284 lines
10 KiB
C++
284 lines
10 KiB
C++
/*
|
|
* Copyright (C) 2016 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#ifndef ART_COMPILER_DEBUG_ELF_DEBUG_FRAME_WRITER_H_
|
|
#define ART_COMPILER_DEBUG_ELF_DEBUG_FRAME_WRITER_H_
|
|
|
|
#include <vector>
|
|
|
|
#include "arch/instruction_set.h"
|
|
#include "debug/dwarf/debug_frame_opcode_writer.h"
|
|
#include "debug/dwarf/dwarf_constants.h"
|
|
#include "debug/dwarf/headers.h"
|
|
#include "debug/method_debug_info.h"
|
|
#include "elf_builder.h"
|
|
|
|
namespace art {
|
|
namespace debug {
|
|
|
|
static void WriteCIE(InstructionSet isa,
|
|
dwarf::CFIFormat format,
|
|
std::vector<uint8_t>* buffer) {
|
|
using Reg = dwarf::Reg;
|
|
// Scratch registers should be marked as undefined. This tells the
|
|
// debugger that its value in the previous frame is not recoverable.
|
|
bool is64bit = Is64BitInstructionSet(isa);
|
|
switch (isa) {
|
|
case kArm:
|
|
case kThumb2: {
|
|
dwarf::DebugFrameOpCodeWriter<> opcodes;
|
|
opcodes.DefCFA(Reg::ArmCore(13), 0); // R13(SP).
|
|
// core registers.
|
|
for (int reg = 0; reg < 13; reg++) {
|
|
if (reg < 4 || reg == 12) {
|
|
opcodes.Undefined(Reg::ArmCore(reg));
|
|
} else {
|
|
opcodes.SameValue(Reg::ArmCore(reg));
|
|
}
|
|
}
|
|
// fp registers.
|
|
for (int reg = 0; reg < 32; reg++) {
|
|
if (reg < 16) {
|
|
opcodes.Undefined(Reg::ArmFp(reg));
|
|
} else {
|
|
opcodes.SameValue(Reg::ArmFp(reg));
|
|
}
|
|
}
|
|
auto return_reg = Reg::ArmCore(14); // R14(LR).
|
|
WriteCIE(is64bit, return_reg, opcodes, format, buffer);
|
|
return;
|
|
}
|
|
case kArm64: {
|
|
dwarf::DebugFrameOpCodeWriter<> opcodes;
|
|
opcodes.DefCFA(Reg::Arm64Core(31), 0); // R31(SP).
|
|
// core registers.
|
|
for (int reg = 0; reg < 30; reg++) {
|
|
if (reg < 8 || reg == 16 || reg == 17) {
|
|
opcodes.Undefined(Reg::Arm64Core(reg));
|
|
} else {
|
|
opcodes.SameValue(Reg::Arm64Core(reg));
|
|
}
|
|
}
|
|
// fp registers.
|
|
for (int reg = 0; reg < 32; reg++) {
|
|
if (reg < 8 || reg >= 16) {
|
|
opcodes.Undefined(Reg::Arm64Fp(reg));
|
|
} else {
|
|
opcodes.SameValue(Reg::Arm64Fp(reg));
|
|
}
|
|
}
|
|
auto return_reg = Reg::Arm64Core(30); // R30(LR).
|
|
WriteCIE(is64bit, return_reg, opcodes, format, buffer);
|
|
return;
|
|
}
|
|
case kMips:
|
|
case kMips64: {
|
|
dwarf::DebugFrameOpCodeWriter<> opcodes;
|
|
opcodes.DefCFA(Reg::MipsCore(29), 0); // R29(SP).
|
|
// core registers.
|
|
for (int reg = 1; reg < 26; reg++) {
|
|
if (reg < 16 || reg == 24 || reg == 25) { // AT, V*, A*, T*.
|
|
opcodes.Undefined(Reg::MipsCore(reg));
|
|
} else {
|
|
opcodes.SameValue(Reg::MipsCore(reg));
|
|
}
|
|
}
|
|
// fp registers.
|
|
for (int reg = 0; reg < 32; reg++) {
|
|
if (reg < 24) {
|
|
opcodes.Undefined(Reg::Mips64Fp(reg));
|
|
} else {
|
|
opcodes.SameValue(Reg::Mips64Fp(reg));
|
|
}
|
|
}
|
|
auto return_reg = Reg::MipsCore(31); // R31(RA).
|
|
WriteCIE(is64bit, return_reg, opcodes, format, buffer);
|
|
return;
|
|
}
|
|
case kX86: {
|
|
// FIXME: Add fp registers once libunwind adds support for them. Bug: 20491296
|
|
constexpr bool generate_opcodes_for_x86_fp = false;
|
|
dwarf::DebugFrameOpCodeWriter<> opcodes;
|
|
opcodes.DefCFA(Reg::X86Core(4), 4); // R4(ESP).
|
|
opcodes.Offset(Reg::X86Core(8), -4); // R8(EIP).
|
|
// core registers.
|
|
for (int reg = 0; reg < 8; reg++) {
|
|
if (reg <= 3) {
|
|
opcodes.Undefined(Reg::X86Core(reg));
|
|
} else if (reg == 4) {
|
|
// Stack pointer.
|
|
} else {
|
|
opcodes.SameValue(Reg::X86Core(reg));
|
|
}
|
|
}
|
|
// fp registers.
|
|
if (generate_opcodes_for_x86_fp) {
|
|
for (int reg = 0; reg < 8; reg++) {
|
|
opcodes.Undefined(Reg::X86Fp(reg));
|
|
}
|
|
}
|
|
auto return_reg = Reg::X86Core(8); // R8(EIP).
|
|
WriteCIE(is64bit, return_reg, opcodes, format, buffer);
|
|
return;
|
|
}
|
|
case kX86_64: {
|
|
dwarf::DebugFrameOpCodeWriter<> opcodes;
|
|
opcodes.DefCFA(Reg::X86_64Core(4), 8); // R4(RSP).
|
|
opcodes.Offset(Reg::X86_64Core(16), -8); // R16(RIP).
|
|
// core registers.
|
|
for (int reg = 0; reg < 16; reg++) {
|
|
if (reg == 4) {
|
|
// Stack pointer.
|
|
} else if (reg < 12 && reg != 3 && reg != 5) { // except EBX and EBP.
|
|
opcodes.Undefined(Reg::X86_64Core(reg));
|
|
} else {
|
|
opcodes.SameValue(Reg::X86_64Core(reg));
|
|
}
|
|
}
|
|
// fp registers.
|
|
for (int reg = 0; reg < 16; reg++) {
|
|
if (reg < 12) {
|
|
opcodes.Undefined(Reg::X86_64Fp(reg));
|
|
} else {
|
|
opcodes.SameValue(Reg::X86_64Fp(reg));
|
|
}
|
|
}
|
|
auto return_reg = Reg::X86_64Core(16); // R16(RIP).
|
|
WriteCIE(is64bit, return_reg, opcodes, format, buffer);
|
|
return;
|
|
}
|
|
case kNone:
|
|
break;
|
|
}
|
|
LOG(FATAL) << "Cannot write CIE frame for ISA " << isa;
|
|
UNREACHABLE();
|
|
}
|
|
|
|
template<typename ElfTypes>
|
|
void WriteCFISection(ElfBuilder<ElfTypes>* builder,
|
|
const ArrayRef<const MethodDebugInfo>& method_infos,
|
|
dwarf::CFIFormat format,
|
|
bool write_oat_patches) {
|
|
CHECK(format == dwarf::DW_DEBUG_FRAME_FORMAT || format == dwarf::DW_EH_FRAME_FORMAT);
|
|
typedef typename ElfTypes::Addr Elf_Addr;
|
|
|
|
// The methods can be written in any order.
|
|
// Let's therefore sort them in the lexicographical order of the opcodes.
|
|
// This has no effect on its own. However, if the final .debug_frame section is
|
|
// compressed it reduces the size since similar opcodes sequences are grouped.
|
|
std::vector<const MethodDebugInfo*> sorted_method_infos;
|
|
sorted_method_infos.reserve(method_infos.size());
|
|
for (size_t i = 0; i < method_infos.size(); i++) {
|
|
if (!method_infos[i].cfi.empty() && !method_infos[i].deduped) {
|
|
sorted_method_infos.push_back(&method_infos[i]);
|
|
}
|
|
}
|
|
if (sorted_method_infos.empty()) {
|
|
return;
|
|
}
|
|
std::stable_sort(
|
|
sorted_method_infos.begin(),
|
|
sorted_method_infos.end(),
|
|
[](const MethodDebugInfo* lhs, const MethodDebugInfo* rhs) {
|
|
ArrayRef<const uint8_t> l = lhs->cfi;
|
|
ArrayRef<const uint8_t> r = rhs->cfi;
|
|
return std::lexicographical_compare(l.begin(), l.end(), r.begin(), r.end());
|
|
});
|
|
|
|
std::vector<uint32_t> binary_search_table;
|
|
std::vector<uintptr_t> patch_locations;
|
|
if (format == dwarf::DW_EH_FRAME_FORMAT) {
|
|
binary_search_table.reserve(2 * sorted_method_infos.size());
|
|
} else {
|
|
patch_locations.reserve(sorted_method_infos.size());
|
|
}
|
|
|
|
// Write .eh_frame/.debug_frame section.
|
|
auto* cfi_section = (format == dwarf::DW_DEBUG_FRAME_FORMAT
|
|
? builder->GetDebugFrame()
|
|
: builder->GetEhFrame());
|
|
{
|
|
cfi_section->Start();
|
|
const bool is64bit = Is64BitInstructionSet(builder->GetIsa());
|
|
const Elf_Addr cfi_address = cfi_section->GetAddress();
|
|
const Elf_Addr cie_address = cfi_address;
|
|
Elf_Addr buffer_address = cfi_address;
|
|
std::vector<uint8_t> buffer; // Small temporary buffer.
|
|
WriteCIE(builder->GetIsa(), format, &buffer);
|
|
cfi_section->WriteFully(buffer.data(), buffer.size());
|
|
buffer_address += buffer.size();
|
|
buffer.clear();
|
|
for (const MethodDebugInfo* mi : sorted_method_infos) {
|
|
DCHECK(!mi->deduped);
|
|
DCHECK(!mi->cfi.empty());
|
|
const Elf_Addr code_address = mi->code_address +
|
|
(mi->is_code_address_text_relative ? builder->GetText()->GetAddress() : 0);
|
|
if (format == dwarf::DW_EH_FRAME_FORMAT) {
|
|
binary_search_table.push_back(dchecked_integral_cast<uint32_t>(code_address));
|
|
binary_search_table.push_back(dchecked_integral_cast<uint32_t>(buffer_address));
|
|
}
|
|
WriteFDE(is64bit, cfi_address, cie_address,
|
|
code_address, mi->code_size,
|
|
mi->cfi, format, buffer_address, &buffer,
|
|
&patch_locations);
|
|
cfi_section->WriteFully(buffer.data(), buffer.size());
|
|
buffer_address += buffer.size();
|
|
buffer.clear();
|
|
}
|
|
cfi_section->End();
|
|
}
|
|
|
|
if (format == dwarf::DW_EH_FRAME_FORMAT) {
|
|
auto* header_section = builder->GetEhFrameHdr();
|
|
header_section->Start();
|
|
uint32_t header_address = dchecked_integral_cast<int32_t>(header_section->GetAddress());
|
|
// Write .eh_frame_hdr section.
|
|
std::vector<uint8_t> buffer;
|
|
dwarf::Writer<> header(&buffer);
|
|
header.PushUint8(1); // Version.
|
|
// Encoding of .eh_frame pointer - libunwind does not honor datarel here,
|
|
// so we have to use pcrel which means relative to the pointer's location.
|
|
header.PushUint8(dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4);
|
|
// Encoding of binary search table size.
|
|
header.PushUint8(dwarf::DW_EH_PE_udata4);
|
|
// Encoding of binary search table addresses - libunwind supports only this
|
|
// specific combination, which means relative to the start of .eh_frame_hdr.
|
|
header.PushUint8(dwarf::DW_EH_PE_datarel | dwarf::DW_EH_PE_sdata4);
|
|
// .eh_frame pointer
|
|
header.PushInt32(cfi_section->GetAddress() - (header_address + 4u));
|
|
// Binary search table size (number of entries).
|
|
header.PushUint32(dchecked_integral_cast<uint32_t>(binary_search_table.size()/2));
|
|
header_section->WriteFully(buffer.data(), buffer.size());
|
|
// Binary search table.
|
|
for (size_t i = 0; i < binary_search_table.size(); i++) {
|
|
// Make addresses section-relative since we know the header address now.
|
|
binary_search_table[i] -= header_address;
|
|
}
|
|
header_section->WriteFully(binary_search_table.data(), binary_search_table.size());
|
|
header_section->End();
|
|
} else {
|
|
if (write_oat_patches) {
|
|
builder->WritePatches(".debug_frame.oat_patches",
|
|
ArrayRef<const uintptr_t>(patch_locations));
|
|
}
|
|
}
|
|
}
|
|
|
|
} // namespace debug
|
|
} // namespace art
|
|
|
|
#endif // ART_COMPILER_DEBUG_ELF_DEBUG_FRAME_WRITER_H_
|
|
|