3689 lines
139 KiB
C++
3689 lines
139 KiB
C++
/*
|
|
* Copyright (C) 2011 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "thread.h"
|
|
|
|
#if !defined(__APPLE__)
|
|
#include <sched.h>
|
|
#endif
|
|
|
|
#include <pthread.h>
|
|
#include <signal.h>
|
|
#include <sys/resource.h>
|
|
#include <sys/time.h>
|
|
|
|
#include <algorithm>
|
|
#include <bitset>
|
|
#include <cerrno>
|
|
#include <iostream>
|
|
#include <list>
|
|
#include <sstream>
|
|
|
|
#include "android-base/stringprintf.h"
|
|
|
|
#include "arch/context-inl.h"
|
|
#include "arch/context.h"
|
|
#include "art_field-inl.h"
|
|
#include "art_method-inl.h"
|
|
#include "base/bit_utils.h"
|
|
#include "base/memory_tool.h"
|
|
#include "base/mutex.h"
|
|
#include "base/systrace.h"
|
|
#include "base/timing_logger.h"
|
|
#include "base/to_str.h"
|
|
#include "class_linker-inl.h"
|
|
#include "debugger.h"
|
|
#include "dex_file-inl.h"
|
|
#include "dex_file_annotations.h"
|
|
#include "entrypoints/entrypoint_utils.h"
|
|
#include "entrypoints/quick/quick_alloc_entrypoints.h"
|
|
#include "gc/accounting/card_table-inl.h"
|
|
#include "gc/accounting/heap_bitmap-inl.h"
|
|
#include "gc/allocator/rosalloc.h"
|
|
#include "gc/heap.h"
|
|
#include "gc/space/space-inl.h"
|
|
#include "gc_root.h"
|
|
#include "handle_scope-inl.h"
|
|
#include "indirect_reference_table-inl.h"
|
|
#include "interpreter/interpreter.h"
|
|
#include "interpreter/shadow_frame.h"
|
|
#include "java_frame_root_info.h"
|
|
#include "java_vm_ext.h"
|
|
#include "jni_internal.h"
|
|
#include "mirror/class-inl.h"
|
|
#include "mirror/class_loader.h"
|
|
#include "mirror/object_array-inl.h"
|
|
#include "mirror/stack_trace_element.h"
|
|
#include "monitor.h"
|
|
#include "native_stack_dump.h"
|
|
#include "nativehelper/ScopedLocalRef.h"
|
|
#include "nativehelper/ScopedUtfChars.h"
|
|
#include "nth_caller_visitor.h"
|
|
#include "oat_quick_method_header.h"
|
|
#include "obj_ptr-inl.h"
|
|
#include "object_lock.h"
|
|
#include "quick/quick_method_frame_info.h"
|
|
#include "quick_exception_handler.h"
|
|
#include "read_barrier-inl.h"
|
|
#include "reflection.h"
|
|
#include "runtime.h"
|
|
#include "runtime_callbacks.h"
|
|
#include "scoped_thread_state_change-inl.h"
|
|
#include "stack.h"
|
|
#include "stack_map.h"
|
|
#include "thread-inl.h"
|
|
#include "thread_list.h"
|
|
#include "utils.h"
|
|
#include "verifier/method_verifier.h"
|
|
#include "verify_object.h"
|
|
#include "well_known_classes.h"
|
|
|
|
#if ART_USE_FUTEXES
|
|
#include "linux/futex.h"
|
|
#include "sys/syscall.h"
|
|
#ifndef SYS_futex
|
|
#define SYS_futex __NR_futex
|
|
#endif
|
|
#endif // ART_USE_FUTEXES
|
|
|
|
namespace art {
|
|
|
|
using android::base::StringAppendV;
|
|
using android::base::StringPrintf;
|
|
|
|
extern "C" NO_RETURN void artDeoptimize(Thread* self);
|
|
|
|
bool Thread::is_started_ = false;
|
|
pthread_key_t Thread::pthread_key_self_;
|
|
ConditionVariable* Thread::resume_cond_ = nullptr;
|
|
const size_t Thread::kStackOverflowImplicitCheckSize = GetStackOverflowReservedBytes(kRuntimeISA);
|
|
bool (*Thread::is_sensitive_thread_hook_)() = nullptr;
|
|
Thread* Thread::jit_sensitive_thread_ = nullptr;
|
|
|
|
static constexpr bool kVerifyImageObjectsMarked = kIsDebugBuild;
|
|
|
|
// For implicit overflow checks we reserve an extra piece of memory at the bottom
|
|
// of the stack (lowest memory). The higher portion of the memory
|
|
// is protected against reads and the lower is available for use while
|
|
// throwing the StackOverflow exception.
|
|
constexpr size_t kStackOverflowProtectedSize = 4 * kMemoryToolStackGuardSizeScale * KB;
|
|
|
|
static const char* kThreadNameDuringStartup = "<native thread without managed peer>";
|
|
|
|
void Thread::InitCardTable() {
|
|
tlsPtr_.card_table = Runtime::Current()->GetHeap()->GetCardTable()->GetBiasedBegin();
|
|
}
|
|
|
|
static void UnimplementedEntryPoint() {
|
|
UNIMPLEMENTED(FATAL);
|
|
}
|
|
|
|
void InitEntryPoints(JniEntryPoints* jpoints, QuickEntryPoints* qpoints);
|
|
void UpdateReadBarrierEntrypoints(QuickEntryPoints* qpoints, bool is_active);
|
|
|
|
void Thread::SetIsGcMarkingAndUpdateEntrypoints(bool is_marking) {
|
|
CHECK(kUseReadBarrier);
|
|
tls32_.is_gc_marking = is_marking;
|
|
UpdateReadBarrierEntrypoints(&tlsPtr_.quick_entrypoints, /* is_active */ is_marking);
|
|
ResetQuickAllocEntryPointsForThread(is_marking);
|
|
}
|
|
|
|
void Thread::InitTlsEntryPoints() {
|
|
// Insert a placeholder so we can easily tell if we call an unimplemented entry point.
|
|
uintptr_t* begin = reinterpret_cast<uintptr_t*>(&tlsPtr_.jni_entrypoints);
|
|
uintptr_t* end = reinterpret_cast<uintptr_t*>(
|
|
reinterpret_cast<uint8_t*>(&tlsPtr_.quick_entrypoints) + sizeof(tlsPtr_.quick_entrypoints));
|
|
for (uintptr_t* it = begin; it != end; ++it) {
|
|
*it = reinterpret_cast<uintptr_t>(UnimplementedEntryPoint);
|
|
}
|
|
InitEntryPoints(&tlsPtr_.jni_entrypoints, &tlsPtr_.quick_entrypoints);
|
|
}
|
|
|
|
void Thread::ResetQuickAllocEntryPointsForThread(bool is_marking) {
|
|
if (kUseReadBarrier && kRuntimeISA != kX86_64) {
|
|
// Allocation entrypoint switching is currently only implemented for X86_64.
|
|
is_marking = true;
|
|
}
|
|
ResetQuickAllocEntryPoints(&tlsPtr_.quick_entrypoints, is_marking);
|
|
}
|
|
|
|
class DeoptimizationContextRecord {
|
|
public:
|
|
DeoptimizationContextRecord(const JValue& ret_val,
|
|
bool is_reference,
|
|
bool from_code,
|
|
ObjPtr<mirror::Throwable> pending_exception,
|
|
DeoptimizationContextRecord* link)
|
|
: ret_val_(ret_val),
|
|
is_reference_(is_reference),
|
|
from_code_(from_code),
|
|
pending_exception_(pending_exception.Ptr()),
|
|
link_(link) {}
|
|
|
|
JValue GetReturnValue() const { return ret_val_; }
|
|
bool IsReference() const { return is_reference_; }
|
|
bool GetFromCode() const { return from_code_; }
|
|
ObjPtr<mirror::Throwable> GetPendingException() const { return pending_exception_; }
|
|
DeoptimizationContextRecord* GetLink() const { return link_; }
|
|
mirror::Object** GetReturnValueAsGCRoot() {
|
|
DCHECK(is_reference_);
|
|
return ret_val_.GetGCRoot();
|
|
}
|
|
mirror::Object** GetPendingExceptionAsGCRoot() {
|
|
return reinterpret_cast<mirror::Object**>(&pending_exception_);
|
|
}
|
|
|
|
private:
|
|
// The value returned by the method at the top of the stack before deoptimization.
|
|
JValue ret_val_;
|
|
|
|
// Indicates whether the returned value is a reference. If so, the GC will visit it.
|
|
const bool is_reference_;
|
|
|
|
// Whether the context was created from an explicit deoptimization in the code.
|
|
const bool from_code_;
|
|
|
|
// The exception that was pending before deoptimization (or null if there was no pending
|
|
// exception).
|
|
mirror::Throwable* pending_exception_;
|
|
|
|
// A link to the previous DeoptimizationContextRecord.
|
|
DeoptimizationContextRecord* const link_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(DeoptimizationContextRecord);
|
|
};
|
|
|
|
class StackedShadowFrameRecord {
|
|
public:
|
|
StackedShadowFrameRecord(ShadowFrame* shadow_frame,
|
|
StackedShadowFrameType type,
|
|
StackedShadowFrameRecord* link)
|
|
: shadow_frame_(shadow_frame),
|
|
type_(type),
|
|
link_(link) {}
|
|
|
|
ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
|
|
StackedShadowFrameType GetType() const { return type_; }
|
|
StackedShadowFrameRecord* GetLink() const { return link_; }
|
|
|
|
private:
|
|
ShadowFrame* const shadow_frame_;
|
|
const StackedShadowFrameType type_;
|
|
StackedShadowFrameRecord* const link_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(StackedShadowFrameRecord);
|
|
};
|
|
|
|
void Thread::PushDeoptimizationContext(const JValue& return_value,
|
|
bool is_reference,
|
|
bool from_code,
|
|
ObjPtr<mirror::Throwable> exception) {
|
|
DeoptimizationContextRecord* record = new DeoptimizationContextRecord(
|
|
return_value,
|
|
is_reference,
|
|
from_code,
|
|
exception,
|
|
tlsPtr_.deoptimization_context_stack);
|
|
tlsPtr_.deoptimization_context_stack = record;
|
|
}
|
|
|
|
void Thread::PopDeoptimizationContext(JValue* result,
|
|
ObjPtr<mirror::Throwable>* exception,
|
|
bool* from_code) {
|
|
AssertHasDeoptimizationContext();
|
|
DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack;
|
|
tlsPtr_.deoptimization_context_stack = record->GetLink();
|
|
result->SetJ(record->GetReturnValue().GetJ());
|
|
*exception = record->GetPendingException();
|
|
*from_code = record->GetFromCode();
|
|
delete record;
|
|
}
|
|
|
|
void Thread::AssertHasDeoptimizationContext() {
|
|
CHECK(tlsPtr_.deoptimization_context_stack != nullptr)
|
|
<< "No deoptimization context for thread " << *this;
|
|
}
|
|
|
|
void Thread::PushStackedShadowFrame(ShadowFrame* sf, StackedShadowFrameType type) {
|
|
StackedShadowFrameRecord* record = new StackedShadowFrameRecord(
|
|
sf, type, tlsPtr_.stacked_shadow_frame_record);
|
|
tlsPtr_.stacked_shadow_frame_record = record;
|
|
}
|
|
|
|
ShadowFrame* Thread::PopStackedShadowFrame(StackedShadowFrameType type, bool must_be_present) {
|
|
StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
|
|
if (must_be_present) {
|
|
DCHECK(record != nullptr);
|
|
} else {
|
|
if (record == nullptr || record->GetType() != type) {
|
|
return nullptr;
|
|
}
|
|
}
|
|
tlsPtr_.stacked_shadow_frame_record = record->GetLink();
|
|
ShadowFrame* shadow_frame = record->GetShadowFrame();
|
|
delete record;
|
|
return shadow_frame;
|
|
}
|
|
|
|
class FrameIdToShadowFrame {
|
|
public:
|
|
static FrameIdToShadowFrame* Create(size_t frame_id,
|
|
ShadowFrame* shadow_frame,
|
|
FrameIdToShadowFrame* next,
|
|
size_t num_vregs) {
|
|
// Append a bool array at the end to keep track of what vregs are updated by the debugger.
|
|
uint8_t* memory = new uint8_t[sizeof(FrameIdToShadowFrame) + sizeof(bool) * num_vregs];
|
|
return new (memory) FrameIdToShadowFrame(frame_id, shadow_frame, next);
|
|
}
|
|
|
|
static void Delete(FrameIdToShadowFrame* f) {
|
|
uint8_t* memory = reinterpret_cast<uint8_t*>(f);
|
|
delete[] memory;
|
|
}
|
|
|
|
size_t GetFrameId() const { return frame_id_; }
|
|
ShadowFrame* GetShadowFrame() const { return shadow_frame_; }
|
|
FrameIdToShadowFrame* GetNext() const { return next_; }
|
|
void SetNext(FrameIdToShadowFrame* next) { next_ = next; }
|
|
bool* GetUpdatedVRegFlags() {
|
|
return updated_vreg_flags_;
|
|
}
|
|
|
|
private:
|
|
FrameIdToShadowFrame(size_t frame_id,
|
|
ShadowFrame* shadow_frame,
|
|
FrameIdToShadowFrame* next)
|
|
: frame_id_(frame_id),
|
|
shadow_frame_(shadow_frame),
|
|
next_(next) {}
|
|
|
|
const size_t frame_id_;
|
|
ShadowFrame* const shadow_frame_;
|
|
FrameIdToShadowFrame* next_;
|
|
bool updated_vreg_flags_[0];
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(FrameIdToShadowFrame);
|
|
};
|
|
|
|
static FrameIdToShadowFrame* FindFrameIdToShadowFrame(FrameIdToShadowFrame* head,
|
|
size_t frame_id) {
|
|
FrameIdToShadowFrame* found = nullptr;
|
|
for (FrameIdToShadowFrame* record = head; record != nullptr; record = record->GetNext()) {
|
|
if (record->GetFrameId() == frame_id) {
|
|
if (kIsDebugBuild) {
|
|
// Sanity check we have at most one record for this frame.
|
|
CHECK(found == nullptr) << "Multiple records for the frame " << frame_id;
|
|
found = record;
|
|
} else {
|
|
return record;
|
|
}
|
|
}
|
|
}
|
|
return found;
|
|
}
|
|
|
|
ShadowFrame* Thread::FindDebuggerShadowFrame(size_t frame_id) {
|
|
FrameIdToShadowFrame* record = FindFrameIdToShadowFrame(
|
|
tlsPtr_.frame_id_to_shadow_frame, frame_id);
|
|
if (record != nullptr) {
|
|
return record->GetShadowFrame();
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
// Must only be called when FindDebuggerShadowFrame(frame_id) returns non-nullptr.
|
|
bool* Thread::GetUpdatedVRegFlags(size_t frame_id) {
|
|
FrameIdToShadowFrame* record = FindFrameIdToShadowFrame(
|
|
tlsPtr_.frame_id_to_shadow_frame, frame_id);
|
|
CHECK(record != nullptr);
|
|
return record->GetUpdatedVRegFlags();
|
|
}
|
|
|
|
ShadowFrame* Thread::FindOrCreateDebuggerShadowFrame(size_t frame_id,
|
|
uint32_t num_vregs,
|
|
ArtMethod* method,
|
|
uint32_t dex_pc) {
|
|
ShadowFrame* shadow_frame = FindDebuggerShadowFrame(frame_id);
|
|
if (shadow_frame != nullptr) {
|
|
return shadow_frame;
|
|
}
|
|
VLOG(deopt) << "Create pre-deopted ShadowFrame for " << ArtMethod::PrettyMethod(method);
|
|
shadow_frame = ShadowFrame::CreateDeoptimizedFrame(num_vregs, nullptr, method, dex_pc);
|
|
FrameIdToShadowFrame* record = FrameIdToShadowFrame::Create(frame_id,
|
|
shadow_frame,
|
|
tlsPtr_.frame_id_to_shadow_frame,
|
|
num_vregs);
|
|
for (uint32_t i = 0; i < num_vregs; i++) {
|
|
// Do this to clear all references for root visitors.
|
|
shadow_frame->SetVRegReference(i, nullptr);
|
|
// This flag will be changed to true if the debugger modifies the value.
|
|
record->GetUpdatedVRegFlags()[i] = false;
|
|
}
|
|
tlsPtr_.frame_id_to_shadow_frame = record;
|
|
return shadow_frame;
|
|
}
|
|
|
|
void Thread::RemoveDebuggerShadowFrameMapping(size_t frame_id) {
|
|
FrameIdToShadowFrame* head = tlsPtr_.frame_id_to_shadow_frame;
|
|
if (head->GetFrameId() == frame_id) {
|
|
tlsPtr_.frame_id_to_shadow_frame = head->GetNext();
|
|
FrameIdToShadowFrame::Delete(head);
|
|
return;
|
|
}
|
|
FrameIdToShadowFrame* prev = head;
|
|
for (FrameIdToShadowFrame* record = head->GetNext();
|
|
record != nullptr;
|
|
prev = record, record = record->GetNext()) {
|
|
if (record->GetFrameId() == frame_id) {
|
|
prev->SetNext(record->GetNext());
|
|
FrameIdToShadowFrame::Delete(record);
|
|
return;
|
|
}
|
|
}
|
|
LOG(FATAL) << "No shadow frame for frame " << frame_id;
|
|
UNREACHABLE();
|
|
}
|
|
|
|
void Thread::InitTid() {
|
|
tls32_.tid = ::art::GetTid();
|
|
}
|
|
|
|
void Thread::InitAfterFork() {
|
|
// One thread (us) survived the fork, but we have a new tid so we need to
|
|
// update the value stashed in this Thread*.
|
|
InitTid();
|
|
}
|
|
|
|
void* Thread::CreateCallback(void* arg) {
|
|
Thread* self = reinterpret_cast<Thread*>(arg);
|
|
Runtime* runtime = Runtime::Current();
|
|
if (runtime == nullptr) {
|
|
LOG(ERROR) << "Thread attaching to non-existent runtime: " << *self;
|
|
return nullptr;
|
|
}
|
|
{
|
|
// TODO: pass self to MutexLock - requires self to equal Thread::Current(), which is only true
|
|
// after self->Init().
|
|
MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
|
|
// Check that if we got here we cannot be shutting down (as shutdown should never have started
|
|
// while threads are being born).
|
|
CHECK(!runtime->IsShuttingDownLocked());
|
|
// Note: given that the JNIEnv is created in the parent thread, the only failure point here is
|
|
// a mess in InitStackHwm. We do not have a reasonable way to recover from that, so abort
|
|
// the runtime in such a case. In case this ever changes, we need to make sure here to
|
|
// delete the tmp_jni_env, as we own it at this point.
|
|
CHECK(self->Init(runtime->GetThreadList(), runtime->GetJavaVM(), self->tlsPtr_.tmp_jni_env));
|
|
self->tlsPtr_.tmp_jni_env = nullptr;
|
|
Runtime::Current()->EndThreadBirth();
|
|
}
|
|
{
|
|
ScopedObjectAccess soa(self);
|
|
self->InitStringEntryPoints();
|
|
|
|
// Copy peer into self, deleting global reference when done.
|
|
CHECK(self->tlsPtr_.jpeer != nullptr);
|
|
self->tlsPtr_.opeer = soa.Decode<mirror::Object>(self->tlsPtr_.jpeer).Ptr();
|
|
self->GetJniEnv()->DeleteGlobalRef(self->tlsPtr_.jpeer);
|
|
self->tlsPtr_.jpeer = nullptr;
|
|
self->SetThreadName(self->GetThreadName()->ToModifiedUtf8().c_str());
|
|
|
|
ArtField* priorityField = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority);
|
|
self->SetNativePriority(priorityField->GetInt(self->tlsPtr_.opeer));
|
|
|
|
runtime->GetRuntimeCallbacks()->ThreadStart(self);
|
|
|
|
// Invoke the 'run' method of our java.lang.Thread.
|
|
ObjPtr<mirror::Object> receiver = self->tlsPtr_.opeer;
|
|
jmethodID mid = WellKnownClasses::java_lang_Thread_run;
|
|
ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(receiver));
|
|
InvokeVirtualOrInterfaceWithJValues(soa, ref.get(), mid, nullptr);
|
|
}
|
|
// Detach and delete self.
|
|
Runtime::Current()->GetThreadList()->Unregister(self);
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
|
|
ObjPtr<mirror::Object> thread_peer) {
|
|
ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer);
|
|
Thread* result = reinterpret_cast<Thread*>(static_cast<uintptr_t>(f->GetLong(thread_peer)));
|
|
// Sanity check that if we have a result it is either suspended or we hold the thread_list_lock_
|
|
// to stop it from going away.
|
|
if (kIsDebugBuild) {
|
|
MutexLock mu(soa.Self(), *Locks::thread_suspend_count_lock_);
|
|
if (result != nullptr && !result->IsSuspended()) {
|
|
Locks::thread_list_lock_->AssertHeld(soa.Self());
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
Thread* Thread::FromManagedThread(const ScopedObjectAccessAlreadyRunnable& soa,
|
|
jobject java_thread) {
|
|
return FromManagedThread(soa, soa.Decode<mirror::Object>(java_thread).Ptr());
|
|
}
|
|
|
|
static size_t FixStackSize(size_t stack_size) {
|
|
// A stack size of zero means "use the default".
|
|
if (stack_size == 0) {
|
|
stack_size = Runtime::Current()->GetDefaultStackSize();
|
|
}
|
|
|
|
// Dalvik used the bionic pthread default stack size for native threads,
|
|
// so include that here to support apps that expect large native stacks.
|
|
stack_size += 1 * MB;
|
|
|
|
// It's not possible to request a stack smaller than the system-defined PTHREAD_STACK_MIN.
|
|
if (stack_size < PTHREAD_STACK_MIN) {
|
|
stack_size = PTHREAD_STACK_MIN;
|
|
}
|
|
|
|
if (Runtime::Current()->ExplicitStackOverflowChecks()) {
|
|
// It's likely that callers are trying to ensure they have at least a certain amount of
|
|
// stack space, so we should add our reserved space on top of what they requested, rather
|
|
// than implicitly take it away from them.
|
|
stack_size += GetStackOverflowReservedBytes(kRuntimeISA);
|
|
} else {
|
|
// If we are going to use implicit stack checks, allocate space for the protected
|
|
// region at the bottom of the stack.
|
|
stack_size += Thread::kStackOverflowImplicitCheckSize +
|
|
GetStackOverflowReservedBytes(kRuntimeISA);
|
|
}
|
|
|
|
// Some systems require the stack size to be a multiple of the system page size, so round up.
|
|
stack_size = RoundUp(stack_size, kPageSize);
|
|
|
|
return stack_size;
|
|
}
|
|
|
|
// Return the nearest page-aligned address below the current stack top.
|
|
NO_INLINE
|
|
static uint8_t* FindStackTop() {
|
|
return reinterpret_cast<uint8_t*>(
|
|
AlignDown(__builtin_frame_address(0), kPageSize));
|
|
}
|
|
|
|
// Install a protected region in the stack. This is used to trigger a SIGSEGV if a stack
|
|
// overflow is detected. It is located right below the stack_begin_.
|
|
ATTRIBUTE_NO_SANITIZE_ADDRESS
|
|
void Thread::InstallImplicitProtection() {
|
|
uint8_t* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
|
|
// Page containing current top of stack.
|
|
uint8_t* stack_top = FindStackTop();
|
|
|
|
// Try to directly protect the stack.
|
|
VLOG(threads) << "installing stack protected region at " << std::hex <<
|
|
static_cast<void*>(pregion) << " to " <<
|
|
static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
|
|
if (ProtectStack(/* fatal_on_error */ false)) {
|
|
// Tell the kernel that we won't be needing these pages any more.
|
|
// NB. madvise will probably write zeroes into the memory (on linux it does).
|
|
uint32_t unwanted_size = stack_top - pregion - kPageSize;
|
|
madvise(pregion, unwanted_size, MADV_DONTNEED);
|
|
return;
|
|
}
|
|
|
|
// There is a little complexity here that deserves a special mention. On some
|
|
// architectures, the stack is created using a VM_GROWSDOWN flag
|
|
// to prevent memory being allocated when it's not needed. This flag makes the
|
|
// kernel only allocate memory for the stack by growing down in memory. Because we
|
|
// want to put an mprotected region far away from that at the stack top, we need
|
|
// to make sure the pages for the stack are mapped in before we call mprotect.
|
|
//
|
|
// The failed mprotect in UnprotectStack is an indication of a thread with VM_GROWSDOWN
|
|
// with a non-mapped stack (usually only the main thread).
|
|
//
|
|
// We map in the stack by reading every page from the stack bottom (highest address)
|
|
// to the stack top. (We then madvise this away.) This must be done by reading from the
|
|
// current stack pointer downwards.
|
|
//
|
|
// Accesses too far below the current machine register corresponding to the stack pointer (e.g.,
|
|
// ESP on x86[-32], SP on ARM) might cause a SIGSEGV (at least on x86 with newer kernels). We
|
|
// thus have to move the stack pointer. We do this portably by using a recursive function with a
|
|
// large stack frame size.
|
|
|
|
// (Defensively) first remove the protection on the protected region as we'll want to read
|
|
// and write it. Ignore errors.
|
|
UnprotectStack();
|
|
|
|
VLOG(threads) << "Need to map in stack for thread at " << std::hex <<
|
|
static_cast<void*>(pregion);
|
|
|
|
struct RecurseDownStack {
|
|
// This function has an intentionally large stack size.
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wframe-larger-than="
|
|
NO_INLINE
|
|
static void Touch(uintptr_t target) {
|
|
volatile size_t zero = 0;
|
|
// Use a large local volatile array to ensure a large frame size. Do not use anything close
|
|
// to a full page for ASAN. It would be nice to ensure the frame size is at most a page, but
|
|
// there is no pragma support for this.
|
|
// Note: for ASAN we need to shrink the array a bit, as there's other overhead.
|
|
constexpr size_t kAsanMultiplier =
|
|
#ifdef ADDRESS_SANITIZER
|
|
2u;
|
|
#else
|
|
1u;
|
|
#endif
|
|
volatile char space[kPageSize - (kAsanMultiplier * 256)];
|
|
char sink ATTRIBUTE_UNUSED = space[zero];
|
|
if (reinterpret_cast<uintptr_t>(space) >= target + kPageSize) {
|
|
Touch(target);
|
|
}
|
|
zero *= 2; // Try to avoid tail recursion.
|
|
}
|
|
#pragma GCC diagnostic pop
|
|
};
|
|
RecurseDownStack::Touch(reinterpret_cast<uintptr_t>(pregion));
|
|
|
|
VLOG(threads) << "(again) installing stack protected region at " << std::hex <<
|
|
static_cast<void*>(pregion) << " to " <<
|
|
static_cast<void*>(pregion + kStackOverflowProtectedSize - 1);
|
|
|
|
// Protect the bottom of the stack to prevent read/write to it.
|
|
ProtectStack(/* fatal_on_error */ true);
|
|
|
|
// Tell the kernel that we won't be needing these pages any more.
|
|
// NB. madvise will probably write zeroes into the memory (on linux it does).
|
|
uint32_t unwanted_size = stack_top - pregion - kPageSize;
|
|
madvise(pregion, unwanted_size, MADV_DONTNEED);
|
|
}
|
|
|
|
void Thread::CreateNativeThread(JNIEnv* env, jobject java_peer, size_t stack_size, bool is_daemon) {
|
|
CHECK(java_peer != nullptr);
|
|
Thread* self = static_cast<JNIEnvExt*>(env)->self;
|
|
|
|
if (VLOG_IS_ON(threads)) {
|
|
ScopedObjectAccess soa(env);
|
|
|
|
ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name);
|
|
ObjPtr<mirror::String> java_name =
|
|
f->GetObject(soa.Decode<mirror::Object>(java_peer))->AsString();
|
|
std::string thread_name;
|
|
if (java_name != nullptr) {
|
|
thread_name = java_name->ToModifiedUtf8();
|
|
} else {
|
|
thread_name = "(Unnamed)";
|
|
}
|
|
|
|
VLOG(threads) << "Creating native thread for " << thread_name;
|
|
self->Dump(LOG_STREAM(INFO));
|
|
}
|
|
|
|
Runtime* runtime = Runtime::Current();
|
|
|
|
// Atomically start the birth of the thread ensuring the runtime isn't shutting down.
|
|
bool thread_start_during_shutdown = false;
|
|
{
|
|
MutexLock mu(self, *Locks::runtime_shutdown_lock_);
|
|
if (runtime->IsShuttingDownLocked()) {
|
|
thread_start_during_shutdown = true;
|
|
} else {
|
|
runtime->StartThreadBirth();
|
|
}
|
|
}
|
|
if (thread_start_during_shutdown) {
|
|
ScopedLocalRef<jclass> error_class(env, env->FindClass("java/lang/InternalError"));
|
|
env->ThrowNew(error_class.get(), "Thread starting during runtime shutdown");
|
|
return;
|
|
}
|
|
|
|
Thread* child_thread = new Thread(is_daemon);
|
|
// Use global JNI ref to hold peer live while child thread starts.
|
|
child_thread->tlsPtr_.jpeer = env->NewGlobalRef(java_peer);
|
|
stack_size = FixStackSize(stack_size);
|
|
|
|
// Thread.start is synchronized, so we know that nativePeer is 0, and know that we're not racing to
|
|
// assign it.
|
|
env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer,
|
|
reinterpret_cast<jlong>(child_thread));
|
|
|
|
// Try to allocate a JNIEnvExt for the thread. We do this here as we might be out of memory and
|
|
// do not have a good way to report this on the child's side.
|
|
std::string error_msg;
|
|
std::unique_ptr<JNIEnvExt> child_jni_env_ext(
|
|
JNIEnvExt::Create(child_thread, Runtime::Current()->GetJavaVM(), &error_msg));
|
|
|
|
int pthread_create_result = 0;
|
|
if (child_jni_env_ext.get() != nullptr) {
|
|
pthread_t new_pthread;
|
|
pthread_attr_t attr;
|
|
child_thread->tlsPtr_.tmp_jni_env = child_jni_env_ext.get();
|
|
CHECK_PTHREAD_CALL(pthread_attr_init, (&attr), "new thread");
|
|
CHECK_PTHREAD_CALL(pthread_attr_setdetachstate, (&attr, PTHREAD_CREATE_DETACHED),
|
|
"PTHREAD_CREATE_DETACHED");
|
|
CHECK_PTHREAD_CALL(pthread_attr_setstacksize, (&attr, stack_size), stack_size);
|
|
pthread_create_result = pthread_create(&new_pthread,
|
|
&attr,
|
|
Thread::CreateCallback,
|
|
child_thread);
|
|
CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attr), "new thread");
|
|
|
|
if (pthread_create_result == 0) {
|
|
// pthread_create started the new thread. The child is now responsible for managing the
|
|
// JNIEnvExt we created.
|
|
// Note: we can't check for tmp_jni_env == nullptr, as that would require synchronization
|
|
// between the threads.
|
|
child_jni_env_ext.release();
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Either JNIEnvExt::Create or pthread_create(3) failed, so clean up.
|
|
{
|
|
MutexLock mu(self, *Locks::runtime_shutdown_lock_);
|
|
runtime->EndThreadBirth();
|
|
}
|
|
// Manually delete the global reference since Thread::Init will not have been run.
|
|
env->DeleteGlobalRef(child_thread->tlsPtr_.jpeer);
|
|
child_thread->tlsPtr_.jpeer = nullptr;
|
|
delete child_thread;
|
|
child_thread = nullptr;
|
|
// TODO: remove from thread group?
|
|
env->SetLongField(java_peer, WellKnownClasses::java_lang_Thread_nativePeer, 0);
|
|
{
|
|
std::string msg(child_jni_env_ext.get() == nullptr ?
|
|
StringPrintf("Could not allocate JNI Env: %s", error_msg.c_str()) :
|
|
StringPrintf("pthread_create (%s stack) failed: %s",
|
|
PrettySize(stack_size).c_str(), strerror(pthread_create_result)));
|
|
ScopedObjectAccess soa(env);
|
|
soa.Self()->ThrowOutOfMemoryError(msg.c_str());
|
|
}
|
|
}
|
|
|
|
bool Thread::Init(ThreadList* thread_list, JavaVMExt* java_vm, JNIEnvExt* jni_env_ext) {
|
|
// This function does all the initialization that must be run by the native thread it applies to.
|
|
// (When we create a new thread from managed code, we allocate the Thread* in Thread::Create so
|
|
// we can handshake with the corresponding native thread when it's ready.) Check this native
|
|
// thread hasn't been through here already...
|
|
CHECK(Thread::Current() == nullptr);
|
|
|
|
// Set pthread_self_ ahead of pthread_setspecific, that makes Thread::Current function, this
|
|
// avoids pthread_self_ ever being invalid when discovered from Thread::Current().
|
|
tlsPtr_.pthread_self = pthread_self();
|
|
CHECK(is_started_);
|
|
|
|
SetUpAlternateSignalStack();
|
|
if (!InitStackHwm()) {
|
|
return false;
|
|
}
|
|
InitCpu();
|
|
InitTlsEntryPoints();
|
|
RemoveSuspendTrigger();
|
|
InitCardTable();
|
|
InitTid();
|
|
interpreter::InitInterpreterTls(this);
|
|
|
|
#ifdef ART_TARGET_ANDROID
|
|
__get_tls()[TLS_SLOT_ART_THREAD_SELF] = this;
|
|
#else
|
|
CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, this), "attach self");
|
|
#endif
|
|
DCHECK_EQ(Thread::Current(), this);
|
|
|
|
tls32_.thin_lock_thread_id = thread_list->AllocThreadId(this);
|
|
|
|
if (jni_env_ext != nullptr) {
|
|
DCHECK_EQ(jni_env_ext->vm, java_vm);
|
|
DCHECK_EQ(jni_env_ext->self, this);
|
|
tlsPtr_.jni_env = jni_env_ext;
|
|
} else {
|
|
std::string error_msg;
|
|
tlsPtr_.jni_env = JNIEnvExt::Create(this, java_vm, &error_msg);
|
|
if (tlsPtr_.jni_env == nullptr) {
|
|
LOG(ERROR) << "Failed to create JNIEnvExt: " << error_msg;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
thread_list->Register(this);
|
|
return true;
|
|
}
|
|
|
|
template <typename PeerAction>
|
|
Thread* Thread::Attach(const char* thread_name, bool as_daemon, PeerAction peer_action) {
|
|
Runtime* runtime = Runtime::Current();
|
|
if (runtime == nullptr) {
|
|
LOG(ERROR) << "Thread attaching to non-existent runtime: " << thread_name;
|
|
return nullptr;
|
|
}
|
|
Thread* self;
|
|
{
|
|
MutexLock mu(nullptr, *Locks::runtime_shutdown_lock_);
|
|
if (runtime->IsShuttingDownLocked()) {
|
|
LOG(WARNING) << "Thread attaching while runtime is shutting down: " << thread_name;
|
|
return nullptr;
|
|
} else {
|
|
Runtime::Current()->StartThreadBirth();
|
|
self = new Thread(as_daemon);
|
|
bool init_success = self->Init(runtime->GetThreadList(), runtime->GetJavaVM());
|
|
Runtime::Current()->EndThreadBirth();
|
|
if (!init_success) {
|
|
delete self;
|
|
return nullptr;
|
|
}
|
|
}
|
|
}
|
|
|
|
self->InitStringEntryPoints();
|
|
|
|
CHECK_NE(self->GetState(), kRunnable);
|
|
self->SetState(kNative);
|
|
|
|
// Run the action that is acting on the peer.
|
|
if (!peer_action(self)) {
|
|
runtime->GetThreadList()->Unregister(self);
|
|
// Unregister deletes self, no need to do this here.
|
|
return nullptr;
|
|
}
|
|
|
|
if (VLOG_IS_ON(threads)) {
|
|
if (thread_name != nullptr) {
|
|
VLOG(threads) << "Attaching thread " << thread_name;
|
|
} else {
|
|
VLOG(threads) << "Attaching unnamed thread.";
|
|
}
|
|
ScopedObjectAccess soa(self);
|
|
self->Dump(LOG_STREAM(INFO));
|
|
}
|
|
|
|
{
|
|
ScopedObjectAccess soa(self);
|
|
runtime->GetRuntimeCallbacks()->ThreadStart(self);
|
|
}
|
|
|
|
return self;
|
|
}
|
|
|
|
Thread* Thread::Attach(const char* thread_name,
|
|
bool as_daemon,
|
|
jobject thread_group,
|
|
bool create_peer) {
|
|
auto create_peer_action = [&](Thread* self) {
|
|
// If we're the main thread, ClassLinker won't be created until after we're attached,
|
|
// so that thread needs a two-stage attach. Regular threads don't need this hack.
|
|
// In the compiler, all threads need this hack, because no-one's going to be getting
|
|
// a native peer!
|
|
if (create_peer) {
|
|
self->CreatePeer(thread_name, as_daemon, thread_group);
|
|
if (self->IsExceptionPending()) {
|
|
// We cannot keep the exception around, as we're deleting self. Try to be helpful and log it.
|
|
{
|
|
ScopedObjectAccess soa(self);
|
|
LOG(ERROR) << "Exception creating thread peer:";
|
|
LOG(ERROR) << self->GetException()->Dump();
|
|
self->ClearException();
|
|
}
|
|
return false;
|
|
}
|
|
} else {
|
|
// These aren't necessary, but they improve diagnostics for unit tests & command-line tools.
|
|
if (thread_name != nullptr) {
|
|
self->tlsPtr_.name->assign(thread_name);
|
|
::art::SetThreadName(thread_name);
|
|
} else if (self->GetJniEnv()->check_jni) {
|
|
LOG(WARNING) << *Thread::Current() << " attached without supplying a name";
|
|
}
|
|
}
|
|
return true;
|
|
};
|
|
return Attach(thread_name, as_daemon, create_peer_action);
|
|
}
|
|
|
|
Thread* Thread::Attach(const char* thread_name, bool as_daemon, jobject thread_peer) {
|
|
auto set_peer_action = [&](Thread* self) {
|
|
// Install the given peer.
|
|
{
|
|
DCHECK(self == Thread::Current());
|
|
ScopedObjectAccess soa(self);
|
|
self->tlsPtr_.opeer = soa.Decode<mirror::Object>(thread_peer).Ptr();
|
|
}
|
|
self->GetJniEnv()->SetLongField(thread_peer,
|
|
WellKnownClasses::java_lang_Thread_nativePeer,
|
|
reinterpret_cast<jlong>(self));
|
|
return true;
|
|
};
|
|
return Attach(thread_name, as_daemon, set_peer_action);
|
|
}
|
|
|
|
void Thread::CreatePeer(const char* name, bool as_daemon, jobject thread_group) {
|
|
Runtime* runtime = Runtime::Current();
|
|
CHECK(runtime->IsStarted());
|
|
JNIEnv* env = tlsPtr_.jni_env;
|
|
|
|
if (thread_group == nullptr) {
|
|
thread_group = runtime->GetMainThreadGroup();
|
|
}
|
|
ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
|
|
// Add missing null check in case of OOM b/18297817
|
|
if (name != nullptr && thread_name.get() == nullptr) {
|
|
CHECK(IsExceptionPending());
|
|
return;
|
|
}
|
|
jint thread_priority = GetNativePriority();
|
|
jboolean thread_is_daemon = as_daemon;
|
|
|
|
ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
|
|
if (peer.get() == nullptr) {
|
|
CHECK(IsExceptionPending());
|
|
return;
|
|
}
|
|
{
|
|
ScopedObjectAccess soa(this);
|
|
tlsPtr_.opeer = soa.Decode<mirror::Object>(peer.get()).Ptr();
|
|
}
|
|
env->CallNonvirtualVoidMethod(peer.get(),
|
|
WellKnownClasses::java_lang_Thread,
|
|
WellKnownClasses::java_lang_Thread_init,
|
|
thread_group, thread_name.get(), thread_priority, thread_is_daemon);
|
|
if (IsExceptionPending()) {
|
|
return;
|
|
}
|
|
|
|
Thread* self = this;
|
|
DCHECK_EQ(self, Thread::Current());
|
|
env->SetLongField(peer.get(), WellKnownClasses::java_lang_Thread_nativePeer,
|
|
reinterpret_cast<jlong>(self));
|
|
|
|
ScopedObjectAccess soa(self);
|
|
StackHandleScope<1> hs(self);
|
|
MutableHandle<mirror::String> peer_thread_name(hs.NewHandle(GetThreadName()));
|
|
if (peer_thread_name == nullptr) {
|
|
// The Thread constructor should have set the Thread.name to a
|
|
// non-null value. However, because we can run without code
|
|
// available (in the compiler, in tests), we manually assign the
|
|
// fields the constructor should have set.
|
|
if (runtime->IsActiveTransaction()) {
|
|
InitPeer<true>(soa,
|
|
tlsPtr_.opeer,
|
|
thread_is_daemon,
|
|
thread_group,
|
|
thread_name.get(),
|
|
thread_priority);
|
|
} else {
|
|
InitPeer<false>(soa,
|
|
tlsPtr_.opeer,
|
|
thread_is_daemon,
|
|
thread_group,
|
|
thread_name.get(),
|
|
thread_priority);
|
|
}
|
|
peer_thread_name.Assign(GetThreadName());
|
|
}
|
|
// 'thread_name' may have been null, so don't trust 'peer_thread_name' to be non-null.
|
|
if (peer_thread_name != nullptr) {
|
|
SetThreadName(peer_thread_name->ToModifiedUtf8().c_str());
|
|
}
|
|
}
|
|
|
|
jobject Thread::CreateCompileTimePeer(JNIEnv* env,
|
|
const char* name,
|
|
bool as_daemon,
|
|
jobject thread_group) {
|
|
Runtime* runtime = Runtime::Current();
|
|
CHECK(!runtime->IsStarted());
|
|
|
|
if (thread_group == nullptr) {
|
|
thread_group = runtime->GetMainThreadGroup();
|
|
}
|
|
ScopedLocalRef<jobject> thread_name(env, env->NewStringUTF(name));
|
|
// Add missing null check in case of OOM b/18297817
|
|
if (name != nullptr && thread_name.get() == nullptr) {
|
|
CHECK(Thread::Current()->IsExceptionPending());
|
|
return nullptr;
|
|
}
|
|
jint thread_priority = GetNativePriority();
|
|
jboolean thread_is_daemon = as_daemon;
|
|
|
|
ScopedLocalRef<jobject> peer(env, env->AllocObject(WellKnownClasses::java_lang_Thread));
|
|
if (peer.get() == nullptr) {
|
|
CHECK(Thread::Current()->IsExceptionPending());
|
|
return nullptr;
|
|
}
|
|
|
|
// We cannot call Thread.init, as it will recursively ask for currentThread.
|
|
|
|
// The Thread constructor should have set the Thread.name to a
|
|
// non-null value. However, because we can run without code
|
|
// available (in the compiler, in tests), we manually assign the
|
|
// fields the constructor should have set.
|
|
ScopedObjectAccessUnchecked soa(Thread::Current());
|
|
if (runtime->IsActiveTransaction()) {
|
|
InitPeer<true>(soa,
|
|
soa.Decode<mirror::Object>(peer.get()),
|
|
thread_is_daemon,
|
|
thread_group,
|
|
thread_name.get(),
|
|
thread_priority);
|
|
} else {
|
|
InitPeer<false>(soa,
|
|
soa.Decode<mirror::Object>(peer.get()),
|
|
thread_is_daemon,
|
|
thread_group,
|
|
thread_name.get(),
|
|
thread_priority);
|
|
}
|
|
|
|
return peer.release();
|
|
}
|
|
|
|
template<bool kTransactionActive>
|
|
void Thread::InitPeer(ScopedObjectAccessAlreadyRunnable& soa,
|
|
ObjPtr<mirror::Object> peer,
|
|
jboolean thread_is_daemon,
|
|
jobject thread_group,
|
|
jobject thread_name,
|
|
jint thread_priority) {
|
|
jni::DecodeArtField(WellKnownClasses::java_lang_Thread_daemon)->
|
|
SetBoolean<kTransactionActive>(peer, thread_is_daemon);
|
|
jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)->
|
|
SetObject<kTransactionActive>(peer, soa.Decode<mirror::Object>(thread_group));
|
|
jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name)->
|
|
SetObject<kTransactionActive>(peer, soa.Decode<mirror::Object>(thread_name));
|
|
jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority)->
|
|
SetInt<kTransactionActive>(peer, thread_priority);
|
|
}
|
|
|
|
void Thread::SetThreadName(const char* name) {
|
|
tlsPtr_.name->assign(name);
|
|
::art::SetThreadName(name);
|
|
Dbg::DdmSendThreadNotification(this, CHUNK_TYPE("THNM"));
|
|
}
|
|
|
|
static void GetThreadStack(pthread_t thread,
|
|
void** stack_base,
|
|
size_t* stack_size,
|
|
size_t* guard_size) {
|
|
#if defined(__APPLE__)
|
|
*stack_size = pthread_get_stacksize_np(thread);
|
|
void* stack_addr = pthread_get_stackaddr_np(thread);
|
|
|
|
// Check whether stack_addr is the base or end of the stack.
|
|
// (On Mac OS 10.7, it's the end.)
|
|
int stack_variable;
|
|
if (stack_addr > &stack_variable) {
|
|
*stack_base = reinterpret_cast<uint8_t*>(stack_addr) - *stack_size;
|
|
} else {
|
|
*stack_base = stack_addr;
|
|
}
|
|
|
|
// This is wrong, but there doesn't seem to be a way to get the actual value on the Mac.
|
|
pthread_attr_t attributes;
|
|
CHECK_PTHREAD_CALL(pthread_attr_init, (&attributes), __FUNCTION__);
|
|
CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
|
|
CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
|
|
#else
|
|
pthread_attr_t attributes;
|
|
CHECK_PTHREAD_CALL(pthread_getattr_np, (thread, &attributes), __FUNCTION__);
|
|
CHECK_PTHREAD_CALL(pthread_attr_getstack, (&attributes, stack_base, stack_size), __FUNCTION__);
|
|
CHECK_PTHREAD_CALL(pthread_attr_getguardsize, (&attributes, guard_size), __FUNCTION__);
|
|
CHECK_PTHREAD_CALL(pthread_attr_destroy, (&attributes), __FUNCTION__);
|
|
|
|
#if defined(__GLIBC__)
|
|
// If we're the main thread, check whether we were run with an unlimited stack. In that case,
|
|
// glibc will have reported a 2GB stack for our 32-bit process, and our stack overflow detection
|
|
// will be broken because we'll die long before we get close to 2GB.
|
|
bool is_main_thread = (::art::GetTid() == getpid());
|
|
if (is_main_thread) {
|
|
rlimit stack_limit;
|
|
if (getrlimit(RLIMIT_STACK, &stack_limit) == -1) {
|
|
PLOG(FATAL) << "getrlimit(RLIMIT_STACK) failed";
|
|
}
|
|
if (stack_limit.rlim_cur == RLIM_INFINITY) {
|
|
size_t old_stack_size = *stack_size;
|
|
|
|
// Use the kernel default limit as our size, and adjust the base to match.
|
|
*stack_size = 8 * MB;
|
|
*stack_base = reinterpret_cast<uint8_t*>(*stack_base) + (old_stack_size - *stack_size);
|
|
|
|
VLOG(threads) << "Limiting unlimited stack (reported as " << PrettySize(old_stack_size) << ")"
|
|
<< " to " << PrettySize(*stack_size)
|
|
<< " with base " << *stack_base;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#endif
|
|
}
|
|
|
|
bool Thread::InitStackHwm() {
|
|
void* read_stack_base;
|
|
size_t read_stack_size;
|
|
size_t read_guard_size;
|
|
GetThreadStack(tlsPtr_.pthread_self, &read_stack_base, &read_stack_size, &read_guard_size);
|
|
|
|
tlsPtr_.stack_begin = reinterpret_cast<uint8_t*>(read_stack_base);
|
|
tlsPtr_.stack_size = read_stack_size;
|
|
|
|
// The minimum stack size we can cope with is the overflow reserved bytes (typically
|
|
// 8K) + the protected region size (4K) + another page (4K). Typically this will
|
|
// be 8+4+4 = 16K. The thread won't be able to do much with this stack even the GC takes
|
|
// between 8K and 12K.
|
|
uint32_t min_stack = GetStackOverflowReservedBytes(kRuntimeISA) + kStackOverflowProtectedSize
|
|
+ 4 * KB;
|
|
if (read_stack_size <= min_stack) {
|
|
// Note, as we know the stack is small, avoid operations that could use a lot of stack.
|
|
LogHelper::LogLineLowStack(__PRETTY_FUNCTION__,
|
|
__LINE__,
|
|
::android::base::ERROR,
|
|
"Attempt to attach a thread with a too-small stack");
|
|
return false;
|
|
}
|
|
|
|
// This is included in the SIGQUIT output, but it's useful here for thread debugging.
|
|
VLOG(threads) << StringPrintf("Native stack is at %p (%s with %s guard)",
|
|
read_stack_base,
|
|
PrettySize(read_stack_size).c_str(),
|
|
PrettySize(read_guard_size).c_str());
|
|
|
|
// Set stack_end_ to the bottom of the stack saving space of stack overflows
|
|
|
|
Runtime* runtime = Runtime::Current();
|
|
bool implicit_stack_check = !runtime->ExplicitStackOverflowChecks() && !runtime->IsAotCompiler();
|
|
|
|
// Valgrind on arm doesn't give the right values here. Do not install the guard page, and
|
|
// effectively disable stack overflow checks (we'll get segfaults, potentially) by setting
|
|
// stack_begin to 0.
|
|
const bool valgrind_on_arm =
|
|
(kRuntimeISA == kArm || kRuntimeISA == kArm64) &&
|
|
kMemoryToolIsValgrind &&
|
|
RUNNING_ON_MEMORY_TOOL != 0;
|
|
if (valgrind_on_arm) {
|
|
tlsPtr_.stack_begin = nullptr;
|
|
}
|
|
|
|
ResetDefaultStackEnd();
|
|
|
|
// Install the protected region if we are doing implicit overflow checks.
|
|
if (implicit_stack_check && !valgrind_on_arm) {
|
|
// The thread might have protected region at the bottom. We need
|
|
// to install our own region so we need to move the limits
|
|
// of the stack to make room for it.
|
|
|
|
tlsPtr_.stack_begin += read_guard_size + kStackOverflowProtectedSize;
|
|
tlsPtr_.stack_end += read_guard_size + kStackOverflowProtectedSize;
|
|
tlsPtr_.stack_size -= read_guard_size;
|
|
|
|
InstallImplicitProtection();
|
|
}
|
|
|
|
// Sanity check.
|
|
CHECK_GT(FindStackTop(), reinterpret_cast<void*>(tlsPtr_.stack_end));
|
|
|
|
return true;
|
|
}
|
|
|
|
void Thread::ShortDump(std::ostream& os) const {
|
|
os << "Thread[";
|
|
if (GetThreadId() != 0) {
|
|
// If we're in kStarting, we won't have a thin lock id or tid yet.
|
|
os << GetThreadId()
|
|
<< ",tid=" << GetTid() << ',';
|
|
}
|
|
os << GetState()
|
|
<< ",Thread*=" << this
|
|
<< ",peer=" << tlsPtr_.opeer
|
|
<< ",\"" << (tlsPtr_.name != nullptr ? *tlsPtr_.name : "null") << "\""
|
|
<< "]";
|
|
}
|
|
|
|
void Thread::Dump(std::ostream& os, bool dump_native_stack, BacktraceMap* backtrace_map,
|
|
bool force_dump_stack) const {
|
|
DumpState(os);
|
|
DumpStack(os, dump_native_stack, backtrace_map, force_dump_stack);
|
|
}
|
|
|
|
mirror::String* Thread::GetThreadName() const {
|
|
ArtField* f = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_name);
|
|
if (tlsPtr_.opeer == nullptr) {
|
|
return nullptr;
|
|
}
|
|
ObjPtr<mirror::Object> name = f->GetObject(tlsPtr_.opeer);
|
|
return name == nullptr ? nullptr : name->AsString();
|
|
}
|
|
|
|
void Thread::GetThreadName(std::string& name) const {
|
|
name.assign(*tlsPtr_.name);
|
|
}
|
|
|
|
uint64_t Thread::GetCpuMicroTime() const {
|
|
#if defined(__linux__)
|
|
clockid_t cpu_clock_id;
|
|
pthread_getcpuclockid(tlsPtr_.pthread_self, &cpu_clock_id);
|
|
timespec now;
|
|
clock_gettime(cpu_clock_id, &now);
|
|
return static_cast<uint64_t>(now.tv_sec) * UINT64_C(1000000) + now.tv_nsec / UINT64_C(1000);
|
|
#else // __APPLE__
|
|
UNIMPLEMENTED(WARNING);
|
|
return -1;
|
|
#endif
|
|
}
|
|
|
|
// Attempt to rectify locks so that we dump thread list with required locks before exiting.
|
|
static void UnsafeLogFatalForSuspendCount(Thread* self, Thread* thread) NO_THREAD_SAFETY_ANALYSIS {
|
|
LOG(ERROR) << *thread << " suspend count already zero.";
|
|
Locks::thread_suspend_count_lock_->Unlock(self);
|
|
if (!Locks::mutator_lock_->IsSharedHeld(self)) {
|
|
Locks::mutator_lock_->SharedTryLock(self);
|
|
if (!Locks::mutator_lock_->IsSharedHeld(self)) {
|
|
LOG(WARNING) << "Dumping thread list without holding mutator_lock_";
|
|
}
|
|
}
|
|
if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
|
|
Locks::thread_list_lock_->TryLock(self);
|
|
if (!Locks::thread_list_lock_->IsExclusiveHeld(self)) {
|
|
LOG(WARNING) << "Dumping thread list without holding thread_list_lock_";
|
|
}
|
|
}
|
|
std::ostringstream ss;
|
|
Runtime::Current()->GetThreadList()->Dump(ss);
|
|
LOG(FATAL) << ss.str();
|
|
}
|
|
|
|
bool Thread::ModifySuspendCountInternal(Thread* self,
|
|
int delta,
|
|
AtomicInteger* suspend_barrier,
|
|
SuspendReason reason) {
|
|
if (kIsDebugBuild) {
|
|
DCHECK(delta == -1 || delta == +1 || delta == -tls32_.debug_suspend_count)
|
|
<< reason << " " << delta << " " << tls32_.debug_suspend_count << " " << this;
|
|
DCHECK_GE(tls32_.suspend_count, tls32_.debug_suspend_count) << this;
|
|
Locks::thread_suspend_count_lock_->AssertHeld(self);
|
|
if (this != self && !IsSuspended()) {
|
|
Locks::thread_list_lock_->AssertHeld(self);
|
|
}
|
|
}
|
|
// User code suspensions need to be checked more closely since they originate from code outside of
|
|
// the runtime's control.
|
|
if (UNLIKELY(reason == SuspendReason::kForUserCode)) {
|
|
Locks::user_code_suspension_lock_->AssertHeld(self);
|
|
if (UNLIKELY(delta + tls32_.user_code_suspend_count < 0)) {
|
|
LOG(ERROR) << "attempting to modify suspend count in an illegal way.";
|
|
return false;
|
|
}
|
|
}
|
|
if (UNLIKELY(delta < 0 && tls32_.suspend_count <= 0)) {
|
|
UnsafeLogFatalForSuspendCount(self, this);
|
|
return false;
|
|
}
|
|
|
|
if (kUseReadBarrier && delta > 0 && this != self && tlsPtr_.flip_function != nullptr) {
|
|
// Force retry of a suspend request if it's in the middle of a thread flip to avoid a
|
|
// deadlock. b/31683379.
|
|
return false;
|
|
}
|
|
|
|
uint16_t flags = kSuspendRequest;
|
|
if (delta > 0 && suspend_barrier != nullptr) {
|
|
uint32_t available_barrier = kMaxSuspendBarriers;
|
|
for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
|
|
if (tlsPtr_.active_suspend_barriers[i] == nullptr) {
|
|
available_barrier = i;
|
|
break;
|
|
}
|
|
}
|
|
if (available_barrier == kMaxSuspendBarriers) {
|
|
// No barrier spaces available, we can't add another.
|
|
return false;
|
|
}
|
|
tlsPtr_.active_suspend_barriers[available_barrier] = suspend_barrier;
|
|
flags |= kActiveSuspendBarrier;
|
|
}
|
|
|
|
tls32_.suspend_count += delta;
|
|
switch (reason) {
|
|
case SuspendReason::kForDebugger:
|
|
tls32_.debug_suspend_count += delta;
|
|
break;
|
|
case SuspendReason::kForUserCode:
|
|
tls32_.user_code_suspend_count += delta;
|
|
break;
|
|
case SuspendReason::kInternal:
|
|
break;
|
|
}
|
|
|
|
if (tls32_.suspend_count == 0) {
|
|
AtomicClearFlag(kSuspendRequest);
|
|
} else {
|
|
// Two bits might be set simultaneously.
|
|
tls32_.state_and_flags.as_atomic_int.FetchAndOrSequentiallyConsistent(flags);
|
|
TriggerSuspend();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool Thread::PassActiveSuspendBarriers(Thread* self) {
|
|
// Grab the suspend_count lock and copy the current set of
|
|
// barriers. Then clear the list and the flag. The ModifySuspendCount
|
|
// function requires the lock so we prevent a race between setting
|
|
// the kActiveSuspendBarrier flag and clearing it.
|
|
AtomicInteger* pass_barriers[kMaxSuspendBarriers];
|
|
{
|
|
MutexLock mu(self, *Locks::thread_suspend_count_lock_);
|
|
if (!ReadFlag(kActiveSuspendBarrier)) {
|
|
// quick exit test: the barriers have already been claimed - this is
|
|
// possible as there may be a race to claim and it doesn't matter
|
|
// who wins.
|
|
// All of the callers of this function (except the SuspendAllInternal)
|
|
// will first test the kActiveSuspendBarrier flag without lock. Here
|
|
// double-check whether the barrier has been passed with the
|
|
// suspend_count lock.
|
|
return false;
|
|
}
|
|
|
|
for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
|
|
pass_barriers[i] = tlsPtr_.active_suspend_barriers[i];
|
|
tlsPtr_.active_suspend_barriers[i] = nullptr;
|
|
}
|
|
AtomicClearFlag(kActiveSuspendBarrier);
|
|
}
|
|
|
|
uint32_t barrier_count = 0;
|
|
for (uint32_t i = 0; i < kMaxSuspendBarriers; i++) {
|
|
AtomicInteger* pending_threads = pass_barriers[i];
|
|
if (pending_threads != nullptr) {
|
|
bool done = false;
|
|
do {
|
|
int32_t cur_val = pending_threads->LoadRelaxed();
|
|
CHECK_GT(cur_val, 0) << "Unexpected value for PassActiveSuspendBarriers(): " << cur_val;
|
|
// Reduce value by 1.
|
|
done = pending_threads->CompareExchangeWeakRelaxed(cur_val, cur_val - 1);
|
|
#if ART_USE_FUTEXES
|
|
if (done && (cur_val - 1) == 0) { // Weak CAS may fail spuriously.
|
|
futex(pending_threads->Address(), FUTEX_WAKE, -1, nullptr, nullptr, 0);
|
|
}
|
|
#endif
|
|
} while (!done);
|
|
++barrier_count;
|
|
}
|
|
}
|
|
CHECK_GT(barrier_count, 0U);
|
|
return true;
|
|
}
|
|
|
|
void Thread::ClearSuspendBarrier(AtomicInteger* target) {
|
|
CHECK(ReadFlag(kActiveSuspendBarrier));
|
|
bool clear_flag = true;
|
|
for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
|
|
AtomicInteger* ptr = tlsPtr_.active_suspend_barriers[i];
|
|
if (ptr == target) {
|
|
tlsPtr_.active_suspend_barriers[i] = nullptr;
|
|
} else if (ptr != nullptr) {
|
|
clear_flag = false;
|
|
}
|
|
}
|
|
if (LIKELY(clear_flag)) {
|
|
AtomicClearFlag(kActiveSuspendBarrier);
|
|
}
|
|
}
|
|
|
|
void Thread::RunCheckpointFunction() {
|
|
bool done = false;
|
|
do {
|
|
// Grab the suspend_count lock and copy the checkpoints one by one. When the last checkpoint is
|
|
// copied, clear the list and the flag. The RequestCheckpoint function will also grab this lock
|
|
// to prevent a race between setting the kCheckpointRequest flag and clearing it.
|
|
Closure* checkpoint = nullptr;
|
|
{
|
|
MutexLock mu(this, *Locks::thread_suspend_count_lock_);
|
|
if (tlsPtr_.checkpoint_function != nullptr) {
|
|
checkpoint = tlsPtr_.checkpoint_function;
|
|
if (!checkpoint_overflow_.empty()) {
|
|
// Overflow list not empty, copy the first one out and continue.
|
|
tlsPtr_.checkpoint_function = checkpoint_overflow_.front();
|
|
checkpoint_overflow_.pop_front();
|
|
} else {
|
|
// No overflow checkpoints, this means that we are on the last pending checkpoint.
|
|
tlsPtr_.checkpoint_function = nullptr;
|
|
AtomicClearFlag(kCheckpointRequest);
|
|
done = true;
|
|
}
|
|
} else {
|
|
LOG(FATAL) << "Checkpoint flag set without pending checkpoint";
|
|
}
|
|
}
|
|
|
|
// Outside the lock, run the checkpoint functions that we collected.
|
|
ScopedTrace trace("Run checkpoint function");
|
|
DCHECK(checkpoint != nullptr);
|
|
checkpoint->Run(this);
|
|
} while (!done);
|
|
}
|
|
|
|
void Thread::RunEmptyCheckpoint() {
|
|
DCHECK_EQ(Thread::Current(), this);
|
|
AtomicClearFlag(kEmptyCheckpointRequest);
|
|
Runtime::Current()->GetThreadList()->EmptyCheckpointBarrier()->Pass(this);
|
|
}
|
|
|
|
bool Thread::RequestCheckpoint(Closure* function) {
|
|
union StateAndFlags old_state_and_flags;
|
|
old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
|
|
if (old_state_and_flags.as_struct.state != kRunnable) {
|
|
return false; // Fail, thread is suspended and so can't run a checkpoint.
|
|
}
|
|
|
|
// We must be runnable to request a checkpoint.
|
|
DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
|
|
union StateAndFlags new_state_and_flags;
|
|
new_state_and_flags.as_int = old_state_and_flags.as_int;
|
|
new_state_and_flags.as_struct.flags |= kCheckpointRequest;
|
|
bool success = tls32_.state_and_flags.as_atomic_int.CompareExchangeStrongSequentiallyConsistent(
|
|
old_state_and_flags.as_int, new_state_and_flags.as_int);
|
|
if (success) {
|
|
// Succeeded setting checkpoint flag, now insert the actual checkpoint.
|
|
if (tlsPtr_.checkpoint_function == nullptr) {
|
|
tlsPtr_.checkpoint_function = function;
|
|
} else {
|
|
checkpoint_overflow_.push_back(function);
|
|
}
|
|
CHECK_EQ(ReadFlag(kCheckpointRequest), true);
|
|
TriggerSuspend();
|
|
}
|
|
return success;
|
|
}
|
|
|
|
bool Thread::RequestEmptyCheckpoint() {
|
|
union StateAndFlags old_state_and_flags;
|
|
old_state_and_flags.as_int = tls32_.state_and_flags.as_int;
|
|
if (old_state_and_flags.as_struct.state != kRunnable) {
|
|
// If it's not runnable, we don't need to do anything because it won't be in the middle of a
|
|
// heap access (eg. the read barrier).
|
|
return false;
|
|
}
|
|
|
|
// We must be runnable to request a checkpoint.
|
|
DCHECK_EQ(old_state_and_flags.as_struct.state, kRunnable);
|
|
union StateAndFlags new_state_and_flags;
|
|
new_state_and_flags.as_int = old_state_and_flags.as_int;
|
|
new_state_and_flags.as_struct.flags |= kEmptyCheckpointRequest;
|
|
bool success = tls32_.state_and_flags.as_atomic_int.CompareExchangeStrongSequentiallyConsistent(
|
|
old_state_and_flags.as_int, new_state_and_flags.as_int);
|
|
if (success) {
|
|
TriggerSuspend();
|
|
}
|
|
return success;
|
|
}
|
|
|
|
class BarrierClosure : public Closure {
|
|
public:
|
|
explicit BarrierClosure(Closure* wrapped) : wrapped_(wrapped), barrier_(0) {}
|
|
|
|
void Run(Thread* self) OVERRIDE {
|
|
wrapped_->Run(self);
|
|
barrier_.Pass(self);
|
|
}
|
|
|
|
void Wait(Thread* self) {
|
|
barrier_.Increment(self, 1);
|
|
}
|
|
|
|
private:
|
|
Closure* wrapped_;
|
|
Barrier barrier_;
|
|
};
|
|
|
|
bool Thread::RequestSynchronousCheckpoint(Closure* function) {
|
|
if (this == Thread::Current()) {
|
|
// Asked to run on this thread. Just run.
|
|
function->Run(this);
|
|
return true;
|
|
}
|
|
Thread* self = Thread::Current();
|
|
|
|
// The current thread is not this thread.
|
|
|
|
if (GetState() == ThreadState::kTerminated) {
|
|
return false;
|
|
}
|
|
|
|
// Note: we're holding the thread-list lock. The thread cannot die at this point.
|
|
struct ScopedThreadListLockUnlock {
|
|
explicit ScopedThreadListLockUnlock(Thread* self_in) RELEASE(*Locks::thread_list_lock_)
|
|
: self_thread(self_in) {
|
|
Locks::thread_list_lock_->AssertHeld(self_thread);
|
|
Locks::thread_list_lock_->Unlock(self_thread);
|
|
}
|
|
|
|
~ScopedThreadListLockUnlock() ACQUIRE(*Locks::thread_list_lock_) {
|
|
Locks::thread_list_lock_->AssertNotHeld(self_thread);
|
|
Locks::thread_list_lock_->Lock(self_thread);
|
|
}
|
|
|
|
Thread* self_thread;
|
|
};
|
|
|
|
for (;;) {
|
|
// If this thread is runnable, try to schedule a checkpoint. Do some gymnastics to not hold the
|
|
// suspend-count lock for too long.
|
|
if (GetState() == ThreadState::kRunnable) {
|
|
BarrierClosure barrier_closure(function);
|
|
bool installed = false;
|
|
{
|
|
MutexLock mu(self, *Locks::thread_suspend_count_lock_);
|
|
installed = RequestCheckpoint(&barrier_closure);
|
|
}
|
|
if (installed) {
|
|
// Relinquish the thread-list lock, temporarily. We should not wait holding any locks.
|
|
ScopedThreadListLockUnlock stllu(self);
|
|
ScopedThreadSuspension sts(self, ThreadState::kWaiting);
|
|
barrier_closure.Wait(self);
|
|
return true;
|
|
}
|
|
// Fall-through.
|
|
}
|
|
|
|
// This thread is not runnable, make sure we stay suspended, then run the checkpoint.
|
|
// Note: ModifySuspendCountInternal also expects the thread_list_lock to be held in
|
|
// certain situations.
|
|
{
|
|
MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
|
|
|
|
if (!ModifySuspendCount(self, +1, nullptr, SuspendReason::kInternal)) {
|
|
// Just retry the loop.
|
|
sched_yield();
|
|
continue;
|
|
}
|
|
}
|
|
|
|
{
|
|
ScopedThreadListLockUnlock stllu(self);
|
|
{
|
|
ScopedThreadSuspension sts(self, ThreadState::kWaiting);
|
|
while (GetState() == ThreadState::kRunnable) {
|
|
// We became runnable again. Wait till the suspend triggered in ModifySuspendCount
|
|
// moves us to suspended.
|
|
sched_yield();
|
|
}
|
|
}
|
|
|
|
function->Run(this);
|
|
}
|
|
|
|
{
|
|
MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
|
|
|
|
DCHECK_NE(GetState(), ThreadState::kRunnable);
|
|
bool updated = ModifySuspendCount(self, -1, nullptr, SuspendReason::kInternal);
|
|
DCHECK(updated);
|
|
}
|
|
|
|
{
|
|
// Imitate ResumeAll, the thread may be waiting on Thread::resume_cond_ since we raised its
|
|
// suspend count. Now the suspend_count_ is lowered so we must do the broadcast.
|
|
MutexLock mu2(self, *Locks::thread_suspend_count_lock_);
|
|
Thread::resume_cond_->Broadcast(self);
|
|
}
|
|
|
|
return true; // We're done, break out of the loop.
|
|
}
|
|
}
|
|
|
|
Closure* Thread::GetFlipFunction() {
|
|
Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function);
|
|
Closure* func;
|
|
do {
|
|
func = atomic_func->LoadRelaxed();
|
|
if (func == nullptr) {
|
|
return nullptr;
|
|
}
|
|
} while (!atomic_func->CompareExchangeWeakSequentiallyConsistent(func, nullptr));
|
|
DCHECK(func != nullptr);
|
|
return func;
|
|
}
|
|
|
|
void Thread::SetFlipFunction(Closure* function) {
|
|
CHECK(function != nullptr);
|
|
Atomic<Closure*>* atomic_func = reinterpret_cast<Atomic<Closure*>*>(&tlsPtr_.flip_function);
|
|
atomic_func->StoreSequentiallyConsistent(function);
|
|
}
|
|
|
|
void Thread::FullSuspendCheck() {
|
|
ScopedTrace trace(__FUNCTION__);
|
|
VLOG(threads) << this << " self-suspending";
|
|
// Make thread appear suspended to other threads, release mutator_lock_.
|
|
// Transition to suspended and back to runnable, re-acquire share on mutator_lock_.
|
|
ScopedThreadSuspension(this, kSuspended);
|
|
VLOG(threads) << this << " self-reviving";
|
|
}
|
|
|
|
static std::string GetSchedulerGroupName(pid_t tid) {
|
|
// /proc/<pid>/cgroup looks like this:
|
|
// 2:devices:/
|
|
// 1:cpuacct,cpu:/
|
|
// We want the third field from the line whose second field contains the "cpu" token.
|
|
std::string cgroup_file;
|
|
if (!ReadFileToString(StringPrintf("/proc/self/task/%d/cgroup", tid), &cgroup_file)) {
|
|
return "";
|
|
}
|
|
std::vector<std::string> cgroup_lines;
|
|
Split(cgroup_file, '\n', &cgroup_lines);
|
|
for (size_t i = 0; i < cgroup_lines.size(); ++i) {
|
|
std::vector<std::string> cgroup_fields;
|
|
Split(cgroup_lines[i], ':', &cgroup_fields);
|
|
std::vector<std::string> cgroups;
|
|
Split(cgroup_fields[1], ',', &cgroups);
|
|
for (size_t j = 0; j < cgroups.size(); ++j) {
|
|
if (cgroups[j] == "cpu") {
|
|
return cgroup_fields[2].substr(1); // Skip the leading slash.
|
|
}
|
|
}
|
|
}
|
|
return "";
|
|
}
|
|
|
|
|
|
void Thread::DumpState(std::ostream& os, const Thread* thread, pid_t tid) {
|
|
std::string group_name;
|
|
int priority;
|
|
bool is_daemon = false;
|
|
Thread* self = Thread::Current();
|
|
|
|
// If flip_function is not null, it means we have run a checkpoint
|
|
// before the thread wakes up to execute the flip function and the
|
|
// thread roots haven't been forwarded. So the following access to
|
|
// the roots (opeer or methods in the frames) would be bad. Run it
|
|
// here. TODO: clean up.
|
|
if (thread != nullptr) {
|
|
ScopedObjectAccessUnchecked soa(self);
|
|
Thread* this_thread = const_cast<Thread*>(thread);
|
|
Closure* flip_func = this_thread->GetFlipFunction();
|
|
if (flip_func != nullptr) {
|
|
flip_func->Run(this_thread);
|
|
}
|
|
}
|
|
|
|
// Don't do this if we are aborting since the GC may have all the threads suspended. This will
|
|
// cause ScopedObjectAccessUnchecked to deadlock.
|
|
if (gAborting == 0 && self != nullptr && thread != nullptr && thread->tlsPtr_.opeer != nullptr) {
|
|
ScopedObjectAccessUnchecked soa(self);
|
|
priority = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_priority)
|
|
->GetInt(thread->tlsPtr_.opeer);
|
|
is_daemon = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_daemon)
|
|
->GetBoolean(thread->tlsPtr_.opeer);
|
|
|
|
ObjPtr<mirror::Object> thread_group =
|
|
jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)
|
|
->GetObject(thread->tlsPtr_.opeer);
|
|
|
|
if (thread_group != nullptr) {
|
|
ArtField* group_name_field =
|
|
jni::DecodeArtField(WellKnownClasses::java_lang_ThreadGroup_name);
|
|
ObjPtr<mirror::String> group_name_string =
|
|
group_name_field->GetObject(thread_group)->AsString();
|
|
group_name = (group_name_string != nullptr) ? group_name_string->ToModifiedUtf8() : "<null>";
|
|
}
|
|
} else {
|
|
priority = GetNativePriority();
|
|
}
|
|
|
|
std::string scheduler_group_name(GetSchedulerGroupName(tid));
|
|
if (scheduler_group_name.empty()) {
|
|
scheduler_group_name = "default";
|
|
}
|
|
|
|
if (thread != nullptr) {
|
|
os << '"' << *thread->tlsPtr_.name << '"';
|
|
if (is_daemon) {
|
|
os << " daemon";
|
|
}
|
|
os << " prio=" << priority
|
|
<< " tid=" << thread->GetThreadId()
|
|
<< " " << thread->GetState();
|
|
if (thread->IsStillStarting()) {
|
|
os << " (still starting up)";
|
|
}
|
|
os << "\n";
|
|
} else {
|
|
os << '"' << ::art::GetThreadName(tid) << '"'
|
|
<< " prio=" << priority
|
|
<< " (not attached)\n";
|
|
}
|
|
|
|
if (thread != nullptr) {
|
|
MutexLock mu(self, *Locks::thread_suspend_count_lock_);
|
|
os << " | group=\"" << group_name << "\""
|
|
<< " sCount=" << thread->tls32_.suspend_count
|
|
<< " dsCount=" << thread->tls32_.debug_suspend_count
|
|
<< " flags=" << thread->tls32_.state_and_flags.as_struct.flags
|
|
<< " obj=" << reinterpret_cast<void*>(thread->tlsPtr_.opeer)
|
|
<< " self=" << reinterpret_cast<const void*>(thread) << "\n";
|
|
}
|
|
|
|
os << " | sysTid=" << tid
|
|
<< " nice=" << getpriority(PRIO_PROCESS, tid)
|
|
<< " cgrp=" << scheduler_group_name;
|
|
if (thread != nullptr) {
|
|
int policy;
|
|
sched_param sp;
|
|
#if !defined(__APPLE__)
|
|
// b/36445592 Don't use pthread_getschedparam since pthread may have exited.
|
|
policy = sched_getscheduler(tid);
|
|
if (policy == -1) {
|
|
PLOG(WARNING) << "sched_getscheduler(" << tid << ")";
|
|
}
|
|
int sched_getparam_result = sched_getparam(tid, &sp);
|
|
if (sched_getparam_result == -1) {
|
|
PLOG(WARNING) << "sched_getparam(" << tid << ", &sp)";
|
|
sp.sched_priority = -1;
|
|
}
|
|
#else
|
|
CHECK_PTHREAD_CALL(pthread_getschedparam, (thread->tlsPtr_.pthread_self, &policy, &sp),
|
|
__FUNCTION__);
|
|
#endif
|
|
os << " sched=" << policy << "/" << sp.sched_priority
|
|
<< " handle=" << reinterpret_cast<void*>(thread->tlsPtr_.pthread_self);
|
|
}
|
|
os << "\n";
|
|
|
|
// Grab the scheduler stats for this thread.
|
|
std::string scheduler_stats;
|
|
if (ReadFileToString(StringPrintf("/proc/self/task/%d/schedstat", tid), &scheduler_stats)) {
|
|
scheduler_stats.resize(scheduler_stats.size() - 1); // Lose the trailing '\n'.
|
|
} else {
|
|
scheduler_stats = "0 0 0";
|
|
}
|
|
|
|
char native_thread_state = '?';
|
|
int utime = 0;
|
|
int stime = 0;
|
|
int task_cpu = 0;
|
|
GetTaskStats(tid, &native_thread_state, &utime, &stime, &task_cpu);
|
|
|
|
os << " | state=" << native_thread_state
|
|
<< " schedstat=( " << scheduler_stats << " )"
|
|
<< " utm=" << utime
|
|
<< " stm=" << stime
|
|
<< " core=" << task_cpu
|
|
<< " HZ=" << sysconf(_SC_CLK_TCK) << "\n";
|
|
if (thread != nullptr) {
|
|
os << " | stack=" << reinterpret_cast<void*>(thread->tlsPtr_.stack_begin) << "-"
|
|
<< reinterpret_cast<void*>(thread->tlsPtr_.stack_end) << " stackSize="
|
|
<< PrettySize(thread->tlsPtr_.stack_size) << "\n";
|
|
// Dump the held mutexes.
|
|
os << " | held mutexes=";
|
|
for (size_t i = 0; i < kLockLevelCount; ++i) {
|
|
if (i != kMonitorLock) {
|
|
BaseMutex* mutex = thread->GetHeldMutex(static_cast<LockLevel>(i));
|
|
if (mutex != nullptr) {
|
|
os << " \"" << mutex->GetName() << "\"";
|
|
if (mutex->IsReaderWriterMutex()) {
|
|
ReaderWriterMutex* rw_mutex = down_cast<ReaderWriterMutex*>(mutex);
|
|
if (rw_mutex->GetExclusiveOwnerTid() == static_cast<uint64_t>(tid)) {
|
|
os << "(exclusive held)";
|
|
} else {
|
|
os << "(shared held)";
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
os << "\n";
|
|
}
|
|
}
|
|
|
|
void Thread::DumpState(std::ostream& os) const {
|
|
Thread::DumpState(os, this, GetTid());
|
|
}
|
|
|
|
struct StackDumpVisitor : public StackVisitor {
|
|
StackDumpVisitor(std::ostream& os_in,
|
|
Thread* thread_in,
|
|
Context* context,
|
|
bool can_allocate_in,
|
|
bool check_suspended = true,
|
|
bool dump_locks_in = true)
|
|
REQUIRES_SHARED(Locks::mutator_lock_)
|
|
: StackVisitor(thread_in,
|
|
context,
|
|
StackVisitor::StackWalkKind::kIncludeInlinedFrames,
|
|
check_suspended),
|
|
os(os_in),
|
|
can_allocate(can_allocate_in),
|
|
last_method(nullptr),
|
|
last_line_number(0),
|
|
repetition_count(0),
|
|
frame_count(0),
|
|
dump_locks(dump_locks_in) {}
|
|
|
|
virtual ~StackDumpVisitor() {
|
|
if (frame_count == 0) {
|
|
os << " (no managed stack frames)\n";
|
|
}
|
|
}
|
|
|
|
bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
ArtMethod* m = GetMethod();
|
|
if (m->IsRuntimeMethod()) {
|
|
return true;
|
|
}
|
|
m = m->GetInterfaceMethodIfProxy(kRuntimePointerSize);
|
|
const int kMaxRepetition = 3;
|
|
ObjPtr<mirror::Class> c = m->GetDeclaringClass();
|
|
ObjPtr<mirror::DexCache> dex_cache = c->GetDexCache();
|
|
int line_number = -1;
|
|
if (dex_cache != nullptr) { // be tolerant of bad input
|
|
const DexFile* dex_file = dex_cache->GetDexFile();
|
|
line_number = annotations::GetLineNumFromPC(dex_file, m, GetDexPc(false));
|
|
}
|
|
if (line_number == last_line_number && last_method == m) {
|
|
++repetition_count;
|
|
} else {
|
|
if (repetition_count >= kMaxRepetition) {
|
|
os << " ... repeated " << (repetition_count - kMaxRepetition) << " times\n";
|
|
}
|
|
repetition_count = 0;
|
|
last_line_number = line_number;
|
|
last_method = m;
|
|
}
|
|
if (repetition_count < kMaxRepetition) {
|
|
os << " at " << m->PrettyMethod(false);
|
|
if (m->IsNative()) {
|
|
os << "(Native method)";
|
|
} else {
|
|
const char* source_file(m->GetDeclaringClassSourceFile());
|
|
os << "(" << (source_file != nullptr ? source_file : "unavailable")
|
|
<< ":" << line_number << ")";
|
|
}
|
|
os << "\n";
|
|
if (frame_count == 0) {
|
|
Monitor::DescribeWait(os, GetThread());
|
|
}
|
|
if (can_allocate && dump_locks) {
|
|
// Visit locks, but do not abort on errors. This would trigger a nested abort.
|
|
// Skip visiting locks if dump_locks is false as it would cause a bad_mutexes_held in
|
|
// RegTypeCache::RegTypeCache due to thread_list_lock.
|
|
Monitor::VisitLocks(this, DumpLockedObject, &os, false);
|
|
}
|
|
}
|
|
|
|
++frame_count;
|
|
return true;
|
|
}
|
|
|
|
static void DumpLockedObject(mirror::Object* o, void* context)
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
std::ostream& os = *reinterpret_cast<std::ostream*>(context);
|
|
os << " - locked ";
|
|
if (o == nullptr) {
|
|
os << "an unknown object";
|
|
} else {
|
|
if (kUseReadBarrier && Thread::Current()->GetIsGcMarking()) {
|
|
// We may call Thread::Dump() in the middle of the CC thread flip and this thread's stack
|
|
// may have not been flipped yet and "o" may be a from-space (stale) ref, in which case the
|
|
// IdentityHashCode call below will crash. So explicitly mark/forward it here.
|
|
o = ReadBarrier::Mark(o);
|
|
}
|
|
if ((o->GetLockWord(false).GetState() == LockWord::kThinLocked) &&
|
|
Locks::mutator_lock_->IsExclusiveHeld(Thread::Current())) {
|
|
// Getting the identity hashcode here would result in lock inflation and suspension of the
|
|
// current thread, which isn't safe if this is the only runnable thread.
|
|
os << StringPrintf("<@addr=0x%" PRIxPTR "> (a %s)", reinterpret_cast<intptr_t>(o),
|
|
o->PrettyTypeOf().c_str());
|
|
} else {
|
|
// IdentityHashCode can cause thread suspension, which would invalidate o if it moved. So
|
|
// we get the pretty type beofre we call IdentityHashCode.
|
|
const std::string pretty_type(o->PrettyTypeOf());
|
|
os << StringPrintf("<0x%08x> (a %s)", o->IdentityHashCode(), pretty_type.c_str());
|
|
}
|
|
}
|
|
os << "\n";
|
|
}
|
|
|
|
std::ostream& os;
|
|
const bool can_allocate;
|
|
ArtMethod* last_method;
|
|
int last_line_number;
|
|
int repetition_count;
|
|
int frame_count;
|
|
const bool dump_locks;
|
|
};
|
|
|
|
static bool ShouldShowNativeStack(const Thread* thread)
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
ThreadState state = thread->GetState();
|
|
|
|
// In native code somewhere in the VM (one of the kWaitingFor* states)? That's interesting.
|
|
if (state > kWaiting && state < kStarting) {
|
|
return true;
|
|
}
|
|
|
|
// In an Object.wait variant or Thread.sleep? That's not interesting.
|
|
if (state == kTimedWaiting || state == kSleeping || state == kWaiting) {
|
|
return false;
|
|
}
|
|
|
|
// Threads with no managed stack frames should be shown.
|
|
const ManagedStack* managed_stack = thread->GetManagedStack();
|
|
if (managed_stack == nullptr || (managed_stack->GetTopQuickFrame() == nullptr &&
|
|
managed_stack->GetTopShadowFrame() == nullptr)) {
|
|
return true;
|
|
}
|
|
|
|
// In some other native method? That's interesting.
|
|
// We don't just check kNative because native methods will be in state kSuspended if they're
|
|
// calling back into the VM, or kBlocked if they're blocked on a monitor, or one of the
|
|
// thread-startup states if it's early enough in their life cycle (http://b/7432159).
|
|
ArtMethod* current_method = thread->GetCurrentMethod(nullptr);
|
|
return current_method != nullptr && current_method->IsNative();
|
|
}
|
|
|
|
void Thread::DumpJavaStack(std::ostream& os, bool check_suspended, bool dump_locks) const {
|
|
// If flip_function is not null, it means we have run a checkpoint
|
|
// before the thread wakes up to execute the flip function and the
|
|
// thread roots haven't been forwarded. So the following access to
|
|
// the roots (locks or methods in the frames) would be bad. Run it
|
|
// here. TODO: clean up.
|
|
{
|
|
Thread* this_thread = const_cast<Thread*>(this);
|
|
Closure* flip_func = this_thread->GetFlipFunction();
|
|
if (flip_func != nullptr) {
|
|
flip_func->Run(this_thread);
|
|
}
|
|
}
|
|
|
|
// Dumping the Java stack involves the verifier for locks. The verifier operates under the
|
|
// assumption that there is no exception pending on entry. Thus, stash any pending exception.
|
|
// Thread::Current() instead of this in case a thread is dumping the stack of another suspended
|
|
// thread.
|
|
StackHandleScope<1> scope(Thread::Current());
|
|
Handle<mirror::Throwable> exc;
|
|
bool have_exception = false;
|
|
if (IsExceptionPending()) {
|
|
exc = scope.NewHandle(GetException());
|
|
const_cast<Thread*>(this)->ClearException();
|
|
have_exception = true;
|
|
}
|
|
|
|
std::unique_ptr<Context> context(Context::Create());
|
|
StackDumpVisitor dumper(os, const_cast<Thread*>(this), context.get(),
|
|
!tls32_.throwing_OutOfMemoryError, check_suspended, dump_locks);
|
|
dumper.WalkStack();
|
|
|
|
if (have_exception) {
|
|
const_cast<Thread*>(this)->SetException(exc.Get());
|
|
}
|
|
}
|
|
|
|
void Thread::DumpStack(std::ostream& os,
|
|
bool dump_native_stack,
|
|
BacktraceMap* backtrace_map,
|
|
bool force_dump_stack) const {
|
|
// TODO: we call this code when dying but may not have suspended the thread ourself. The
|
|
// IsSuspended check is therefore racy with the use for dumping (normally we inhibit
|
|
// the race with the thread_suspend_count_lock_).
|
|
bool dump_for_abort = (gAborting > 0);
|
|
bool safe_to_dump = (this == Thread::Current() || IsSuspended());
|
|
if (!kIsDebugBuild) {
|
|
// We always want to dump the stack for an abort, however, there is no point dumping another
|
|
// thread's stack in debug builds where we'll hit the not suspended check in the stack walk.
|
|
safe_to_dump = (safe_to_dump || dump_for_abort);
|
|
}
|
|
if (safe_to_dump || force_dump_stack) {
|
|
// If we're currently in native code, dump that stack before dumping the managed stack.
|
|
if (dump_native_stack && (dump_for_abort || force_dump_stack || ShouldShowNativeStack(this))) {
|
|
DumpKernelStack(os, GetTid(), " kernel: ", false);
|
|
ArtMethod* method =
|
|
GetCurrentMethod(nullptr,
|
|
/*check_suspended*/ !force_dump_stack,
|
|
/*abort_on_error*/ !(dump_for_abort || force_dump_stack));
|
|
DumpNativeStack(os, GetTid(), backtrace_map, " native: ", method);
|
|
}
|
|
DumpJavaStack(os,
|
|
/*check_suspended*/ !force_dump_stack,
|
|
/*dump_locks*/ !force_dump_stack);
|
|
} else {
|
|
os << "Not able to dump stack of thread that isn't suspended";
|
|
}
|
|
}
|
|
|
|
void Thread::ThreadExitCallback(void* arg) {
|
|
Thread* self = reinterpret_cast<Thread*>(arg);
|
|
if (self->tls32_.thread_exit_check_count == 0) {
|
|
LOG(WARNING) << "Native thread exiting without having called DetachCurrentThread (maybe it's "
|
|
"going to use a pthread_key_create destructor?): " << *self;
|
|
CHECK(is_started_);
|
|
#ifdef ART_TARGET_ANDROID
|
|
__get_tls()[TLS_SLOT_ART_THREAD_SELF] = self;
|
|
#else
|
|
CHECK_PTHREAD_CALL(pthread_setspecific, (Thread::pthread_key_self_, self), "reattach self");
|
|
#endif
|
|
self->tls32_.thread_exit_check_count = 1;
|
|
} else {
|
|
LOG(FATAL) << "Native thread exited without calling DetachCurrentThread: " << *self;
|
|
}
|
|
}
|
|
|
|
void Thread::Startup() {
|
|
CHECK(!is_started_);
|
|
is_started_ = true;
|
|
{
|
|
// MutexLock to keep annotalysis happy.
|
|
//
|
|
// Note we use null for the thread because Thread::Current can
|
|
// return garbage since (is_started_ == true) and
|
|
// Thread::pthread_key_self_ is not yet initialized.
|
|
// This was seen on glibc.
|
|
MutexLock mu(nullptr, *Locks::thread_suspend_count_lock_);
|
|
resume_cond_ = new ConditionVariable("Thread resumption condition variable",
|
|
*Locks::thread_suspend_count_lock_);
|
|
}
|
|
|
|
// Allocate a TLS slot.
|
|
CHECK_PTHREAD_CALL(pthread_key_create, (&Thread::pthread_key_self_, Thread::ThreadExitCallback),
|
|
"self key");
|
|
|
|
// Double-check the TLS slot allocation.
|
|
if (pthread_getspecific(pthread_key_self_) != nullptr) {
|
|
LOG(FATAL) << "Newly-created pthread TLS slot is not nullptr";
|
|
}
|
|
}
|
|
|
|
void Thread::FinishStartup() {
|
|
Runtime* runtime = Runtime::Current();
|
|
CHECK(runtime->IsStarted());
|
|
|
|
// Finish attaching the main thread.
|
|
ScopedObjectAccess soa(Thread::Current());
|
|
Thread::Current()->CreatePeer("main", false, runtime->GetMainThreadGroup());
|
|
Thread::Current()->AssertNoPendingException();
|
|
|
|
Runtime::Current()->GetClassLinker()->RunRootClinits();
|
|
|
|
// The thread counts as started from now on. We need to add it to the ThreadGroup. For regular
|
|
// threads, this is done in Thread.start() on the Java side.
|
|
{
|
|
// This is only ever done once. There's no benefit in caching the method.
|
|
jmethodID thread_group_add = soa.Env()->GetMethodID(WellKnownClasses::java_lang_ThreadGroup,
|
|
"add",
|
|
"(Ljava/lang/Thread;)V");
|
|
CHECK(thread_group_add != nullptr);
|
|
ScopedLocalRef<jobject> thread_jobject(
|
|
soa.Env(), soa.Env()->AddLocalReference<jobject>(Thread::Current()->GetPeer()));
|
|
soa.Env()->CallNonvirtualVoidMethod(runtime->GetMainThreadGroup(),
|
|
WellKnownClasses::java_lang_ThreadGroup,
|
|
thread_group_add,
|
|
thread_jobject.get());
|
|
Thread::Current()->AssertNoPendingException();
|
|
}
|
|
}
|
|
|
|
void Thread::Shutdown() {
|
|
CHECK(is_started_);
|
|
is_started_ = false;
|
|
CHECK_PTHREAD_CALL(pthread_key_delete, (Thread::pthread_key_self_), "self key");
|
|
MutexLock mu(Thread::Current(), *Locks::thread_suspend_count_lock_);
|
|
if (resume_cond_ != nullptr) {
|
|
delete resume_cond_;
|
|
resume_cond_ = nullptr;
|
|
}
|
|
}
|
|
|
|
Thread::Thread(bool daemon)
|
|
: tls32_(daemon),
|
|
wait_monitor_(nullptr),
|
|
custom_tls_(nullptr),
|
|
can_call_into_java_(true) {
|
|
wait_mutex_ = new Mutex("a thread wait mutex");
|
|
wait_cond_ = new ConditionVariable("a thread wait condition variable", *wait_mutex_);
|
|
tlsPtr_.instrumentation_stack = new std::deque<instrumentation::InstrumentationStackFrame>;
|
|
tlsPtr_.name = new std::string(kThreadNameDuringStartup);
|
|
|
|
static_assert((sizeof(Thread) % 4) == 0U,
|
|
"art::Thread has a size which is not a multiple of 4.");
|
|
tls32_.state_and_flags.as_struct.flags = 0;
|
|
tls32_.state_and_flags.as_struct.state = kNative;
|
|
tls32_.interrupted.StoreRelaxed(false);
|
|
memset(&tlsPtr_.held_mutexes[0], 0, sizeof(tlsPtr_.held_mutexes));
|
|
std::fill(tlsPtr_.rosalloc_runs,
|
|
tlsPtr_.rosalloc_runs + kNumRosAllocThreadLocalSizeBracketsInThread,
|
|
gc::allocator::RosAlloc::GetDedicatedFullRun());
|
|
tlsPtr_.checkpoint_function = nullptr;
|
|
for (uint32_t i = 0; i < kMaxSuspendBarriers; ++i) {
|
|
tlsPtr_.active_suspend_barriers[i] = nullptr;
|
|
}
|
|
tlsPtr_.flip_function = nullptr;
|
|
tlsPtr_.thread_local_mark_stack = nullptr;
|
|
tls32_.is_transitioning_to_runnable = false;
|
|
}
|
|
|
|
bool Thread::IsStillStarting() const {
|
|
// You might think you can check whether the state is kStarting, but for much of thread startup,
|
|
// the thread is in kNative; it might also be in kVmWait.
|
|
// You might think you can check whether the peer is null, but the peer is actually created and
|
|
// assigned fairly early on, and needs to be.
|
|
// It turns out that the last thing to change is the thread name; that's a good proxy for "has
|
|
// this thread _ever_ entered kRunnable".
|
|
return (tlsPtr_.jpeer == nullptr && tlsPtr_.opeer == nullptr) ||
|
|
(*tlsPtr_.name == kThreadNameDuringStartup);
|
|
}
|
|
|
|
void Thread::AssertPendingException() const {
|
|
CHECK(IsExceptionPending()) << "Pending exception expected.";
|
|
}
|
|
|
|
void Thread::AssertPendingOOMException() const {
|
|
AssertPendingException();
|
|
auto* e = GetException();
|
|
CHECK_EQ(e->GetClass(), DecodeJObject(WellKnownClasses::java_lang_OutOfMemoryError)->AsClass())
|
|
<< e->Dump();
|
|
}
|
|
|
|
void Thread::AssertNoPendingException() const {
|
|
if (UNLIKELY(IsExceptionPending())) {
|
|
ScopedObjectAccess soa(Thread::Current());
|
|
LOG(FATAL) << "No pending exception expected: " << GetException()->Dump();
|
|
}
|
|
}
|
|
|
|
void Thread::AssertNoPendingExceptionForNewException(const char* msg) const {
|
|
if (UNLIKELY(IsExceptionPending())) {
|
|
ScopedObjectAccess soa(Thread::Current());
|
|
LOG(FATAL) << "Throwing new exception '" << msg << "' with unexpected pending exception: "
|
|
<< GetException()->Dump();
|
|
}
|
|
}
|
|
|
|
class MonitorExitVisitor : public SingleRootVisitor {
|
|
public:
|
|
explicit MonitorExitVisitor(Thread* self) : self_(self) { }
|
|
|
|
// NO_THREAD_SAFETY_ANALYSIS due to MonitorExit.
|
|
void VisitRoot(mirror::Object* entered_monitor, const RootInfo& info ATTRIBUTE_UNUSED)
|
|
OVERRIDE NO_THREAD_SAFETY_ANALYSIS {
|
|
if (self_->HoldsLock(entered_monitor)) {
|
|
LOG(WARNING) << "Calling MonitorExit on object "
|
|
<< entered_monitor << " (" << entered_monitor->PrettyTypeOf() << ")"
|
|
<< " left locked by native thread "
|
|
<< *Thread::Current() << " which is detaching";
|
|
entered_monitor->MonitorExit(self_);
|
|
}
|
|
}
|
|
|
|
private:
|
|
Thread* const self_;
|
|
};
|
|
|
|
void Thread::Destroy() {
|
|
Thread* self = this;
|
|
DCHECK_EQ(self, Thread::Current());
|
|
|
|
if (tlsPtr_.jni_env != nullptr) {
|
|
{
|
|
ScopedObjectAccess soa(self);
|
|
MonitorExitVisitor visitor(self);
|
|
// On thread detach, all monitors entered with JNI MonitorEnter are automatically exited.
|
|
tlsPtr_.jni_env->monitors.VisitRoots(&visitor, RootInfo(kRootVMInternal));
|
|
}
|
|
// Release locally held global references which releasing may require the mutator lock.
|
|
if (tlsPtr_.jpeer != nullptr) {
|
|
// If pthread_create fails we don't have a jni env here.
|
|
tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.jpeer);
|
|
tlsPtr_.jpeer = nullptr;
|
|
}
|
|
if (tlsPtr_.class_loader_override != nullptr) {
|
|
tlsPtr_.jni_env->DeleteGlobalRef(tlsPtr_.class_loader_override);
|
|
tlsPtr_.class_loader_override = nullptr;
|
|
}
|
|
}
|
|
|
|
if (tlsPtr_.opeer != nullptr) {
|
|
ScopedObjectAccess soa(self);
|
|
// We may need to call user-supplied managed code, do this before final clean-up.
|
|
HandleUncaughtExceptions(soa);
|
|
Runtime* runtime = Runtime::Current();
|
|
if (runtime != nullptr) {
|
|
runtime->GetRuntimeCallbacks()->ThreadDeath(self);
|
|
}
|
|
RemoveFromThreadGroup(soa);
|
|
|
|
// this.nativePeer = 0;
|
|
if (Runtime::Current()->IsActiveTransaction()) {
|
|
jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer)
|
|
->SetLong<true>(tlsPtr_.opeer, 0);
|
|
} else {
|
|
jni::DecodeArtField(WellKnownClasses::java_lang_Thread_nativePeer)
|
|
->SetLong<false>(tlsPtr_.opeer, 0);
|
|
}
|
|
|
|
// Thread.join() is implemented as an Object.wait() on the Thread.lock object. Signal anyone
|
|
// who is waiting.
|
|
ObjPtr<mirror::Object> lock =
|
|
jni::DecodeArtField(WellKnownClasses::java_lang_Thread_lock)->GetObject(tlsPtr_.opeer);
|
|
// (This conditional is only needed for tests, where Thread.lock won't have been set.)
|
|
if (lock != nullptr) {
|
|
StackHandleScope<1> hs(self);
|
|
Handle<mirror::Object> h_obj(hs.NewHandle(lock));
|
|
ObjectLock<mirror::Object> locker(self, h_obj);
|
|
locker.NotifyAll();
|
|
}
|
|
tlsPtr_.opeer = nullptr;
|
|
}
|
|
|
|
{
|
|
ScopedObjectAccess soa(self);
|
|
Runtime::Current()->GetHeap()->RevokeThreadLocalBuffers(this);
|
|
if (kUseReadBarrier) {
|
|
Runtime::Current()->GetHeap()->ConcurrentCopyingCollector()->RevokeThreadLocalMarkStack(this);
|
|
}
|
|
}
|
|
}
|
|
|
|
Thread::~Thread() {
|
|
CHECK(tlsPtr_.class_loader_override == nullptr);
|
|
CHECK(tlsPtr_.jpeer == nullptr);
|
|
CHECK(tlsPtr_.opeer == nullptr);
|
|
bool initialized = (tlsPtr_.jni_env != nullptr); // Did Thread::Init run?
|
|
if (initialized) {
|
|
delete tlsPtr_.jni_env;
|
|
tlsPtr_.jni_env = nullptr;
|
|
}
|
|
CHECK_NE(GetState(), kRunnable);
|
|
CHECK(!ReadFlag(kCheckpointRequest));
|
|
CHECK(!ReadFlag(kEmptyCheckpointRequest));
|
|
CHECK(tlsPtr_.checkpoint_function == nullptr);
|
|
CHECK_EQ(checkpoint_overflow_.size(), 0u);
|
|
CHECK(tlsPtr_.flip_function == nullptr);
|
|
CHECK_EQ(tls32_.is_transitioning_to_runnable, false);
|
|
|
|
// Make sure we processed all deoptimization requests.
|
|
CHECK(tlsPtr_.deoptimization_context_stack == nullptr) << "Missed deoptimization";
|
|
CHECK(tlsPtr_.frame_id_to_shadow_frame == nullptr) <<
|
|
"Not all deoptimized frames have been consumed by the debugger.";
|
|
|
|
// We may be deleting a still born thread.
|
|
SetStateUnsafe(kTerminated);
|
|
|
|
delete wait_cond_;
|
|
delete wait_mutex_;
|
|
|
|
if (tlsPtr_.long_jump_context != nullptr) {
|
|
delete tlsPtr_.long_jump_context;
|
|
}
|
|
|
|
if (initialized) {
|
|
CleanupCpu();
|
|
}
|
|
|
|
if (tlsPtr_.single_step_control != nullptr) {
|
|
delete tlsPtr_.single_step_control;
|
|
}
|
|
delete tlsPtr_.instrumentation_stack;
|
|
delete tlsPtr_.name;
|
|
delete tlsPtr_.deps_or_stack_trace_sample.stack_trace_sample;
|
|
|
|
Runtime::Current()->GetHeap()->AssertThreadLocalBuffersAreRevoked(this);
|
|
|
|
TearDownAlternateSignalStack();
|
|
}
|
|
|
|
void Thread::HandleUncaughtExceptions(ScopedObjectAccessAlreadyRunnable& soa) {
|
|
if (!IsExceptionPending()) {
|
|
return;
|
|
}
|
|
ScopedLocalRef<jobject> peer(tlsPtr_.jni_env, soa.AddLocalReference<jobject>(tlsPtr_.opeer));
|
|
ScopedThreadStateChange tsc(this, kNative);
|
|
|
|
// Get and clear the exception.
|
|
ScopedLocalRef<jthrowable> exception(tlsPtr_.jni_env, tlsPtr_.jni_env->ExceptionOccurred());
|
|
tlsPtr_.jni_env->ExceptionClear();
|
|
|
|
// Call the Thread instance's dispatchUncaughtException(Throwable)
|
|
tlsPtr_.jni_env->CallVoidMethod(peer.get(),
|
|
WellKnownClasses::java_lang_Thread_dispatchUncaughtException,
|
|
exception.get());
|
|
|
|
// If the dispatchUncaughtException threw, clear that exception too.
|
|
tlsPtr_.jni_env->ExceptionClear();
|
|
}
|
|
|
|
void Thread::RemoveFromThreadGroup(ScopedObjectAccessAlreadyRunnable& soa) {
|
|
// this.group.removeThread(this);
|
|
// group can be null if we're in the compiler or a test.
|
|
ObjPtr<mirror::Object> ogroup = jni::DecodeArtField(WellKnownClasses::java_lang_Thread_group)
|
|
->GetObject(tlsPtr_.opeer);
|
|
if (ogroup != nullptr) {
|
|
ScopedLocalRef<jobject> group(soa.Env(), soa.AddLocalReference<jobject>(ogroup));
|
|
ScopedLocalRef<jobject> peer(soa.Env(), soa.AddLocalReference<jobject>(tlsPtr_.opeer));
|
|
ScopedThreadStateChange tsc(soa.Self(), kNative);
|
|
tlsPtr_.jni_env->CallVoidMethod(group.get(),
|
|
WellKnownClasses::java_lang_ThreadGroup_removeThread,
|
|
peer.get());
|
|
}
|
|
}
|
|
|
|
bool Thread::HandleScopeContains(jobject obj) const {
|
|
StackReference<mirror::Object>* hs_entry =
|
|
reinterpret_cast<StackReference<mirror::Object>*>(obj);
|
|
for (BaseHandleScope* cur = tlsPtr_.top_handle_scope; cur!= nullptr; cur = cur->GetLink()) {
|
|
if (cur->Contains(hs_entry)) {
|
|
return true;
|
|
}
|
|
}
|
|
// JNI code invoked from portable code uses shadow frames rather than the handle scope.
|
|
return tlsPtr_.managed_stack.ShadowFramesContain(hs_entry);
|
|
}
|
|
|
|
void Thread::HandleScopeVisitRoots(RootVisitor* visitor, uint32_t thread_id) {
|
|
BufferedRootVisitor<kDefaultBufferedRootCount> buffered_visitor(
|
|
visitor, RootInfo(kRootNativeStack, thread_id));
|
|
for (BaseHandleScope* cur = tlsPtr_.top_handle_scope; cur; cur = cur->GetLink()) {
|
|
cur->VisitRoots(buffered_visitor);
|
|
}
|
|
}
|
|
|
|
ObjPtr<mirror::Object> Thread::DecodeJObject(jobject obj) const {
|
|
if (obj == nullptr) {
|
|
return nullptr;
|
|
}
|
|
IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
|
|
IndirectRefKind kind = IndirectReferenceTable::GetIndirectRefKind(ref);
|
|
ObjPtr<mirror::Object> result;
|
|
bool expect_null = false;
|
|
// The "kinds" below are sorted by the frequency we expect to encounter them.
|
|
if (kind == kLocal) {
|
|
IndirectReferenceTable& locals = tlsPtr_.jni_env->locals;
|
|
// Local references do not need a read barrier.
|
|
result = locals.Get<kWithoutReadBarrier>(ref);
|
|
} else if (kind == kHandleScopeOrInvalid) {
|
|
// TODO: make stack indirect reference table lookup more efficient.
|
|
// Check if this is a local reference in the handle scope.
|
|
if (LIKELY(HandleScopeContains(obj))) {
|
|
// Read from handle scope.
|
|
result = reinterpret_cast<StackReference<mirror::Object>*>(obj)->AsMirrorPtr();
|
|
VerifyObject(result);
|
|
} else {
|
|
tlsPtr_.jni_env->vm->JniAbortF(nullptr, "use of invalid jobject %p", obj);
|
|
expect_null = true;
|
|
result = nullptr;
|
|
}
|
|
} else if (kind == kGlobal) {
|
|
result = tlsPtr_.jni_env->vm->DecodeGlobal(ref);
|
|
} else {
|
|
DCHECK_EQ(kind, kWeakGlobal);
|
|
result = tlsPtr_.jni_env->vm->DecodeWeakGlobal(const_cast<Thread*>(this), ref);
|
|
if (Runtime::Current()->IsClearedJniWeakGlobal(result)) {
|
|
// This is a special case where it's okay to return null.
|
|
expect_null = true;
|
|
result = nullptr;
|
|
}
|
|
}
|
|
|
|
if (UNLIKELY(!expect_null && result == nullptr)) {
|
|
tlsPtr_.jni_env->vm->JniAbortF(nullptr, "use of deleted %s %p",
|
|
ToStr<IndirectRefKind>(kind).c_str(), obj);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
bool Thread::IsJWeakCleared(jweak obj) const {
|
|
CHECK(obj != nullptr);
|
|
IndirectRef ref = reinterpret_cast<IndirectRef>(obj);
|
|
IndirectRefKind kind = IndirectReferenceTable::GetIndirectRefKind(ref);
|
|
CHECK_EQ(kind, kWeakGlobal);
|
|
return tlsPtr_.jni_env->vm->IsWeakGlobalCleared(const_cast<Thread*>(this), ref);
|
|
}
|
|
|
|
// Implements java.lang.Thread.interrupted.
|
|
bool Thread::Interrupted() {
|
|
DCHECK_EQ(Thread::Current(), this);
|
|
// No other thread can concurrently reset the interrupted flag.
|
|
bool interrupted = tls32_.interrupted.LoadSequentiallyConsistent();
|
|
if (interrupted) {
|
|
tls32_.interrupted.StoreSequentiallyConsistent(false);
|
|
}
|
|
return interrupted;
|
|
}
|
|
|
|
// Implements java.lang.Thread.isInterrupted.
|
|
bool Thread::IsInterrupted() {
|
|
return tls32_.interrupted.LoadSequentiallyConsistent();
|
|
}
|
|
|
|
void Thread::Interrupt(Thread* self) {
|
|
MutexLock mu(self, *wait_mutex_);
|
|
if (tls32_.interrupted.LoadSequentiallyConsistent()) {
|
|
return;
|
|
}
|
|
tls32_.interrupted.StoreSequentiallyConsistent(true);
|
|
NotifyLocked(self);
|
|
}
|
|
|
|
void Thread::Notify() {
|
|
Thread* self = Thread::Current();
|
|
MutexLock mu(self, *wait_mutex_);
|
|
NotifyLocked(self);
|
|
}
|
|
|
|
void Thread::NotifyLocked(Thread* self) {
|
|
if (wait_monitor_ != nullptr) {
|
|
wait_cond_->Signal(self);
|
|
}
|
|
}
|
|
|
|
void Thread::SetClassLoaderOverride(jobject class_loader_override) {
|
|
if (tlsPtr_.class_loader_override != nullptr) {
|
|
GetJniEnv()->DeleteGlobalRef(tlsPtr_.class_loader_override);
|
|
}
|
|
tlsPtr_.class_loader_override = GetJniEnv()->NewGlobalRef(class_loader_override);
|
|
}
|
|
|
|
using ArtMethodDexPcPair = std::pair<ArtMethod*, uint32_t>;
|
|
|
|
// Counts the stack trace depth and also fetches the first max_saved_frames frames.
|
|
class FetchStackTraceVisitor : public StackVisitor {
|
|
public:
|
|
explicit FetchStackTraceVisitor(Thread* thread,
|
|
ArtMethodDexPcPair* saved_frames = nullptr,
|
|
size_t max_saved_frames = 0)
|
|
REQUIRES_SHARED(Locks::mutator_lock_)
|
|
: StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
|
|
saved_frames_(saved_frames),
|
|
max_saved_frames_(max_saved_frames) {}
|
|
|
|
bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
// We want to skip frames up to and including the exception's constructor.
|
|
// Note we also skip the frame if it doesn't have a method (namely the callee
|
|
// save frame)
|
|
ArtMethod* m = GetMethod();
|
|
if (skipping_ && !m->IsRuntimeMethod() &&
|
|
!mirror::Throwable::GetJavaLangThrowable()->IsAssignableFrom(m->GetDeclaringClass())) {
|
|
skipping_ = false;
|
|
}
|
|
if (!skipping_) {
|
|
if (!m->IsRuntimeMethod()) { // Ignore runtime frames (in particular callee save).
|
|
if (depth_ < max_saved_frames_) {
|
|
saved_frames_[depth_].first = m;
|
|
saved_frames_[depth_].second = m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc();
|
|
}
|
|
++depth_;
|
|
}
|
|
} else {
|
|
++skip_depth_;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
uint32_t GetDepth() const {
|
|
return depth_;
|
|
}
|
|
|
|
uint32_t GetSkipDepth() const {
|
|
return skip_depth_;
|
|
}
|
|
|
|
private:
|
|
uint32_t depth_ = 0;
|
|
uint32_t skip_depth_ = 0;
|
|
bool skipping_ = true;
|
|
ArtMethodDexPcPair* saved_frames_;
|
|
const size_t max_saved_frames_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(FetchStackTraceVisitor);
|
|
};
|
|
|
|
template<bool kTransactionActive>
|
|
class BuildInternalStackTraceVisitor : public StackVisitor {
|
|
public:
|
|
BuildInternalStackTraceVisitor(Thread* self, Thread* thread, int skip_depth)
|
|
: StackVisitor(thread, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames),
|
|
self_(self),
|
|
skip_depth_(skip_depth),
|
|
pointer_size_(Runtime::Current()->GetClassLinker()->GetImagePointerSize()) {}
|
|
|
|
bool Init(int depth) REQUIRES_SHARED(Locks::mutator_lock_) ACQUIRE(Roles::uninterruptible_) {
|
|
// Allocate method trace as an object array where the first element is a pointer array that
|
|
// contains the ArtMethod pointers and dex PCs. The rest of the elements are the declaring
|
|
// class of the ArtMethod pointers.
|
|
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
|
|
StackHandleScope<1> hs(self_);
|
|
ObjPtr<mirror::Class> array_class = class_linker->GetClassRoot(ClassLinker::kObjectArrayClass);
|
|
// The first element is the methods and dex pc array, the other elements are declaring classes
|
|
// for the methods to ensure classes in the stack trace don't get unloaded.
|
|
Handle<mirror::ObjectArray<mirror::Object>> trace(
|
|
hs.NewHandle(
|
|
mirror::ObjectArray<mirror::Object>::Alloc(hs.Self(), array_class, depth + 1)));
|
|
if (trace == nullptr) {
|
|
// Acquire uninterruptible_ in all paths.
|
|
self_->StartAssertNoThreadSuspension("Building internal stack trace");
|
|
self_->AssertPendingOOMException();
|
|
return false;
|
|
}
|
|
ObjPtr<mirror::PointerArray> methods_and_pcs =
|
|
class_linker->AllocPointerArray(self_, depth * 2);
|
|
const char* last_no_suspend_cause =
|
|
self_->StartAssertNoThreadSuspension("Building internal stack trace");
|
|
if (methods_and_pcs == nullptr) {
|
|
self_->AssertPendingOOMException();
|
|
return false;
|
|
}
|
|
trace->Set(0, methods_and_pcs);
|
|
trace_ = trace.Get();
|
|
// If We are called from native, use non-transactional mode.
|
|
CHECK(last_no_suspend_cause == nullptr) << last_no_suspend_cause;
|
|
return true;
|
|
}
|
|
|
|
virtual ~BuildInternalStackTraceVisitor() RELEASE(Roles::uninterruptible_) {
|
|
self_->EndAssertNoThreadSuspension(nullptr);
|
|
}
|
|
|
|
bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
if (trace_ == nullptr) {
|
|
return true; // We're probably trying to fillInStackTrace for an OutOfMemoryError.
|
|
}
|
|
if (skip_depth_ > 0) {
|
|
skip_depth_--;
|
|
return true;
|
|
}
|
|
ArtMethod* m = GetMethod();
|
|
if (m->IsRuntimeMethod()) {
|
|
return true; // Ignore runtime frames (in particular callee save).
|
|
}
|
|
AddFrame(m, m->IsProxyMethod() ? DexFile::kDexNoIndex : GetDexPc());
|
|
return true;
|
|
}
|
|
|
|
void AddFrame(ArtMethod* method, uint32_t dex_pc) REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
ObjPtr<mirror::PointerArray> trace_methods_and_pcs = GetTraceMethodsAndPCs();
|
|
trace_methods_and_pcs->SetElementPtrSize<kTransactionActive>(count_, method, pointer_size_);
|
|
trace_methods_and_pcs->SetElementPtrSize<kTransactionActive>(
|
|
trace_methods_and_pcs->GetLength() / 2 + count_,
|
|
dex_pc,
|
|
pointer_size_);
|
|
// Save the declaring class of the method to ensure that the declaring classes of the methods
|
|
// do not get unloaded while the stack trace is live.
|
|
trace_->Set(count_ + 1, method->GetDeclaringClass());
|
|
++count_;
|
|
}
|
|
|
|
ObjPtr<mirror::PointerArray> GetTraceMethodsAndPCs() const REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
return ObjPtr<mirror::PointerArray>::DownCast(MakeObjPtr(trace_->Get(0)));
|
|
}
|
|
|
|
mirror::ObjectArray<mirror::Object>* GetInternalStackTrace() const {
|
|
return trace_;
|
|
}
|
|
|
|
private:
|
|
Thread* const self_;
|
|
// How many more frames to skip.
|
|
int32_t skip_depth_;
|
|
// Current position down stack trace.
|
|
uint32_t count_ = 0;
|
|
// An object array where the first element is a pointer array that contains the ArtMethod
|
|
// pointers on the stack and dex PCs. The rest of the elements are the declaring
|
|
// class of the ArtMethod pointers. trace_[i+1] contains the declaring class of the ArtMethod of
|
|
// the i'th frame.
|
|
mirror::ObjectArray<mirror::Object>* trace_ = nullptr;
|
|
// For cross compilation.
|
|
const PointerSize pointer_size_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(BuildInternalStackTraceVisitor);
|
|
};
|
|
|
|
template<bool kTransactionActive>
|
|
jobject Thread::CreateInternalStackTrace(const ScopedObjectAccessAlreadyRunnable& soa) const {
|
|
// Compute depth of stack, save frames if possible to avoid needing to recompute many.
|
|
constexpr size_t kMaxSavedFrames = 256;
|
|
std::unique_ptr<ArtMethodDexPcPair[]> saved_frames(new ArtMethodDexPcPair[kMaxSavedFrames]);
|
|
FetchStackTraceVisitor count_visitor(const_cast<Thread*>(this),
|
|
&saved_frames[0],
|
|
kMaxSavedFrames);
|
|
count_visitor.WalkStack();
|
|
const uint32_t depth = count_visitor.GetDepth();
|
|
const uint32_t skip_depth = count_visitor.GetSkipDepth();
|
|
|
|
// Build internal stack trace.
|
|
BuildInternalStackTraceVisitor<kTransactionActive> build_trace_visitor(soa.Self(),
|
|
const_cast<Thread*>(this),
|
|
skip_depth);
|
|
if (!build_trace_visitor.Init(depth)) {
|
|
return nullptr; // Allocation failed.
|
|
}
|
|
// If we saved all of the frames we don't even need to do the actual stack walk. This is faster
|
|
// than doing the stack walk twice.
|
|
if (depth < kMaxSavedFrames) {
|
|
for (size_t i = 0; i < depth; ++i) {
|
|
build_trace_visitor.AddFrame(saved_frames[i].first, saved_frames[i].second);
|
|
}
|
|
} else {
|
|
build_trace_visitor.WalkStack();
|
|
}
|
|
|
|
mirror::ObjectArray<mirror::Object>* trace = build_trace_visitor.GetInternalStackTrace();
|
|
if (kIsDebugBuild) {
|
|
ObjPtr<mirror::PointerArray> trace_methods = build_trace_visitor.GetTraceMethodsAndPCs();
|
|
// Second half of trace_methods is dex PCs.
|
|
for (uint32_t i = 0; i < static_cast<uint32_t>(trace_methods->GetLength() / 2); ++i) {
|
|
auto* method = trace_methods->GetElementPtrSize<ArtMethod*>(
|
|
i, Runtime::Current()->GetClassLinker()->GetImagePointerSize());
|
|
CHECK(method != nullptr);
|
|
}
|
|
}
|
|
return soa.AddLocalReference<jobject>(trace);
|
|
}
|
|
template jobject Thread::CreateInternalStackTrace<false>(
|
|
const ScopedObjectAccessAlreadyRunnable& soa) const;
|
|
template jobject Thread::CreateInternalStackTrace<true>(
|
|
const ScopedObjectAccessAlreadyRunnable& soa) const;
|
|
|
|
bool Thread::IsExceptionThrownByCurrentMethod(ObjPtr<mirror::Throwable> exception) const {
|
|
// Only count the depth since we do not pass a stack frame array as an argument.
|
|
FetchStackTraceVisitor count_visitor(const_cast<Thread*>(this));
|
|
count_visitor.WalkStack();
|
|
return count_visitor.GetDepth() == static_cast<uint32_t>(exception->GetStackDepth());
|
|
}
|
|
|
|
jobjectArray Thread::InternalStackTraceToStackTraceElementArray(
|
|
const ScopedObjectAccessAlreadyRunnable& soa,
|
|
jobject internal,
|
|
jobjectArray output_array,
|
|
int* stack_depth) {
|
|
// Decode the internal stack trace into the depth, method trace and PC trace.
|
|
// Subtract one for the methods and PC trace.
|
|
int32_t depth = soa.Decode<mirror::Array>(internal)->GetLength() - 1;
|
|
DCHECK_GE(depth, 0);
|
|
|
|
ClassLinker* const class_linker = Runtime::Current()->GetClassLinker();
|
|
|
|
jobjectArray result;
|
|
|
|
if (output_array != nullptr) {
|
|
// Reuse the array we were given.
|
|
result = output_array;
|
|
// ...adjusting the number of frames we'll write to not exceed the array length.
|
|
const int32_t traces_length =
|
|
soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>>(result)->GetLength();
|
|
depth = std::min(depth, traces_length);
|
|
} else {
|
|
// Create java_trace array and place in local reference table
|
|
mirror::ObjectArray<mirror::StackTraceElement>* java_traces =
|
|
class_linker->AllocStackTraceElementArray(soa.Self(), depth);
|
|
if (java_traces == nullptr) {
|
|
return nullptr;
|
|
}
|
|
result = soa.AddLocalReference<jobjectArray>(java_traces);
|
|
}
|
|
|
|
if (stack_depth != nullptr) {
|
|
*stack_depth = depth;
|
|
}
|
|
|
|
for (int32_t i = 0; i < depth; ++i) {
|
|
ObjPtr<mirror::ObjectArray<mirror::Object>> decoded_traces =
|
|
soa.Decode<mirror::Object>(internal)->AsObjectArray<mirror::Object>();
|
|
// Methods and dex PC trace is element 0.
|
|
DCHECK(decoded_traces->Get(0)->IsIntArray() || decoded_traces->Get(0)->IsLongArray());
|
|
ObjPtr<mirror::PointerArray> const method_trace =
|
|
ObjPtr<mirror::PointerArray>::DownCast(MakeObjPtr(decoded_traces->Get(0)));
|
|
// Prepare parameters for StackTraceElement(String cls, String method, String file, int line)
|
|
ArtMethod* method = method_trace->GetElementPtrSize<ArtMethod*>(i, kRuntimePointerSize);
|
|
uint32_t dex_pc = method_trace->GetElementPtrSize<uint32_t>(
|
|
i + method_trace->GetLength() / 2, kRuntimePointerSize);
|
|
int32_t line_number;
|
|
StackHandleScope<3> hs(soa.Self());
|
|
auto class_name_object(hs.NewHandle<mirror::String>(nullptr));
|
|
auto source_name_object(hs.NewHandle<mirror::String>(nullptr));
|
|
if (method->IsProxyMethod()) {
|
|
line_number = -1;
|
|
class_name_object.Assign(method->GetDeclaringClass()->GetName());
|
|
// source_name_object intentionally left null for proxy methods
|
|
} else {
|
|
line_number = method->GetLineNumFromDexPC(dex_pc);
|
|
// Allocate element, potentially triggering GC
|
|
// TODO: reuse class_name_object via Class::name_?
|
|
const char* descriptor = method->GetDeclaringClassDescriptor();
|
|
CHECK(descriptor != nullptr);
|
|
std::string class_name(PrettyDescriptor(descriptor));
|
|
class_name_object.Assign(
|
|
mirror::String::AllocFromModifiedUtf8(soa.Self(), class_name.c_str()));
|
|
if (class_name_object == nullptr) {
|
|
soa.Self()->AssertPendingOOMException();
|
|
return nullptr;
|
|
}
|
|
const char* source_file = method->GetDeclaringClassSourceFile();
|
|
if (line_number == -1) {
|
|
// Make the line_number field of StackTraceElement hold the dex pc.
|
|
// source_name_object is intentionally left null if we failed to map the dex pc to
|
|
// a line number (most probably because there is no debug info). See b/30183883.
|
|
line_number = dex_pc;
|
|
} else {
|
|
if (source_file != nullptr) {
|
|
source_name_object.Assign(mirror::String::AllocFromModifiedUtf8(soa.Self(), source_file));
|
|
if (source_name_object == nullptr) {
|
|
soa.Self()->AssertPendingOOMException();
|
|
return nullptr;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
const char* method_name = method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetName();
|
|
CHECK(method_name != nullptr);
|
|
Handle<mirror::String> method_name_object(
|
|
hs.NewHandle(mirror::String::AllocFromModifiedUtf8(soa.Self(), method_name)));
|
|
if (method_name_object == nullptr) {
|
|
return nullptr;
|
|
}
|
|
ObjPtr<mirror::StackTraceElement> obj = mirror::StackTraceElement::Alloc(soa.Self(),
|
|
class_name_object,
|
|
method_name_object,
|
|
source_name_object,
|
|
line_number);
|
|
if (obj == nullptr) {
|
|
return nullptr;
|
|
}
|
|
// We are called from native: use non-transactional mode.
|
|
soa.Decode<mirror::ObjectArray<mirror::StackTraceElement>>(result)->Set<false>(i, obj);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void Thread::ThrowNewExceptionF(const char* exception_class_descriptor, const char* fmt, ...) {
|
|
va_list args;
|
|
va_start(args, fmt);
|
|
ThrowNewExceptionV(exception_class_descriptor, fmt, args);
|
|
va_end(args);
|
|
}
|
|
|
|
void Thread::ThrowNewExceptionV(const char* exception_class_descriptor,
|
|
const char* fmt, va_list ap) {
|
|
std::string msg;
|
|
StringAppendV(&msg, fmt, ap);
|
|
ThrowNewException(exception_class_descriptor, msg.c_str());
|
|
}
|
|
|
|
void Thread::ThrowNewException(const char* exception_class_descriptor,
|
|
const char* msg) {
|
|
// Callers should either clear or call ThrowNewWrappedException.
|
|
AssertNoPendingExceptionForNewException(msg);
|
|
ThrowNewWrappedException(exception_class_descriptor, msg);
|
|
}
|
|
|
|
static ObjPtr<mirror::ClassLoader> GetCurrentClassLoader(Thread* self)
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
ArtMethod* method = self->GetCurrentMethod(nullptr);
|
|
return method != nullptr
|
|
? method->GetDeclaringClass()->GetClassLoader()
|
|
: nullptr;
|
|
}
|
|
|
|
void Thread::ThrowNewWrappedException(const char* exception_class_descriptor,
|
|
const char* msg) {
|
|
DCHECK_EQ(this, Thread::Current());
|
|
ScopedObjectAccessUnchecked soa(this);
|
|
StackHandleScope<3> hs(soa.Self());
|
|
Handle<mirror::ClassLoader> class_loader(hs.NewHandle(GetCurrentClassLoader(soa.Self())));
|
|
ScopedLocalRef<jobject> cause(GetJniEnv(), soa.AddLocalReference<jobject>(GetException()));
|
|
ClearException();
|
|
Runtime* runtime = Runtime::Current();
|
|
auto* cl = runtime->GetClassLinker();
|
|
Handle<mirror::Class> exception_class(
|
|
hs.NewHandle(cl->FindClass(this, exception_class_descriptor, class_loader)));
|
|
if (UNLIKELY(exception_class == nullptr)) {
|
|
CHECK(IsExceptionPending());
|
|
LOG(ERROR) << "No exception class " << PrettyDescriptor(exception_class_descriptor);
|
|
return;
|
|
}
|
|
|
|
if (UNLIKELY(!runtime->GetClassLinker()->EnsureInitialized(soa.Self(), exception_class, true,
|
|
true))) {
|
|
DCHECK(IsExceptionPending());
|
|
return;
|
|
}
|
|
DCHECK(!runtime->IsStarted() || exception_class->IsThrowableClass());
|
|
Handle<mirror::Throwable> exception(
|
|
hs.NewHandle(ObjPtr<mirror::Throwable>::DownCast(exception_class->AllocObject(this))));
|
|
|
|
// If we couldn't allocate the exception, throw the pre-allocated out of memory exception.
|
|
if (exception == nullptr) {
|
|
SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError());
|
|
return;
|
|
}
|
|
|
|
// Choose an appropriate constructor and set up the arguments.
|
|
const char* signature;
|
|
ScopedLocalRef<jstring> msg_string(GetJniEnv(), nullptr);
|
|
if (msg != nullptr) {
|
|
// Ensure we remember this and the method over the String allocation.
|
|
msg_string.reset(
|
|
soa.AddLocalReference<jstring>(mirror::String::AllocFromModifiedUtf8(this, msg)));
|
|
if (UNLIKELY(msg_string.get() == nullptr)) {
|
|
CHECK(IsExceptionPending()); // OOME.
|
|
return;
|
|
}
|
|
if (cause.get() == nullptr) {
|
|
signature = "(Ljava/lang/String;)V";
|
|
} else {
|
|
signature = "(Ljava/lang/String;Ljava/lang/Throwable;)V";
|
|
}
|
|
} else {
|
|
if (cause.get() == nullptr) {
|
|
signature = "()V";
|
|
} else {
|
|
signature = "(Ljava/lang/Throwable;)V";
|
|
}
|
|
}
|
|
ArtMethod* exception_init_method =
|
|
exception_class->FindConstructor(signature, cl->GetImagePointerSize());
|
|
|
|
CHECK(exception_init_method != nullptr) << "No <init>" << signature << " in "
|
|
<< PrettyDescriptor(exception_class_descriptor);
|
|
|
|
if (UNLIKELY(!runtime->IsStarted())) {
|
|
// Something is trying to throw an exception without a started runtime, which is the common
|
|
// case in the compiler. We won't be able to invoke the constructor of the exception, so set
|
|
// the exception fields directly.
|
|
if (msg != nullptr) {
|
|
exception->SetDetailMessage(DecodeJObject(msg_string.get())->AsString());
|
|
}
|
|
if (cause.get() != nullptr) {
|
|
exception->SetCause(DecodeJObject(cause.get())->AsThrowable());
|
|
}
|
|
ScopedLocalRef<jobject> trace(GetJniEnv(),
|
|
Runtime::Current()->IsActiveTransaction()
|
|
? CreateInternalStackTrace<true>(soa)
|
|
: CreateInternalStackTrace<false>(soa));
|
|
if (trace.get() != nullptr) {
|
|
exception->SetStackState(DecodeJObject(trace.get()).Ptr());
|
|
}
|
|
SetException(exception.Get());
|
|
} else {
|
|
jvalue jv_args[2];
|
|
size_t i = 0;
|
|
|
|
if (msg != nullptr) {
|
|
jv_args[i].l = msg_string.get();
|
|
++i;
|
|
}
|
|
if (cause.get() != nullptr) {
|
|
jv_args[i].l = cause.get();
|
|
++i;
|
|
}
|
|
ScopedLocalRef<jobject> ref(soa.Env(), soa.AddLocalReference<jobject>(exception.Get()));
|
|
InvokeWithJValues(soa, ref.get(), jni::EncodeArtMethod(exception_init_method), jv_args);
|
|
if (LIKELY(!IsExceptionPending())) {
|
|
SetException(exception.Get());
|
|
}
|
|
}
|
|
}
|
|
|
|
void Thread::ThrowOutOfMemoryError(const char* msg) {
|
|
LOG(WARNING) << StringPrintf("Throwing OutOfMemoryError \"%s\"%s",
|
|
msg, (tls32_.throwing_OutOfMemoryError ? " (recursive case)" : ""));
|
|
if (!tls32_.throwing_OutOfMemoryError) {
|
|
tls32_.throwing_OutOfMemoryError = true;
|
|
ThrowNewException("Ljava/lang/OutOfMemoryError;", msg);
|
|
tls32_.throwing_OutOfMemoryError = false;
|
|
} else {
|
|
Dump(LOG_STREAM(WARNING)); // The pre-allocated OOME has no stack, so help out and log one.
|
|
SetException(Runtime::Current()->GetPreAllocatedOutOfMemoryError());
|
|
}
|
|
}
|
|
|
|
Thread* Thread::CurrentFromGdb() {
|
|
return Thread::Current();
|
|
}
|
|
|
|
void Thread::DumpFromGdb() const {
|
|
std::ostringstream ss;
|
|
Dump(ss);
|
|
std::string str(ss.str());
|
|
// log to stderr for debugging command line processes
|
|
std::cerr << str;
|
|
#ifdef ART_TARGET_ANDROID
|
|
// log to logcat for debugging frameworks processes
|
|
LOG(INFO) << str;
|
|
#endif
|
|
}
|
|
|
|
// Explicitly instantiate 32 and 64bit thread offset dumping support.
|
|
template
|
|
void Thread::DumpThreadOffset<PointerSize::k32>(std::ostream& os, uint32_t offset);
|
|
template
|
|
void Thread::DumpThreadOffset<PointerSize::k64>(std::ostream& os, uint32_t offset);
|
|
|
|
template<PointerSize ptr_size>
|
|
void Thread::DumpThreadOffset(std::ostream& os, uint32_t offset) {
|
|
#define DO_THREAD_OFFSET(x, y) \
|
|
if (offset == (x).Uint32Value()) { \
|
|
os << (y); \
|
|
return; \
|
|
}
|
|
DO_THREAD_OFFSET(ThreadFlagsOffset<ptr_size>(), "state_and_flags")
|
|
DO_THREAD_OFFSET(CardTableOffset<ptr_size>(), "card_table")
|
|
DO_THREAD_OFFSET(ExceptionOffset<ptr_size>(), "exception")
|
|
DO_THREAD_OFFSET(PeerOffset<ptr_size>(), "peer");
|
|
DO_THREAD_OFFSET(JniEnvOffset<ptr_size>(), "jni_env")
|
|
DO_THREAD_OFFSET(SelfOffset<ptr_size>(), "self")
|
|
DO_THREAD_OFFSET(StackEndOffset<ptr_size>(), "stack_end")
|
|
DO_THREAD_OFFSET(ThinLockIdOffset<ptr_size>(), "thin_lock_thread_id")
|
|
DO_THREAD_OFFSET(IsGcMarkingOffset<ptr_size>(), "is_gc_marking")
|
|
DO_THREAD_OFFSET(TopOfManagedStackOffset<ptr_size>(), "top_quick_frame_method")
|
|
DO_THREAD_OFFSET(TopShadowFrameOffset<ptr_size>(), "top_shadow_frame")
|
|
DO_THREAD_OFFSET(TopHandleScopeOffset<ptr_size>(), "top_handle_scope")
|
|
DO_THREAD_OFFSET(ThreadSuspendTriggerOffset<ptr_size>(), "suspend_trigger")
|
|
#undef DO_THREAD_OFFSET
|
|
|
|
#define JNI_ENTRY_POINT_INFO(x) \
|
|
if (JNI_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
|
|
os << #x; \
|
|
return; \
|
|
}
|
|
JNI_ENTRY_POINT_INFO(pDlsymLookup)
|
|
#undef JNI_ENTRY_POINT_INFO
|
|
|
|
#define QUICK_ENTRY_POINT_INFO(x) \
|
|
if (QUICK_ENTRYPOINT_OFFSET(ptr_size, x).Uint32Value() == offset) { \
|
|
os << #x; \
|
|
return; \
|
|
}
|
|
QUICK_ENTRY_POINT_INFO(pAllocArrayResolved)
|
|
QUICK_ENTRY_POINT_INFO(pAllocArrayResolved8)
|
|
QUICK_ENTRY_POINT_INFO(pAllocArrayResolved16)
|
|
QUICK_ENTRY_POINT_INFO(pAllocArrayResolved32)
|
|
QUICK_ENTRY_POINT_INFO(pAllocArrayResolved64)
|
|
QUICK_ENTRY_POINT_INFO(pAllocObjectResolved)
|
|
QUICK_ENTRY_POINT_INFO(pAllocObjectInitialized)
|
|
QUICK_ENTRY_POINT_INFO(pAllocObjectWithChecks)
|
|
QUICK_ENTRY_POINT_INFO(pAllocStringFromBytes)
|
|
QUICK_ENTRY_POINT_INFO(pAllocStringFromChars)
|
|
QUICK_ENTRY_POINT_INFO(pAllocStringFromString)
|
|
QUICK_ENTRY_POINT_INFO(pInstanceofNonTrivial)
|
|
QUICK_ENTRY_POINT_INFO(pCheckInstanceOf)
|
|
QUICK_ENTRY_POINT_INFO(pInitializeStaticStorage)
|
|
QUICK_ENTRY_POINT_INFO(pInitializeTypeAndVerifyAccess)
|
|
QUICK_ENTRY_POINT_INFO(pInitializeType)
|
|
QUICK_ENTRY_POINT_INFO(pResolveString)
|
|
QUICK_ENTRY_POINT_INFO(pSet8Instance)
|
|
QUICK_ENTRY_POINT_INFO(pSet8Static)
|
|
QUICK_ENTRY_POINT_INFO(pSet16Instance)
|
|
QUICK_ENTRY_POINT_INFO(pSet16Static)
|
|
QUICK_ENTRY_POINT_INFO(pSet32Instance)
|
|
QUICK_ENTRY_POINT_INFO(pSet32Static)
|
|
QUICK_ENTRY_POINT_INFO(pSet64Instance)
|
|
QUICK_ENTRY_POINT_INFO(pSet64Static)
|
|
QUICK_ENTRY_POINT_INFO(pSetObjInstance)
|
|
QUICK_ENTRY_POINT_INFO(pSetObjStatic)
|
|
QUICK_ENTRY_POINT_INFO(pGetByteInstance)
|
|
QUICK_ENTRY_POINT_INFO(pGetBooleanInstance)
|
|
QUICK_ENTRY_POINT_INFO(pGetByteStatic)
|
|
QUICK_ENTRY_POINT_INFO(pGetBooleanStatic)
|
|
QUICK_ENTRY_POINT_INFO(pGetShortInstance)
|
|
QUICK_ENTRY_POINT_INFO(pGetCharInstance)
|
|
QUICK_ENTRY_POINT_INFO(pGetShortStatic)
|
|
QUICK_ENTRY_POINT_INFO(pGetCharStatic)
|
|
QUICK_ENTRY_POINT_INFO(pGet32Instance)
|
|
QUICK_ENTRY_POINT_INFO(pGet32Static)
|
|
QUICK_ENTRY_POINT_INFO(pGet64Instance)
|
|
QUICK_ENTRY_POINT_INFO(pGet64Static)
|
|
QUICK_ENTRY_POINT_INFO(pGetObjInstance)
|
|
QUICK_ENTRY_POINT_INFO(pGetObjStatic)
|
|
QUICK_ENTRY_POINT_INFO(pAputObject)
|
|
QUICK_ENTRY_POINT_INFO(pJniMethodStart)
|
|
QUICK_ENTRY_POINT_INFO(pJniMethodStartSynchronized)
|
|
QUICK_ENTRY_POINT_INFO(pJniMethodEnd)
|
|
QUICK_ENTRY_POINT_INFO(pJniMethodEndSynchronized)
|
|
QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReference)
|
|
QUICK_ENTRY_POINT_INFO(pJniMethodEndWithReferenceSynchronized)
|
|
QUICK_ENTRY_POINT_INFO(pQuickGenericJniTrampoline)
|
|
QUICK_ENTRY_POINT_INFO(pLockObject)
|
|
QUICK_ENTRY_POINT_INFO(pUnlockObject)
|
|
QUICK_ENTRY_POINT_INFO(pCmpgDouble)
|
|
QUICK_ENTRY_POINT_INFO(pCmpgFloat)
|
|
QUICK_ENTRY_POINT_INFO(pCmplDouble)
|
|
QUICK_ENTRY_POINT_INFO(pCmplFloat)
|
|
QUICK_ENTRY_POINT_INFO(pCos)
|
|
QUICK_ENTRY_POINT_INFO(pSin)
|
|
QUICK_ENTRY_POINT_INFO(pAcos)
|
|
QUICK_ENTRY_POINT_INFO(pAsin)
|
|
QUICK_ENTRY_POINT_INFO(pAtan)
|
|
QUICK_ENTRY_POINT_INFO(pAtan2)
|
|
QUICK_ENTRY_POINT_INFO(pCbrt)
|
|
QUICK_ENTRY_POINT_INFO(pCosh)
|
|
QUICK_ENTRY_POINT_INFO(pExp)
|
|
QUICK_ENTRY_POINT_INFO(pExpm1)
|
|
QUICK_ENTRY_POINT_INFO(pHypot)
|
|
QUICK_ENTRY_POINT_INFO(pLog)
|
|
QUICK_ENTRY_POINT_INFO(pLog10)
|
|
QUICK_ENTRY_POINT_INFO(pNextAfter)
|
|
QUICK_ENTRY_POINT_INFO(pSinh)
|
|
QUICK_ENTRY_POINT_INFO(pTan)
|
|
QUICK_ENTRY_POINT_INFO(pTanh)
|
|
QUICK_ENTRY_POINT_INFO(pFmod)
|
|
QUICK_ENTRY_POINT_INFO(pL2d)
|
|
QUICK_ENTRY_POINT_INFO(pFmodf)
|
|
QUICK_ENTRY_POINT_INFO(pL2f)
|
|
QUICK_ENTRY_POINT_INFO(pD2iz)
|
|
QUICK_ENTRY_POINT_INFO(pF2iz)
|
|
QUICK_ENTRY_POINT_INFO(pIdivmod)
|
|
QUICK_ENTRY_POINT_INFO(pD2l)
|
|
QUICK_ENTRY_POINT_INFO(pF2l)
|
|
QUICK_ENTRY_POINT_INFO(pLdiv)
|
|
QUICK_ENTRY_POINT_INFO(pLmod)
|
|
QUICK_ENTRY_POINT_INFO(pLmul)
|
|
QUICK_ENTRY_POINT_INFO(pShlLong)
|
|
QUICK_ENTRY_POINT_INFO(pShrLong)
|
|
QUICK_ENTRY_POINT_INFO(pUshrLong)
|
|
QUICK_ENTRY_POINT_INFO(pIndexOf)
|
|
QUICK_ENTRY_POINT_INFO(pStringCompareTo)
|
|
QUICK_ENTRY_POINT_INFO(pMemcpy)
|
|
QUICK_ENTRY_POINT_INFO(pQuickImtConflictTrampoline)
|
|
QUICK_ENTRY_POINT_INFO(pQuickResolutionTrampoline)
|
|
QUICK_ENTRY_POINT_INFO(pQuickToInterpreterBridge)
|
|
QUICK_ENTRY_POINT_INFO(pInvokeDirectTrampolineWithAccessCheck)
|
|
QUICK_ENTRY_POINT_INFO(pInvokeInterfaceTrampolineWithAccessCheck)
|
|
QUICK_ENTRY_POINT_INFO(pInvokeStaticTrampolineWithAccessCheck)
|
|
QUICK_ENTRY_POINT_INFO(pInvokeSuperTrampolineWithAccessCheck)
|
|
QUICK_ENTRY_POINT_INFO(pInvokeVirtualTrampolineWithAccessCheck)
|
|
QUICK_ENTRY_POINT_INFO(pInvokePolymorphic)
|
|
QUICK_ENTRY_POINT_INFO(pTestSuspend)
|
|
QUICK_ENTRY_POINT_INFO(pDeliverException)
|
|
QUICK_ENTRY_POINT_INFO(pThrowArrayBounds)
|
|
QUICK_ENTRY_POINT_INFO(pThrowDivZero)
|
|
QUICK_ENTRY_POINT_INFO(pThrowNullPointer)
|
|
QUICK_ENTRY_POINT_INFO(pThrowStackOverflow)
|
|
QUICK_ENTRY_POINT_INFO(pDeoptimize)
|
|
QUICK_ENTRY_POINT_INFO(pA64Load)
|
|
QUICK_ENTRY_POINT_INFO(pA64Store)
|
|
QUICK_ENTRY_POINT_INFO(pNewEmptyString)
|
|
QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_B)
|
|
QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BI)
|
|
QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BII)
|
|
QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIII)
|
|
QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIIString)
|
|
QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BString)
|
|
QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BIICharset)
|
|
QUICK_ENTRY_POINT_INFO(pNewStringFromBytes_BCharset)
|
|
QUICK_ENTRY_POINT_INFO(pNewStringFromChars_C)
|
|
QUICK_ENTRY_POINT_INFO(pNewStringFromChars_CII)
|
|
QUICK_ENTRY_POINT_INFO(pNewStringFromChars_IIC)
|
|
QUICK_ENTRY_POINT_INFO(pNewStringFromCodePoints)
|
|
QUICK_ENTRY_POINT_INFO(pNewStringFromString)
|
|
QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuffer)
|
|
QUICK_ENTRY_POINT_INFO(pNewStringFromStringBuilder)
|
|
QUICK_ENTRY_POINT_INFO(pReadBarrierJni)
|
|
QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg00)
|
|
QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg01)
|
|
QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg02)
|
|
QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg03)
|
|
QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg04)
|
|
QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg05)
|
|
QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg06)
|
|
QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg07)
|
|
QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg08)
|
|
QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg09)
|
|
QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg10)
|
|
QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg11)
|
|
QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg12)
|
|
QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg13)
|
|
QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg14)
|
|
QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg15)
|
|
QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg16)
|
|
QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg17)
|
|
QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg18)
|
|
QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg19)
|
|
QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg20)
|
|
QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg21)
|
|
QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg22)
|
|
QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg23)
|
|
QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg24)
|
|
QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg25)
|
|
QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg26)
|
|
QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg27)
|
|
QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg28)
|
|
QUICK_ENTRY_POINT_INFO(pReadBarrierMarkReg29)
|
|
QUICK_ENTRY_POINT_INFO(pReadBarrierSlow)
|
|
QUICK_ENTRY_POINT_INFO(pReadBarrierForRootSlow)
|
|
|
|
QUICK_ENTRY_POINT_INFO(pJniMethodFastStart)
|
|
QUICK_ENTRY_POINT_INFO(pJniMethodFastEnd)
|
|
#undef QUICK_ENTRY_POINT_INFO
|
|
|
|
os << offset;
|
|
}
|
|
|
|
void Thread::QuickDeliverException() {
|
|
// Get exception from thread.
|
|
ObjPtr<mirror::Throwable> exception = GetException();
|
|
CHECK(exception != nullptr);
|
|
if (exception == GetDeoptimizationException()) {
|
|
artDeoptimize(this);
|
|
UNREACHABLE();
|
|
}
|
|
|
|
// This is a real exception: let the instrumentation know about it.
|
|
instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
|
|
if (instrumentation->HasExceptionCaughtListeners() &&
|
|
IsExceptionThrownByCurrentMethod(exception)) {
|
|
// Instrumentation may cause GC so keep the exception object safe.
|
|
StackHandleScope<1> hs(this);
|
|
HandleWrapperObjPtr<mirror::Throwable> h_exception(hs.NewHandleWrapper(&exception));
|
|
instrumentation->ExceptionCaughtEvent(this, exception.Ptr());
|
|
}
|
|
// Does instrumentation need to deoptimize the stack?
|
|
// Note: we do this *after* reporting the exception to instrumentation in case it
|
|
// now requires deoptimization. It may happen if a debugger is attached and requests
|
|
// new events (single-step, breakpoint, ...) when the exception is reported.
|
|
if (Dbg::IsForcedInterpreterNeededForException(this)) {
|
|
NthCallerVisitor visitor(this, 0, false);
|
|
visitor.WalkStack();
|
|
if (Runtime::Current()->IsAsyncDeoptimizeable(visitor.caller_pc)) {
|
|
// Save the exception into the deoptimization context so it can be restored
|
|
// before entering the interpreter.
|
|
PushDeoptimizationContext(
|
|
JValue(), /*is_reference */ false, /* from_code */ false, exception);
|
|
artDeoptimize(this);
|
|
UNREACHABLE();
|
|
} else {
|
|
LOG(WARNING) << "Got a deoptimization request on un-deoptimizable method "
|
|
<< visitor.caller->PrettyMethod();
|
|
}
|
|
}
|
|
|
|
// Don't leave exception visible while we try to find the handler, which may cause class
|
|
// resolution.
|
|
ClearException();
|
|
QuickExceptionHandler exception_handler(this, false);
|
|
exception_handler.FindCatch(exception);
|
|
exception_handler.UpdateInstrumentationStack();
|
|
exception_handler.DoLongJump();
|
|
}
|
|
|
|
Context* Thread::GetLongJumpContext() {
|
|
Context* result = tlsPtr_.long_jump_context;
|
|
if (result == nullptr) {
|
|
result = Context::Create();
|
|
} else {
|
|
tlsPtr_.long_jump_context = nullptr; // Avoid context being shared.
|
|
result->Reset();
|
|
}
|
|
return result;
|
|
}
|
|
|
|
// Note: this visitor may return with a method set, but dex_pc_ being DexFile:kDexNoIndex. This is
|
|
// so we don't abort in a special situation (thinlocked monitor) when dumping the Java stack.
|
|
struct CurrentMethodVisitor FINAL : public StackVisitor {
|
|
CurrentMethodVisitor(Thread* thread, Context* context, bool check_suspended, bool abort_on_error)
|
|
REQUIRES_SHARED(Locks::mutator_lock_)
|
|
: StackVisitor(thread,
|
|
context,
|
|
StackVisitor::StackWalkKind::kIncludeInlinedFrames,
|
|
check_suspended),
|
|
this_object_(nullptr),
|
|
method_(nullptr),
|
|
dex_pc_(0),
|
|
abort_on_error_(abort_on_error) {}
|
|
bool VisitFrame() OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
ArtMethod* m = GetMethod();
|
|
if (m->IsRuntimeMethod()) {
|
|
// Continue if this is a runtime method.
|
|
return true;
|
|
}
|
|
if (context_ != nullptr) {
|
|
this_object_ = GetThisObject();
|
|
}
|
|
method_ = m;
|
|
dex_pc_ = GetDexPc(abort_on_error_);
|
|
return false;
|
|
}
|
|
ObjPtr<mirror::Object> this_object_;
|
|
ArtMethod* method_;
|
|
uint32_t dex_pc_;
|
|
const bool abort_on_error_;
|
|
};
|
|
|
|
ArtMethod* Thread::GetCurrentMethod(uint32_t* dex_pc,
|
|
bool check_suspended,
|
|
bool abort_on_error) const {
|
|
CurrentMethodVisitor visitor(const_cast<Thread*>(this),
|
|
nullptr,
|
|
check_suspended,
|
|
abort_on_error);
|
|
visitor.WalkStack(false);
|
|
if (dex_pc != nullptr) {
|
|
*dex_pc = visitor.dex_pc_;
|
|
}
|
|
return visitor.method_;
|
|
}
|
|
|
|
bool Thread::HoldsLock(ObjPtr<mirror::Object> object) const {
|
|
return object != nullptr && object->GetLockOwnerThreadId() == GetThreadId();
|
|
}
|
|
|
|
// RootVisitor parameters are: (const Object* obj, size_t vreg, const StackVisitor* visitor).
|
|
template <typename RootVisitor, bool kPrecise = false>
|
|
class ReferenceMapVisitor : public StackVisitor {
|
|
public:
|
|
ReferenceMapVisitor(Thread* thread, Context* context, RootVisitor& visitor)
|
|
REQUIRES_SHARED(Locks::mutator_lock_)
|
|
// We are visiting the references in compiled frames, so we do not need
|
|
// to know the inlined frames.
|
|
: StackVisitor(thread, context, StackVisitor::StackWalkKind::kSkipInlinedFrames),
|
|
visitor_(visitor) {}
|
|
|
|
bool VisitFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
if (false) {
|
|
LOG(INFO) << "Visiting stack roots in " << ArtMethod::PrettyMethod(GetMethod())
|
|
<< StringPrintf("@ PC:%04x", GetDexPc());
|
|
}
|
|
ShadowFrame* shadow_frame = GetCurrentShadowFrame();
|
|
if (shadow_frame != nullptr) {
|
|
VisitShadowFrame(shadow_frame);
|
|
} else {
|
|
VisitQuickFrame();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void VisitShadowFrame(ShadowFrame* shadow_frame) REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
ArtMethod* m = shadow_frame->GetMethod();
|
|
VisitDeclaringClass(m);
|
|
DCHECK(m != nullptr);
|
|
size_t num_regs = shadow_frame->NumberOfVRegs();
|
|
DCHECK(m->IsNative() || shadow_frame->HasReferenceArray());
|
|
// handle scope for JNI or References for interpreter.
|
|
for (size_t reg = 0; reg < num_regs; ++reg) {
|
|
mirror::Object* ref = shadow_frame->GetVRegReference(reg);
|
|
if (ref != nullptr) {
|
|
mirror::Object* new_ref = ref;
|
|
visitor_(&new_ref, reg, this);
|
|
if (new_ref != ref) {
|
|
shadow_frame->SetVRegReference(reg, new_ref);
|
|
}
|
|
}
|
|
}
|
|
// Mark lock count map required for structured locking checks.
|
|
shadow_frame->GetLockCountData().VisitMonitors(visitor_, -1, this);
|
|
}
|
|
|
|
private:
|
|
// Visiting the declaring class is necessary so that we don't unload the class of a method that
|
|
// is executing. We need to ensure that the code stays mapped. NO_THREAD_SAFETY_ANALYSIS since
|
|
// the threads do not all hold the heap bitmap lock for parallel GC.
|
|
void VisitDeclaringClass(ArtMethod* method)
|
|
REQUIRES_SHARED(Locks::mutator_lock_)
|
|
NO_THREAD_SAFETY_ANALYSIS {
|
|
ObjPtr<mirror::Class> klass = method->GetDeclaringClassUnchecked<kWithoutReadBarrier>();
|
|
// klass can be null for runtime methods.
|
|
if (klass != nullptr) {
|
|
if (kVerifyImageObjectsMarked) {
|
|
gc::Heap* const heap = Runtime::Current()->GetHeap();
|
|
gc::space::ContinuousSpace* space = heap->FindContinuousSpaceFromObject(klass,
|
|
/*fail_ok*/true);
|
|
if (space != nullptr && space->IsImageSpace()) {
|
|
bool failed = false;
|
|
if (!space->GetLiveBitmap()->Test(klass.Ptr())) {
|
|
failed = true;
|
|
LOG(FATAL_WITHOUT_ABORT) << "Unmarked object in image " << *space;
|
|
} else if (!heap->GetLiveBitmap()->Test(klass.Ptr())) {
|
|
failed = true;
|
|
LOG(FATAL_WITHOUT_ABORT) << "Unmarked object in image through live bitmap " << *space;
|
|
}
|
|
if (failed) {
|
|
GetThread()->Dump(LOG_STREAM(FATAL_WITHOUT_ABORT));
|
|
space->AsImageSpace()->DumpSections(LOG_STREAM(FATAL_WITHOUT_ABORT));
|
|
LOG(FATAL_WITHOUT_ABORT) << "Method@" << method->GetDexMethodIndex() << ":" << method
|
|
<< " klass@" << klass.Ptr();
|
|
// Pretty info last in case it crashes.
|
|
LOG(FATAL) << "Method " << method->PrettyMethod() << " klass "
|
|
<< klass->PrettyClass();
|
|
}
|
|
}
|
|
}
|
|
mirror::Object* new_ref = klass.Ptr();
|
|
visitor_(&new_ref, -1, this);
|
|
if (new_ref != klass) {
|
|
method->CASDeclaringClass(klass.Ptr(), new_ref->AsClass());
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename T>
|
|
ALWAYS_INLINE
|
|
inline void VisitQuickFrameWithVregCallback() REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
ArtMethod** cur_quick_frame = GetCurrentQuickFrame();
|
|
DCHECK(cur_quick_frame != nullptr);
|
|
ArtMethod* m = *cur_quick_frame;
|
|
VisitDeclaringClass(m);
|
|
|
|
// Process register map (which native and runtime methods don't have)
|
|
if (!m->IsNative() && !m->IsRuntimeMethod() && (!m->IsProxyMethod() || m->IsConstructor())) {
|
|
const OatQuickMethodHeader* method_header = GetCurrentOatQuickMethodHeader();
|
|
DCHECK(method_header->IsOptimized());
|
|
auto* vreg_base = reinterpret_cast<StackReference<mirror::Object>*>(
|
|
reinterpret_cast<uintptr_t>(cur_quick_frame));
|
|
uintptr_t native_pc_offset = method_header->NativeQuickPcOffset(GetCurrentQuickFramePc());
|
|
CodeInfo code_info = method_header->GetOptimizedCodeInfo();
|
|
CodeInfoEncoding encoding = code_info.ExtractEncoding();
|
|
StackMap map = code_info.GetStackMapForNativePcOffset(native_pc_offset, encoding);
|
|
DCHECK(map.IsValid());
|
|
|
|
T vreg_info(m, code_info, encoding, map, visitor_);
|
|
|
|
// Visit stack entries that hold pointers.
|
|
const size_t number_of_bits = code_info.GetNumberOfStackMaskBits(encoding);
|
|
BitMemoryRegion stack_mask = code_info.GetStackMaskOf(encoding, map);
|
|
for (size_t i = 0; i < number_of_bits; ++i) {
|
|
if (stack_mask.LoadBit(i)) {
|
|
auto* ref_addr = vreg_base + i;
|
|
mirror::Object* ref = ref_addr->AsMirrorPtr();
|
|
if (ref != nullptr) {
|
|
mirror::Object* new_ref = ref;
|
|
vreg_info.VisitStack(&new_ref, i, this);
|
|
if (ref != new_ref) {
|
|
ref_addr->Assign(new_ref);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Visit callee-save registers that hold pointers.
|
|
uint32_t register_mask = code_info.GetRegisterMaskOf(encoding, map);
|
|
for (size_t i = 0; i < BitSizeOf<uint32_t>(); ++i) {
|
|
if (register_mask & (1 << i)) {
|
|
mirror::Object** ref_addr = reinterpret_cast<mirror::Object**>(GetGPRAddress(i));
|
|
if (kIsDebugBuild && ref_addr == nullptr) {
|
|
std::string thread_name;
|
|
GetThread()->GetThreadName(thread_name);
|
|
LOG(FATAL_WITHOUT_ABORT) << "On thread " << thread_name;
|
|
DescribeStack(GetThread());
|
|
LOG(FATAL) << "Found an unsaved callee-save register " << i << " (null GPRAddress) "
|
|
<< "set in register_mask=" << register_mask << " at " << DescribeLocation();
|
|
}
|
|
if (*ref_addr != nullptr) {
|
|
vreg_info.VisitRegister(ref_addr, i, this);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void VisitQuickFrame() REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
if (kPrecise) {
|
|
VisitQuickFramePrecise();
|
|
} else {
|
|
VisitQuickFrameNonPrecise();
|
|
}
|
|
}
|
|
|
|
void VisitQuickFrameNonPrecise() REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
struct UndefinedVRegInfo {
|
|
UndefinedVRegInfo(ArtMethod* method ATTRIBUTE_UNUSED,
|
|
const CodeInfo& code_info ATTRIBUTE_UNUSED,
|
|
const CodeInfoEncoding& encoding ATTRIBUTE_UNUSED,
|
|
const StackMap& map ATTRIBUTE_UNUSED,
|
|
RootVisitor& _visitor)
|
|
: visitor(_visitor) {
|
|
}
|
|
|
|
ALWAYS_INLINE
|
|
void VisitStack(mirror::Object** ref,
|
|
size_t stack_index ATTRIBUTE_UNUSED,
|
|
const StackVisitor* stack_visitor)
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
visitor(ref, -1, stack_visitor);
|
|
}
|
|
|
|
ALWAYS_INLINE
|
|
void VisitRegister(mirror::Object** ref,
|
|
size_t register_index ATTRIBUTE_UNUSED,
|
|
const StackVisitor* stack_visitor)
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
visitor(ref, -1, stack_visitor);
|
|
}
|
|
|
|
RootVisitor& visitor;
|
|
};
|
|
VisitQuickFrameWithVregCallback<UndefinedVRegInfo>();
|
|
}
|
|
|
|
void VisitQuickFramePrecise() REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
struct StackMapVRegInfo {
|
|
StackMapVRegInfo(ArtMethod* method,
|
|
const CodeInfo& _code_info,
|
|
const CodeInfoEncoding& _encoding,
|
|
const StackMap& map,
|
|
RootVisitor& _visitor)
|
|
: number_of_dex_registers(method->GetCodeItem()->registers_size_),
|
|
code_info(_code_info),
|
|
encoding(_encoding),
|
|
dex_register_map(code_info.GetDexRegisterMapOf(map,
|
|
encoding,
|
|
number_of_dex_registers)),
|
|
visitor(_visitor) {
|
|
}
|
|
|
|
// TODO: If necessary, we should consider caching a reverse map instead of the linear
|
|
// lookups for each location.
|
|
void FindWithType(const size_t index,
|
|
const DexRegisterLocation::Kind kind,
|
|
mirror::Object** ref,
|
|
const StackVisitor* stack_visitor)
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
bool found = false;
|
|
for (size_t dex_reg = 0; dex_reg != number_of_dex_registers; ++dex_reg) {
|
|
DexRegisterLocation location = dex_register_map.GetDexRegisterLocation(
|
|
dex_reg, number_of_dex_registers, code_info, encoding);
|
|
if (location.GetKind() == kind && static_cast<size_t>(location.GetValue()) == index) {
|
|
visitor(ref, dex_reg, stack_visitor);
|
|
found = true;
|
|
}
|
|
}
|
|
|
|
if (!found) {
|
|
// If nothing found, report with -1.
|
|
visitor(ref, -1, stack_visitor);
|
|
}
|
|
}
|
|
|
|
void VisitStack(mirror::Object** ref, size_t stack_index, const StackVisitor* stack_visitor)
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
const size_t stack_offset = stack_index * kFrameSlotSize;
|
|
FindWithType(stack_offset,
|
|
DexRegisterLocation::Kind::kInStack,
|
|
ref,
|
|
stack_visitor);
|
|
}
|
|
|
|
void VisitRegister(mirror::Object** ref,
|
|
size_t register_index,
|
|
const StackVisitor* stack_visitor)
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
FindWithType(register_index,
|
|
DexRegisterLocation::Kind::kInRegister,
|
|
ref,
|
|
stack_visitor);
|
|
}
|
|
|
|
size_t number_of_dex_registers;
|
|
const CodeInfo& code_info;
|
|
const CodeInfoEncoding& encoding;
|
|
DexRegisterMap dex_register_map;
|
|
RootVisitor& visitor;
|
|
};
|
|
VisitQuickFrameWithVregCallback<StackMapVRegInfo>();
|
|
}
|
|
|
|
// Visitor for when we visit a root.
|
|
RootVisitor& visitor_;
|
|
};
|
|
|
|
class RootCallbackVisitor {
|
|
public:
|
|
RootCallbackVisitor(RootVisitor* visitor, uint32_t tid) : visitor_(visitor), tid_(tid) {}
|
|
|
|
void operator()(mirror::Object** obj, size_t vreg, const StackVisitor* stack_visitor) const
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
visitor_->VisitRoot(obj, JavaFrameRootInfo(tid_, stack_visitor, vreg));
|
|
}
|
|
|
|
private:
|
|
RootVisitor* const visitor_;
|
|
const uint32_t tid_;
|
|
};
|
|
|
|
template <bool kPrecise>
|
|
void Thread::VisitRoots(RootVisitor* visitor) {
|
|
const uint32_t thread_id = GetThreadId();
|
|
visitor->VisitRootIfNonNull(&tlsPtr_.opeer, RootInfo(kRootThreadObject, thread_id));
|
|
if (tlsPtr_.exception != nullptr && tlsPtr_.exception != GetDeoptimizationException()) {
|
|
visitor->VisitRoot(reinterpret_cast<mirror::Object**>(&tlsPtr_.exception),
|
|
RootInfo(kRootNativeStack, thread_id));
|
|
}
|
|
visitor->VisitRootIfNonNull(&tlsPtr_.monitor_enter_object, RootInfo(kRootNativeStack, thread_id));
|
|
tlsPtr_.jni_env->locals.VisitRoots(visitor, RootInfo(kRootJNILocal, thread_id));
|
|
tlsPtr_.jni_env->monitors.VisitRoots(visitor, RootInfo(kRootJNIMonitor, thread_id));
|
|
HandleScopeVisitRoots(visitor, thread_id);
|
|
if (tlsPtr_.debug_invoke_req != nullptr) {
|
|
tlsPtr_.debug_invoke_req->VisitRoots(visitor, RootInfo(kRootDebugger, thread_id));
|
|
}
|
|
// Visit roots for deoptimization.
|
|
if (tlsPtr_.stacked_shadow_frame_record != nullptr) {
|
|
RootCallbackVisitor visitor_to_callback(visitor, thread_id);
|
|
ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, nullptr, visitor_to_callback);
|
|
for (StackedShadowFrameRecord* record = tlsPtr_.stacked_shadow_frame_record;
|
|
record != nullptr;
|
|
record = record->GetLink()) {
|
|
for (ShadowFrame* shadow_frame = record->GetShadowFrame();
|
|
shadow_frame != nullptr;
|
|
shadow_frame = shadow_frame->GetLink()) {
|
|
mapper.VisitShadowFrame(shadow_frame);
|
|
}
|
|
}
|
|
}
|
|
for (DeoptimizationContextRecord* record = tlsPtr_.deoptimization_context_stack;
|
|
record != nullptr;
|
|
record = record->GetLink()) {
|
|
if (record->IsReference()) {
|
|
visitor->VisitRootIfNonNull(record->GetReturnValueAsGCRoot(),
|
|
RootInfo(kRootThreadObject, thread_id));
|
|
}
|
|
visitor->VisitRootIfNonNull(record->GetPendingExceptionAsGCRoot(),
|
|
RootInfo(kRootThreadObject, thread_id));
|
|
}
|
|
if (tlsPtr_.frame_id_to_shadow_frame != nullptr) {
|
|
RootCallbackVisitor visitor_to_callback(visitor, thread_id);
|
|
ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, nullptr, visitor_to_callback);
|
|
for (FrameIdToShadowFrame* record = tlsPtr_.frame_id_to_shadow_frame;
|
|
record != nullptr;
|
|
record = record->GetNext()) {
|
|
mapper.VisitShadowFrame(record->GetShadowFrame());
|
|
}
|
|
}
|
|
for (auto* verifier = tlsPtr_.method_verifier; verifier != nullptr; verifier = verifier->link_) {
|
|
verifier->VisitRoots(visitor, RootInfo(kRootNativeStack, thread_id));
|
|
}
|
|
// Visit roots on this thread's stack
|
|
RuntimeContextType context;
|
|
RootCallbackVisitor visitor_to_callback(visitor, thread_id);
|
|
ReferenceMapVisitor<RootCallbackVisitor, kPrecise> mapper(this, &context, visitor_to_callback);
|
|
mapper.template WalkStack<StackVisitor::CountTransitions::kNo>(false);
|
|
for (instrumentation::InstrumentationStackFrame& frame : *GetInstrumentationStack()) {
|
|
visitor->VisitRootIfNonNull(&frame.this_object_, RootInfo(kRootVMInternal, thread_id));
|
|
}
|
|
}
|
|
|
|
void Thread::VisitRoots(RootVisitor* visitor, VisitRootFlags flags) {
|
|
if ((flags & VisitRootFlags::kVisitRootFlagPrecise) != 0) {
|
|
VisitRoots<true>(visitor);
|
|
} else {
|
|
VisitRoots<false>(visitor);
|
|
}
|
|
}
|
|
|
|
class VerifyRootVisitor : public SingleRootVisitor {
|
|
public:
|
|
void VisitRoot(mirror::Object* root, const RootInfo& info ATTRIBUTE_UNUSED)
|
|
OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
VerifyObject(root);
|
|
}
|
|
};
|
|
|
|
void Thread::VerifyStackImpl() {
|
|
if (Runtime::Current()->GetHeap()->IsObjectValidationEnabled()) {
|
|
VerifyRootVisitor visitor;
|
|
std::unique_ptr<Context> context(Context::Create());
|
|
RootCallbackVisitor visitor_to_callback(&visitor, GetThreadId());
|
|
ReferenceMapVisitor<RootCallbackVisitor> mapper(this, context.get(), visitor_to_callback);
|
|
mapper.WalkStack();
|
|
}
|
|
}
|
|
|
|
// Set the stack end to that to be used during a stack overflow
|
|
void Thread::SetStackEndForStackOverflow() {
|
|
// During stack overflow we allow use of the full stack.
|
|
if (tlsPtr_.stack_end == tlsPtr_.stack_begin) {
|
|
// However, we seem to have already extended to use the full stack.
|
|
LOG(ERROR) << "Need to increase kStackOverflowReservedBytes (currently "
|
|
<< GetStackOverflowReservedBytes(kRuntimeISA) << ")?";
|
|
DumpStack(LOG_STREAM(ERROR));
|
|
LOG(FATAL) << "Recursive stack overflow.";
|
|
}
|
|
|
|
tlsPtr_.stack_end = tlsPtr_.stack_begin;
|
|
|
|
// Remove the stack overflow protection if is it set up.
|
|
bool implicit_stack_check = !Runtime::Current()->ExplicitStackOverflowChecks();
|
|
if (implicit_stack_check) {
|
|
if (!UnprotectStack()) {
|
|
LOG(ERROR) << "Unable to remove stack protection for stack overflow";
|
|
}
|
|
}
|
|
}
|
|
|
|
void Thread::SetTlab(uint8_t* start, uint8_t* end, uint8_t* limit) {
|
|
DCHECK_LE(start, end);
|
|
DCHECK_LE(end, limit);
|
|
tlsPtr_.thread_local_start = start;
|
|
tlsPtr_.thread_local_pos = tlsPtr_.thread_local_start;
|
|
tlsPtr_.thread_local_end = end;
|
|
tlsPtr_.thread_local_limit = limit;
|
|
tlsPtr_.thread_local_objects = 0;
|
|
}
|
|
|
|
bool Thread::HasTlab() const {
|
|
bool has_tlab = tlsPtr_.thread_local_pos != nullptr;
|
|
if (has_tlab) {
|
|
DCHECK(tlsPtr_.thread_local_start != nullptr && tlsPtr_.thread_local_end != nullptr);
|
|
} else {
|
|
DCHECK(tlsPtr_.thread_local_start == nullptr && tlsPtr_.thread_local_end == nullptr);
|
|
}
|
|
return has_tlab;
|
|
}
|
|
|
|
std::ostream& operator<<(std::ostream& os, const Thread& thread) {
|
|
thread.ShortDump(os);
|
|
return os;
|
|
}
|
|
|
|
bool Thread::ProtectStack(bool fatal_on_error) {
|
|
void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
|
|
VLOG(threads) << "Protecting stack at " << pregion;
|
|
if (mprotect(pregion, kStackOverflowProtectedSize, PROT_NONE) == -1) {
|
|
if (fatal_on_error) {
|
|
LOG(FATAL) << "Unable to create protected region in stack for implicit overflow check. "
|
|
"Reason: "
|
|
<< strerror(errno) << " size: " << kStackOverflowProtectedSize;
|
|
}
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool Thread::UnprotectStack() {
|
|
void* pregion = tlsPtr_.stack_begin - kStackOverflowProtectedSize;
|
|
VLOG(threads) << "Unprotecting stack at " << pregion;
|
|
return mprotect(pregion, kStackOverflowProtectedSize, PROT_READ|PROT_WRITE) == 0;
|
|
}
|
|
|
|
void Thread::ActivateSingleStepControl(SingleStepControl* ssc) {
|
|
CHECK(Dbg::IsDebuggerActive());
|
|
CHECK(GetSingleStepControl() == nullptr) << "Single step already active in thread " << *this;
|
|
CHECK(ssc != nullptr);
|
|
tlsPtr_.single_step_control = ssc;
|
|
}
|
|
|
|
void Thread::DeactivateSingleStepControl() {
|
|
CHECK(Dbg::IsDebuggerActive());
|
|
CHECK(GetSingleStepControl() != nullptr) << "Single step not active in thread " << *this;
|
|
SingleStepControl* ssc = GetSingleStepControl();
|
|
tlsPtr_.single_step_control = nullptr;
|
|
delete ssc;
|
|
}
|
|
|
|
void Thread::SetDebugInvokeReq(DebugInvokeReq* req) {
|
|
CHECK(Dbg::IsDebuggerActive());
|
|
CHECK(GetInvokeReq() == nullptr) << "Debug invoke req already active in thread " << *this;
|
|
CHECK(Thread::Current() != this) << "Debug invoke can't be dispatched by the thread itself";
|
|
CHECK(req != nullptr);
|
|
tlsPtr_.debug_invoke_req = req;
|
|
}
|
|
|
|
void Thread::ClearDebugInvokeReq() {
|
|
CHECK(GetInvokeReq() != nullptr) << "Debug invoke req not active in thread " << *this;
|
|
CHECK(Thread::Current() == this) << "Debug invoke must be finished by the thread itself";
|
|
DebugInvokeReq* req = tlsPtr_.debug_invoke_req;
|
|
tlsPtr_.debug_invoke_req = nullptr;
|
|
delete req;
|
|
}
|
|
|
|
void Thread::PushVerifier(verifier::MethodVerifier* verifier) {
|
|
verifier->link_ = tlsPtr_.method_verifier;
|
|
tlsPtr_.method_verifier = verifier;
|
|
}
|
|
|
|
void Thread::PopVerifier(verifier::MethodVerifier* verifier) {
|
|
CHECK_EQ(tlsPtr_.method_verifier, verifier);
|
|
tlsPtr_.method_verifier = verifier->link_;
|
|
}
|
|
|
|
size_t Thread::NumberOfHeldMutexes() const {
|
|
size_t count = 0;
|
|
for (BaseMutex* mu : tlsPtr_.held_mutexes) {
|
|
count += mu != nullptr ? 1 : 0;
|
|
}
|
|
return count;
|
|
}
|
|
|
|
void Thread::DeoptimizeWithDeoptimizationException(JValue* result) {
|
|
DCHECK_EQ(GetException(), Thread::GetDeoptimizationException());
|
|
ClearException();
|
|
ShadowFrame* shadow_frame =
|
|
PopStackedShadowFrame(StackedShadowFrameType::kDeoptimizationShadowFrame);
|
|
ObjPtr<mirror::Throwable> pending_exception;
|
|
bool from_code = false;
|
|
PopDeoptimizationContext(result, &pending_exception, &from_code);
|
|
SetTopOfStack(nullptr);
|
|
SetTopOfShadowStack(shadow_frame);
|
|
|
|
// Restore the exception that was pending before deoptimization then interpret the
|
|
// deoptimized frames.
|
|
if (pending_exception != nullptr) {
|
|
SetException(pending_exception);
|
|
}
|
|
interpreter::EnterInterpreterFromDeoptimize(this, shadow_frame, from_code, result);
|
|
}
|
|
|
|
void Thread::SetException(ObjPtr<mirror::Throwable> new_exception) {
|
|
CHECK(new_exception != nullptr);
|
|
// TODO: DCHECK(!IsExceptionPending());
|
|
tlsPtr_.exception = new_exception.Ptr();
|
|
}
|
|
|
|
bool Thread::IsAotCompiler() {
|
|
return Runtime::Current()->IsAotCompiler();
|
|
}
|
|
|
|
mirror::Object* Thread::GetPeerFromOtherThread() const {
|
|
DCHECK(tlsPtr_.jpeer == nullptr);
|
|
mirror::Object* peer = tlsPtr_.opeer;
|
|
if (kUseReadBarrier && Current()->GetIsGcMarking()) {
|
|
// We may call Thread::Dump() in the middle of the CC thread flip and this thread's stack
|
|
// may have not been flipped yet and peer may be a from-space (stale) ref. So explicitly
|
|
// mark/forward it here.
|
|
peer = art::ReadBarrier::Mark(peer);
|
|
}
|
|
return peer;
|
|
}
|
|
|
|
void Thread::SetReadBarrierEntrypoints() {
|
|
// Make sure entrypoints aren't null.
|
|
UpdateReadBarrierEntrypoints(&tlsPtr_.quick_entrypoints, /* is_active*/ true);
|
|
}
|
|
|
|
} // namespace art
|