387 lines
15 KiB
C++
387 lines
15 KiB
C++
// Copyright (c) 2012 The Chromium Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
#include "sandbox/linux/seccomp-bpf/trap.h"
|
|
|
|
#include <errno.h>
|
|
#include <signal.h>
|
|
#include <stddef.h>
|
|
#include <stdint.h>
|
|
#include <string.h>
|
|
#include <sys/syscall.h>
|
|
|
|
#include <algorithm>
|
|
#include <limits>
|
|
#include <tuple>
|
|
|
|
#include "base/compiler_specific.h"
|
|
#include "base/logging.h"
|
|
#include "build/build_config.h"
|
|
#include "sandbox/linux/bpf_dsl/seccomp_macros.h"
|
|
#include "sandbox/linux/seccomp-bpf/die.h"
|
|
#include "sandbox/linux/seccomp-bpf/syscall.h"
|
|
#include "sandbox/linux/services/syscall_wrappers.h"
|
|
#include "sandbox/linux/system_headers/linux_seccomp.h"
|
|
#include "sandbox/linux/system_headers/linux_signal.h"
|
|
|
|
namespace {
|
|
|
|
struct arch_sigsys {
|
|
void* ip;
|
|
int nr;
|
|
unsigned int arch;
|
|
};
|
|
|
|
const int kCapacityIncrement = 20;
|
|
|
|
// Unsafe traps can only be turned on, if the user explicitly allowed them
|
|
// by setting the CHROME_SANDBOX_DEBUGGING environment variable.
|
|
const char kSandboxDebuggingEnv[] = "CHROME_SANDBOX_DEBUGGING";
|
|
|
|
// We need to tell whether we are performing a "normal" callback, or
|
|
// whether we were called recursively from within a UnsafeTrap() callback.
|
|
// This is a little tricky to do, because we need to somehow get access to
|
|
// per-thread data from within a signal context. Normal TLS storage is not
|
|
// safely accessible at this time. We could roll our own, but that involves
|
|
// a lot of complexity. Instead, we co-opt one bit in the signal mask.
|
|
// If BUS is blocked, we assume that we have been called recursively.
|
|
// There is a possibility for collision with other code that needs to do
|
|
// this, but in practice the risks are low.
|
|
// If SIGBUS turns out to be a problem, we could instead co-opt one of the
|
|
// realtime signals. There are plenty of them. Unfortunately, there is no
|
|
// way to mark a signal as allocated. So, the potential for collision is
|
|
// possibly even worse.
|
|
bool GetIsInSigHandler(const ucontext_t* ctx) {
|
|
// Note: on Android, sigismember does not take a pointer to const.
|
|
return sigismember(const_cast<sigset_t*>(&ctx->uc_sigmask), LINUX_SIGBUS);
|
|
}
|
|
|
|
void SetIsInSigHandler() {
|
|
sigset_t mask;
|
|
if (sigemptyset(&mask) || sigaddset(&mask, LINUX_SIGBUS) ||
|
|
sandbox::sys_sigprocmask(LINUX_SIG_BLOCK, &mask, NULL)) {
|
|
SANDBOX_DIE("Failed to block SIGBUS");
|
|
}
|
|
}
|
|
|
|
bool IsDefaultSignalAction(const struct sigaction& sa) {
|
|
if (sa.sa_flags & SA_SIGINFO || sa.sa_handler != SIG_DFL) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
namespace sandbox {
|
|
|
|
Trap::Trap()
|
|
: trap_array_(NULL),
|
|
trap_array_size_(0),
|
|
trap_array_capacity_(0),
|
|
has_unsafe_traps_(false) {
|
|
// Set new SIGSYS handler
|
|
struct sigaction sa = {};
|
|
// In some toolchain, sa_sigaction is not declared in struct sigaction.
|
|
// So, here cast the pointer to the sa_handler's type. This works because
|
|
// |sa_handler| and |sa_sigaction| shares the same memory.
|
|
sa.sa_handler = reinterpret_cast<void (*)(int)>(SigSysAction);
|
|
sa.sa_flags = LINUX_SA_SIGINFO | LINUX_SA_NODEFER;
|
|
struct sigaction old_sa = {};
|
|
if (sys_sigaction(LINUX_SIGSYS, &sa, &old_sa) < 0) {
|
|
SANDBOX_DIE("Failed to configure SIGSYS handler");
|
|
}
|
|
|
|
if (!IsDefaultSignalAction(old_sa)) {
|
|
static const char kExistingSIGSYSMsg[] =
|
|
"Existing signal handler when trying to install SIGSYS. SIGSYS needs "
|
|
"to be reserved for seccomp-bpf.";
|
|
DLOG(FATAL) << kExistingSIGSYSMsg;
|
|
LOG(ERROR) << kExistingSIGSYSMsg;
|
|
}
|
|
|
|
// Unmask SIGSYS
|
|
sigset_t mask;
|
|
if (sigemptyset(&mask) || sigaddset(&mask, LINUX_SIGSYS) ||
|
|
sys_sigprocmask(LINUX_SIG_UNBLOCK, &mask, NULL)) {
|
|
SANDBOX_DIE("Failed to configure SIGSYS handler");
|
|
}
|
|
}
|
|
|
|
bpf_dsl::TrapRegistry* Trap::Registry() {
|
|
// Note: This class is not thread safe. It is the caller's responsibility
|
|
// to avoid race conditions. Normally, this is a non-issue as the sandbox
|
|
// can only be initialized if there are no other threads present.
|
|
// Also, this is not a normal singleton. Once created, the global trap
|
|
// object must never be destroyed again.
|
|
if (!global_trap_) {
|
|
global_trap_ = new Trap();
|
|
if (!global_trap_) {
|
|
SANDBOX_DIE("Failed to allocate global trap handler");
|
|
}
|
|
}
|
|
return global_trap_;
|
|
}
|
|
|
|
void Trap::SigSysAction(int nr, LinuxSigInfo* info, void* void_context) {
|
|
if (info) {
|
|
MSAN_UNPOISON(info, sizeof(*info));
|
|
}
|
|
|
|
// Obtain the signal context. This, most notably, gives us access to
|
|
// all CPU registers at the time of the signal.
|
|
ucontext_t* ctx = reinterpret_cast<ucontext_t*>(void_context);
|
|
if (ctx) {
|
|
MSAN_UNPOISON(ctx, sizeof(*ctx));
|
|
}
|
|
|
|
if (!global_trap_) {
|
|
RAW_SANDBOX_DIE(
|
|
"This can't happen. Found no global singleton instance "
|
|
"for Trap() handling.");
|
|
}
|
|
global_trap_->SigSys(nr, info, ctx);
|
|
}
|
|
|
|
void Trap::SigSys(int nr, LinuxSigInfo* info, ucontext_t* ctx) {
|
|
// Signal handlers should always preserve "errno". Otherwise, we could
|
|
// trigger really subtle bugs.
|
|
const int old_errno = errno;
|
|
|
|
// Various sanity checks to make sure we actually received a signal
|
|
// triggered by a BPF filter. If something else triggered SIGSYS
|
|
// (e.g. kill()), there is really nothing we can do with this signal.
|
|
if (nr != LINUX_SIGSYS || info->si_code != SYS_SECCOMP || !ctx ||
|
|
info->si_errno <= 0 ||
|
|
static_cast<size_t>(info->si_errno) > trap_array_size_) {
|
|
// ATI drivers seem to send SIGSYS, so this cannot be FATAL.
|
|
// See crbug.com/178166.
|
|
// TODO(jln): add a DCHECK or move back to FATAL.
|
|
RAW_LOG(ERROR, "Unexpected SIGSYS received.");
|
|
errno = old_errno;
|
|
return;
|
|
}
|
|
|
|
|
|
// Obtain the siginfo information that is specific to SIGSYS. Unfortunately,
|
|
// most versions of glibc don't include this information in siginfo_t. So,
|
|
// we need to explicitly copy it into a arch_sigsys structure.
|
|
struct arch_sigsys sigsys;
|
|
memcpy(&sigsys, &info->_sifields, sizeof(sigsys));
|
|
|
|
#if defined(__mips__)
|
|
// When indirect syscall (syscall(__NR_foo, ...)) is made on Mips, the
|
|
// number in register SECCOMP_SYSCALL(ctx) is always __NR_syscall and the
|
|
// real number of a syscall (__NR_foo) is in SECCOMP_PARM1(ctx)
|
|
bool sigsys_nr_is_bad = sigsys.nr != static_cast<int>(SECCOMP_SYSCALL(ctx)) &&
|
|
sigsys.nr != static_cast<int>(SECCOMP_PARM1(ctx));
|
|
#else
|
|
bool sigsys_nr_is_bad = sigsys.nr != static_cast<int>(SECCOMP_SYSCALL(ctx));
|
|
#endif
|
|
|
|
// Some more sanity checks.
|
|
if (sigsys.ip != reinterpret_cast<void*>(SECCOMP_IP(ctx)) ||
|
|
sigsys_nr_is_bad || sigsys.arch != SECCOMP_ARCH) {
|
|
// TODO(markus):
|
|
// SANDBOX_DIE() can call LOG(FATAL). This is not normally async-signal
|
|
// safe and can lead to bugs. We should eventually implement a different
|
|
// logging and reporting mechanism that is safe to be called from
|
|
// the sigSys() handler.
|
|
RAW_SANDBOX_DIE("Sanity checks are failing after receiving SIGSYS.");
|
|
}
|
|
|
|
intptr_t rc;
|
|
if (has_unsafe_traps_ && GetIsInSigHandler(ctx)) {
|
|
errno = old_errno;
|
|
if (sigsys.nr == __NR_clone) {
|
|
RAW_SANDBOX_DIE("Cannot call clone() from an UnsafeTrap() handler.");
|
|
}
|
|
#if defined(__mips__)
|
|
// Mips supports up to eight arguments for syscall.
|
|
// However, seccomp bpf can filter only up to six arguments, so using eight
|
|
// arguments has sense only when using UnsafeTrap() handler.
|
|
rc = Syscall::Call(SECCOMP_SYSCALL(ctx),
|
|
SECCOMP_PARM1(ctx),
|
|
SECCOMP_PARM2(ctx),
|
|
SECCOMP_PARM3(ctx),
|
|
SECCOMP_PARM4(ctx),
|
|
SECCOMP_PARM5(ctx),
|
|
SECCOMP_PARM6(ctx),
|
|
SECCOMP_PARM7(ctx),
|
|
SECCOMP_PARM8(ctx));
|
|
#else
|
|
rc = Syscall::Call(SECCOMP_SYSCALL(ctx),
|
|
SECCOMP_PARM1(ctx),
|
|
SECCOMP_PARM2(ctx),
|
|
SECCOMP_PARM3(ctx),
|
|
SECCOMP_PARM4(ctx),
|
|
SECCOMP_PARM5(ctx),
|
|
SECCOMP_PARM6(ctx));
|
|
#endif // defined(__mips__)
|
|
} else {
|
|
const TrapKey& trap = trap_array_[info->si_errno - 1];
|
|
if (!trap.safe) {
|
|
SetIsInSigHandler();
|
|
}
|
|
|
|
// Copy the seccomp-specific data into a arch_seccomp_data structure. This
|
|
// is what we are showing to TrapFnc callbacks that the system call
|
|
// evaluator registered with the sandbox.
|
|
struct arch_seccomp_data data = {
|
|
static_cast<int>(SECCOMP_SYSCALL(ctx)),
|
|
SECCOMP_ARCH,
|
|
reinterpret_cast<uint64_t>(sigsys.ip),
|
|
{static_cast<uint64_t>(SECCOMP_PARM1(ctx)),
|
|
static_cast<uint64_t>(SECCOMP_PARM2(ctx)),
|
|
static_cast<uint64_t>(SECCOMP_PARM3(ctx)),
|
|
static_cast<uint64_t>(SECCOMP_PARM4(ctx)),
|
|
static_cast<uint64_t>(SECCOMP_PARM5(ctx)),
|
|
static_cast<uint64_t>(SECCOMP_PARM6(ctx))}};
|
|
|
|
// Now call the TrapFnc callback associated with this particular instance
|
|
// of SECCOMP_RET_TRAP.
|
|
rc = trap.fnc(data, const_cast<void*>(trap.aux));
|
|
}
|
|
|
|
// Update the CPU register that stores the return code of the system call
|
|
// that we just handled, and restore "errno" to the value that it had
|
|
// before entering the signal handler.
|
|
Syscall::PutValueInUcontext(rc, ctx);
|
|
errno = old_errno;
|
|
|
|
return;
|
|
}
|
|
|
|
bool Trap::TrapKey::operator<(const TrapKey& o) const {
|
|
return std::tie(fnc, aux, safe) < std::tie(o.fnc, o.aux, o.safe);
|
|
}
|
|
|
|
uint16_t Trap::Add(TrapFnc fnc, const void* aux, bool safe) {
|
|
if (!safe && !SandboxDebuggingAllowedByUser()) {
|
|
// Unless the user set the CHROME_SANDBOX_DEBUGGING environment variable,
|
|
// we never return an ErrorCode that is marked as "unsafe". This also
|
|
// means, the BPF compiler will never emit code that allow unsafe system
|
|
// calls to by-pass the filter (because they use the magic return address
|
|
// from Syscall::Call(-1)).
|
|
|
|
// This SANDBOX_DIE() can optionally be removed. It won't break security,
|
|
// but it might make error messages from the BPF compiler a little harder
|
|
// to understand. Removing the SANDBOX_DIE() allows callers to easily check
|
|
// whether unsafe traps are supported (by checking whether the returned
|
|
// ErrorCode is ET_INVALID).
|
|
SANDBOX_DIE(
|
|
"Cannot use unsafe traps unless CHROME_SANDBOX_DEBUGGING "
|
|
"is enabled");
|
|
|
|
return 0;
|
|
}
|
|
|
|
// Each unique pair of TrapFnc and auxiliary data make up a distinct instance
|
|
// of a SECCOMP_RET_TRAP.
|
|
TrapKey key(fnc, aux, safe);
|
|
|
|
// We return unique identifiers together with SECCOMP_RET_TRAP. This allows
|
|
// us to associate trap with the appropriate handler. The kernel allows us
|
|
// identifiers in the range from 0 to SECCOMP_RET_DATA (0xFFFF). We want to
|
|
// avoid 0, as it could be confused for a trap without any specific id.
|
|
// The nice thing about sequentially numbered identifiers is that we can also
|
|
// trivially look them up from our signal handler without making any system
|
|
// calls that might be async-signal-unsafe.
|
|
// In order to do so, we store all of our traps in a C-style trap_array_.
|
|
|
|
TrapIds::const_iterator iter = trap_ids_.find(key);
|
|
if (iter != trap_ids_.end()) {
|
|
// We have seen this pair before. Return the same id that we assigned
|
|
// earlier.
|
|
return iter->second;
|
|
}
|
|
|
|
// This is a new pair. Remember it and assign a new id.
|
|
if (trap_array_size_ >= SECCOMP_RET_DATA /* 0xFFFF */ ||
|
|
trap_array_size_ >= std::numeric_limits<uint16_t>::max()) {
|
|
// In practice, this is pretty much impossible to trigger, as there
|
|
// are other kernel limitations that restrict overall BPF program sizes.
|
|
SANDBOX_DIE("Too many SECCOMP_RET_TRAP callback instances");
|
|
}
|
|
|
|
// Our callers ensure that there are no other threads accessing trap_array_
|
|
// concurrently (typically this is done by ensuring that we are single-
|
|
// threaded while the sandbox is being set up). But we nonetheless are
|
|
// modifying a live data structure that could be accessed any time a
|
|
// system call is made; as system calls could be triggering SIGSYS.
|
|
// So, we have to be extra careful that we update trap_array_ atomically.
|
|
// In particular, this means we shouldn't be using realloc() to resize it.
|
|
// Instead, we allocate a new array, copy the values, and then switch the
|
|
// pointer. We only really care about the pointer being updated atomically
|
|
// and the data that is pointed to being valid, as these are the only
|
|
// values accessed from the signal handler. It is OK if trap_array_size_
|
|
// is inconsistent with the pointer, as it is monotonously increasing.
|
|
// Also, we only care about compiler barriers, as the signal handler is
|
|
// triggered synchronously from a system call. We don't have to protect
|
|
// against issues with the memory model or with completely asynchronous
|
|
// events.
|
|
if (trap_array_size_ >= trap_array_capacity_) {
|
|
trap_array_capacity_ += kCapacityIncrement;
|
|
TrapKey* old_trap_array = trap_array_;
|
|
TrapKey* new_trap_array = new TrapKey[trap_array_capacity_];
|
|
std::copy_n(old_trap_array, trap_array_size_, new_trap_array);
|
|
|
|
// Language specs are unclear on whether the compiler is allowed to move
|
|
// the "delete[]" above our preceding assignments and/or memory moves,
|
|
// iff the compiler believes that "delete[]" doesn't have any other
|
|
// global side-effects.
|
|
// We insert optimization barriers to prevent this from happening.
|
|
// The first barrier is probably not needed, but better be explicit in
|
|
// what we want to tell the compiler.
|
|
// The clang developer mailing list couldn't answer whether this is a
|
|
// legitimate worry; but they at least thought that the barrier is
|
|
// sufficient to prevent the (so far hypothetical) problem of re-ordering
|
|
// of instructions by the compiler.
|
|
//
|
|
// TODO(mdempsky): Try to clean this up using base/atomicops or C++11
|
|
// atomics; see crbug.com/414363.
|
|
asm volatile("" : "=r"(new_trap_array) : "0"(new_trap_array) : "memory");
|
|
trap_array_ = new_trap_array;
|
|
asm volatile("" : "=r"(trap_array_) : "0"(trap_array_) : "memory");
|
|
|
|
delete[] old_trap_array;
|
|
}
|
|
|
|
uint16_t id = trap_array_size_ + 1;
|
|
trap_ids_[key] = id;
|
|
trap_array_[trap_array_size_] = key;
|
|
trap_array_size_++;
|
|
return id;
|
|
}
|
|
|
|
bool Trap::SandboxDebuggingAllowedByUser() {
|
|
const char* debug_flag = getenv(kSandboxDebuggingEnv);
|
|
return debug_flag && *debug_flag;
|
|
}
|
|
|
|
bool Trap::EnableUnsafeTraps() {
|
|
if (!has_unsafe_traps_) {
|
|
// Unsafe traps are a one-way fuse. Once enabled, they can never be turned
|
|
// off again.
|
|
// We only allow enabling unsafe traps, if the user explicitly set an
|
|
// appropriate environment variable. This prevents bugs that accidentally
|
|
// disable all sandboxing for all users.
|
|
if (SandboxDebuggingAllowedByUser()) {
|
|
// We only ever print this message once, when we enable unsafe traps the
|
|
// first time.
|
|
SANDBOX_INFO("WARNING! Disabling sandbox for debugging purposes");
|
|
has_unsafe_traps_ = true;
|
|
} else {
|
|
SANDBOX_INFO(
|
|
"Cannot disable sandbox and use unsafe traps unless "
|
|
"CHROME_SANDBOX_DEBUGGING is turned on first");
|
|
}
|
|
}
|
|
// Returns the, possibly updated, value of has_unsafe_traps_.
|
|
return has_unsafe_traps_;
|
|
}
|
|
|
|
Trap* Trap::global_trap_;
|
|
|
|
} // namespace sandbox
|