: {
|
|
Register result = OutputRegister(compare);
|
|
GenerateFcmp(compare);
|
|
__ Cset(result, ne);
|
|
__ Cneg(result, result, ARM64FPCondition(kCondLT, compare->IsGtBias()));
|
|
break;
|
|
}
|
|
default:
|
|
LOG(FATAL) << "Unimplemented compare type " << in_type;
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderARM64::HandleCondition(HCondition* instruction) {
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
|
|
|
|
if (Primitive::IsFloatingPointType(instruction->InputAt(0)->GetType())) {
|
|
locations->SetInAt(0, Location::RequiresFpuRegister());
|
|
locations->SetInAt(1,
|
|
IsFloatingPointZeroConstant(instruction->InputAt(1))
|
|
? Location::ConstantLocation(instruction->InputAt(1)->AsConstant())
|
|
: Location::RequiresFpuRegister());
|
|
} else {
|
|
// Integer cases.
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, ARM64EncodableConstantOrRegister(instruction->InputAt(1), instruction));
|
|
}
|
|
|
|
if (!instruction->IsEmittedAtUseSite()) {
|
|
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::HandleCondition(HCondition* instruction) {
|
|
if (instruction->IsEmittedAtUseSite()) {
|
|
return;
|
|
}
|
|
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
Register res = RegisterFrom(locations->Out(), instruction->GetType());
|
|
IfCondition if_cond = instruction->GetCondition();
|
|
|
|
if (Primitive::IsFloatingPointType(instruction->InputAt(0)->GetType())) {
|
|
GenerateFcmp(instruction);
|
|
__ Cset(res, ARM64FPCondition(if_cond, instruction->IsGtBias()));
|
|
} else {
|
|
// Integer cases.
|
|
Register lhs = InputRegisterAt(instruction, 0);
|
|
Operand rhs = InputOperandAt(instruction, 1);
|
|
__ Cmp(lhs, rhs);
|
|
__ Cset(res, ARM64Condition(if_cond));
|
|
}
|
|
}
|
|
|
|
#define FOR_EACH_CONDITION_INSTRUCTION(M) \
|
|
M(Equal) \
|
|
M(NotEqual) \
|
|
M(LessThan) \
|
|
M(LessThanOrEqual) \
|
|
M(GreaterThan) \
|
|
M(GreaterThanOrEqual) \
|
|
M(Below) \
|
|
M(BelowOrEqual) \
|
|
M(Above) \
|
|
M(AboveOrEqual)
|
|
#define DEFINE_CONDITION_VISITORS(Name) \
|
|
void LocationsBuilderARM64::Visit##Name(H##Name* comp) { HandleCondition(comp); } \
|
|
void InstructionCodeGeneratorARM64::Visit##Name(H##Name* comp) { HandleCondition(comp); }
|
|
FOR_EACH_CONDITION_INSTRUCTION(DEFINE_CONDITION_VISITORS)
|
|
#undef DEFINE_CONDITION_VISITORS
|
|
#undef FOR_EACH_CONDITION_INSTRUCTION
|
|
|
|
void InstructionCodeGeneratorARM64::DivRemOneOrMinusOne(HBinaryOperation* instruction) {
|
|
DCHECK(instruction->IsDiv() || instruction->IsRem());
|
|
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
Location second = locations->InAt(1);
|
|
DCHECK(second.IsConstant());
|
|
|
|
Register out = OutputRegister(instruction);
|
|
Register dividend = InputRegisterAt(instruction, 0);
|
|
int64_t imm = Int64FromConstant(second.GetConstant());
|
|
DCHECK(imm == 1 || imm == -1);
|
|
|
|
if (instruction->IsRem()) {
|
|
__ Mov(out, 0);
|
|
} else {
|
|
if (imm == 1) {
|
|
__ Mov(out, dividend);
|
|
} else {
|
|
__ Neg(out, dividend);
|
|
}
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::DivRemByPowerOfTwo(HBinaryOperation* instruction) {
|
|
DCHECK(instruction->IsDiv() || instruction->IsRem());
|
|
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
Location second = locations->InAt(1);
|
|
DCHECK(second.IsConstant());
|
|
|
|
Register out = OutputRegister(instruction);
|
|
Register dividend = InputRegisterAt(instruction, 0);
|
|
int64_t imm = Int64FromConstant(second.GetConstant());
|
|
uint64_t abs_imm = static_cast<uint64_t>(AbsOrMin(imm));
|
|
int ctz_imm = CTZ(abs_imm);
|
|
|
|
UseScratchRegisterScope temps(GetVIXLAssembler());
|
|
Register temp = temps.AcquireSameSizeAs(out);
|
|
|
|
if (instruction->IsDiv()) {
|
|
__ Add(temp, dividend, abs_imm - 1);
|
|
__ Cmp(dividend, 0);
|
|
__ Csel(out, temp, dividend, lt);
|
|
if (imm > 0) {
|
|
__ Asr(out, out, ctz_imm);
|
|
} else {
|
|
__ Neg(out, Operand(out, ASR, ctz_imm));
|
|
}
|
|
} else {
|
|
int bits = instruction->GetResultType() == Primitive::kPrimInt ? 32 : 64;
|
|
__ Asr(temp, dividend, bits - 1);
|
|
__ Lsr(temp, temp, bits - ctz_imm);
|
|
__ Add(out, dividend, temp);
|
|
__ And(out, out, abs_imm - 1);
|
|
__ Sub(out, out, temp);
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) {
|
|
DCHECK(instruction->IsDiv() || instruction->IsRem());
|
|
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
Location second = locations->InAt(1);
|
|
DCHECK(second.IsConstant());
|
|
|
|
Register out = OutputRegister(instruction);
|
|
Register dividend = InputRegisterAt(instruction, 0);
|
|
int64_t imm = Int64FromConstant(second.GetConstant());
|
|
|
|
Primitive::Type type = instruction->GetResultType();
|
|
DCHECK(type == Primitive::kPrimInt || type == Primitive::kPrimLong);
|
|
|
|
int64_t magic;
|
|
int shift;
|
|
CalculateMagicAndShiftForDivRem(imm, type == Primitive::kPrimLong /* is_long */, &magic, &shift);
|
|
|
|
UseScratchRegisterScope temps(GetVIXLAssembler());
|
|
Register temp = temps.AcquireSameSizeAs(out);
|
|
|
|
// temp = get_high(dividend * magic)
|
|
__ Mov(temp, magic);
|
|
if (type == Primitive::kPrimLong) {
|
|
__ Smulh(temp, dividend, temp);
|
|
} else {
|
|
__ Smull(temp.X(), dividend, temp);
|
|
__ Lsr(temp.X(), temp.X(), 32);
|
|
}
|
|
|
|
if (imm > 0 && magic < 0) {
|
|
__ Add(temp, temp, dividend);
|
|
} else if (imm < 0 && magic > 0) {
|
|
__ Sub(temp, temp, dividend);
|
|
}
|
|
|
|
if (shift != 0) {
|
|
__ Asr(temp, temp, shift);
|
|
}
|
|
|
|
if (instruction->IsDiv()) {
|
|
__ Sub(out, temp, Operand(temp, ASR, type == Primitive::kPrimLong ? 63 : 31));
|
|
} else {
|
|
__ Sub(temp, temp, Operand(temp, ASR, type == Primitive::kPrimLong ? 63 : 31));
|
|
// TODO: Strength reduction for msub.
|
|
Register temp_imm = temps.AcquireSameSizeAs(out);
|
|
__ Mov(temp_imm, imm);
|
|
__ Msub(out, temp, temp_imm, dividend);
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::GenerateDivRemIntegral(HBinaryOperation* instruction) {
|
|
DCHECK(instruction->IsDiv() || instruction->IsRem());
|
|
Primitive::Type type = instruction->GetResultType();
|
|
DCHECK(type == Primitive::kPrimInt || Primitive::kPrimLong);
|
|
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
Register out = OutputRegister(instruction);
|
|
Location second = locations->InAt(1);
|
|
|
|
if (second.IsConstant()) {
|
|
int64_t imm = Int64FromConstant(second.GetConstant());
|
|
|
|
if (imm == 0) {
|
|
// Do not generate anything. DivZeroCheck would prevent any code to be executed.
|
|
} else if (imm == 1 || imm == -1) {
|
|
DivRemOneOrMinusOne(instruction);
|
|
} else if (IsPowerOfTwo(AbsOrMin(imm))) {
|
|
DivRemByPowerOfTwo(instruction);
|
|
} else {
|
|
DCHECK(imm <= -2 || imm >= 2);
|
|
GenerateDivRemWithAnyConstant(instruction);
|
|
}
|
|
} else {
|
|
Register dividend = InputRegisterAt(instruction, 0);
|
|
Register divisor = InputRegisterAt(instruction, 1);
|
|
if (instruction->IsDiv()) {
|
|
__ Sdiv(out, dividend, divisor);
|
|
} else {
|
|
UseScratchRegisterScope temps(GetVIXLAssembler());
|
|
Register temp = temps.AcquireSameSizeAs(out);
|
|
__ Sdiv(temp, dividend, divisor);
|
|
__ Msub(out, temp, divisor, dividend);
|
|
}
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitDiv(HDiv* div) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(div, LocationSummary::kNoCall);
|
|
switch (div->GetResultType()) {
|
|
case Primitive::kPrimInt:
|
|
case Primitive::kPrimLong:
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::RegisterOrConstant(div->InputAt(1)));
|
|
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
|
|
break;
|
|
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimDouble:
|
|
locations->SetInAt(0, Location::RequiresFpuRegister());
|
|
locations->SetInAt(1, Location::RequiresFpuRegister());
|
|
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
|
|
break;
|
|
|
|
default:
|
|
LOG(FATAL) << "Unexpected div type " << div->GetResultType();
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitDiv(HDiv* div) {
|
|
Primitive::Type type = div->GetResultType();
|
|
switch (type) {
|
|
case Primitive::kPrimInt:
|
|
case Primitive::kPrimLong:
|
|
GenerateDivRemIntegral(div);
|
|
break;
|
|
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimDouble:
|
|
__ Fdiv(OutputFPRegister(div), InputFPRegisterAt(div, 0), InputFPRegisterAt(div, 1));
|
|
break;
|
|
|
|
default:
|
|
LOG(FATAL) << "Unexpected div type " << type;
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitDivZeroCheck(HDivZeroCheck* instruction) {
|
|
LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock()
|
|
? LocationSummary::kCallOnSlowPath
|
|
: LocationSummary::kNoCall;
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
|
|
locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
|
|
if (instruction->HasUses()) {
|
|
locations->SetOut(Location::SameAsFirstInput());
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitDivZeroCheck(HDivZeroCheck* instruction) {
|
|
SlowPathCodeARM64* slow_path =
|
|
new (GetGraph()->GetArena()) DivZeroCheckSlowPathARM64(instruction);
|
|
codegen_->AddSlowPath(slow_path);
|
|
Location value = instruction->GetLocations()->InAt(0);
|
|
|
|
Primitive::Type type = instruction->GetType();
|
|
|
|
if (!Primitive::IsIntegralType(type)) {
|
|
LOG(FATAL) << "Unexpected type " << type << " for DivZeroCheck.";
|
|
return;
|
|
}
|
|
|
|
if (value.IsConstant()) {
|
|
int64_t divisor = Int64ConstantFrom(value);
|
|
if (divisor == 0) {
|
|
__ B(slow_path->GetEntryLabel());
|
|
} else {
|
|
// A division by a non-null constant is valid. We don't need to perform
|
|
// any check, so simply fall through.
|
|
}
|
|
} else {
|
|
__ Cbz(InputRegisterAt(instruction, 0), slow_path->GetEntryLabel());
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitDoubleConstant(HDoubleConstant* constant) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
|
|
locations->SetOut(Location::ConstantLocation(constant));
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitDoubleConstant(
|
|
HDoubleConstant* constant ATTRIBUTE_UNUSED) {
|
|
// Will be generated at use site.
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitExit(HExit* exit) {
|
|
exit->SetLocations(nullptr);
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitExit(HExit* exit ATTRIBUTE_UNUSED) {
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitFloatConstant(HFloatConstant* constant) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
|
|
locations->SetOut(Location::ConstantLocation(constant));
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) {
|
|
// Will be generated at use site.
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::HandleGoto(HInstruction* got, HBasicBlock* successor) {
|
|
DCHECK(!successor->IsExitBlock());
|
|
HBasicBlock* block = got->GetBlock();
|
|
HInstruction* previous = got->GetPrevious();
|
|
HLoopInformation* info = block->GetLoopInformation();
|
|
|
|
if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) {
|
|
codegen_->ClearSpillSlotsFromLoopPhisInStackMap(info->GetSuspendCheck());
|
|
GenerateSuspendCheck(info->GetSuspendCheck(), successor);
|
|
return;
|
|
}
|
|
if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) {
|
|
GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr);
|
|
}
|
|
if (!codegen_->GoesToNextBlock(block, successor)) {
|
|
__ B(codegen_->GetLabelOf(successor));
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitGoto(HGoto* got) {
|
|
got->SetLocations(nullptr);
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitGoto(HGoto* got) {
|
|
HandleGoto(got, got->GetSuccessor());
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitTryBoundary(HTryBoundary* try_boundary) {
|
|
try_boundary->SetLocations(nullptr);
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitTryBoundary(HTryBoundary* try_boundary) {
|
|
HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor();
|
|
if (!successor->IsExitBlock()) {
|
|
HandleGoto(try_boundary, successor);
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::GenerateTestAndBranch(HInstruction* instruction,
|
|
size_t condition_input_index,
|
|
vixl::Label* true_target,
|
|
vixl::Label* false_target) {
|
|
// FP branching requires both targets to be explicit. If either of the targets
|
|
// is nullptr (fallthrough) use and bind `fallthrough_target` instead.
|
|
vixl::Label fallthrough_target;
|
|
HInstruction* cond = instruction->InputAt(condition_input_index);
|
|
|
|
if (true_target == nullptr && false_target == nullptr) {
|
|
// Nothing to do. The code always falls through.
|
|
return;
|
|
} else if (cond->IsIntConstant()) {
|
|
// Constant condition, statically compared against "true" (integer value 1).
|
|
if (cond->AsIntConstant()->IsTrue()) {
|
|
if (true_target != nullptr) {
|
|
__ B(true_target);
|
|
}
|
|
} else {
|
|
DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue();
|
|
if (false_target != nullptr) {
|
|
__ B(false_target);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
// The following code generates these patterns:
|
|
// (1) true_target == nullptr && false_target != nullptr
|
|
// - opposite condition true => branch to false_target
|
|
// (2) true_target != nullptr && false_target == nullptr
|
|
// - condition true => branch to true_target
|
|
// (3) true_target != nullptr && false_target != nullptr
|
|
// - condition true => branch to true_target
|
|
// - branch to false_target
|
|
if (IsBooleanValueOrMaterializedCondition(cond)) {
|
|
// The condition instruction has been materialized, compare the output to 0.
|
|
Location cond_val = instruction->GetLocations()->InAt(condition_input_index);
|
|
DCHECK(cond_val.IsRegister());
|
|
if (true_target == nullptr) {
|
|
__ Cbz(InputRegisterAt(instruction, condition_input_index), false_target);
|
|
} else {
|
|
__ Cbnz(InputRegisterAt(instruction, condition_input_index), true_target);
|
|
}
|
|
} else {
|
|
// The condition instruction has not been materialized, use its inputs as
|
|
// the comparison and its condition as the branch condition.
|
|
HCondition* condition = cond->AsCondition();
|
|
|
|
Primitive::Type type = condition->InputAt(0)->GetType();
|
|
if (Primitive::IsFloatingPointType(type)) {
|
|
GenerateFcmp(condition);
|
|
if (true_target == nullptr) {
|
|
IfCondition opposite_condition = condition->GetOppositeCondition();
|
|
__ B(ARM64FPCondition(opposite_condition, condition->IsGtBias()), false_target);
|
|
} else {
|
|
__ B(ARM64FPCondition(condition->GetCondition(), condition->IsGtBias()), true_target);
|
|
}
|
|
} else {
|
|
// Integer cases.
|
|
Register lhs = InputRegisterAt(condition, 0);
|
|
Operand rhs = InputOperandAt(condition, 1);
|
|
|
|
Condition arm64_cond;
|
|
vixl::Label* non_fallthrough_target;
|
|
if (true_target == nullptr) {
|
|
arm64_cond = ARM64Condition(condition->GetOppositeCondition());
|
|
non_fallthrough_target = false_target;
|
|
} else {
|
|
arm64_cond = ARM64Condition(condition->GetCondition());
|
|
non_fallthrough_target = true_target;
|
|
}
|
|
|
|
if ((arm64_cond == eq || arm64_cond == ne || arm64_cond == lt || arm64_cond == ge) &&
|
|
rhs.IsImmediate() && (rhs.immediate() == 0)) {
|
|
switch (arm64_cond) {
|
|
case eq:
|
|
__ Cbz(lhs, non_fallthrough_target);
|
|
break;
|
|
case ne:
|
|
__ Cbnz(lhs, non_fallthrough_target);
|
|
break;
|
|
case lt:
|
|
// Test the sign bit and branch accordingly.
|
|
__ Tbnz(lhs, (lhs.IsX() ? kXRegSize : kWRegSize) - 1, non_fallthrough_target);
|
|
break;
|
|
case ge:
|
|
// Test the sign bit and branch accordingly.
|
|
__ Tbz(lhs, (lhs.IsX() ? kXRegSize : kWRegSize) - 1, non_fallthrough_target);
|
|
break;
|
|
default:
|
|
// Without the `static_cast` the compiler throws an error for
|
|
// `-Werror=sign-promo`.
|
|
LOG(FATAL) << "Unexpected condition: " << static_cast<int>(arm64_cond);
|
|
}
|
|
} else {
|
|
__ Cmp(lhs, rhs);
|
|
__ B(arm64_cond, non_fallthrough_target);
|
|
}
|
|
}
|
|
}
|
|
|
|
// If neither branch falls through (case 3), the conditional branch to `true_target`
|
|
// was already emitted (case 2) and we need to emit a jump to `false_target`.
|
|
if (true_target != nullptr && false_target != nullptr) {
|
|
__ B(false_target);
|
|
}
|
|
|
|
if (fallthrough_target.IsLinked()) {
|
|
__ Bind(&fallthrough_target);
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitIf(HIf* if_instr) {
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(if_instr);
|
|
if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) {
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitIf(HIf* if_instr) {
|
|
HBasicBlock* true_successor = if_instr->IfTrueSuccessor();
|
|
HBasicBlock* false_successor = if_instr->IfFalseSuccessor();
|
|
vixl::Label* true_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor) ?
|
|
nullptr : codegen_->GetLabelOf(true_successor);
|
|
vixl::Label* false_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor) ?
|
|
nullptr : codegen_->GetLabelOf(false_successor);
|
|
GenerateTestAndBranch(if_instr, /* condition_input_index */ 0, true_target, false_target);
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitDeoptimize(HDeoptimize* deoptimize) {
|
|
LocationSummary* locations = new (GetGraph()->GetArena())
|
|
LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath);
|
|
if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) {
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitDeoptimize(HDeoptimize* deoptimize) {
|
|
SlowPathCodeARM64* slow_path =
|
|
deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathARM64>(deoptimize);
|
|
GenerateTestAndBranch(deoptimize,
|
|
/* condition_input_index */ 0,
|
|
slow_path->GetEntryLabel(),
|
|
/* false_target */ nullptr);
|
|
}
|
|
|
|
enum SelectVariant {
|
|
kCsel,
|
|
kCselFalseConst,
|
|
kCselTrueConst,
|
|
kFcsel,
|
|
};
|
|
|
|
static inline bool IsConditionOnFloatingPointValues(HInstruction* condition) {
|
|
return condition->IsCondition() &&
|
|
Primitive::IsFloatingPointType(condition->InputAt(0)->GetType());
|
|
}
|
|
|
|
static inline bool IsRecognizedCselConstant(HInstruction* constant) {
|
|
if (constant->IsConstant()) {
|
|
int64_t value = Int64FromConstant(constant->AsConstant());
|
|
if ((value == -1) || (value == 0) || (value == 1)) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static inline SelectVariant GetSelectVariant(HSelect* select) {
|
|
if (Primitive::IsFloatingPointType(select->GetType())) {
|
|
return kFcsel;
|
|
} else if (IsRecognizedCselConstant(select->GetFalseValue())) {
|
|
return kCselFalseConst;
|
|
} else if (IsRecognizedCselConstant(select->GetTrueValue())) {
|
|
return kCselTrueConst;
|
|
} else {
|
|
return kCsel;
|
|
}
|
|
}
|
|
|
|
static inline bool HasSwappedInputs(SelectVariant variant) {
|
|
return variant == kCselTrueConst;
|
|
}
|
|
|
|
static inline Condition GetConditionForSelect(HCondition* condition, SelectVariant variant) {
|
|
IfCondition cond = HasSwappedInputs(variant) ? condition->GetOppositeCondition()
|
|
: condition->GetCondition();
|
|
return IsConditionOnFloatingPointValues(condition) ? ARM64FPCondition(cond, condition->IsGtBias())
|
|
: ARM64Condition(cond);
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitSelect(HSelect* select) {
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(select);
|
|
switch (GetSelectVariant(select)) {
|
|
case kCsel:
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::RequiresRegister());
|
|
locations->SetOut(Location::RequiresRegister());
|
|
break;
|
|
case kCselFalseConst:
|
|
locations->SetInAt(0, Location::ConstantLocation(select->InputAt(0)->AsConstant()));
|
|
locations->SetInAt(1, Location::RequiresRegister());
|
|
locations->SetOut(Location::RequiresRegister());
|
|
break;
|
|
case kCselTrueConst:
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::ConstantLocation(select->InputAt(1)->AsConstant()));
|
|
locations->SetOut(Location::RequiresRegister());
|
|
break;
|
|
case kFcsel:
|
|
locations->SetInAt(0, Location::RequiresFpuRegister());
|
|
locations->SetInAt(1, Location::RequiresFpuRegister());
|
|
locations->SetOut(Location::RequiresFpuRegister());
|
|
break;
|
|
}
|
|
if (IsBooleanValueOrMaterializedCondition(select->GetCondition())) {
|
|
locations->SetInAt(2, Location::RequiresRegister());
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitSelect(HSelect* select) {
|
|
HInstruction* cond = select->GetCondition();
|
|
SelectVariant variant = GetSelectVariant(select);
|
|
Condition csel_cond;
|
|
|
|
if (IsBooleanValueOrMaterializedCondition(cond)) {
|
|
if (cond->IsCondition() && cond->GetNext() == select) {
|
|
// Condition codes set from previous instruction.
|
|
csel_cond = GetConditionForSelect(cond->AsCondition(), variant);
|
|
} else {
|
|
__ Cmp(InputRegisterAt(select, 2), 0);
|
|
csel_cond = HasSwappedInputs(variant) ? eq : ne;
|
|
}
|
|
} else if (IsConditionOnFloatingPointValues(cond)) {
|
|
GenerateFcmp(cond);
|
|
csel_cond = GetConditionForSelect(cond->AsCondition(), variant);
|
|
} else {
|
|
__ Cmp(InputRegisterAt(cond, 0), InputOperandAt(cond, 1));
|
|
csel_cond = GetConditionForSelect(cond->AsCondition(), variant);
|
|
}
|
|
|
|
switch (variant) {
|
|
case kCsel:
|
|
case kCselFalseConst:
|
|
__ Csel(OutputRegister(select),
|
|
InputRegisterAt(select, 1),
|
|
InputOperandAt(select, 0),
|
|
csel_cond);
|
|
break;
|
|
case kCselTrueConst:
|
|
__ Csel(OutputRegister(select),
|
|
InputRegisterAt(select, 0),
|
|
InputOperandAt(select, 1),
|
|
csel_cond);
|
|
break;
|
|
case kFcsel:
|
|
__ Fcsel(OutputFPRegister(select),
|
|
InputFPRegisterAt(select, 1),
|
|
InputFPRegisterAt(select, 0),
|
|
csel_cond);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitNativeDebugInfo(HNativeDebugInfo* info) {
|
|
new (GetGraph()->GetArena()) LocationSummary(info);
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitNativeDebugInfo(HNativeDebugInfo*) {
|
|
// MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile.
|
|
}
|
|
|
|
void CodeGeneratorARM64::GenerateNop() {
|
|
__ Nop();
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
|
|
HandleFieldGet(instruction);
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
|
|
HandleFieldGet(instruction, instruction->GetFieldInfo());
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
|
|
HandleFieldSet(instruction);
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
|
|
HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
|
|
}
|
|
|
|
static bool TypeCheckNeedsATemporary(TypeCheckKind type_check_kind) {
|
|
return kEmitCompilerReadBarrier &&
|
|
(kUseBakerReadBarrier ||
|
|
type_check_kind == TypeCheckKind::kAbstractClassCheck ||
|
|
type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
|
|
type_check_kind == TypeCheckKind::kArrayObjectCheck);
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitInstanceOf(HInstanceOf* instruction) {
|
|
LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
|
|
TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
|
|
switch (type_check_kind) {
|
|
case TypeCheckKind::kExactCheck:
|
|
case TypeCheckKind::kAbstractClassCheck:
|
|
case TypeCheckKind::kClassHierarchyCheck:
|
|
case TypeCheckKind::kArrayObjectCheck:
|
|
call_kind =
|
|
kEmitCompilerReadBarrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall;
|
|
break;
|
|
case TypeCheckKind::kArrayCheck:
|
|
case TypeCheckKind::kUnresolvedCheck:
|
|
case TypeCheckKind::kInterfaceCheck:
|
|
call_kind = LocationSummary::kCallOnSlowPath;
|
|
break;
|
|
}
|
|
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::RequiresRegister());
|
|
// The "out" register is used as a temporary, so it overlaps with the inputs.
|
|
// Note that TypeCheckSlowPathARM64 uses this register too.
|
|
locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
|
|
// When read barriers are enabled, we need a temporary register for
|
|
// some cases.
|
|
if (TypeCheckNeedsATemporary(type_check_kind)) {
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitInstanceOf(HInstanceOf* instruction) {
|
|
TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
Location obj_loc = locations->InAt(0);
|
|
Register obj = InputRegisterAt(instruction, 0);
|
|
Register cls = InputRegisterAt(instruction, 1);
|
|
Location out_loc = locations->Out();
|
|
Register out = OutputRegister(instruction);
|
|
Location maybe_temp_loc = TypeCheckNeedsATemporary(type_check_kind) ?
|
|
locations->GetTemp(0) :
|
|
Location::NoLocation();
|
|
uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
|
|
uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
|
|
uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
|
|
uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
|
|
|
|
vixl::Label done, zero;
|
|
SlowPathCodeARM64* slow_path = nullptr;
|
|
|
|
// Return 0 if `obj` is null.
|
|
// Avoid null check if we know `obj` is not null.
|
|
if (instruction->MustDoNullCheck()) {
|
|
__ Cbz(obj, &zero);
|
|
}
|
|
|
|
// /* HeapReference<Class> */ out = obj->klass_
|
|
GenerateReferenceLoadTwoRegisters(instruction, out_loc, obj_loc, class_offset, maybe_temp_loc);
|
|
|
|
switch (type_check_kind) {
|
|
case TypeCheckKind::kExactCheck: {
|
|
__ Cmp(out, cls);
|
|
__ Cset(out, eq);
|
|
if (zero.IsLinked()) {
|
|
__ B(&done);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case TypeCheckKind::kAbstractClassCheck: {
|
|
// If the class is abstract, we eagerly fetch the super class of the
|
|
// object to avoid doing a comparison we know will fail.
|
|
vixl::Label loop, success;
|
|
__ Bind(&loop);
|
|
// /* HeapReference<Class> */ out = out->super_class_
|
|
GenerateReferenceLoadOneRegister(instruction, out_loc, super_offset, maybe_temp_loc);
|
|
// If `out` is null, we use it for the result, and jump to `done`.
|
|
__ Cbz(out, &done);
|
|
__ Cmp(out, cls);
|
|
__ B(ne, &loop);
|
|
__ Mov(out, 1);
|
|
if (zero.IsLinked()) {
|
|
__ B(&done);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case TypeCheckKind::kClassHierarchyCheck: {
|
|
// Walk over the class hierarchy to find a match.
|
|
vixl::Label loop, success;
|
|
__ Bind(&loop);
|
|
__ Cmp(out, cls);
|
|
__ B(eq, &success);
|
|
// /* HeapReference<Class> */ out = out->super_class_
|
|
GenerateReferenceLoadOneRegister(instruction, out_loc, super_offset, maybe_temp_loc);
|
|
__ Cbnz(out, &loop);
|
|
// If `out` is null, we use it for the result, and jump to `done`.
|
|
__ B(&done);
|
|
__ Bind(&success);
|
|
__ Mov(out, 1);
|
|
if (zero.IsLinked()) {
|
|
__ B(&done);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case TypeCheckKind::kArrayObjectCheck: {
|
|
// Do an exact check.
|
|
vixl::Label exact_check;
|
|
__ Cmp(out, cls);
|
|
__ B(eq, &exact_check);
|
|
// Otherwise, we need to check that the object's class is a non-primitive array.
|
|
// /* HeapReference<Class> */ out = out->component_type_
|
|
GenerateReferenceLoadOneRegister(instruction, out_loc, component_offset, maybe_temp_loc);
|
|
// If `out` is null, we use it for the result, and jump to `done`.
|
|
__ Cbz(out, &done);
|
|
__ Ldrh(out, HeapOperand(out, primitive_offset));
|
|
static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
|
|
__ Cbnz(out, &zero);
|
|
__ Bind(&exact_check);
|
|
__ Mov(out, 1);
|
|
__ B(&done);
|
|
break;
|
|
}
|
|
|
|
case TypeCheckKind::kArrayCheck: {
|
|
__ Cmp(out, cls);
|
|
DCHECK(locations->OnlyCallsOnSlowPath());
|
|
slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathARM64(instruction,
|
|
/* is_fatal */ false);
|
|
codegen_->AddSlowPath(slow_path);
|
|
__ B(ne, slow_path->GetEntryLabel());
|
|
__ Mov(out, 1);
|
|
if (zero.IsLinked()) {
|
|
__ B(&done);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case TypeCheckKind::kUnresolvedCheck:
|
|
case TypeCheckKind::kInterfaceCheck: {
|
|
// Note that we indeed only call on slow path, but we always go
|
|
// into the slow path for the unresolved and interface check
|
|
// cases.
|
|
//
|
|
// We cannot directly call the InstanceofNonTrivial runtime
|
|
// entry point without resorting to a type checking slow path
|
|
// here (i.e. by calling InvokeRuntime directly), as it would
|
|
// require to assign fixed registers for the inputs of this
|
|
// HInstanceOf instruction (following the runtime calling
|
|
// convention), which might be cluttered by the potential first
|
|
// read barrier emission at the beginning of this method.
|
|
//
|
|
// TODO: Introduce a new runtime entry point taking the object
|
|
// to test (instead of its class) as argument, and let it deal
|
|
// with the read barrier issues. This will let us refactor this
|
|
// case of the `switch` code as it was previously (with a direct
|
|
// call to the runtime not using a type checking slow path).
|
|
// This should also be beneficial for the other cases above.
|
|
DCHECK(locations->OnlyCallsOnSlowPath());
|
|
slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathARM64(instruction,
|
|
/* is_fatal */ false);
|
|
codegen_->AddSlowPath(slow_path);
|
|
__ B(slow_path->GetEntryLabel());
|
|
if (zero.IsLinked()) {
|
|
__ B(&done);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (zero.IsLinked()) {
|
|
__ Bind(&zero);
|
|
__ Mov(out, 0);
|
|
}
|
|
|
|
if (done.IsLinked()) {
|
|
__ Bind(&done);
|
|
}
|
|
|
|
if (slow_path != nullptr) {
|
|
__ Bind(slow_path->GetExitLabel());
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitCheckCast(HCheckCast* instruction) {
|
|
LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
|
|
bool throws_into_catch = instruction->CanThrowIntoCatchBlock();
|
|
|
|
TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
|
|
switch (type_check_kind) {
|
|
case TypeCheckKind::kExactCheck:
|
|
case TypeCheckKind::kAbstractClassCheck:
|
|
case TypeCheckKind::kClassHierarchyCheck:
|
|
case TypeCheckKind::kArrayObjectCheck:
|
|
call_kind = (throws_into_catch || kEmitCompilerReadBarrier) ?
|
|
LocationSummary::kCallOnSlowPath :
|
|
LocationSummary::kNoCall; // In fact, call on a fatal (non-returning) slow path.
|
|
break;
|
|
case TypeCheckKind::kArrayCheck:
|
|
case TypeCheckKind::kUnresolvedCheck:
|
|
case TypeCheckKind::kInterfaceCheck:
|
|
call_kind = LocationSummary::kCallOnSlowPath;
|
|
break;
|
|
}
|
|
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::RequiresRegister());
|
|
// Note that TypeCheckSlowPathARM64 uses this "temp" register too.
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
// When read barriers are enabled, we need an additional temporary
|
|
// register for some cases.
|
|
if (TypeCheckNeedsATemporary(type_check_kind)) {
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitCheckCast(HCheckCast* instruction) {
|
|
TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
Location obj_loc = locations->InAt(0);
|
|
Register obj = InputRegisterAt(instruction, 0);
|
|
Register cls = InputRegisterAt(instruction, 1);
|
|
Location temp_loc = locations->GetTemp(0);
|
|
Location maybe_temp2_loc = TypeCheckNeedsATemporary(type_check_kind) ?
|
|
locations->GetTemp(1) :
|
|
Location::NoLocation();
|
|
Register temp = WRegisterFrom(temp_loc);
|
|
uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
|
|
uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
|
|
uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
|
|
uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
|
|
|
|
bool is_type_check_slow_path_fatal =
|
|
(type_check_kind == TypeCheckKind::kExactCheck ||
|
|
type_check_kind == TypeCheckKind::kAbstractClassCheck ||
|
|
type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
|
|
type_check_kind == TypeCheckKind::kArrayObjectCheck) &&
|
|
!instruction->CanThrowIntoCatchBlock();
|
|
SlowPathCodeARM64* type_check_slow_path =
|
|
new (GetGraph()->GetArena()) TypeCheckSlowPathARM64(instruction,
|
|
is_type_check_slow_path_fatal);
|
|
codegen_->AddSlowPath(type_check_slow_path);
|
|
|
|
vixl::Label done;
|
|
// Avoid null check if we know obj is not null.
|
|
if (instruction->MustDoNullCheck()) {
|
|
__ Cbz(obj, &done);
|
|
}
|
|
|
|
// /* HeapReference<Class> */ temp = obj->klass_
|
|
GenerateReferenceLoadTwoRegisters(instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
|
|
|
|
switch (type_check_kind) {
|
|
case TypeCheckKind::kExactCheck:
|
|
case TypeCheckKind::kArrayCheck: {
|
|
__ Cmp(temp, cls);
|
|
// Jump to slow path for throwing the exception or doing a
|
|
// more involved array check.
|
|
__ B(ne, type_check_slow_path->GetEntryLabel());
|
|
break;
|
|
}
|
|
|
|
case TypeCheckKind::kAbstractClassCheck: {
|
|
// If the class is abstract, we eagerly fetch the super class of the
|
|
// object to avoid doing a comparison we know will fail.
|
|
vixl::Label loop, compare_classes;
|
|
__ Bind(&loop);
|
|
// /* HeapReference<Class> */ temp = temp->super_class_
|
|
GenerateReferenceLoadOneRegister(instruction, temp_loc, super_offset, maybe_temp2_loc);
|
|
|
|
// If the class reference currently in `temp` is not null, jump
|
|
// to the `compare_classes` label to compare it with the checked
|
|
// class.
|
|
__ Cbnz(temp, &compare_classes);
|
|
// Otherwise, jump to the slow path to throw the exception.
|
|
//
|
|
// But before, move back the object's class into `temp` before
|
|
// going into the slow path, as it has been overwritten in the
|
|
// meantime.
|
|
// /* HeapReference<Class> */ temp = obj->klass_
|
|
GenerateReferenceLoadTwoRegisters(
|
|
instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
|
|
__ B(type_check_slow_path->GetEntryLabel());
|
|
|
|
__ Bind(&compare_classes);
|
|
__ Cmp(temp, cls);
|
|
__ B(ne, &loop);
|
|
break;
|
|
}
|
|
|
|
case TypeCheckKind::kClassHierarchyCheck: {
|
|
// Walk over the class hierarchy to find a match.
|
|
vixl::Label loop;
|
|
__ Bind(&loop);
|
|
__ Cmp(temp, cls);
|
|
__ B(eq, &done);
|
|
|
|
// /* HeapReference<Class> */ temp = temp->super_class_
|
|
GenerateReferenceLoadOneRegister(instruction, temp_loc, super_offset, maybe_temp2_loc);
|
|
|
|
// If the class reference currently in `temp` is not null, jump
|
|
// back at the beginning of the loop.
|
|
__ Cbnz(temp, &loop);
|
|
// Otherwise, jump to the slow path to throw the exception.
|
|
//
|
|
// But before, move back the object's class into `temp` before
|
|
// going into the slow path, as it has been overwritten in the
|
|
// meantime.
|
|
// /* HeapReference<Class> */ temp = obj->klass_
|
|
GenerateReferenceLoadTwoRegisters(
|
|
instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
|
|
__ B(type_check_slow_path->GetEntryLabel());
|
|
break;
|
|
}
|
|
|
|
case TypeCheckKind::kArrayObjectCheck: {
|
|
// Do an exact check.
|
|
vixl::Label check_non_primitive_component_type;
|
|
__ Cmp(temp, cls);
|
|
__ B(eq, &done);
|
|
|
|
// Otherwise, we need to check that the object's class is a non-primitive array.
|
|
// /* HeapReference<Class> */ temp = temp->component_type_
|
|
GenerateReferenceLoadOneRegister(instruction, temp_loc, component_offset, maybe_temp2_loc);
|
|
|
|
// If the component type is not null (i.e. the object is indeed
|
|
// an array), jump to label `check_non_primitive_component_type`
|
|
// to further check that this component type is not a primitive
|
|
// type.
|
|
__ Cbnz(temp, &check_non_primitive_component_type);
|
|
// Otherwise, jump to the slow path to throw the exception.
|
|
//
|
|
// But before, move back the object's class into `temp` before
|
|
// going into the slow path, as it has been overwritten in the
|
|
// meantime.
|
|
// /* HeapReference<Class> */ temp = obj->klass_
|
|
GenerateReferenceLoadTwoRegisters(
|
|
instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
|
|
__ B(type_check_slow_path->GetEntryLabel());
|
|
|
|
__ Bind(&check_non_primitive_component_type);
|
|
__ Ldrh(temp, HeapOperand(temp, primitive_offset));
|
|
static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
|
|
__ Cbz(temp, &done);
|
|
// Same comment as above regarding `temp` and the slow path.
|
|
// /* HeapReference<Class> */ temp = obj->klass_
|
|
GenerateReferenceLoadTwoRegisters(
|
|
instruction, temp_loc, obj_loc, class_offset, maybe_temp2_loc);
|
|
__ B(type_check_slow_path->GetEntryLabel());
|
|
break;
|
|
}
|
|
|
|
case TypeCheckKind::kUnresolvedCheck:
|
|
case TypeCheckKind::kInterfaceCheck:
|
|
// We always go into the type check slow path for the unresolved
|
|
// and interface check cases.
|
|
//
|
|
// We cannot directly call the CheckCast runtime entry point
|
|
// without resorting to a type checking slow path here (i.e. by
|
|
// calling InvokeRuntime directly), as it would require to
|
|
// assign fixed registers for the inputs of this HInstanceOf
|
|
// instruction (following the runtime calling convention), which
|
|
// might be cluttered by the potential first read barrier
|
|
// emission at the beginning of this method.
|
|
//
|
|
// TODO: Introduce a new runtime entry point taking the object
|
|
// to test (instead of its class) as argument, and let it deal
|
|
// with the read barrier issues. This will let us refactor this
|
|
// case of the `switch` code as it was previously (with a direct
|
|
// call to the runtime not using a type checking slow path).
|
|
// This should also be beneficial for the other cases above.
|
|
__ B(type_check_slow_path->GetEntryLabel());
|
|
break;
|
|
}
|
|
__ Bind(&done);
|
|
|
|
__ Bind(type_check_slow_path->GetExitLabel());
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitIntConstant(HIntConstant* constant) {
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant);
|
|
locations->SetOut(Location::ConstantLocation(constant));
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) {
|
|
// Will be generated at use site.
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitNullConstant(HNullConstant* constant) {
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant);
|
|
locations->SetOut(Location::ConstantLocation(constant));
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) {
|
|
// Will be generated at use site.
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
|
|
// The trampoline uses the same calling convention as dex calling conventions,
|
|
// except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain
|
|
// the method_idx.
|
|
HandleInvoke(invoke);
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
|
|
codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke);
|
|
}
|
|
|
|
void LocationsBuilderARM64::HandleInvoke(HInvoke* invoke) {
|
|
InvokeDexCallingConventionVisitorARM64 calling_convention_visitor;
|
|
CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor);
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitInvokeInterface(HInvokeInterface* invoke) {
|
|
HandleInvoke(invoke);
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitInvokeInterface(HInvokeInterface* invoke) {
|
|
// TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError.
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
Register temp = XRegisterFrom(locations->GetTemp(0));
|
|
Location receiver = locations->InAt(0);
|
|
Offset class_offset = mirror::Object::ClassOffset();
|
|
Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64WordSize);
|
|
|
|
// The register ip1 is required to be used for the hidden argument in
|
|
// art_quick_imt_conflict_trampoline, so prevent VIXL from using it.
|
|
MacroAssembler* masm = GetVIXLAssembler();
|
|
UseScratchRegisterScope scratch_scope(masm);
|
|
BlockPoolsScope block_pools(masm);
|
|
scratch_scope.Exclude(ip1);
|
|
__ Mov(ip1, invoke->GetDexMethodIndex());
|
|
|
|
if (receiver.IsStackSlot()) {
|
|
__ Ldr(temp.W(), StackOperandFrom(receiver));
|
|
// /* HeapReference<Class> */ temp = temp->klass_
|
|
__ Ldr(temp.W(), HeapOperand(temp.W(), class_offset));
|
|
} else {
|
|
// /* HeapReference<Class> */ temp = receiver->klass_
|
|
__ Ldr(temp.W(), HeapOperandFrom(receiver, class_offset));
|
|
}
|
|
codegen_->MaybeRecordImplicitNullCheck(invoke);
|
|
// Instead of simply (possibly) unpoisoning `temp` here, we should
|
|
// emit a read barrier for the previous class reference load.
|
|
// However this is not required in practice, as this is an
|
|
// intermediate/temporary reference and because the current
|
|
// concurrent copying collector keeps the from-space memory
|
|
// intact/accessible until the end of the marking phase (the
|
|
// concurrent copying collector may not in the future).
|
|
GetAssembler()->MaybeUnpoisonHeapReference(temp.W());
|
|
__ Ldr(temp,
|
|
MemOperand(temp, mirror::Class::ImtPtrOffset(kArm64PointerSize).Uint32Value()));
|
|
uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
|
|
invoke->GetImtIndex() % ImTable::kSize, kArm64PointerSize));
|
|
// temp = temp->GetImtEntryAt(method_offset);
|
|
__ Ldr(temp, MemOperand(temp, method_offset));
|
|
// lr = temp->GetEntryPoint();
|
|
__ Ldr(lr, MemOperand(temp, entry_point.Int32Value()));
|
|
// lr();
|
|
__ Blr(lr);
|
|
DCHECK(!codegen_->IsLeafMethod());
|
|
codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitInvokeVirtual(HInvokeVirtual* invoke) {
|
|
IntrinsicLocationsBuilderARM64 intrinsic(GetGraph()->GetArena());
|
|
if (intrinsic.TryDispatch(invoke)) {
|
|
return;
|
|
}
|
|
|
|
HandleInvoke(invoke);
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
|
|
// Explicit clinit checks triggered by static invokes must have been pruned by
|
|
// art::PrepareForRegisterAllocation.
|
|
DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
|
|
|
|
IntrinsicLocationsBuilderARM64 intrinsic(GetGraph()->GetArena());
|
|
if (intrinsic.TryDispatch(invoke)) {
|
|
return;
|
|
}
|
|
|
|
HandleInvoke(invoke);
|
|
}
|
|
|
|
static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorARM64* codegen) {
|
|
if (invoke->GetLocations()->Intrinsified()) {
|
|
IntrinsicCodeGeneratorARM64 intrinsic(codegen);
|
|
intrinsic.Dispatch(invoke);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
HInvokeStaticOrDirect::DispatchInfo CodeGeneratorARM64::GetSupportedInvokeStaticOrDirectDispatch(
|
|
const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
|
|
MethodReference target_method ATTRIBUTE_UNUSED) {
|
|
// On ARM64 we support all dispatch types.
|
|
return desired_dispatch_info;
|
|
}
|
|
|
|
void CodeGeneratorARM64::GenerateStaticOrDirectCall(HInvokeStaticOrDirect* invoke, Location temp) {
|
|
// For better instruction scheduling we load the direct code pointer before the method pointer.
|
|
bool direct_code_loaded = false;
|
|
switch (invoke->GetCodePtrLocation()) {
|
|
case HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup:
|
|
// LR = code address from literal pool with link-time patch.
|
|
__ Ldr(lr, DeduplicateMethodCodeLiteral(invoke->GetTargetMethod()));
|
|
direct_code_loaded = true;
|
|
break;
|
|
case HInvokeStaticOrDirect::CodePtrLocation::kCallDirect:
|
|
// LR = invoke->GetDirectCodePtr();
|
|
__ Ldr(lr, DeduplicateUint64Literal(invoke->GetDirectCodePtr()));
|
|
direct_code_loaded = true;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// Make sure that ArtMethod* is passed in kArtMethodRegister as per the calling convention.
|
|
Location callee_method = temp; // For all kinds except kRecursive, callee will be in temp.
|
|
switch (invoke->GetMethodLoadKind()) {
|
|
case HInvokeStaticOrDirect::MethodLoadKind::kStringInit:
|
|
// temp = thread->string_init_entrypoint
|
|
__ Ldr(XRegisterFrom(temp), MemOperand(tr, invoke->GetStringInitOffset()));
|
|
break;
|
|
case HInvokeStaticOrDirect::MethodLoadKind::kRecursive:
|
|
callee_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
|
|
break;
|
|
case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress:
|
|
// Load method address from literal pool.
|
|
__ Ldr(XRegisterFrom(temp), DeduplicateUint64Literal(invoke->GetMethodAddress()));
|
|
break;
|
|
case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddressWithFixup:
|
|
// Load method address from literal pool with a link-time patch.
|
|
__ Ldr(XRegisterFrom(temp),
|
|
DeduplicateMethodAddressLiteral(invoke->GetTargetMethod()));
|
|
break;
|
|
case HInvokeStaticOrDirect::MethodLoadKind::kDexCachePcRelative: {
|
|
// Add ADRP with its PC-relative DexCache access patch.
|
|
const DexFile& dex_file = *invoke->GetTargetMethod().dex_file;
|
|
uint32_t element_offset = invoke->GetDexCacheArrayOffset();
|
|
vixl::Label* adrp_label = NewPcRelativeDexCacheArrayPatch(dex_file, element_offset);
|
|
{
|
|
vixl::SingleEmissionCheckScope guard(GetVIXLAssembler());
|
|
__ Bind(adrp_label);
|
|
__ adrp(XRegisterFrom(temp), /* offset placeholder */ 0);
|
|
}
|
|
// Add LDR with its PC-relative DexCache access patch.
|
|
vixl::Label* ldr_label =
|
|
NewPcRelativeDexCacheArrayPatch(dex_file, element_offset, adrp_label);
|
|
{
|
|
vixl::SingleEmissionCheckScope guard(GetVIXLAssembler());
|
|
__ Bind(ldr_label);
|
|
__ ldr(XRegisterFrom(temp), MemOperand(XRegisterFrom(temp), /* offset placeholder */ 0));
|
|
}
|
|
break;
|
|
}
|
|
case HInvokeStaticOrDirect::MethodLoadKind::kDexCacheViaMethod: {
|
|
Location current_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
|
|
Register reg = XRegisterFrom(temp);
|
|
Register method_reg;
|
|
if (current_method.IsRegister()) {
|
|
method_reg = XRegisterFrom(current_method);
|
|
} else {
|
|
DCHECK(invoke->GetLocations()->Intrinsified());
|
|
DCHECK(!current_method.IsValid());
|
|
method_reg = reg;
|
|
__ Ldr(reg.X(), MemOperand(sp, kCurrentMethodStackOffset));
|
|
}
|
|
|
|
// /* ArtMethod*[] */ temp = temp.ptr_sized_fields_->dex_cache_resolved_methods_;
|
|
__ Ldr(reg.X(),
|
|
MemOperand(method_reg.X(),
|
|
ArtMethod::DexCacheResolvedMethodsOffset(kArm64WordSize).Int32Value()));
|
|
// temp = temp[index_in_cache];
|
|
// Note: Don't use invoke->GetTargetMethod() as it may point to a different dex file.
|
|
uint32_t index_in_cache = invoke->GetDexMethodIndex();
|
|
__ Ldr(reg.X(), MemOperand(reg.X(), GetCachePointerOffset(index_in_cache)));
|
|
break;
|
|
}
|
|
}
|
|
|
|
switch (invoke->GetCodePtrLocation()) {
|
|
case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf:
|
|
__ Bl(&frame_entry_label_);
|
|
break;
|
|
case HInvokeStaticOrDirect::CodePtrLocation::kCallPCRelative: {
|
|
relative_call_patches_.emplace_back(invoke->GetTargetMethod());
|
|
vixl::Label* label = &relative_call_patches_.back().label;
|
|
vixl::SingleEmissionCheckScope guard(GetVIXLAssembler());
|
|
__ Bind(label);
|
|
__ bl(0); // Branch and link to itself. This will be overriden at link time.
|
|
break;
|
|
}
|
|
case HInvokeStaticOrDirect::CodePtrLocation::kCallDirectWithFixup:
|
|
case HInvokeStaticOrDirect::CodePtrLocation::kCallDirect:
|
|
// LR prepared above for better instruction scheduling.
|
|
DCHECK(direct_code_loaded);
|
|
// lr()
|
|
__ Blr(lr);
|
|
break;
|
|
case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod:
|
|
// LR = callee_method->entry_point_from_quick_compiled_code_;
|
|
__ Ldr(lr, MemOperand(
|
|
XRegisterFrom(callee_method),
|
|
ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64WordSize).Int32Value()));
|
|
// lr()
|
|
__ Blr(lr);
|
|
break;
|
|
}
|
|
|
|
DCHECK(!IsLeafMethod());
|
|
}
|
|
|
|
void CodeGeneratorARM64::GenerateVirtualCall(HInvokeVirtual* invoke, Location temp_in) {
|
|
// Use the calling convention instead of the location of the receiver, as
|
|
// intrinsics may have put the receiver in a different register. In the intrinsics
|
|
// slow path, the arguments have been moved to the right place, so here we are
|
|
// guaranteed that the receiver is the first register of the calling convention.
|
|
InvokeDexCallingConvention calling_convention;
|
|
Register receiver = calling_convention.GetRegisterAt(0);
|
|
Register temp = XRegisterFrom(temp_in);
|
|
size_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
|
|
invoke->GetVTableIndex(), kArm64PointerSize).SizeValue();
|
|
Offset class_offset = mirror::Object::ClassOffset();
|
|
Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64WordSize);
|
|
|
|
BlockPoolsScope block_pools(GetVIXLAssembler());
|
|
|
|
DCHECK(receiver.IsRegister());
|
|
// /* HeapReference<Class> */ temp = receiver->klass_
|
|
__ Ldr(temp.W(), HeapOperandFrom(LocationFrom(receiver), class_offset));
|
|
MaybeRecordImplicitNullCheck(invoke);
|
|
// Instead of simply (possibly) unpoisoning `temp` here, we should
|
|
// emit a read barrier for the previous class reference load.
|
|
// intermediate/temporary reference and because the current
|
|
// concurrent copying collector keeps the from-space memory
|
|
// intact/accessible until the end of the marking phase (the
|
|
// concurrent copying collector may not in the future).
|
|
GetAssembler()->MaybeUnpoisonHeapReference(temp.W());
|
|
// temp = temp->GetMethodAt(method_offset);
|
|
__ Ldr(temp, MemOperand(temp, method_offset));
|
|
// lr = temp->GetEntryPoint();
|
|
__ Ldr(lr, MemOperand(temp, entry_point.SizeValue()));
|
|
// lr();
|
|
__ Blr(lr);
|
|
}
|
|
|
|
vixl::Label* CodeGeneratorARM64::NewPcRelativeStringPatch(const DexFile& dex_file,
|
|
uint32_t string_index,
|
|
vixl::Label* adrp_label) {
|
|
return NewPcRelativePatch(dex_file, string_index, adrp_label, &pc_relative_string_patches_);
|
|
}
|
|
|
|
vixl::Label* CodeGeneratorARM64::NewPcRelativeDexCacheArrayPatch(const DexFile& dex_file,
|
|
uint32_t element_offset,
|
|
vixl::Label* adrp_label) {
|
|
return NewPcRelativePatch(dex_file, element_offset, adrp_label, &pc_relative_dex_cache_patches_);
|
|
}
|
|
|
|
vixl::Label* CodeGeneratorARM64::NewPcRelativePatch(const DexFile& dex_file,
|
|
uint32_t offset_or_index,
|
|
vixl::Label* adrp_label,
|
|
ArenaDeque<PcRelativePatchInfo>* patches) {
|
|
// Add a patch entry and return the label.
|
|
patches->emplace_back(dex_file, offset_or_index);
|
|
PcRelativePatchInfo* info = &patches->back();
|
|
vixl::Label* label = &info->label;
|
|
// If adrp_label is null, this is the ADRP patch and needs to point to its own label.
|
|
info->pc_insn_label = (adrp_label != nullptr) ? adrp_label : label;
|
|
return label;
|
|
}
|
|
|
|
vixl::Literal<uint32_t>* CodeGeneratorARM64::DeduplicateBootImageStringLiteral(
|
|
const DexFile& dex_file, uint32_t string_index) {
|
|
return boot_image_string_patches_.GetOrCreate(
|
|
StringReference(&dex_file, string_index),
|
|
[this]() { return __ CreateLiteralDestroyedWithPool<uint32_t>(/* placeholder */ 0u); });
|
|
}
|
|
|
|
vixl::Literal<uint32_t>* CodeGeneratorARM64::DeduplicateBootImageAddressLiteral(uint64_t address) {
|
|
bool needs_patch = GetCompilerOptions().GetIncludePatchInformation();
|
|
Uint32ToLiteralMap* map = needs_patch ? &boot_image_address_patches_ : &uint32_literals_;
|
|
return DeduplicateUint32Literal(dchecked_integral_cast<uint32_t>(address), map);
|
|
}
|
|
|
|
vixl::Literal<uint64_t>* CodeGeneratorARM64::DeduplicateDexCacheAddressLiteral(uint64_t address) {
|
|
return DeduplicateUint64Literal(address);
|
|
}
|
|
|
|
void CodeGeneratorARM64::EmitLinkerPatches(ArenaVector<LinkerPatch>* linker_patches) {
|
|
DCHECK(linker_patches->empty());
|
|
size_t size =
|
|
method_patches_.size() +
|
|
call_patches_.size() +
|
|
relative_call_patches_.size() +
|
|
pc_relative_dex_cache_patches_.size() +
|
|
boot_image_string_patches_.size() +
|
|
pc_relative_string_patches_.size() +
|
|
boot_image_address_patches_.size();
|
|
linker_patches->reserve(size);
|
|
for (const auto& entry : method_patches_) {
|
|
const MethodReference& target_method = entry.first;
|
|
vixl::Literal<uint64_t>* literal = entry.second;
|
|
linker_patches->push_back(LinkerPatch::MethodPatch(literal->offset(),
|
|
target_method.dex_file,
|
|
target_method.dex_method_index));
|
|
}
|
|
for (const auto& entry : call_patches_) {
|
|
const MethodReference& target_method = entry.first;
|
|
vixl::Literal<uint64_t>* literal = entry.second;
|
|
linker_patches->push_back(LinkerPatch::CodePatch(literal->offset(),
|
|
target_method.dex_file,
|
|
target_method.dex_method_index));
|
|
}
|
|
for (const MethodPatchInfo<vixl::Label>& info : relative_call_patches_) {
|
|
linker_patches->push_back(LinkerPatch::RelativeCodePatch(info.label.location(),
|
|
info.target_method.dex_file,
|
|
info.target_method.dex_method_index));
|
|
}
|
|
for (const PcRelativePatchInfo& info : pc_relative_dex_cache_patches_) {
|
|
linker_patches->push_back(LinkerPatch::DexCacheArrayPatch(info.label.location(),
|
|
&info.target_dex_file,
|
|
info.pc_insn_label->location(),
|
|
info.offset_or_index));
|
|
}
|
|
for (const auto& entry : boot_image_string_patches_) {
|
|
const StringReference& target_string = entry.first;
|
|
vixl::Literal<uint32_t>* literal = entry.second;
|
|
linker_patches->push_back(LinkerPatch::StringPatch(literal->offset(),
|
|
target_string.dex_file,
|
|
target_string.string_index));
|
|
}
|
|
for (const PcRelativePatchInfo& info : pc_relative_string_patches_) {
|
|
linker_patches->push_back(LinkerPatch::RelativeStringPatch(info.label.location(),
|
|
&info.target_dex_file,
|
|
info.pc_insn_label->location(),
|
|
info.offset_or_index));
|
|
}
|
|
for (const auto& entry : boot_image_address_patches_) {
|
|
DCHECK(GetCompilerOptions().GetIncludePatchInformation());
|
|
vixl::Literal<uint32_t>* literal = entry.second;
|
|
linker_patches->push_back(LinkerPatch::RecordPosition(literal->offset()));
|
|
}
|
|
}
|
|
|
|
vixl::Literal<uint32_t>* CodeGeneratorARM64::DeduplicateUint32Literal(uint32_t value,
|
|
Uint32ToLiteralMap* map) {
|
|
return map->GetOrCreate(
|
|
value,
|
|
[this, value]() { return __ CreateLiteralDestroyedWithPool<uint32_t>(value); });
|
|
}
|
|
|
|
vixl::Literal<uint64_t>* CodeGeneratorARM64::DeduplicateUint64Literal(uint64_t value) {
|
|
return uint64_literals_.GetOrCreate(
|
|
value,
|
|
[this, value]() { return __ CreateLiteralDestroyedWithPool<uint64_t>(value); });
|
|
}
|
|
|
|
vixl::Literal<uint64_t>* CodeGeneratorARM64::DeduplicateMethodLiteral(
|
|
MethodReference target_method,
|
|
MethodToLiteralMap* map) {
|
|
return map->GetOrCreate(
|
|
target_method,
|
|
[this]() { return __ CreateLiteralDestroyedWithPool<uint64_t>(/* placeholder */ 0u); });
|
|
}
|
|
|
|
vixl::Literal<uint64_t>* CodeGeneratorARM64::DeduplicateMethodAddressLiteral(
|
|
MethodReference target_method) {
|
|
return DeduplicateMethodLiteral(target_method, &method_patches_);
|
|
}
|
|
|
|
vixl::Literal<uint64_t>* CodeGeneratorARM64::DeduplicateMethodCodeLiteral(
|
|
MethodReference target_method) {
|
|
return DeduplicateMethodLiteral(target_method, &call_patches_);
|
|
}
|
|
|
|
|
|
void InstructionCodeGeneratorARM64::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
|
|
// Explicit clinit checks triggered by static invokes must have been pruned by
|
|
// art::PrepareForRegisterAllocation.
|
|
DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
|
|
|
|
if (TryGenerateIntrinsicCode(invoke, codegen_)) {
|
|
return;
|
|
}
|
|
|
|
BlockPoolsScope block_pools(GetVIXLAssembler());
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
codegen_->GenerateStaticOrDirectCall(
|
|
invoke, locations->HasTemps() ? locations->GetTemp(0) : Location::NoLocation());
|
|
codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitInvokeVirtual(HInvokeVirtual* invoke) {
|
|
if (TryGenerateIntrinsicCode(invoke, codegen_)) {
|
|
return;
|
|
}
|
|
|
|
codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0));
|
|
DCHECK(!codegen_->IsLeafMethod());
|
|
codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitLoadClass(HLoadClass* cls) {
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
CodeGenerator::CreateLoadClassLocationSummary(
|
|
cls,
|
|
LocationFrom(calling_convention.GetRegisterAt(0)),
|
|
LocationFrom(vixl::x0),
|
|
/* code_generator_supports_read_barrier */ true);
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitLoadClass(HLoadClass* cls) {
|
|
if (cls->NeedsAccessCheck()) {
|
|
codegen_->MoveConstant(cls->GetLocations()->GetTemp(0), cls->GetTypeIndex());
|
|
codegen_->InvokeRuntime(QUICK_ENTRY_POINT(pInitializeTypeAndVerifyAccess),
|
|
cls,
|
|
cls->GetDexPc(),
|
|
nullptr);
|
|
CheckEntrypointTypes<kQuickInitializeTypeAndVerifyAccess, void*, uint32_t>();
|
|
return;
|
|
}
|
|
|
|
Location out_loc = cls->GetLocations()->Out();
|
|
Register out = OutputRegister(cls);
|
|
Register current_method = InputRegisterAt(cls, 0);
|
|
if (cls->IsReferrersClass()) {
|
|
DCHECK(!cls->CanCallRuntime());
|
|
DCHECK(!cls->MustGenerateClinitCheck());
|
|
// /* GcRoot<mirror::Class> */ out = current_method->declaring_class_
|
|
GenerateGcRootFieldLoad(
|
|
cls, out_loc, current_method, ArtMethod::DeclaringClassOffset().Int32Value());
|
|
} else {
|
|
MemberOffset resolved_types_offset = ArtMethod::DexCacheResolvedTypesOffset(kArm64PointerSize);
|
|
// /* GcRoot<mirror::Class>[] */ out =
|
|
// current_method.ptr_sized_fields_->dex_cache_resolved_types_
|
|
__ Ldr(out.X(), MemOperand(current_method, resolved_types_offset.Int32Value()));
|
|
// /* GcRoot<mirror::Class> */ out = out[type_index]
|
|
GenerateGcRootFieldLoad(
|
|
cls, out_loc, out.X(), CodeGenerator::GetCacheOffset(cls->GetTypeIndex()));
|
|
|
|
if (!cls->IsInDexCache() || cls->MustGenerateClinitCheck()) {
|
|
DCHECK(cls->CanCallRuntime());
|
|
SlowPathCodeARM64* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathARM64(
|
|
cls, cls, cls->GetDexPc(), cls->MustGenerateClinitCheck());
|
|
codegen_->AddSlowPath(slow_path);
|
|
if (!cls->IsInDexCache()) {
|
|
__ Cbz(out, slow_path->GetEntryLabel());
|
|
}
|
|
if (cls->MustGenerateClinitCheck()) {
|
|
GenerateClassInitializationCheck(slow_path, out);
|
|
} else {
|
|
__ Bind(slow_path->GetExitLabel());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static MemOperand GetExceptionTlsAddress() {
|
|
return MemOperand(tr, Thread::ExceptionOffset<kArm64WordSize>().Int32Value());
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitLoadException(HLoadException* load) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kNoCall);
|
|
locations->SetOut(Location::RequiresRegister());
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitLoadException(HLoadException* instruction) {
|
|
__ Ldr(OutputRegister(instruction), GetExceptionTlsAddress());
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitClearException(HClearException* clear) {
|
|
new (GetGraph()->GetArena()) LocationSummary(clear, LocationSummary::kNoCall);
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) {
|
|
__ Str(wzr, GetExceptionTlsAddress());
|
|
}
|
|
|
|
HLoadString::LoadKind CodeGeneratorARM64::GetSupportedLoadStringKind(
|
|
HLoadString::LoadKind desired_string_load_kind) {
|
|
if (kEmitCompilerReadBarrier) {
|
|
switch (desired_string_load_kind) {
|
|
case HLoadString::LoadKind::kBootImageLinkTimeAddress:
|
|
case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
|
|
case HLoadString::LoadKind::kBootImageAddress:
|
|
// TODO: Implement for read barrier.
|
|
return HLoadString::LoadKind::kDexCacheViaMethod;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
switch (desired_string_load_kind) {
|
|
case HLoadString::LoadKind::kBootImageLinkTimeAddress:
|
|
DCHECK(!GetCompilerOptions().GetCompilePic());
|
|
break;
|
|
case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
|
|
DCHECK(GetCompilerOptions().GetCompilePic());
|
|
break;
|
|
case HLoadString::LoadKind::kBootImageAddress:
|
|
break;
|
|
case HLoadString::LoadKind::kDexCacheAddress:
|
|
DCHECK(Runtime::Current()->UseJitCompilation());
|
|
break;
|
|
case HLoadString::LoadKind::kDexCachePcRelative:
|
|
DCHECK(!Runtime::Current()->UseJitCompilation());
|
|
break;
|
|
case HLoadString::LoadKind::kDexCacheViaMethod:
|
|
break;
|
|
}
|
|
return desired_string_load_kind;
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitLoadString(HLoadString* load) {
|
|
LocationSummary::CallKind call_kind = (load->NeedsEnvironment() || kEmitCompilerReadBarrier)
|
|
? LocationSummary::kCallOnSlowPath
|
|
: LocationSummary::kNoCall;
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(load, call_kind);
|
|
if (load->GetLoadKind() == HLoadString::LoadKind::kDexCacheViaMethod) {
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
}
|
|
locations->SetOut(Location::RequiresRegister());
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitLoadString(HLoadString* load) {
|
|
Location out_loc = load->GetLocations()->Out();
|
|
Register out = OutputRegister(load);
|
|
|
|
switch (load->GetLoadKind()) {
|
|
case HLoadString::LoadKind::kBootImageLinkTimeAddress:
|
|
DCHECK(!kEmitCompilerReadBarrier);
|
|
__ Ldr(out, codegen_->DeduplicateBootImageStringLiteral(load->GetDexFile(),
|
|
load->GetStringIndex()));
|
|
return; // No dex cache slow path.
|
|
case HLoadString::LoadKind::kBootImageLinkTimePcRelative: {
|
|
DCHECK(!kEmitCompilerReadBarrier);
|
|
// Add ADRP with its PC-relative String patch.
|
|
const DexFile& dex_file = load->GetDexFile();
|
|
uint32_t string_index = load->GetStringIndex();
|
|
vixl::Label* adrp_label = codegen_->NewPcRelativeStringPatch(dex_file, string_index);
|
|
{
|
|
vixl::SingleEmissionCheckScope guard(GetVIXLAssembler());
|
|
__ Bind(adrp_label);
|
|
__ adrp(out.X(), /* offset placeholder */ 0);
|
|
}
|
|
// Add ADD with its PC-relative String patch.
|
|
vixl::Label* add_label =
|
|
codegen_->NewPcRelativeStringPatch(dex_file, string_index, adrp_label);
|
|
{
|
|
vixl::SingleEmissionCheckScope guard(GetVIXLAssembler());
|
|
__ Bind(add_label);
|
|
__ add(out.X(), out.X(), Operand(/* offset placeholder */ 0));
|
|
}
|
|
return; // No dex cache slow path.
|
|
}
|
|
case HLoadString::LoadKind::kBootImageAddress: {
|
|
DCHECK(!kEmitCompilerReadBarrier);
|
|
DCHECK(load->GetAddress() != 0u && IsUint<32>(load->GetAddress()));
|
|
__ Ldr(out.W(), codegen_->DeduplicateBootImageAddressLiteral(load->GetAddress()));
|
|
return; // No dex cache slow path.
|
|
}
|
|
case HLoadString::LoadKind::kDexCacheAddress: {
|
|
DCHECK_NE(load->GetAddress(), 0u);
|
|
// LDR immediate has a 12-bit offset multiplied by the size and for 32-bit loads
|
|
// that gives a 16KiB range. To try and reduce the number of literals if we load
|
|
// multiple strings, simply split the dex cache address to a 16KiB aligned base
|
|
// loaded from a literal and the remaining offset embedded in the load.
|
|
static_assert(sizeof(GcRoot<mirror::String>) == 4u, "Expected GC root to be 4 bytes.");
|
|
DCHECK_ALIGNED(load->GetAddress(), 4u);
|
|
constexpr size_t offset_bits = /* encoded bits */ 12 + /* scale */ 2;
|
|
uint64_t base_address = load->GetAddress() & ~MaxInt<uint64_t>(offset_bits);
|
|
uint32_t offset = load->GetAddress() & MaxInt<uint64_t>(offset_bits);
|
|
__ Ldr(out.X(), codegen_->DeduplicateDexCacheAddressLiteral(base_address));
|
|
GenerateGcRootFieldLoad(load, out_loc, out.X(), offset);
|
|
break;
|
|
}
|
|
case HLoadString::LoadKind::kDexCachePcRelative: {
|
|
// Add ADRP with its PC-relative DexCache access patch.
|
|
const DexFile& dex_file = load->GetDexFile();
|
|
uint32_t element_offset = load->GetDexCacheElementOffset();
|
|
vixl::Label* adrp_label = codegen_->NewPcRelativeDexCacheArrayPatch(dex_file, element_offset);
|
|
{
|
|
vixl::SingleEmissionCheckScope guard(GetVIXLAssembler());
|
|
__ Bind(adrp_label);
|
|
__ adrp(out.X(), /* offset placeholder */ 0);
|
|
}
|
|
// Add LDR with its PC-relative DexCache access patch.
|
|
vixl::Label* ldr_label =
|
|
codegen_->NewPcRelativeDexCacheArrayPatch(dex_file, element_offset, adrp_label);
|
|
GenerateGcRootFieldLoad(load, out_loc, out.X(), /* offset placeholder */ 0, ldr_label);
|
|
break;
|
|
}
|
|
case HLoadString::LoadKind::kDexCacheViaMethod: {
|
|
Register current_method = InputRegisterAt(load, 0);
|
|
// /* GcRoot<mirror::Class> */ out = current_method->declaring_class_
|
|
GenerateGcRootFieldLoad(
|
|
load, out_loc, current_method, ArtMethod::DeclaringClassOffset().Int32Value());
|
|
// /* GcRoot<mirror::String>[] */ out = out->dex_cache_strings_
|
|
__ Ldr(out.X(), HeapOperand(out, mirror::Class::DexCacheStringsOffset().Uint32Value()));
|
|
// /* GcRoot<mirror::String> */ out = out[string_index]
|
|
GenerateGcRootFieldLoad(
|
|
load, out_loc, out.X(), CodeGenerator::GetCacheOffset(load->GetStringIndex()));
|
|
break;
|
|
}
|
|
default:
|
|
LOG(FATAL) << "Unexpected load kind: " << load->GetLoadKind();
|
|
UNREACHABLE();
|
|
}
|
|
|
|
if (!load->IsInDexCache()) {
|
|
SlowPathCodeARM64* slow_path = new (GetGraph()->GetArena()) LoadStringSlowPathARM64(load);
|
|
codegen_->AddSlowPath(slow_path);
|
|
__ Cbz(out, slow_path->GetEntryLabel());
|
|
__ Bind(slow_path->GetExitLabel());
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitLongConstant(HLongConstant* constant) {
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant);
|
|
locations->SetOut(Location::ConstantLocation(constant));
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) {
|
|
// Will be generated at use site.
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitMonitorOperation(HMonitorOperation* instruction) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitMonitorOperation(HMonitorOperation* instruction) {
|
|
codegen_->InvokeRuntime(instruction->IsEnter()
|
|
? QUICK_ENTRY_POINT(pLockObject) : QUICK_ENTRY_POINT(pUnlockObject),
|
|
instruction,
|
|
instruction->GetDexPc(),
|
|
nullptr);
|
|
if (instruction->IsEnter()) {
|
|
CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>();
|
|
} else {
|
|
CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>();
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitMul(HMul* mul) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(mul, LocationSummary::kNoCall);
|
|
switch (mul->GetResultType()) {
|
|
case Primitive::kPrimInt:
|
|
case Primitive::kPrimLong:
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::RequiresRegister());
|
|
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
|
|
break;
|
|
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimDouble:
|
|
locations->SetInAt(0, Location::RequiresFpuRegister());
|
|
locations->SetInAt(1, Location::RequiresFpuRegister());
|
|
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
|
|
break;
|
|
|
|
default:
|
|
LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitMul(HMul* mul) {
|
|
switch (mul->GetResultType()) {
|
|
case Primitive::kPrimInt:
|
|
case Primitive::kPrimLong:
|
|
__ Mul(OutputRegister(mul), InputRegisterAt(mul, 0), InputRegisterAt(mul, 1));
|
|
break;
|
|
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimDouble:
|
|
__ Fmul(OutputFPRegister(mul), InputFPRegisterAt(mul, 0), InputFPRegisterAt(mul, 1));
|
|
break;
|
|
|
|
default:
|
|
LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitNeg(HNeg* neg) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall);
|
|
switch (neg->GetResultType()) {
|
|
case Primitive::kPrimInt:
|
|
case Primitive::kPrimLong:
|
|
locations->SetInAt(0, ARM64EncodableConstantOrRegister(neg->InputAt(0), neg));
|
|
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
|
|
break;
|
|
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimDouble:
|
|
locations->SetInAt(0, Location::RequiresFpuRegister());
|
|
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
|
|
break;
|
|
|
|
default:
|
|
LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitNeg(HNeg* neg) {
|
|
switch (neg->GetResultType()) {
|
|
case Primitive::kPrimInt:
|
|
case Primitive::kPrimLong:
|
|
__ Neg(OutputRegister(neg), InputOperandAt(neg, 0));
|
|
break;
|
|
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimDouble:
|
|
__ Fneg(OutputFPRegister(neg), InputFPRegisterAt(neg, 0));
|
|
break;
|
|
|
|
default:
|
|
LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitNewArray(HNewArray* instruction) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(0)));
|
|
locations->SetOut(LocationFrom(x0));
|
|
locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(1)));
|
|
locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(2)));
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitNewArray(HNewArray* instruction) {
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
Register type_index = RegisterFrom(locations->GetTemp(0), Primitive::kPrimInt);
|
|
DCHECK(type_index.Is(w0));
|
|
__ Mov(type_index, instruction->GetTypeIndex());
|
|
// Note: if heap poisoning is enabled, the entry point takes cares
|
|
// of poisoning the reference.
|
|
codegen_->InvokeRuntime(instruction->GetEntrypoint(),
|
|
instruction,
|
|
instruction->GetDexPc(),
|
|
nullptr);
|
|
CheckEntrypointTypes<kQuickAllocArrayWithAccessCheck, void*, uint32_t, int32_t, ArtMethod*>();
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitNewInstance(HNewInstance* instruction) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
if (instruction->IsStringAlloc()) {
|
|
locations->AddTemp(LocationFrom(kArtMethodRegister));
|
|
} else {
|
|
locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
|
|
locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
|
|
}
|
|
locations->SetOut(calling_convention.GetReturnLocation(Primitive::kPrimNot));
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitNewInstance(HNewInstance* instruction) {
|
|
// Note: if heap poisoning is enabled, the entry point takes cares
|
|
// of poisoning the reference.
|
|
if (instruction->IsStringAlloc()) {
|
|
// String is allocated through StringFactory. Call NewEmptyString entry point.
|
|
Location temp = instruction->GetLocations()->GetTemp(0);
|
|
MemberOffset code_offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kArm64WordSize);
|
|
__ Ldr(XRegisterFrom(temp), MemOperand(tr, QUICK_ENTRY_POINT(pNewEmptyString)));
|
|
__ Ldr(lr, MemOperand(XRegisterFrom(temp), code_offset.Int32Value()));
|
|
__ Blr(lr);
|
|
codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
|
|
} else {
|
|
codegen_->InvokeRuntime(instruction->GetEntrypoint(),
|
|
instruction,
|
|
instruction->GetDexPc(),
|
|
nullptr);
|
|
CheckEntrypointTypes<kQuickAllocObjectWithAccessCheck, void*, uint32_t, ArtMethod*>();
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitNot(HNot* instruction) {
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitNot(HNot* instruction) {
|
|
switch (instruction->GetResultType()) {
|
|
case Primitive::kPrimInt:
|
|
case Primitive::kPrimLong:
|
|
__ Mvn(OutputRegister(instruction), InputOperandAt(instruction, 0));
|
|
break;
|
|
|
|
default:
|
|
LOG(FATAL) << "Unexpected type for not operation " << instruction->GetResultType();
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitBooleanNot(HBooleanNot* instruction) {
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitBooleanNot(HBooleanNot* instruction) {
|
|
__ Eor(OutputRegister(instruction), InputRegisterAt(instruction, 0), vixl::Operand(1));
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitNullCheck(HNullCheck* instruction) {
|
|
LocationSummary::CallKind call_kind = instruction->CanThrowIntoCatchBlock()
|
|
? LocationSummary::kCallOnSlowPath
|
|
: LocationSummary::kNoCall;
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
if (instruction->HasUses()) {
|
|
locations->SetOut(Location::SameAsFirstInput());
|
|
}
|
|
}
|
|
|
|
void CodeGeneratorARM64::GenerateImplicitNullCheck(HNullCheck* instruction) {
|
|
if (CanMoveNullCheckToUser(instruction)) {
|
|
return;
|
|
}
|
|
|
|
BlockPoolsScope block_pools(GetVIXLAssembler());
|
|
Location obj = instruction->GetLocations()->InAt(0);
|
|
__ Ldr(wzr, HeapOperandFrom(obj, Offset(0)));
|
|
RecordPcInfo(instruction, instruction->GetDexPc());
|
|
}
|
|
|
|
void CodeGeneratorARM64::GenerateExplicitNullCheck(HNullCheck* instruction) {
|
|
SlowPathCodeARM64* slow_path = new (GetGraph()->GetArena()) NullCheckSlowPathARM64(instruction);
|
|
AddSlowPath(slow_path);
|
|
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
Location obj = locations->InAt(0);
|
|
|
|
__ Cbz(RegisterFrom(obj, instruction->InputAt(0)->GetType()), slow_path->GetEntryLabel());
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitNullCheck(HNullCheck* instruction) {
|
|
codegen_->GenerateNullCheck(instruction);
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitOr(HOr* instruction) {
|
|
HandleBinaryOp(instruction);
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitOr(HOr* instruction) {
|
|
HandleBinaryOp(instruction);
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) {
|
|
LOG(FATAL) << "Unreachable";
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitParallelMove(HParallelMove* instruction) {
|
|
codegen_->GetMoveResolver()->EmitNativeCode(instruction);
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitParameterValue(HParameterValue* instruction) {
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
|
|
Location location = parameter_visitor_.GetNextLocation(instruction->GetType());
|
|
if (location.IsStackSlot()) {
|
|
location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
|
|
} else if (location.IsDoubleStackSlot()) {
|
|
location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
|
|
}
|
|
locations->SetOut(location);
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitParameterValue(
|
|
HParameterValue* instruction ATTRIBUTE_UNUSED) {
|
|
// Nothing to do, the parameter is already at its location.
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitCurrentMethod(HCurrentMethod* instruction) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
|
|
locations->SetOut(LocationFrom(kArtMethodRegister));
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitCurrentMethod(
|
|
HCurrentMethod* instruction ATTRIBUTE_UNUSED) {
|
|
// Nothing to do, the method is already at its location.
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitPhi(HPhi* instruction) {
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
|
|
for (size_t i = 0, e = instruction->InputCount(); i < e; ++i) {
|
|
locations->SetInAt(i, Location::Any());
|
|
}
|
|
locations->SetOut(Location::Any());
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) {
|
|
LOG(FATAL) << "Unreachable";
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitRem(HRem* rem) {
|
|
Primitive::Type type = rem->GetResultType();
|
|
LocationSummary::CallKind call_kind =
|
|
Primitive::IsFloatingPointType(type) ? LocationSummary::kCall : LocationSummary::kNoCall;
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(rem, call_kind);
|
|
|
|
switch (type) {
|
|
case Primitive::kPrimInt:
|
|
case Primitive::kPrimLong:
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::RegisterOrConstant(rem->InputAt(1)));
|
|
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
|
|
break;
|
|
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimDouble: {
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0)));
|
|
locations->SetInAt(1, LocationFrom(calling_convention.GetFpuRegisterAt(1)));
|
|
locations->SetOut(calling_convention.GetReturnLocation(type));
|
|
|
|
break;
|
|
}
|
|
|
|
default:
|
|
LOG(FATAL) << "Unexpected rem type " << type;
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitRem(HRem* rem) {
|
|
Primitive::Type type = rem->GetResultType();
|
|
|
|
switch (type) {
|
|
case Primitive::kPrimInt:
|
|
case Primitive::kPrimLong: {
|
|
GenerateDivRemIntegral(rem);
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimDouble: {
|
|
int32_t entry_offset = (type == Primitive::kPrimFloat) ? QUICK_ENTRY_POINT(pFmodf)
|
|
: QUICK_ENTRY_POINT(pFmod);
|
|
codegen_->InvokeRuntime(entry_offset, rem, rem->GetDexPc(), nullptr);
|
|
if (type == Primitive::kPrimFloat) {
|
|
CheckEntrypointTypes<kQuickFmodf, float, float, float>();
|
|
} else {
|
|
CheckEntrypointTypes<kQuickFmod, double, double, double>();
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
LOG(FATAL) << "Unexpected rem type " << type;
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
|
|
memory_barrier->SetLocations(nullptr);
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
|
|
codegen_->GenerateMemoryBarrier(memory_barrier->GetBarrierKind());
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitReturn(HReturn* instruction) {
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
|
|
Primitive::Type return_type = instruction->InputAt(0)->GetType();
|
|
locations->SetInAt(0, ARM64ReturnLocation(return_type));
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitReturn(HReturn* instruction ATTRIBUTE_UNUSED) {
|
|
codegen_->GenerateFrameExit();
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitReturnVoid(HReturnVoid* instruction) {
|
|
instruction->SetLocations(nullptr);
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitReturnVoid(HReturnVoid* instruction ATTRIBUTE_UNUSED) {
|
|
codegen_->GenerateFrameExit();
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitRor(HRor* ror) {
|
|
HandleBinaryOp(ror);
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitRor(HRor* ror) {
|
|
HandleBinaryOp(ror);
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitShl(HShl* shl) {
|
|
HandleShift(shl);
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitShl(HShl* shl) {
|
|
HandleShift(shl);
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitShr(HShr* shr) {
|
|
HandleShift(shr);
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitShr(HShr* shr) {
|
|
HandleShift(shr);
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitSub(HSub* instruction) {
|
|
HandleBinaryOp(instruction);
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitSub(HSub* instruction) {
|
|
HandleBinaryOp(instruction);
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitStaticFieldGet(HStaticFieldGet* instruction) {
|
|
HandleFieldGet(instruction);
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitStaticFieldGet(HStaticFieldGet* instruction) {
|
|
HandleFieldGet(instruction, instruction->GetFieldInfo());
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitStaticFieldSet(HStaticFieldSet* instruction) {
|
|
HandleFieldSet(instruction);
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitStaticFieldSet(HStaticFieldSet* instruction) {
|
|
HandleFieldSet(instruction, instruction->GetFieldInfo(), instruction->GetValueCanBeNull());
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitUnresolvedInstanceFieldGet(
|
|
HUnresolvedInstanceFieldGet* instruction) {
|
|
FieldAccessCallingConventionARM64 calling_convention;
|
|
codegen_->CreateUnresolvedFieldLocationSummary(
|
|
instruction, instruction->GetFieldType(), calling_convention);
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitUnresolvedInstanceFieldGet(
|
|
HUnresolvedInstanceFieldGet* instruction) {
|
|
FieldAccessCallingConventionARM64 calling_convention;
|
|
codegen_->GenerateUnresolvedFieldAccess(instruction,
|
|
instruction->GetFieldType(),
|
|
instruction->GetFieldIndex(),
|
|
instruction->GetDexPc(),
|
|
calling_convention);
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitUnresolvedInstanceFieldSet(
|
|
HUnresolvedInstanceFieldSet* instruction) {
|
|
FieldAccessCallingConventionARM64 calling_convention;
|
|
codegen_->CreateUnresolvedFieldLocationSummary(
|
|
instruction, instruction->GetFieldType(), calling_convention);
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitUnresolvedInstanceFieldSet(
|
|
HUnresolvedInstanceFieldSet* instruction) {
|
|
FieldAccessCallingConventionARM64 calling_convention;
|
|
codegen_->GenerateUnresolvedFieldAccess(instruction,
|
|
instruction->GetFieldType(),
|
|
instruction->GetFieldIndex(),
|
|
instruction->GetDexPc(),
|
|
calling_convention);
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitUnresolvedStaticFieldGet(
|
|
HUnresolvedStaticFieldGet* instruction) {
|
|
FieldAccessCallingConventionARM64 calling_convention;
|
|
codegen_->CreateUnresolvedFieldLocationSummary(
|
|
instruction, instruction->GetFieldType(), calling_convention);
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitUnresolvedStaticFieldGet(
|
|
HUnresolvedStaticFieldGet* instruction) {
|
|
FieldAccessCallingConventionARM64 calling_convention;
|
|
codegen_->GenerateUnresolvedFieldAccess(instruction,
|
|
instruction->GetFieldType(),
|
|
instruction->GetFieldIndex(),
|
|
instruction->GetDexPc(),
|
|
calling_convention);
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitUnresolvedStaticFieldSet(
|
|
HUnresolvedStaticFieldSet* instruction) {
|
|
FieldAccessCallingConventionARM64 calling_convention;
|
|
codegen_->CreateUnresolvedFieldLocationSummary(
|
|
instruction, instruction->GetFieldType(), calling_convention);
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitUnresolvedStaticFieldSet(
|
|
HUnresolvedStaticFieldSet* instruction) {
|
|
FieldAccessCallingConventionARM64 calling_convention;
|
|
codegen_->GenerateUnresolvedFieldAccess(instruction,
|
|
instruction->GetFieldType(),
|
|
instruction->GetFieldIndex(),
|
|
instruction->GetDexPc(),
|
|
calling_convention);
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitSuspendCheck(HSuspendCheck* instruction) {
|
|
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnSlowPath);
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitSuspendCheck(HSuspendCheck* instruction) {
|
|
HBasicBlock* block = instruction->GetBlock();
|
|
if (block->GetLoopInformation() != nullptr) {
|
|
DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction);
|
|
// The back edge will generate the suspend check.
|
|
return;
|
|
}
|
|
if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) {
|
|
// The goto will generate the suspend check.
|
|
return;
|
|
}
|
|
GenerateSuspendCheck(instruction, nullptr);
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitThrow(HThrow* instruction) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCall);
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitThrow(HThrow* instruction) {
|
|
codegen_->InvokeRuntime(
|
|
QUICK_ENTRY_POINT(pDeliverException), instruction, instruction->GetDexPc(), nullptr);
|
|
CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>();
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitTypeConversion(HTypeConversion* conversion) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(conversion, LocationSummary::kNoCall);
|
|
Primitive::Type input_type = conversion->GetInputType();
|
|
Primitive::Type result_type = conversion->GetResultType();
|
|
DCHECK_NE(input_type, result_type);
|
|
if ((input_type == Primitive::kPrimNot) || (input_type == Primitive::kPrimVoid) ||
|
|
(result_type == Primitive::kPrimNot) || (result_type == Primitive::kPrimVoid)) {
|
|
LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type;
|
|
}
|
|
|
|
if (Primitive::IsFloatingPointType(input_type)) {
|
|
locations->SetInAt(0, Location::RequiresFpuRegister());
|
|
} else {
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
}
|
|
|
|
if (Primitive::IsFloatingPointType(result_type)) {
|
|
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
|
|
} else {
|
|
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitTypeConversion(HTypeConversion* conversion) {
|
|
Primitive::Type result_type = conversion->GetResultType();
|
|
Primitive::Type input_type = conversion->GetInputType();
|
|
|
|
DCHECK_NE(input_type, result_type);
|
|
|
|
if (Primitive::IsIntegralType(result_type) && Primitive::IsIntegralType(input_type)) {
|
|
int result_size = Primitive::ComponentSize(result_type);
|
|
int input_size = Primitive::ComponentSize(input_type);
|
|
int min_size = std::min(result_size, input_size);
|
|
Register output = OutputRegister(conversion);
|
|
Register source = InputRegisterAt(conversion, 0);
|
|
if (result_type == Primitive::kPrimInt && input_type == Primitive::kPrimLong) {
|
|
// 'int' values are used directly as W registers, discarding the top
|
|
// bits, so we don't need to sign-extend and can just perform a move.
|
|
// We do not pass the `kDiscardForSameWReg` argument to force clearing the
|
|
// top 32 bits of the target register. We theoretically could leave those
|
|
// bits unchanged, but we would have to make sure that no code uses a
|
|
// 32bit input value as a 64bit value assuming that the top 32 bits are
|
|
// zero.
|
|
__ Mov(output.W(), source.W());
|
|
} else if (result_type == Primitive::kPrimChar ||
|
|
(input_type == Primitive::kPrimChar && input_size < result_size)) {
|
|
__ Ubfx(output,
|
|
output.IsX() ? source.X() : source.W(),
|
|
0, Primitive::ComponentSize(Primitive::kPrimChar) * kBitsPerByte);
|
|
} else {
|
|
__ Sbfx(output, output.IsX() ? source.X() : source.W(), 0, min_size * kBitsPerByte);
|
|
}
|
|
} else if (Primitive::IsFloatingPointType(result_type) && Primitive::IsIntegralType(input_type)) {
|
|
__ Scvtf(OutputFPRegister(conversion), InputRegisterAt(conversion, 0));
|
|
} else if (Primitive::IsIntegralType(result_type) && Primitive::IsFloatingPointType(input_type)) {
|
|
CHECK(result_type == Primitive::kPrimInt || result_type == Primitive::kPrimLong);
|
|
__ Fcvtzs(OutputRegister(conversion), InputFPRegisterAt(conversion, 0));
|
|
} else if (Primitive::IsFloatingPointType(result_type) &&
|
|
Primitive::IsFloatingPointType(input_type)) {
|
|
__ Fcvt(OutputFPRegister(conversion), InputFPRegisterAt(conversion, 0));
|
|
} else {
|
|
LOG(FATAL) << "Unexpected or unimplemented type conversion from " << input_type
|
|
<< " to " << result_type;
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitUShr(HUShr* ushr) {
|
|
HandleShift(ushr);
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitUShr(HUShr* ushr) {
|
|
HandleShift(ushr);
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitXor(HXor* instruction) {
|
|
HandleBinaryOp(instruction);
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitXor(HXor* instruction) {
|
|
HandleBinaryOp(instruction);
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
|
|
// Nothing to do, this should be removed during prepare for register allocator.
|
|
LOG(FATAL) << "Unreachable";
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
|
|
// Nothing to do, this should be removed during prepare for register allocator.
|
|
LOG(FATAL) << "Unreachable";
|
|
}
|
|
|
|
// Simple implementation of packed switch - generate cascaded compare/jumps.
|
|
void LocationsBuilderARM64::VisitPackedSwitch(HPackedSwitch* switch_instr) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(switch_instr, LocationSummary::kNoCall);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitPackedSwitch(HPackedSwitch* switch_instr) {
|
|
int32_t lower_bound = switch_instr->GetStartValue();
|
|
uint32_t num_entries = switch_instr->GetNumEntries();
|
|
Register value_reg = InputRegisterAt(switch_instr, 0);
|
|
HBasicBlock* default_block = switch_instr->GetDefaultBlock();
|
|
|
|
// Roughly set 16 as max average assemblies generated per HIR in a graph.
|
|
static constexpr int32_t kMaxExpectedSizePerHInstruction = 16 * vixl::kInstructionSize;
|
|
// ADR has a limited range(+/-1MB), so we set a threshold for the number of HIRs in the graph to
|
|
// make sure we don't emit it if the target may run out of range.
|
|
// TODO: Instead of emitting all jump tables at the end of the code, we could keep track of ADR
|
|
// ranges and emit the tables only as required.
|
|
static constexpr int32_t kJumpTableInstructionThreshold = 1* MB / kMaxExpectedSizePerHInstruction;
|
|
|
|
if (num_entries <= kPackedSwitchCompareJumpThreshold ||
|
|
// Current instruction id is an upper bound of the number of HIRs in the graph.
|
|
GetGraph()->GetCurrentInstructionId() > kJumpTableInstructionThreshold) {
|
|
// Create a series of compare/jumps.
|
|
UseScratchRegisterScope temps(codegen_->GetVIXLAssembler());
|
|
Register temp = temps.AcquireW();
|
|
__ Subs(temp, value_reg, Operand(lower_bound));
|
|
|
|
const ArenaVector<HBasicBlock*>& successors = switch_instr->GetBlock()->GetSuccessors();
|
|
// Jump to successors[0] if value == lower_bound.
|
|
__ B(eq, codegen_->GetLabelOf(successors[0]));
|
|
int32_t last_index = 0;
|
|
for (; num_entries - last_index > 2; last_index += 2) {
|
|
__ Subs(temp, temp, Operand(2));
|
|
// Jump to successors[last_index + 1] if value < case_value[last_index + 2].
|
|
__ B(lo, codegen_->GetLabelOf(successors[last_index + 1]));
|
|
// Jump to successors[last_index + 2] if value == case_value[last_index + 2].
|
|
__ B(eq, codegen_->GetLabelOf(successors[last_index + 2]));
|
|
}
|
|
if (num_entries - last_index == 2) {
|
|
// The last missing case_value.
|
|
__ Cmp(temp, Operand(1));
|
|
__ B(eq, codegen_->GetLabelOf(successors[last_index + 1]));
|
|
}
|
|
|
|
// And the default for any other value.
|
|
if (!codegen_->GoesToNextBlock(switch_instr->GetBlock(), default_block)) {
|
|
__ B(codegen_->GetLabelOf(default_block));
|
|
}
|
|
} else {
|
|
JumpTableARM64* jump_table = codegen_->CreateJumpTable(switch_instr);
|
|
|
|
UseScratchRegisterScope temps(codegen_->GetVIXLAssembler());
|
|
|
|
// Below instructions should use at most one blocked register. Since there are two blocked
|
|
// registers, we are free to block one.
|
|
Register temp_w = temps.AcquireW();
|
|
Register index;
|
|
// Remove the bias.
|
|
if (lower_bound != 0) {
|
|
index = temp_w;
|
|
__ Sub(index, value_reg, Operand(lower_bound));
|
|
} else {
|
|
index = value_reg;
|
|
}
|
|
|
|
// Jump to default block if index is out of the range.
|
|
__ Cmp(index, Operand(num_entries));
|
|
__ B(hs, codegen_->GetLabelOf(default_block));
|
|
|
|
// In current VIXL implementation, it won't require any blocked registers to encode the
|
|
// immediate value for Adr. So we are free to use both VIXL blocked registers to reduce the
|
|
// register pressure.
|
|
Register table_base = temps.AcquireX();
|
|
// Load jump offset from the table.
|
|
__ Adr(table_base, jump_table->GetTableStartLabel());
|
|
Register jump_offset = temp_w;
|
|
__ Ldr(jump_offset, MemOperand(table_base, index, UXTW, 2));
|
|
|
|
// Jump to target block by branching to table_base(pc related) + offset.
|
|
Register target_address = table_base;
|
|
__ Add(target_address, table_base, Operand(jump_offset, SXTW));
|
|
__ Br(target_address);
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::GenerateReferenceLoadOneRegister(HInstruction* instruction,
|
|
Location out,
|
|
uint32_t offset,
|
|
Location maybe_temp) {
|
|
Primitive::Type type = Primitive::kPrimNot;
|
|
Register out_reg = RegisterFrom(out, type);
|
|
if (kEmitCompilerReadBarrier) {
|
|
Register temp_reg = RegisterFrom(maybe_temp, type);
|
|
if (kUseBakerReadBarrier) {
|
|
// Load with fast path based Baker's read barrier.
|
|
// /* HeapReference<Object> */ out = *(out + offset)
|
|
codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
|
|
out,
|
|
out_reg,
|
|
offset,
|
|
temp_reg,
|
|
/* needs_null_check */ false,
|
|
/* use_load_acquire */ false);
|
|
} else {
|
|
// Load with slow path based read barrier.
|
|
// Save the value of `out` into `maybe_temp` before overwriting it
|
|
// in the following move operation, as we will need it for the
|
|
// read barrier below.
|
|
__ Mov(temp_reg, out_reg);
|
|
// /* HeapReference<Object> */ out = *(out + offset)
|
|
__ Ldr(out_reg, HeapOperand(out_reg, offset));
|
|
codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset);
|
|
}
|
|
} else {
|
|
// Plain load with no read barrier.
|
|
// /* HeapReference<Object> */ out = *(out + offset)
|
|
__ Ldr(out_reg, HeapOperand(out_reg, offset));
|
|
GetAssembler()->MaybeUnpoisonHeapReference(out_reg);
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::GenerateReferenceLoadTwoRegisters(HInstruction* instruction,
|
|
Location out,
|
|
Location obj,
|
|
uint32_t offset,
|
|
Location maybe_temp) {
|
|
Primitive::Type type = Primitive::kPrimNot;
|
|
Register out_reg = RegisterFrom(out, type);
|
|
Register obj_reg = RegisterFrom(obj, type);
|
|
if (kEmitCompilerReadBarrier) {
|
|
if (kUseBakerReadBarrier) {
|
|
// Load with fast path based Baker's read barrier.
|
|
Register temp_reg = RegisterFrom(maybe_temp, type);
|
|
// /* HeapReference<Object> */ out = *(obj + offset)
|
|
codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
|
|
out,
|
|
obj_reg,
|
|
offset,
|
|
temp_reg,
|
|
/* needs_null_check */ false,
|
|
/* use_load_acquire */ false);
|
|
} else {
|
|
// Load with slow path based read barrier.
|
|
// /* HeapReference<Object> */ out = *(obj + offset)
|
|
__ Ldr(out_reg, HeapOperand(obj_reg, offset));
|
|
codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset);
|
|
}
|
|
} else {
|
|
// Plain load with no read barrier.
|
|
// /* HeapReference<Object> */ out = *(obj + offset)
|
|
__ Ldr(out_reg, HeapOperand(obj_reg, offset));
|
|
GetAssembler()->MaybeUnpoisonHeapReference(out_reg);
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::GenerateGcRootFieldLoad(HInstruction* instruction,
|
|
Location root,
|
|
vixl::Register obj,
|
|
uint32_t offset,
|
|
vixl::Label* fixup_label) {
|
|
Register root_reg = RegisterFrom(root, Primitive::kPrimNot);
|
|
if (kEmitCompilerReadBarrier) {
|
|
if (kUseBakerReadBarrier) {
|
|
// Fast path implementation of art::ReadBarrier::BarrierForRoot when
|
|
// Baker's read barrier are used:
|
|
//
|
|
// root = obj.field;
|
|
// if (Thread::Current()->GetIsGcMarking()) {
|
|
// root = ReadBarrier::Mark(root)
|
|
// }
|
|
|
|
// /* GcRoot<mirror::Object> */ root = *(obj + offset)
|
|
if (fixup_label == nullptr) {
|
|
__ Ldr(root_reg, MemOperand(obj, offset));
|
|
} else {
|
|
vixl::SingleEmissionCheckScope guard(GetVIXLAssembler());
|
|
__ Bind(fixup_label);
|
|
__ ldr(root_reg, MemOperand(obj, offset));
|
|
}
|
|
static_assert(
|
|
sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(GcRoot<mirror::Object>),
|
|
"art::mirror::CompressedReference<mirror::Object> and art::GcRoot<mirror::Object> "
|
|
"have different sizes.");
|
|
static_assert(sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(int32_t),
|
|
"art::mirror::CompressedReference<mirror::Object> and int32_t "
|
|
"have different sizes.");
|
|
|
|
// Slow path used to mark the GC root `root`.
|
|
SlowPathCodeARM64* slow_path =
|
|
new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathARM64(instruction, root, root);
|
|
codegen_->AddSlowPath(slow_path);
|
|
|
|
MacroAssembler* masm = GetVIXLAssembler();
|
|
UseScratchRegisterScope temps(masm);
|
|
Register temp = temps.AcquireW();
|
|
// temp = Thread::Current()->GetIsGcMarking()
|
|
__ Ldr(temp, MemOperand(tr, Thread::IsGcMarkingOffset<kArm64WordSize>().Int32Value()));
|
|
__ Cbnz(temp, slow_path->GetEntryLabel());
|
|
__ Bind(slow_path->GetExitLabel());
|
|
} else {
|
|
// GC root loaded through a slow path for read barriers other
|
|
// than Baker's.
|
|
// /* GcRoot<mirror::Object>* */ root = obj + offset
|
|
if (fixup_label == nullptr) {
|
|
__ Add(root_reg.X(), obj.X(), offset);
|
|
} else {
|
|
vixl::SingleEmissionCheckScope guard(GetVIXLAssembler());
|
|
__ Bind(fixup_label);
|
|
__ add(root_reg.X(), obj.X(), offset);
|
|
}
|
|
// /* mirror::Object* */ root = root->Read()
|
|
codegen_->GenerateReadBarrierForRootSlow(instruction, root, root);
|
|
}
|
|
} else {
|
|
// Plain GC root load with no read barrier.
|
|
// /* GcRoot<mirror::Object> */ root = *(obj + offset)
|
|
if (fixup_label == nullptr) {
|
|
__ Ldr(root_reg, MemOperand(obj, offset));
|
|
} else {
|
|
vixl::SingleEmissionCheckScope guard(GetVIXLAssembler());
|
|
__ Bind(fixup_label);
|
|
__ ldr(root_reg, MemOperand(obj, offset));
|
|
}
|
|
// Note that GC roots are not affected by heap poisoning, thus we
|
|
// do not have to unpoison `root_reg` here.
|
|
}
|
|
}
|
|
|
|
void CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
|
|
Location ref,
|
|
vixl::Register obj,
|
|
uint32_t offset,
|
|
Register temp,
|
|
bool needs_null_check,
|
|
bool use_load_acquire) {
|
|
DCHECK(kEmitCompilerReadBarrier);
|
|
DCHECK(kUseBakerReadBarrier);
|
|
|
|
// /* HeapReference<Object> */ ref = *(obj + offset)
|
|
Location no_index = Location::NoLocation();
|
|
GenerateReferenceLoadWithBakerReadBarrier(
|
|
instruction, ref, obj, offset, no_index, temp, needs_null_check, use_load_acquire);
|
|
}
|
|
|
|
void CodeGeneratorARM64::GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction,
|
|
Location ref,
|
|
vixl::Register obj,
|
|
uint32_t data_offset,
|
|
Location index,
|
|
Register temp,
|
|
bool needs_null_check) {
|
|
DCHECK(kEmitCompilerReadBarrier);
|
|
DCHECK(kUseBakerReadBarrier);
|
|
|
|
// Array cells are never volatile variables, therefore array loads
|
|
// never use Load-Acquire instructions on ARM64.
|
|
const bool use_load_acquire = false;
|
|
|
|
// /* HeapReference<Object> */ ref =
|
|
// *(obj + data_offset + index * sizeof(HeapReference<Object>))
|
|
GenerateReferenceLoadWithBakerReadBarrier(
|
|
instruction, ref, obj, data_offset, index, temp, needs_null_check, use_load_acquire);
|
|
}
|
|
|
|
void CodeGeneratorARM64::GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction,
|
|
Location ref,
|
|
vixl::Register obj,
|
|
uint32_t offset,
|
|
Location index,
|
|
Register temp,
|
|
bool needs_null_check,
|
|
bool use_load_acquire) {
|
|
DCHECK(kEmitCompilerReadBarrier);
|
|
DCHECK(kUseBakerReadBarrier);
|
|
// If `index` is a valid location, then we are emitting an array
|
|
// load, so we shouldn't be using a Load Acquire instruction.
|
|
// In other words: `index.IsValid()` => `!use_load_acquire`.
|
|
DCHECK(!index.IsValid() || !use_load_acquire);
|
|
|
|
MacroAssembler* masm = GetVIXLAssembler();
|
|
UseScratchRegisterScope temps(masm);
|
|
|
|
// In slow path based read barriers, the read barrier call is
|
|
// inserted after the original load. However, in fast path based
|
|
// Baker's read barriers, we need to perform the load of
|
|
// mirror::Object::monitor_ *before* the original reference load.
|
|
// This load-load ordering is required by the read barrier.
|
|
// The fast path/slow path (for Baker's algorithm) should look like:
|
|
//
|
|
// uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState();
|
|
// lfence; // Load fence or artificial data dependency to prevent load-load reordering
|
|
// HeapReference<Object> ref = *src; // Original reference load.
|
|
// bool is_gray = (rb_state == ReadBarrier::gray_ptr_);
|
|
// if (is_gray) {
|
|
// ref = ReadBarrier::Mark(ref); // Performed by runtime entrypoint slow path.
|
|
// }
|
|
//
|
|
// Note: the original implementation in ReadBarrier::Barrier is
|
|
// slightly more complex as it performs additional checks that we do
|
|
// not do here for performance reasons.
|
|
|
|
Primitive::Type type = Primitive::kPrimNot;
|
|
Register ref_reg = RegisterFrom(ref, type);
|
|
DCHECK(obj.IsW());
|
|
uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value();
|
|
|
|
// /* int32_t */ monitor = obj->monitor_
|
|
__ Ldr(temp, HeapOperand(obj, monitor_offset));
|
|
if (needs_null_check) {
|
|
MaybeRecordImplicitNullCheck(instruction);
|
|
}
|
|
// /* LockWord */ lock_word = LockWord(monitor)
|
|
static_assert(sizeof(LockWord) == sizeof(int32_t),
|
|
"art::LockWord and int32_t have different sizes.");
|
|
// /* uint32_t */ rb_state = lock_word.ReadBarrierState()
|
|
__ Lsr(temp, temp, LockWord::kReadBarrierStateShift);
|
|
__ And(temp, temp, Operand(LockWord::kReadBarrierStateMask));
|
|
static_assert(
|
|
LockWord::kReadBarrierStateMask == ReadBarrier::rb_ptr_mask_,
|
|
"art::LockWord::kReadBarrierStateMask is not equal to art::ReadBarrier::rb_ptr_mask_.");
|
|
|
|
// Introduce a dependency on the high bits of rb_state, which shall
|
|
// be all zeroes, to prevent load-load reordering, and without using
|
|
// a memory barrier (which would be more expensive).
|
|
// temp2 = rb_state & ~LockWord::kReadBarrierStateMask = 0
|
|
Register temp2 = temps.AcquireW();
|
|
__ Bic(temp2, temp, Operand(LockWord::kReadBarrierStateMask));
|
|
// obj is unchanged by this operation, but its value now depends on
|
|
// temp2, which depends on temp.
|
|
__ Add(obj, obj, Operand(temp2));
|
|
temps.Release(temp2);
|
|
|
|
// The actual reference load.
|
|
if (index.IsValid()) {
|
|
static_assert(
|
|
sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
|
|
"art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
|
|
// /* HeapReference<Object> */ ref =
|
|
// *(obj + offset + index * sizeof(HeapReference<Object>))
|
|
const size_t shift_amount = Primitive::ComponentSizeShift(type);
|
|
if (index.IsConstant()) {
|
|
uint32_t computed_offset = offset + (Int64ConstantFrom(index) << shift_amount);
|
|
Load(type, ref_reg, HeapOperand(obj, computed_offset));
|
|
} else {
|
|
temp2 = temps.AcquireW();
|
|
__ Add(temp2, obj, offset);
|
|
Load(type, ref_reg, HeapOperand(temp2, XRegisterFrom(index), LSL, shift_amount));
|
|
temps.Release(temp2);
|
|
}
|
|
} else {
|
|
// /* HeapReference<Object> */ ref = *(obj + offset)
|
|
MemOperand field = HeapOperand(obj, offset);
|
|
if (use_load_acquire) {
|
|
LoadAcquire(instruction, ref_reg, field, /* needs_null_check */ false);
|
|
} else {
|
|
Load(type, ref_reg, field);
|
|
}
|
|
}
|
|
|
|
// Object* ref = ref_addr->AsMirrorPtr()
|
|
GetAssembler()->MaybeUnpoisonHeapReference(ref_reg);
|
|
|
|
// Slow path used to mark the object `ref` when it is gray.
|
|
SlowPathCodeARM64* slow_path =
|
|
new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathARM64(instruction, ref, ref);
|
|
AddSlowPath(slow_path);
|
|
|
|
// if (rb_state == ReadBarrier::gray_ptr_)
|
|
// ref = ReadBarrier::Mark(ref);
|
|
__ Cmp(temp, ReadBarrier::gray_ptr_);
|
|
__ B(eq, slow_path->GetEntryLabel());
|
|
__ Bind(slow_path->GetExitLabel());
|
|
}
|
|
|
|
void CodeGeneratorARM64::GenerateReadBarrierSlow(HInstruction* instruction,
|
|
Location out,
|
|
Location ref,
|
|
Location obj,
|
|
uint32_t offset,
|
|
Location index) {
|
|
DCHECK(kEmitCompilerReadBarrier);
|
|
|
|
// Insert a slow path based read barrier *after* the reference load.
|
|
//
|
|
// If heap poisoning is enabled, the unpoisoning of the loaded
|
|
// reference will be carried out by the runtime within the slow
|
|
// path.
|
|
//
|
|
// Note that `ref` currently does not get unpoisoned (when heap
|
|
// poisoning is enabled), which is alright as the `ref` argument is
|
|
// not used by the artReadBarrierSlow entry point.
|
|
//
|
|
// TODO: Unpoison `ref` when it is used by artReadBarrierSlow.
|
|
SlowPathCodeARM64* slow_path = new (GetGraph()->GetArena())
|
|
ReadBarrierForHeapReferenceSlowPathARM64(instruction, out, ref, obj, offset, index);
|
|
AddSlowPath(slow_path);
|
|
|
|
__ B(slow_path->GetEntryLabel());
|
|
__ Bind(slow_path->GetExitLabel());
|
|
}
|
|
|
|
void CodeGeneratorARM64::MaybeGenerateReadBarrierSlow(HInstruction* instruction,
|
|
Location out,
|
|
Location ref,
|
|
Location obj,
|
|
uint32_t offset,
|
|
Location index) {
|
|
if (kEmitCompilerReadBarrier) {
|
|
// Baker's read barriers shall be handled by the fast path
|
|
// (CodeGeneratorARM64::GenerateReferenceLoadWithBakerReadBarrier).
|
|
DCHECK(!kUseBakerReadBarrier);
|
|
// If heap poisoning is enabled, unpoisoning will be taken care of
|
|
// by the runtime within the slow path.
|
|
GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index);
|
|
} else if (kPoisonHeapReferences) {
|
|
GetAssembler()->UnpoisonHeapReference(WRegisterFrom(out));
|
|
}
|
|
}
|
|
|
|
void CodeGeneratorARM64::GenerateReadBarrierForRootSlow(HInstruction* instruction,
|
|
Location out,
|
|
Location root) {
|
|
DCHECK(kEmitCompilerReadBarrier);
|
|
|
|
// Insert a slow path based read barrier *after* the GC root load.
|
|
//
|
|
// Note that GC roots are not affected by heap poisoning, so we do
|
|
// not need to do anything special for this here.
|
|
SlowPathCodeARM64* slow_path =
|
|
new (GetGraph()->GetArena()) ReadBarrierForRootSlowPathARM64(instruction, out, root);
|
|
AddSlowPath(slow_path);
|
|
|
|
__ B(slow_path->GetEntryLabel());
|
|
__ Bind(slow_path->GetExitLabel());
|
|
}
|
|
|
|
void LocationsBuilderARM64::VisitClassTableGet(HClassTableGet* instruction) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetOut(Location::RequiresRegister());
|
|
}
|
|
|
|
void InstructionCodeGeneratorARM64::VisitClassTableGet(HClassTableGet* instruction) {
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) {
|
|
uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
|
|
instruction->GetIndex(), kArm64PointerSize).SizeValue();
|
|
__ Ldr(XRegisterFrom(locations->Out()),
|
|
MemOperand(XRegisterFrom(locations->InAt(0)), method_offset));
|
|
} else {
|
|
uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
|
|
instruction->GetIndex() % ImTable::kSize, kArm64PointerSize));
|
|
__ Ldr(XRegisterFrom(locations->Out()), MemOperand(XRegisterFrom(locations->InAt(0)),
|
|
mirror::Class::ImtPtrOffset(kArm64PointerSize).Uint32Value()));
|
|
__ Ldr(XRegisterFrom(locations->Out()),
|
|
MemOperand(XRegisterFrom(locations->Out()), method_offset));
|
|
}
|
|
}
|
|
|
|
|
|
|
|
#undef __
|
|
#undef QUICK_ENTRY_POINT
|
|
|
|
} // namespace arm64
|
|
} // namespace art
|