2457 lines
53 KiB
C
2457 lines
53 KiB
C
/*
|
|
* fio - the flexible io tester
|
|
*
|
|
* Copyright (C) 2005 Jens Axboe <axboe@suse.de>
|
|
* Copyright (C) 2006-2012 Jens Axboe <axboe@kernel.dk>
|
|
*
|
|
* The license below covers all files distributed with fio unless otherwise
|
|
* noted in the file itself.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License version 2 as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*
|
|
*/
|
|
#include <unistd.h>
|
|
#include <fcntl.h>
|
|
#include <string.h>
|
|
#include <limits.h>
|
|
#include <signal.h>
|
|
#include <time.h>
|
|
#include <locale.h>
|
|
#include <assert.h>
|
|
#include <time.h>
|
|
#include <inttypes.h>
|
|
#include <sys/stat.h>
|
|
#include <sys/wait.h>
|
|
#include <sys/ipc.h>
|
|
#include <sys/mman.h>
|
|
#include <math.h>
|
|
|
|
#include "fio.h"
|
|
#ifndef FIO_NO_HAVE_SHM_H
|
|
#include <sys/shm.h>
|
|
#endif
|
|
#include "hash.h"
|
|
#include "smalloc.h"
|
|
#include "verify.h"
|
|
#include "trim.h"
|
|
#include "diskutil.h"
|
|
#include "cgroup.h"
|
|
#include "profile.h"
|
|
#include "lib/rand.h"
|
|
#include "lib/memalign.h"
|
|
#include "server.h"
|
|
#include "lib/getrusage.h"
|
|
#include "idletime.h"
|
|
#include "err.h"
|
|
#include "workqueue.h"
|
|
#include "lib/mountcheck.h"
|
|
#include "rate-submit.h"
|
|
#include "helper_thread.h"
|
|
|
|
static struct fio_mutex *startup_mutex;
|
|
static struct flist_head *cgroup_list;
|
|
static char *cgroup_mnt;
|
|
static int exit_value;
|
|
static volatile int fio_abort;
|
|
static unsigned int nr_process = 0;
|
|
static unsigned int nr_thread = 0;
|
|
|
|
struct io_log *agg_io_log[DDIR_RWDIR_CNT];
|
|
|
|
int groupid = 0;
|
|
unsigned int thread_number = 0;
|
|
unsigned int stat_number = 0;
|
|
int shm_id = 0;
|
|
int temp_stall_ts;
|
|
unsigned long done_secs = 0;
|
|
|
|
#define JOB_START_TIMEOUT (5 * 1000)
|
|
|
|
static void sig_int(int sig)
|
|
{
|
|
if (threads) {
|
|
if (is_backend)
|
|
fio_server_got_signal(sig);
|
|
else {
|
|
log_info("\nfio: terminating on signal %d\n", sig);
|
|
log_info_flush();
|
|
exit_value = 128;
|
|
}
|
|
|
|
fio_terminate_threads(TERMINATE_ALL);
|
|
}
|
|
}
|
|
|
|
void sig_show_status(int sig)
|
|
{
|
|
show_running_run_stats();
|
|
}
|
|
|
|
static void set_sig_handlers(void)
|
|
{
|
|
struct sigaction act;
|
|
|
|
memset(&act, 0, sizeof(act));
|
|
act.sa_handler = sig_int;
|
|
act.sa_flags = SA_RESTART;
|
|
sigaction(SIGINT, &act, NULL);
|
|
|
|
memset(&act, 0, sizeof(act));
|
|
act.sa_handler = sig_int;
|
|
act.sa_flags = SA_RESTART;
|
|
sigaction(SIGTERM, &act, NULL);
|
|
|
|
/* Windows uses SIGBREAK as a quit signal from other applications */
|
|
#ifdef WIN32
|
|
memset(&act, 0, sizeof(act));
|
|
act.sa_handler = sig_int;
|
|
act.sa_flags = SA_RESTART;
|
|
sigaction(SIGBREAK, &act, NULL);
|
|
#endif
|
|
|
|
memset(&act, 0, sizeof(act));
|
|
act.sa_handler = sig_show_status;
|
|
act.sa_flags = SA_RESTART;
|
|
sigaction(SIGUSR1, &act, NULL);
|
|
|
|
if (is_backend) {
|
|
memset(&act, 0, sizeof(act));
|
|
act.sa_handler = sig_int;
|
|
act.sa_flags = SA_RESTART;
|
|
sigaction(SIGPIPE, &act, NULL);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check if we are above the minimum rate given.
|
|
*/
|
|
static bool __check_min_rate(struct thread_data *td, struct timeval *now,
|
|
enum fio_ddir ddir)
|
|
{
|
|
unsigned long long bytes = 0;
|
|
unsigned long iops = 0;
|
|
unsigned long spent;
|
|
unsigned long rate;
|
|
unsigned int ratemin = 0;
|
|
unsigned int rate_iops = 0;
|
|
unsigned int rate_iops_min = 0;
|
|
|
|
assert(ddir_rw(ddir));
|
|
|
|
if (!td->o.ratemin[ddir] && !td->o.rate_iops_min[ddir])
|
|
return false;
|
|
|
|
/*
|
|
* allow a 2 second settle period in the beginning
|
|
*/
|
|
if (mtime_since(&td->start, now) < 2000)
|
|
return false;
|
|
|
|
iops += td->this_io_blocks[ddir];
|
|
bytes += td->this_io_bytes[ddir];
|
|
ratemin += td->o.ratemin[ddir];
|
|
rate_iops += td->o.rate_iops[ddir];
|
|
rate_iops_min += td->o.rate_iops_min[ddir];
|
|
|
|
/*
|
|
* if rate blocks is set, sample is running
|
|
*/
|
|
if (td->rate_bytes[ddir] || td->rate_blocks[ddir]) {
|
|
spent = mtime_since(&td->lastrate[ddir], now);
|
|
if (spent < td->o.ratecycle)
|
|
return false;
|
|
|
|
if (td->o.rate[ddir] || td->o.ratemin[ddir]) {
|
|
/*
|
|
* check bandwidth specified rate
|
|
*/
|
|
if (bytes < td->rate_bytes[ddir]) {
|
|
log_err("%s: rate_min=%uB/s not met, only transferred %lluB\n",
|
|
td->o.name, ratemin, bytes);
|
|
return true;
|
|
} else {
|
|
if (spent)
|
|
rate = ((bytes - td->rate_bytes[ddir]) * 1000) / spent;
|
|
else
|
|
rate = 0;
|
|
|
|
if (rate < ratemin ||
|
|
bytes < td->rate_bytes[ddir]) {
|
|
log_err("%s: rate_min=%uB/s not met, got %luB/s\n",
|
|
td->o.name, ratemin, rate);
|
|
return true;
|
|
}
|
|
}
|
|
} else {
|
|
/*
|
|
* checks iops specified rate
|
|
*/
|
|
if (iops < rate_iops) {
|
|
log_err("%s: rate_iops_min=%u not met, only performed %lu IOs\n",
|
|
td->o.name, rate_iops, iops);
|
|
return true;
|
|
} else {
|
|
if (spent)
|
|
rate = ((iops - td->rate_blocks[ddir]) * 1000) / spent;
|
|
else
|
|
rate = 0;
|
|
|
|
if (rate < rate_iops_min ||
|
|
iops < td->rate_blocks[ddir]) {
|
|
log_err("%s: rate_iops_min=%u not met, got %lu IOPS\n",
|
|
td->o.name, rate_iops_min, rate);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
td->rate_bytes[ddir] = bytes;
|
|
td->rate_blocks[ddir] = iops;
|
|
memcpy(&td->lastrate[ddir], now, sizeof(*now));
|
|
return false;
|
|
}
|
|
|
|
static bool check_min_rate(struct thread_data *td, struct timeval *now)
|
|
{
|
|
bool ret = false;
|
|
|
|
if (td->bytes_done[DDIR_READ])
|
|
ret |= __check_min_rate(td, now, DDIR_READ);
|
|
if (td->bytes_done[DDIR_WRITE])
|
|
ret |= __check_min_rate(td, now, DDIR_WRITE);
|
|
if (td->bytes_done[DDIR_TRIM])
|
|
ret |= __check_min_rate(td, now, DDIR_TRIM);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* When job exits, we can cancel the in-flight IO if we are using async
|
|
* io. Attempt to do so.
|
|
*/
|
|
static void cleanup_pending_aio(struct thread_data *td)
|
|
{
|
|
int r;
|
|
|
|
/*
|
|
* get immediately available events, if any
|
|
*/
|
|
r = io_u_queued_complete(td, 0);
|
|
if (r < 0)
|
|
return;
|
|
|
|
/*
|
|
* now cancel remaining active events
|
|
*/
|
|
if (td->io_ops->cancel) {
|
|
struct io_u *io_u;
|
|
int i;
|
|
|
|
io_u_qiter(&td->io_u_all, io_u, i) {
|
|
if (io_u->flags & IO_U_F_FLIGHT) {
|
|
r = td->io_ops->cancel(td, io_u);
|
|
if (!r)
|
|
put_io_u(td, io_u);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (td->cur_depth)
|
|
r = io_u_queued_complete(td, td->cur_depth);
|
|
}
|
|
|
|
/*
|
|
* Helper to handle the final sync of a file. Works just like the normal
|
|
* io path, just does everything sync.
|
|
*/
|
|
static bool fio_io_sync(struct thread_data *td, struct fio_file *f)
|
|
{
|
|
struct io_u *io_u = __get_io_u(td);
|
|
int ret;
|
|
|
|
if (!io_u)
|
|
return true;
|
|
|
|
io_u->ddir = DDIR_SYNC;
|
|
io_u->file = f;
|
|
|
|
if (td_io_prep(td, io_u)) {
|
|
put_io_u(td, io_u);
|
|
return true;
|
|
}
|
|
|
|
requeue:
|
|
ret = td_io_queue(td, io_u);
|
|
if (ret < 0) {
|
|
td_verror(td, io_u->error, "td_io_queue");
|
|
put_io_u(td, io_u);
|
|
return true;
|
|
} else if (ret == FIO_Q_QUEUED) {
|
|
if (td_io_commit(td))
|
|
return true;
|
|
if (io_u_queued_complete(td, 1) < 0)
|
|
return true;
|
|
} else if (ret == FIO_Q_COMPLETED) {
|
|
if (io_u->error) {
|
|
td_verror(td, io_u->error, "td_io_queue");
|
|
return true;
|
|
}
|
|
|
|
if (io_u_sync_complete(td, io_u) < 0)
|
|
return true;
|
|
} else if (ret == FIO_Q_BUSY) {
|
|
if (td_io_commit(td))
|
|
return true;
|
|
goto requeue;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static int fio_file_fsync(struct thread_data *td, struct fio_file *f)
|
|
{
|
|
int ret;
|
|
|
|
if (fio_file_open(f))
|
|
return fio_io_sync(td, f);
|
|
|
|
if (td_io_open_file(td, f))
|
|
return 1;
|
|
|
|
ret = fio_io_sync(td, f);
|
|
td_io_close_file(td, f);
|
|
return ret;
|
|
}
|
|
|
|
static inline void __update_tv_cache(struct thread_data *td)
|
|
{
|
|
fio_gettime(&td->tv_cache, NULL);
|
|
}
|
|
|
|
static inline void update_tv_cache(struct thread_data *td)
|
|
{
|
|
if ((++td->tv_cache_nr & td->tv_cache_mask) == td->tv_cache_mask)
|
|
__update_tv_cache(td);
|
|
}
|
|
|
|
static inline bool runtime_exceeded(struct thread_data *td, struct timeval *t)
|
|
{
|
|
if (in_ramp_time(td))
|
|
return false;
|
|
if (!td->o.timeout)
|
|
return false;
|
|
if (utime_since(&td->epoch, t) >= td->o.timeout)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* We need to update the runtime consistently in ms, but keep a running
|
|
* tally of the current elapsed time in microseconds for sub millisecond
|
|
* updates.
|
|
*/
|
|
static inline void update_runtime(struct thread_data *td,
|
|
unsigned long long *elapsed_us,
|
|
const enum fio_ddir ddir)
|
|
{
|
|
if (ddir == DDIR_WRITE && td_write(td) && td->o.verify_only)
|
|
return;
|
|
|
|
td->ts.runtime[ddir] -= (elapsed_us[ddir] + 999) / 1000;
|
|
elapsed_us[ddir] += utime_since_now(&td->start);
|
|
td->ts.runtime[ddir] += (elapsed_us[ddir] + 999) / 1000;
|
|
}
|
|
|
|
static bool break_on_this_error(struct thread_data *td, enum fio_ddir ddir,
|
|
int *retptr)
|
|
{
|
|
int ret = *retptr;
|
|
|
|
if (ret < 0 || td->error) {
|
|
int err = td->error;
|
|
enum error_type_bit eb;
|
|
|
|
if (ret < 0)
|
|
err = -ret;
|
|
|
|
eb = td_error_type(ddir, err);
|
|
if (!(td->o.continue_on_error & (1 << eb)))
|
|
return true;
|
|
|
|
if (td_non_fatal_error(td, eb, err)) {
|
|
/*
|
|
* Continue with the I/Os in case of
|
|
* a non fatal error.
|
|
*/
|
|
update_error_count(td, err);
|
|
td_clear_error(td);
|
|
*retptr = 0;
|
|
return false;
|
|
} else if (td->o.fill_device && err == ENOSPC) {
|
|
/*
|
|
* We expect to hit this error if
|
|
* fill_device option is set.
|
|
*/
|
|
td_clear_error(td);
|
|
fio_mark_td_terminate(td);
|
|
return true;
|
|
} else {
|
|
/*
|
|
* Stop the I/O in case of a fatal
|
|
* error.
|
|
*/
|
|
update_error_count(td, err);
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static void check_update_rusage(struct thread_data *td)
|
|
{
|
|
if (td->update_rusage) {
|
|
td->update_rusage = 0;
|
|
update_rusage_stat(td);
|
|
fio_mutex_up(td->rusage_sem);
|
|
}
|
|
}
|
|
|
|
static int wait_for_completions(struct thread_data *td, struct timeval *time)
|
|
{
|
|
const int full = queue_full(td);
|
|
int min_evts = 0;
|
|
int ret;
|
|
|
|
if (td->flags & TD_F_REGROW_LOGS)
|
|
return io_u_quiesce(td);
|
|
|
|
/*
|
|
* if the queue is full, we MUST reap at least 1 event
|
|
*/
|
|
min_evts = min(td->o.iodepth_batch_complete_min, td->cur_depth);
|
|
if ((full && !min_evts) || !td->o.iodepth_batch_complete_min)
|
|
min_evts = 1;
|
|
|
|
if (time && (__should_check_rate(td, DDIR_READ) ||
|
|
__should_check_rate(td, DDIR_WRITE) ||
|
|
__should_check_rate(td, DDIR_TRIM)))
|
|
fio_gettime(time, NULL);
|
|
|
|
do {
|
|
ret = io_u_queued_complete(td, min_evts);
|
|
if (ret < 0)
|
|
break;
|
|
} while (full && (td->cur_depth > td->o.iodepth_low));
|
|
|
|
return ret;
|
|
}
|
|
|
|
int io_queue_event(struct thread_data *td, struct io_u *io_u, int *ret,
|
|
enum fio_ddir ddir, uint64_t *bytes_issued, int from_verify,
|
|
struct timeval *comp_time)
|
|
{
|
|
int ret2;
|
|
|
|
switch (*ret) {
|
|
case FIO_Q_COMPLETED:
|
|
if (io_u->error) {
|
|
*ret = -io_u->error;
|
|
clear_io_u(td, io_u);
|
|
} else if (io_u->resid) {
|
|
int bytes = io_u->xfer_buflen - io_u->resid;
|
|
struct fio_file *f = io_u->file;
|
|
|
|
if (bytes_issued)
|
|
*bytes_issued += bytes;
|
|
|
|
if (!from_verify)
|
|
trim_io_piece(td, io_u);
|
|
|
|
/*
|
|
* zero read, fail
|
|
*/
|
|
if (!bytes) {
|
|
if (!from_verify)
|
|
unlog_io_piece(td, io_u);
|
|
td_verror(td, EIO, "full resid");
|
|
put_io_u(td, io_u);
|
|
break;
|
|
}
|
|
|
|
io_u->xfer_buflen = io_u->resid;
|
|
io_u->xfer_buf += bytes;
|
|
io_u->offset += bytes;
|
|
|
|
if (ddir_rw(io_u->ddir))
|
|
td->ts.short_io_u[io_u->ddir]++;
|
|
|
|
f = io_u->file;
|
|
if (io_u->offset == f->real_file_size)
|
|
goto sync_done;
|
|
|
|
requeue_io_u(td, &io_u);
|
|
} else {
|
|
sync_done:
|
|
if (comp_time && (__should_check_rate(td, DDIR_READ) ||
|
|
__should_check_rate(td, DDIR_WRITE) ||
|
|
__should_check_rate(td, DDIR_TRIM)))
|
|
fio_gettime(comp_time, NULL);
|
|
|
|
*ret = io_u_sync_complete(td, io_u);
|
|
if (*ret < 0)
|
|
break;
|
|
}
|
|
|
|
if (td->flags & TD_F_REGROW_LOGS)
|
|
regrow_logs(td);
|
|
|
|
/*
|
|
* when doing I/O (not when verifying),
|
|
* check for any errors that are to be ignored
|
|
*/
|
|
if (!from_verify)
|
|
break;
|
|
|
|
return 0;
|
|
case FIO_Q_QUEUED:
|
|
/*
|
|
* if the engine doesn't have a commit hook,
|
|
* the io_u is really queued. if it does have such
|
|
* a hook, it has to call io_u_queued() itself.
|
|
*/
|
|
if (td->io_ops->commit == NULL)
|
|
io_u_queued(td, io_u);
|
|
if (bytes_issued)
|
|
*bytes_issued += io_u->xfer_buflen;
|
|
break;
|
|
case FIO_Q_BUSY:
|
|
if (!from_verify)
|
|
unlog_io_piece(td, io_u);
|
|
requeue_io_u(td, &io_u);
|
|
ret2 = td_io_commit(td);
|
|
if (ret2 < 0)
|
|
*ret = ret2;
|
|
break;
|
|
default:
|
|
assert(*ret < 0);
|
|
td_verror(td, -(*ret), "td_io_queue");
|
|
break;
|
|
}
|
|
|
|
if (break_on_this_error(td, ddir, ret))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static inline bool io_in_polling(struct thread_data *td)
|
|
{
|
|
return !td->o.iodepth_batch_complete_min &&
|
|
!td->o.iodepth_batch_complete_max;
|
|
}
|
|
/*
|
|
* Unlinks files from thread data fio_file structure
|
|
*/
|
|
static int unlink_all_files(struct thread_data *td)
|
|
{
|
|
struct fio_file *f;
|
|
unsigned int i;
|
|
int ret = 0;
|
|
|
|
for_each_file(td, f, i) {
|
|
if (f->filetype != FIO_TYPE_FILE)
|
|
continue;
|
|
ret = td_io_unlink_file(td, f);
|
|
if (ret)
|
|
break;
|
|
}
|
|
|
|
if (ret)
|
|
td_verror(td, ret, "unlink_all_files");
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* The main verify engine. Runs over the writes we previously submitted,
|
|
* reads the blocks back in, and checks the crc/md5 of the data.
|
|
*/
|
|
static void do_verify(struct thread_data *td, uint64_t verify_bytes)
|
|
{
|
|
struct fio_file *f;
|
|
struct io_u *io_u;
|
|
int ret, min_events;
|
|
unsigned int i;
|
|
|
|
dprint(FD_VERIFY, "starting loop\n");
|
|
|
|
/*
|
|
* sync io first and invalidate cache, to make sure we really
|
|
* read from disk.
|
|
*/
|
|
for_each_file(td, f, i) {
|
|
if (!fio_file_open(f))
|
|
continue;
|
|
if (fio_io_sync(td, f))
|
|
break;
|
|
if (file_invalidate_cache(td, f))
|
|
break;
|
|
}
|
|
|
|
check_update_rusage(td);
|
|
|
|
if (td->error)
|
|
return;
|
|
|
|
/*
|
|
* verify_state needs to be reset before verification
|
|
* proceeds so that expected random seeds match actual
|
|
* random seeds in headers. The main loop will reset
|
|
* all random number generators if randrepeat is set.
|
|
*/
|
|
if (!td->o.rand_repeatable)
|
|
td_fill_verify_state_seed(td);
|
|
|
|
td_set_runstate(td, TD_VERIFYING);
|
|
|
|
io_u = NULL;
|
|
while (!td->terminate) {
|
|
enum fio_ddir ddir;
|
|
int full;
|
|
|
|
update_tv_cache(td);
|
|
check_update_rusage(td);
|
|
|
|
if (runtime_exceeded(td, &td->tv_cache)) {
|
|
__update_tv_cache(td);
|
|
if (runtime_exceeded(td, &td->tv_cache)) {
|
|
fio_mark_td_terminate(td);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (flow_threshold_exceeded(td))
|
|
continue;
|
|
|
|
if (!td->o.experimental_verify) {
|
|
io_u = __get_io_u(td);
|
|
if (!io_u)
|
|
break;
|
|
|
|
if (get_next_verify(td, io_u)) {
|
|
put_io_u(td, io_u);
|
|
break;
|
|
}
|
|
|
|
if (td_io_prep(td, io_u)) {
|
|
put_io_u(td, io_u);
|
|
break;
|
|
}
|
|
} else {
|
|
if (ddir_rw_sum(td->bytes_done) + td->o.rw_min_bs > verify_bytes)
|
|
break;
|
|
|
|
while ((io_u = get_io_u(td)) != NULL) {
|
|
if (IS_ERR_OR_NULL(io_u)) {
|
|
io_u = NULL;
|
|
ret = FIO_Q_BUSY;
|
|
goto reap;
|
|
}
|
|
|
|
/*
|
|
* We are only interested in the places where
|
|
* we wrote or trimmed IOs. Turn those into
|
|
* reads for verification purposes.
|
|
*/
|
|
if (io_u->ddir == DDIR_READ) {
|
|
/*
|
|
* Pretend we issued it for rwmix
|
|
* accounting
|
|
*/
|
|
td->io_issues[DDIR_READ]++;
|
|
put_io_u(td, io_u);
|
|
continue;
|
|
} else if (io_u->ddir == DDIR_TRIM) {
|
|
io_u->ddir = DDIR_READ;
|
|
io_u_set(td, io_u, IO_U_F_TRIMMED);
|
|
break;
|
|
} else if (io_u->ddir == DDIR_WRITE) {
|
|
io_u->ddir = DDIR_READ;
|
|
break;
|
|
} else {
|
|
put_io_u(td, io_u);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
if (!io_u)
|
|
break;
|
|
}
|
|
|
|
if (verify_state_should_stop(td, io_u)) {
|
|
put_io_u(td, io_u);
|
|
break;
|
|
}
|
|
|
|
if (td->o.verify_async)
|
|
io_u->end_io = verify_io_u_async;
|
|
else
|
|
io_u->end_io = verify_io_u;
|
|
|
|
ddir = io_u->ddir;
|
|
if (!td->o.disable_slat)
|
|
fio_gettime(&io_u->start_time, NULL);
|
|
|
|
ret = td_io_queue(td, io_u);
|
|
|
|
if (io_queue_event(td, io_u, &ret, ddir, NULL, 1, NULL))
|
|
break;
|
|
|
|
/*
|
|
* if we can queue more, do so. but check if there are
|
|
* completed io_u's first. Note that we can get BUSY even
|
|
* without IO queued, if the system is resource starved.
|
|
*/
|
|
reap:
|
|
full = queue_full(td) || (ret == FIO_Q_BUSY && td->cur_depth);
|
|
if (full || io_in_polling(td))
|
|
ret = wait_for_completions(td, NULL);
|
|
|
|
if (ret < 0)
|
|
break;
|
|
}
|
|
|
|
check_update_rusage(td);
|
|
|
|
if (!td->error) {
|
|
min_events = td->cur_depth;
|
|
|
|
if (min_events)
|
|
ret = io_u_queued_complete(td, min_events);
|
|
} else
|
|
cleanup_pending_aio(td);
|
|
|
|
td_set_runstate(td, TD_RUNNING);
|
|
|
|
dprint(FD_VERIFY, "exiting loop\n");
|
|
}
|
|
|
|
static bool exceeds_number_ios(struct thread_data *td)
|
|
{
|
|
unsigned long long number_ios;
|
|
|
|
if (!td->o.number_ios)
|
|
return false;
|
|
|
|
number_ios = ddir_rw_sum(td->io_blocks);
|
|
number_ios += td->io_u_queued + td->io_u_in_flight;
|
|
|
|
return number_ios >= (td->o.number_ios * td->loops);
|
|
}
|
|
|
|
static bool io_bytes_exceeded(struct thread_data *td, uint64_t *this_bytes)
|
|
{
|
|
unsigned long long bytes, limit;
|
|
|
|
if (td_rw(td))
|
|
bytes = this_bytes[DDIR_READ] + this_bytes[DDIR_WRITE];
|
|
else if (td_write(td))
|
|
bytes = this_bytes[DDIR_WRITE];
|
|
else if (td_read(td))
|
|
bytes = this_bytes[DDIR_READ];
|
|
else
|
|
bytes = this_bytes[DDIR_TRIM];
|
|
|
|
if (td->o.io_size)
|
|
limit = td->o.io_size;
|
|
else
|
|
limit = td->o.size;
|
|
|
|
limit *= td->loops;
|
|
return bytes >= limit || exceeds_number_ios(td);
|
|
}
|
|
|
|
static bool io_issue_bytes_exceeded(struct thread_data *td)
|
|
{
|
|
return io_bytes_exceeded(td, td->io_issue_bytes);
|
|
}
|
|
|
|
static bool io_complete_bytes_exceeded(struct thread_data *td)
|
|
{
|
|
return io_bytes_exceeded(td, td->this_io_bytes);
|
|
}
|
|
|
|
/*
|
|
* used to calculate the next io time for rate control
|
|
*
|
|
*/
|
|
static long long usec_for_io(struct thread_data *td, enum fio_ddir ddir)
|
|
{
|
|
uint64_t secs, remainder, bps, bytes, iops;
|
|
|
|
assert(!(td->flags & TD_F_CHILD));
|
|
bytes = td->rate_io_issue_bytes[ddir];
|
|
bps = td->rate_bps[ddir];
|
|
|
|
if (td->o.rate_process == RATE_PROCESS_POISSON) {
|
|
uint64_t val;
|
|
iops = bps / td->o.bs[ddir];
|
|
val = (int64_t) (1000000 / iops) *
|
|
-logf(__rand_0_1(&td->poisson_state[ddir]));
|
|
if (val) {
|
|
dprint(FD_RATE, "poisson rate iops=%llu, ddir=%d\n",
|
|
(unsigned long long) 1000000 / val,
|
|
ddir);
|
|
}
|
|
td->last_usec[ddir] += val;
|
|
return td->last_usec[ddir];
|
|
} else if (bps) {
|
|
secs = bytes / bps;
|
|
remainder = bytes % bps;
|
|
return remainder * 1000000 / bps + secs * 1000000;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Main IO worker function. It retrieves io_u's to process and queues
|
|
* and reaps them, checking for rate and errors along the way.
|
|
*
|
|
* Returns number of bytes written and trimmed.
|
|
*/
|
|
static void do_io(struct thread_data *td, uint64_t *bytes_done)
|
|
{
|
|
unsigned int i;
|
|
int ret = 0;
|
|
uint64_t total_bytes, bytes_issued = 0;
|
|
|
|
for (i = 0; i < DDIR_RWDIR_CNT; i++)
|
|
bytes_done[i] = td->bytes_done[i];
|
|
|
|
if (in_ramp_time(td))
|
|
td_set_runstate(td, TD_RAMP);
|
|
else
|
|
td_set_runstate(td, TD_RUNNING);
|
|
|
|
lat_target_init(td);
|
|
|
|
total_bytes = td->o.size;
|
|
/*
|
|
* Allow random overwrite workloads to write up to io_size
|
|
* before starting verification phase as 'size' doesn't apply.
|
|
*/
|
|
if (td_write(td) && td_random(td) && td->o.norandommap)
|
|
total_bytes = max(total_bytes, (uint64_t) td->o.io_size);
|
|
/*
|
|
* If verify_backlog is enabled, we'll run the verify in this
|
|
* handler as well. For that case, we may need up to twice the
|
|
* amount of bytes.
|
|
*/
|
|
if (td->o.verify != VERIFY_NONE &&
|
|
(td_write(td) && td->o.verify_backlog))
|
|
total_bytes += td->o.size;
|
|
|
|
/* In trimwrite mode, each byte is trimmed and then written, so
|
|
* allow total_bytes to be twice as big */
|
|
if (td_trimwrite(td))
|
|
total_bytes += td->total_io_size;
|
|
|
|
while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
|
|
(!flist_empty(&td->trim_list)) || !io_issue_bytes_exceeded(td) ||
|
|
td->o.time_based) {
|
|
struct timeval comp_time;
|
|
struct io_u *io_u;
|
|
int full;
|
|
enum fio_ddir ddir;
|
|
|
|
check_update_rusage(td);
|
|
|
|
if (td->terminate || td->done)
|
|
break;
|
|
|
|
update_tv_cache(td);
|
|
|
|
if (runtime_exceeded(td, &td->tv_cache)) {
|
|
__update_tv_cache(td);
|
|
if (runtime_exceeded(td, &td->tv_cache)) {
|
|
fio_mark_td_terminate(td);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (flow_threshold_exceeded(td))
|
|
continue;
|
|
|
|
/*
|
|
* Break if we exceeded the bytes. The exception is time
|
|
* based runs, but we still need to break out of the loop
|
|
* for those to run verification, if enabled.
|
|
*/
|
|
if (bytes_issued >= total_bytes &&
|
|
(!td->o.time_based ||
|
|
(td->o.time_based && td->o.verify != VERIFY_NONE)))
|
|
break;
|
|
|
|
io_u = get_io_u(td);
|
|
if (IS_ERR_OR_NULL(io_u)) {
|
|
int err = PTR_ERR(io_u);
|
|
|
|
io_u = NULL;
|
|
if (err == -EBUSY) {
|
|
ret = FIO_Q_BUSY;
|
|
goto reap;
|
|
}
|
|
if (td->o.latency_target)
|
|
goto reap;
|
|
break;
|
|
}
|
|
|
|
ddir = io_u->ddir;
|
|
|
|
/*
|
|
* Add verification end_io handler if:
|
|
* - Asked to verify (!td_rw(td))
|
|
* - Or the io_u is from our verify list (mixed write/ver)
|
|
*/
|
|
if (td->o.verify != VERIFY_NONE && io_u->ddir == DDIR_READ &&
|
|
((io_u->flags & IO_U_F_VER_LIST) || !td_rw(td))) {
|
|
|
|
if (!td->o.verify_pattern_bytes) {
|
|
io_u->rand_seed = __rand(&td->verify_state);
|
|
if (sizeof(int) != sizeof(long *))
|
|
io_u->rand_seed *= __rand(&td->verify_state);
|
|
}
|
|
|
|
if (verify_state_should_stop(td, io_u)) {
|
|
put_io_u(td, io_u);
|
|
break;
|
|
}
|
|
|
|
if (td->o.verify_async)
|
|
io_u->end_io = verify_io_u_async;
|
|
else
|
|
io_u->end_io = verify_io_u;
|
|
td_set_runstate(td, TD_VERIFYING);
|
|
} else if (in_ramp_time(td))
|
|
td_set_runstate(td, TD_RAMP);
|
|
else
|
|
td_set_runstate(td, TD_RUNNING);
|
|
|
|
/*
|
|
* Always log IO before it's issued, so we know the specific
|
|
* order of it. The logged unit will track when the IO has
|
|
* completed.
|
|
*/
|
|
if (td_write(td) && io_u->ddir == DDIR_WRITE &&
|
|
td->o.do_verify &&
|
|
td->o.verify != VERIFY_NONE &&
|
|
!td->o.experimental_verify)
|
|
log_io_piece(td, io_u);
|
|
|
|
if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
|
|
const unsigned long blen = io_u->xfer_buflen;
|
|
const enum fio_ddir ddir = acct_ddir(io_u);
|
|
|
|
if (td->error)
|
|
break;
|
|
|
|
workqueue_enqueue(&td->io_wq, &io_u->work);
|
|
ret = FIO_Q_QUEUED;
|
|
|
|
if (ddir_rw(ddir)) {
|
|
td->io_issues[ddir]++;
|
|
td->io_issue_bytes[ddir] += blen;
|
|
td->rate_io_issue_bytes[ddir] += blen;
|
|
}
|
|
|
|
if (should_check_rate(td))
|
|
td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
|
|
|
|
} else {
|
|
ret = td_io_queue(td, io_u);
|
|
|
|
if (should_check_rate(td))
|
|
td->rate_next_io_time[ddir] = usec_for_io(td, ddir);
|
|
|
|
if (io_queue_event(td, io_u, &ret, ddir, &bytes_issued, 0, &comp_time))
|
|
break;
|
|
|
|
/*
|
|
* See if we need to complete some commands. Note that
|
|
* we can get BUSY even without IO queued, if the
|
|
* system is resource starved.
|
|
*/
|
|
reap:
|
|
full = queue_full(td) ||
|
|
(ret == FIO_Q_BUSY && td->cur_depth);
|
|
if (full || io_in_polling(td))
|
|
ret = wait_for_completions(td, &comp_time);
|
|
}
|
|
if (ret < 0)
|
|
break;
|
|
if (!ddir_rw_sum(td->bytes_done) &&
|
|
!td_ioengine_flagged(td, FIO_NOIO))
|
|
continue;
|
|
|
|
if (!in_ramp_time(td) && should_check_rate(td)) {
|
|
if (check_min_rate(td, &comp_time)) {
|
|
if (exitall_on_terminate || td->o.exitall_error)
|
|
fio_terminate_threads(td->groupid);
|
|
td_verror(td, EIO, "check_min_rate");
|
|
break;
|
|
}
|
|
}
|
|
if (!in_ramp_time(td) && td->o.latency_target)
|
|
lat_target_check(td);
|
|
|
|
if (td->o.thinktime) {
|
|
unsigned long long b;
|
|
|
|
b = ddir_rw_sum(td->io_blocks);
|
|
if (!(b % td->o.thinktime_blocks)) {
|
|
int left;
|
|
|
|
io_u_quiesce(td);
|
|
|
|
if (td->o.thinktime_spin)
|
|
usec_spin(td->o.thinktime_spin);
|
|
|
|
left = td->o.thinktime - td->o.thinktime_spin;
|
|
if (left)
|
|
usec_sleep(td, left);
|
|
}
|
|
}
|
|
}
|
|
|
|
check_update_rusage(td);
|
|
|
|
if (td->trim_entries)
|
|
log_err("fio: %lu trim entries leaked?\n", td->trim_entries);
|
|
|
|
if (td->o.fill_device && td->error == ENOSPC) {
|
|
td->error = 0;
|
|
fio_mark_td_terminate(td);
|
|
}
|
|
if (!td->error) {
|
|
struct fio_file *f;
|
|
|
|
if (td->o.io_submit_mode == IO_MODE_OFFLOAD) {
|
|
workqueue_flush(&td->io_wq);
|
|
i = 0;
|
|
} else
|
|
i = td->cur_depth;
|
|
|
|
if (i) {
|
|
ret = io_u_queued_complete(td, i);
|
|
if (td->o.fill_device && td->error == ENOSPC)
|
|
td->error = 0;
|
|
}
|
|
|
|
if (should_fsync(td) && td->o.end_fsync) {
|
|
td_set_runstate(td, TD_FSYNCING);
|
|
|
|
for_each_file(td, f, i) {
|
|
if (!fio_file_fsync(td, f))
|
|
continue;
|
|
|
|
log_err("fio: end_fsync failed for file %s\n",
|
|
f->file_name);
|
|
}
|
|
}
|
|
} else
|
|
cleanup_pending_aio(td);
|
|
|
|
/*
|
|
* stop job if we failed doing any IO
|
|
*/
|
|
if (!ddir_rw_sum(td->this_io_bytes))
|
|
td->done = 1;
|
|
|
|
for (i = 0; i < DDIR_RWDIR_CNT; i++)
|
|
bytes_done[i] = td->bytes_done[i] - bytes_done[i];
|
|
}
|
|
|
|
static void free_file_completion_logging(struct thread_data *td)
|
|
{
|
|
struct fio_file *f;
|
|
unsigned int i;
|
|
|
|
for_each_file(td, f, i) {
|
|
if (!f->last_write_comp)
|
|
break;
|
|
sfree(f->last_write_comp);
|
|
}
|
|
}
|
|
|
|
static int init_file_completion_logging(struct thread_data *td,
|
|
unsigned int depth)
|
|
{
|
|
struct fio_file *f;
|
|
unsigned int i;
|
|
|
|
if (td->o.verify == VERIFY_NONE || !td->o.verify_state_save)
|
|
return 0;
|
|
|
|
for_each_file(td, f, i) {
|
|
f->last_write_comp = scalloc(depth, sizeof(uint64_t));
|
|
if (!f->last_write_comp)
|
|
goto cleanup;
|
|
}
|
|
|
|
return 0;
|
|
|
|
cleanup:
|
|
free_file_completion_logging(td);
|
|
log_err("fio: failed to alloc write comp data\n");
|
|
return 1;
|
|
}
|
|
|
|
static void cleanup_io_u(struct thread_data *td)
|
|
{
|
|
struct io_u *io_u;
|
|
|
|
while ((io_u = io_u_qpop(&td->io_u_freelist)) != NULL) {
|
|
|
|
if (td->io_ops->io_u_free)
|
|
td->io_ops->io_u_free(td, io_u);
|
|
|
|
fio_memfree(io_u, sizeof(*io_u));
|
|
}
|
|
|
|
free_io_mem(td);
|
|
|
|
io_u_rexit(&td->io_u_requeues);
|
|
io_u_qexit(&td->io_u_freelist);
|
|
io_u_qexit(&td->io_u_all);
|
|
|
|
free_file_completion_logging(td);
|
|
}
|
|
|
|
static int init_io_u(struct thread_data *td)
|
|
{
|
|
struct io_u *io_u;
|
|
unsigned int max_bs, min_write;
|
|
int cl_align, i, max_units;
|
|
int data_xfer = 1, err;
|
|
char *p;
|
|
|
|
max_units = td->o.iodepth;
|
|
max_bs = td_max_bs(td);
|
|
min_write = td->o.min_bs[DDIR_WRITE];
|
|
td->orig_buffer_size = (unsigned long long) max_bs
|
|
* (unsigned long long) max_units;
|
|
|
|
if (td_ioengine_flagged(td, FIO_NOIO) || !(td_read(td) || td_write(td)))
|
|
data_xfer = 0;
|
|
|
|
err = 0;
|
|
err += io_u_rinit(&td->io_u_requeues, td->o.iodepth);
|
|
err += io_u_qinit(&td->io_u_freelist, td->o.iodepth);
|
|
err += io_u_qinit(&td->io_u_all, td->o.iodepth);
|
|
|
|
if (err) {
|
|
log_err("fio: failed setting up IO queues\n");
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* if we may later need to do address alignment, then add any
|
|
* possible adjustment here so that we don't cause a buffer
|
|
* overflow later. this adjustment may be too much if we get
|
|
* lucky and the allocator gives us an aligned address.
|
|
*/
|
|
if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
|
|
td_ioengine_flagged(td, FIO_RAWIO))
|
|
td->orig_buffer_size += page_mask + td->o.mem_align;
|
|
|
|
if (td->o.mem_type == MEM_SHMHUGE || td->o.mem_type == MEM_MMAPHUGE) {
|
|
unsigned long bs;
|
|
|
|
bs = td->orig_buffer_size + td->o.hugepage_size - 1;
|
|
td->orig_buffer_size = bs & ~(td->o.hugepage_size - 1);
|
|
}
|
|
|
|
if (td->orig_buffer_size != (size_t) td->orig_buffer_size) {
|
|
log_err("fio: IO memory too large. Reduce max_bs or iodepth\n");
|
|
return 1;
|
|
}
|
|
|
|
if (data_xfer && allocate_io_mem(td))
|
|
return 1;
|
|
|
|
if (td->o.odirect || td->o.mem_align || td->o.oatomic ||
|
|
td_ioengine_flagged(td, FIO_RAWIO))
|
|
p = PTR_ALIGN(td->orig_buffer, page_mask) + td->o.mem_align;
|
|
else
|
|
p = td->orig_buffer;
|
|
|
|
cl_align = os_cache_line_size();
|
|
|
|
for (i = 0; i < max_units; i++) {
|
|
void *ptr;
|
|
|
|
if (td->terminate)
|
|
return 1;
|
|
|
|
ptr = fio_memalign(cl_align, sizeof(*io_u));
|
|
if (!ptr) {
|
|
log_err("fio: unable to allocate aligned memory\n");
|
|
break;
|
|
}
|
|
|
|
io_u = ptr;
|
|
memset(io_u, 0, sizeof(*io_u));
|
|
INIT_FLIST_HEAD(&io_u->verify_list);
|
|
dprint(FD_MEM, "io_u alloc %p, index %u\n", io_u, i);
|
|
|
|
if (data_xfer) {
|
|
io_u->buf = p;
|
|
dprint(FD_MEM, "io_u %p, mem %p\n", io_u, io_u->buf);
|
|
|
|
if (td_write(td))
|
|
io_u_fill_buffer(td, io_u, min_write, max_bs);
|
|
if (td_write(td) && td->o.verify_pattern_bytes) {
|
|
/*
|
|
* Fill the buffer with the pattern if we are
|
|
* going to be doing writes.
|
|
*/
|
|
fill_verify_pattern(td, io_u->buf, max_bs, io_u, 0, 0);
|
|
}
|
|
}
|
|
|
|
io_u->index = i;
|
|
io_u->flags = IO_U_F_FREE;
|
|
io_u_qpush(&td->io_u_freelist, io_u);
|
|
|
|
/*
|
|
* io_u never leaves this stack, used for iteration of all
|
|
* io_u buffers.
|
|
*/
|
|
io_u_qpush(&td->io_u_all, io_u);
|
|
|
|
if (td->io_ops->io_u_init) {
|
|
int ret = td->io_ops->io_u_init(td, io_u);
|
|
|
|
if (ret) {
|
|
log_err("fio: failed to init engine data: %d\n", ret);
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
p += max_bs;
|
|
}
|
|
|
|
if (init_file_completion_logging(td, max_units))
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* This function is Linux specific.
|
|
* FIO_HAVE_IOSCHED_SWITCH enabled currently means it's Linux.
|
|
*/
|
|
static int switch_ioscheduler(struct thread_data *td)
|
|
{
|
|
#ifdef FIO_HAVE_IOSCHED_SWITCH
|
|
char tmp[256], tmp2[128];
|
|
FILE *f;
|
|
int ret;
|
|
|
|
if (td_ioengine_flagged(td, FIO_DISKLESSIO))
|
|
return 0;
|
|
|
|
assert(td->files && td->files[0]);
|
|
sprintf(tmp, "%s/queue/scheduler", td->files[0]->du->sysfs_root);
|
|
|
|
f = fopen(tmp, "r+");
|
|
if (!f) {
|
|
if (errno == ENOENT) {
|
|
log_err("fio: os or kernel doesn't support IO scheduler"
|
|
" switching\n");
|
|
return 0;
|
|
}
|
|
td_verror(td, errno, "fopen iosched");
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Set io scheduler.
|
|
*/
|
|
ret = fwrite(td->o.ioscheduler, strlen(td->o.ioscheduler), 1, f);
|
|
if (ferror(f) || ret != 1) {
|
|
td_verror(td, errno, "fwrite");
|
|
fclose(f);
|
|
return 1;
|
|
}
|
|
|
|
rewind(f);
|
|
|
|
/*
|
|
* Read back and check that the selected scheduler is now the default.
|
|
*/
|
|
memset(tmp, 0, sizeof(tmp));
|
|
ret = fread(tmp, sizeof(tmp), 1, f);
|
|
if (ferror(f) || ret < 0) {
|
|
td_verror(td, errno, "fread");
|
|
fclose(f);
|
|
return 1;
|
|
}
|
|
/*
|
|
* either a list of io schedulers or "none\n" is expected.
|
|
*/
|
|
tmp[strlen(tmp) - 1] = '\0';
|
|
|
|
/*
|
|
* Write to "none" entry doesn't fail, so check the result here.
|
|
*/
|
|
if (!strcmp(tmp, "none")) {
|
|
log_err("fio: io scheduler is not tunable\n");
|
|
fclose(f);
|
|
return 0;
|
|
}
|
|
|
|
sprintf(tmp2, "[%s]", td->o.ioscheduler);
|
|
if (!strstr(tmp, tmp2)) {
|
|
log_err("fio: io scheduler %s not found\n", td->o.ioscheduler);
|
|
td_verror(td, EINVAL, "iosched_switch");
|
|
fclose(f);
|
|
return 1;
|
|
}
|
|
|
|
fclose(f);
|
|
return 0;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
static bool keep_running(struct thread_data *td)
|
|
{
|
|
unsigned long long limit;
|
|
|
|
if (td->done)
|
|
return false;
|
|
if (td->o.time_based)
|
|
return true;
|
|
if (td->o.loops) {
|
|
td->o.loops--;
|
|
return true;
|
|
}
|
|
if (exceeds_number_ios(td))
|
|
return false;
|
|
|
|
if (td->o.io_size)
|
|
limit = td->o.io_size;
|
|
else
|
|
limit = td->o.size;
|
|
|
|
if (limit != -1ULL && ddir_rw_sum(td->io_bytes) < limit) {
|
|
uint64_t diff;
|
|
|
|
/*
|
|
* If the difference is less than the maximum IO size, we
|
|
* are done.
|
|
*/
|
|
diff = limit - ddir_rw_sum(td->io_bytes);
|
|
if (diff < td_max_bs(td))
|
|
return false;
|
|
|
|
if (fio_files_done(td) && !td->o.io_size)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static int exec_string(struct thread_options *o, const char *string, const char *mode)
|
|
{
|
|
size_t newlen = strlen(string) + strlen(o->name) + strlen(mode) + 9 + 1;
|
|
int ret;
|
|
char *str;
|
|
|
|
str = malloc(newlen);
|
|
sprintf(str, "%s &> %s.%s.txt", string, o->name, mode);
|
|
|
|
log_info("%s : Saving output of %s in %s.%s.txt\n",o->name, mode, o->name, mode);
|
|
ret = system(str);
|
|
if (ret == -1)
|
|
log_err("fio: exec of cmd <%s> failed\n", str);
|
|
|
|
free(str);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Dry run to compute correct state of numberio for verification.
|
|
*/
|
|
static uint64_t do_dry_run(struct thread_data *td)
|
|
{
|
|
td_set_runstate(td, TD_RUNNING);
|
|
|
|
while ((td->o.read_iolog_file && !flist_empty(&td->io_log_list)) ||
|
|
(!flist_empty(&td->trim_list)) || !io_complete_bytes_exceeded(td)) {
|
|
struct io_u *io_u;
|
|
int ret;
|
|
|
|
if (td->terminate || td->done)
|
|
break;
|
|
|
|
io_u = get_io_u(td);
|
|
if (IS_ERR_OR_NULL(io_u))
|
|
break;
|
|
|
|
io_u_set(td, io_u, IO_U_F_FLIGHT);
|
|
io_u->error = 0;
|
|
io_u->resid = 0;
|
|
if (ddir_rw(acct_ddir(io_u)))
|
|
td->io_issues[acct_ddir(io_u)]++;
|
|
if (ddir_rw(io_u->ddir)) {
|
|
io_u_mark_depth(td, 1);
|
|
td->ts.total_io_u[io_u->ddir]++;
|
|
}
|
|
|
|
if (td_write(td) && io_u->ddir == DDIR_WRITE &&
|
|
td->o.do_verify &&
|
|
td->o.verify != VERIFY_NONE &&
|
|
!td->o.experimental_verify)
|
|
log_io_piece(td, io_u);
|
|
|
|
ret = io_u_sync_complete(td, io_u);
|
|
(void) ret;
|
|
}
|
|
|
|
return td->bytes_done[DDIR_WRITE] + td->bytes_done[DDIR_TRIM];
|
|
}
|
|
|
|
struct fork_data {
|
|
struct thread_data *td;
|
|
struct sk_out *sk_out;
|
|
};
|
|
|
|
/*
|
|
* Entry point for the thread based jobs. The process based jobs end up
|
|
* here as well, after a little setup.
|
|
*/
|
|
static void *thread_main(void *data)
|
|
{
|
|
struct fork_data *fd = data;
|
|
unsigned long long elapsed_us[DDIR_RWDIR_CNT] = { 0, };
|
|
struct thread_data *td = fd->td;
|
|
struct thread_options *o = &td->o;
|
|
struct sk_out *sk_out = fd->sk_out;
|
|
uint64_t bytes_done[DDIR_RWDIR_CNT];
|
|
int deadlock_loop_cnt;
|
|
int clear_state;
|
|
int ret;
|
|
|
|
sk_out_assign(sk_out);
|
|
free(fd);
|
|
|
|
if (!o->use_thread) {
|
|
setsid();
|
|
td->pid = getpid();
|
|
} else
|
|
td->pid = gettid();
|
|
|
|
fio_local_clock_init(o->use_thread);
|
|
|
|
dprint(FD_PROCESS, "jobs pid=%d started\n", (int) td->pid);
|
|
|
|
if (is_backend)
|
|
fio_server_send_start(td);
|
|
|
|
INIT_FLIST_HEAD(&td->io_log_list);
|
|
INIT_FLIST_HEAD(&td->io_hist_list);
|
|
INIT_FLIST_HEAD(&td->verify_list);
|
|
INIT_FLIST_HEAD(&td->trim_list);
|
|
INIT_FLIST_HEAD(&td->next_rand_list);
|
|
td->io_hist_tree = RB_ROOT;
|
|
|
|
ret = mutex_cond_init_pshared(&td->io_u_lock, &td->free_cond);
|
|
if (ret) {
|
|
td_verror(td, ret, "mutex_cond_init_pshared");
|
|
goto err;
|
|
}
|
|
ret = cond_init_pshared(&td->verify_cond);
|
|
if (ret) {
|
|
td_verror(td, ret, "mutex_cond_pshared");
|
|
goto err;
|
|
}
|
|
|
|
td_set_runstate(td, TD_INITIALIZED);
|
|
dprint(FD_MUTEX, "up startup_mutex\n");
|
|
fio_mutex_up(startup_mutex);
|
|
dprint(FD_MUTEX, "wait on td->mutex\n");
|
|
fio_mutex_down(td->mutex);
|
|
dprint(FD_MUTEX, "done waiting on td->mutex\n");
|
|
|
|
/*
|
|
* A new gid requires privilege, so we need to do this before setting
|
|
* the uid.
|
|
*/
|
|
if (o->gid != -1U && setgid(o->gid)) {
|
|
td_verror(td, errno, "setgid");
|
|
goto err;
|
|
}
|
|
if (o->uid != -1U && setuid(o->uid)) {
|
|
td_verror(td, errno, "setuid");
|
|
goto err;
|
|
}
|
|
|
|
/*
|
|
* Do this early, we don't want the compress threads to be limited
|
|
* to the same CPUs as the IO workers. So do this before we set
|
|
* any potential CPU affinity
|
|
*/
|
|
if (iolog_compress_init(td, sk_out))
|
|
goto err;
|
|
|
|
/*
|
|
* If we have a gettimeofday() thread, make sure we exclude that
|
|
* thread from this job
|
|
*/
|
|
if (o->gtod_cpu)
|
|
fio_cpu_clear(&o->cpumask, o->gtod_cpu);
|
|
|
|
/*
|
|
* Set affinity first, in case it has an impact on the memory
|
|
* allocations.
|
|
*/
|
|
if (fio_option_is_set(o, cpumask)) {
|
|
if (o->cpus_allowed_policy == FIO_CPUS_SPLIT) {
|
|
ret = fio_cpus_split(&o->cpumask, td->thread_number - 1);
|
|
if (!ret) {
|
|
log_err("fio: no CPUs set\n");
|
|
log_err("fio: Try increasing number of available CPUs\n");
|
|
td_verror(td, EINVAL, "cpus_split");
|
|
goto err;
|
|
}
|
|
}
|
|
ret = fio_setaffinity(td->pid, o->cpumask);
|
|
if (ret == -1) {
|
|
td_verror(td, errno, "cpu_set_affinity");
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_LIBNUMA
|
|
/* numa node setup */
|
|
if (fio_option_is_set(o, numa_cpunodes) ||
|
|
fio_option_is_set(o, numa_memnodes)) {
|
|
struct bitmask *mask;
|
|
|
|
if (numa_available() < 0) {
|
|
td_verror(td, errno, "Does not support NUMA API\n");
|
|
goto err;
|
|
}
|
|
|
|
if (fio_option_is_set(o, numa_cpunodes)) {
|
|
mask = numa_parse_nodestring(o->numa_cpunodes);
|
|
ret = numa_run_on_node_mask(mask);
|
|
numa_free_nodemask(mask);
|
|
if (ret == -1) {
|
|
td_verror(td, errno, \
|
|
"numa_run_on_node_mask failed\n");
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
if (fio_option_is_set(o, numa_memnodes)) {
|
|
mask = NULL;
|
|
if (o->numa_memnodes)
|
|
mask = numa_parse_nodestring(o->numa_memnodes);
|
|
|
|
switch (o->numa_mem_mode) {
|
|
case MPOL_INTERLEAVE:
|
|
numa_set_interleave_mask(mask);
|
|
break;
|
|
case MPOL_BIND:
|
|
numa_set_membind(mask);
|
|
break;
|
|
case MPOL_LOCAL:
|
|
numa_set_localalloc();
|
|
break;
|
|
case MPOL_PREFERRED:
|
|
numa_set_preferred(o->numa_mem_prefer_node);
|
|
break;
|
|
case MPOL_DEFAULT:
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (mask)
|
|
numa_free_nodemask(mask);
|
|
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (fio_pin_memory(td))
|
|
goto err;
|
|
|
|
/*
|
|
* May alter parameters that init_io_u() will use, so we need to
|
|
* do this first.
|
|
*/
|
|
if (init_iolog(td))
|
|
goto err;
|
|
|
|
if (init_io_u(td))
|
|
goto err;
|
|
|
|
if (o->verify_async && verify_async_init(td))
|
|
goto err;
|
|
|
|
if (fio_option_is_set(o, ioprio) ||
|
|
fio_option_is_set(o, ioprio_class)) {
|
|
ret = ioprio_set(IOPRIO_WHO_PROCESS, 0, o->ioprio_class, o->ioprio);
|
|
if (ret == -1) {
|
|
td_verror(td, errno, "ioprio_set");
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
if (o->cgroup && cgroup_setup(td, cgroup_list, &cgroup_mnt))
|
|
goto err;
|
|
|
|
errno = 0;
|
|
if (nice(o->nice) == -1 && errno != 0) {
|
|
td_verror(td, errno, "nice");
|
|
goto err;
|
|
}
|
|
|
|
if (o->ioscheduler && switch_ioscheduler(td))
|
|
goto err;
|
|
|
|
if (!o->create_serialize && setup_files(td))
|
|
goto err;
|
|
|
|
if (td_io_init(td))
|
|
goto err;
|
|
|
|
if (init_random_map(td))
|
|
goto err;
|
|
|
|
if (o->exec_prerun && exec_string(o, o->exec_prerun, (const char *)"prerun"))
|
|
goto err;
|
|
|
|
if (o->pre_read) {
|
|
if (pre_read_files(td) < 0)
|
|
goto err;
|
|
}
|
|
|
|
fio_verify_init(td);
|
|
|
|
if (rate_submit_init(td, sk_out))
|
|
goto err;
|
|
|
|
set_epoch_time(td, o->log_unix_epoch);
|
|
fio_getrusage(&td->ru_start);
|
|
memcpy(&td->bw_sample_time, &td->epoch, sizeof(td->epoch));
|
|
memcpy(&td->iops_sample_time, &td->epoch, sizeof(td->epoch));
|
|
memcpy(&td->ss.prev_time, &td->epoch, sizeof(td->epoch));
|
|
|
|
if (o->ratemin[DDIR_READ] || o->ratemin[DDIR_WRITE] ||
|
|
o->ratemin[DDIR_TRIM]) {
|
|
memcpy(&td->lastrate[DDIR_READ], &td->bw_sample_time,
|
|
sizeof(td->bw_sample_time));
|
|
memcpy(&td->lastrate[DDIR_WRITE], &td->bw_sample_time,
|
|
sizeof(td->bw_sample_time));
|
|
memcpy(&td->lastrate[DDIR_TRIM], &td->bw_sample_time,
|
|
sizeof(td->bw_sample_time));
|
|
}
|
|
|
|
memset(bytes_done, 0, sizeof(bytes_done));
|
|
clear_state = 0;
|
|
|
|
while (keep_running(td)) {
|
|
uint64_t verify_bytes;
|
|
|
|
fio_gettime(&td->start, NULL);
|
|
memcpy(&td->tv_cache, &td->start, sizeof(td->start));
|
|
|
|
if (clear_state) {
|
|
clear_io_state(td, 0);
|
|
|
|
if (o->unlink_each_loop && unlink_all_files(td))
|
|
break;
|
|
}
|
|
|
|
prune_io_piece_log(td);
|
|
|
|
if (td->o.verify_only && td_write(td))
|
|
verify_bytes = do_dry_run(td);
|
|
else {
|
|
do_io(td, bytes_done);
|
|
|
|
if (!ddir_rw_sum(bytes_done)) {
|
|
fio_mark_td_terminate(td);
|
|
verify_bytes = 0;
|
|
} else {
|
|
verify_bytes = bytes_done[DDIR_WRITE] +
|
|
bytes_done[DDIR_TRIM];
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If we took too long to shut down, the main thread could
|
|
* already consider us reaped/exited. If that happens, break
|
|
* out and clean up.
|
|
*/
|
|
if (td->runstate >= TD_EXITED)
|
|
break;
|
|
|
|
clear_state = 1;
|
|
|
|
/*
|
|
* Make sure we've successfully updated the rusage stats
|
|
* before waiting on the stat mutex. Otherwise we could have
|
|
* the stat thread holding stat mutex and waiting for
|
|
* the rusage_sem, which would never get upped because
|
|
* this thread is waiting for the stat mutex.
|
|
*/
|
|
deadlock_loop_cnt = 0;
|
|
do {
|
|
check_update_rusage(td);
|
|
if (!fio_mutex_down_trylock(stat_mutex))
|
|
break;
|
|
usleep(1000);
|
|
if (deadlock_loop_cnt++ > 5000) {
|
|
log_err("fio seems to be stuck grabbing stat_mutex, forcibly exiting\n");
|
|
td->error = EDEADLK;
|
|
goto err;
|
|
}
|
|
} while (1);
|
|
|
|
if (td_read(td) && td->io_bytes[DDIR_READ])
|
|
update_runtime(td, elapsed_us, DDIR_READ);
|
|
if (td_write(td) && td->io_bytes[DDIR_WRITE])
|
|
update_runtime(td, elapsed_us, DDIR_WRITE);
|
|
if (td_trim(td) && td->io_bytes[DDIR_TRIM])
|
|
update_runtime(td, elapsed_us, DDIR_TRIM);
|
|
fio_gettime(&td->start, NULL);
|
|
fio_mutex_up(stat_mutex);
|
|
|
|
if (td->error || td->terminate)
|
|
break;
|
|
|
|
if (!o->do_verify ||
|
|
o->verify == VERIFY_NONE ||
|
|
td_ioengine_flagged(td, FIO_UNIDIR))
|
|
continue;
|
|
|
|
clear_io_state(td, 0);
|
|
|
|
fio_gettime(&td->start, NULL);
|
|
|
|
do_verify(td, verify_bytes);
|
|
|
|
/*
|
|
* See comment further up for why this is done here.
|
|
*/
|
|
check_update_rusage(td);
|
|
|
|
fio_mutex_down(stat_mutex);
|
|
update_runtime(td, elapsed_us, DDIR_READ);
|
|
fio_gettime(&td->start, NULL);
|
|
fio_mutex_up(stat_mutex);
|
|
|
|
if (td->error || td->terminate)
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* If td ended up with no I/O when it should have had,
|
|
* then something went wrong unless FIO_NOIO or FIO_DISKLESSIO.
|
|
* (Are we not missing other flags that can be ignored ?)
|
|
*/
|
|
if ((td->o.size || td->o.io_size) && !ddir_rw_sum(bytes_done) &&
|
|
!(td_ioengine_flagged(td, FIO_NOIO) ||
|
|
td_ioengine_flagged(td, FIO_DISKLESSIO)))
|
|
log_err("%s: No I/O performed by %s, "
|
|
"perhaps try --debug=io option for details?\n",
|
|
td->o.name, td->io_ops->name);
|
|
|
|
td_set_runstate(td, TD_FINISHING);
|
|
|
|
update_rusage_stat(td);
|
|
td->ts.total_run_time = mtime_since_now(&td->epoch);
|
|
td->ts.io_bytes[DDIR_READ] = td->io_bytes[DDIR_READ];
|
|
td->ts.io_bytes[DDIR_WRITE] = td->io_bytes[DDIR_WRITE];
|
|
td->ts.io_bytes[DDIR_TRIM] = td->io_bytes[DDIR_TRIM];
|
|
|
|
if (td->o.verify_state_save && !(td->flags & TD_F_VSTATE_SAVED) &&
|
|
(td->o.verify != VERIFY_NONE && td_write(td)))
|
|
verify_save_state(td->thread_number);
|
|
|
|
fio_unpin_memory(td);
|
|
|
|
td_writeout_logs(td, true);
|
|
|
|
iolog_compress_exit(td);
|
|
rate_submit_exit(td);
|
|
|
|
if (o->exec_postrun)
|
|
exec_string(o, o->exec_postrun, (const char *)"postrun");
|
|
|
|
if (exitall_on_terminate || (o->exitall_error && td->error))
|
|
fio_terminate_threads(td->groupid);
|
|
|
|
err:
|
|
if (td->error)
|
|
log_info("fio: pid=%d, err=%d/%s\n", (int) td->pid, td->error,
|
|
td->verror);
|
|
|
|
if (o->verify_async)
|
|
verify_async_exit(td);
|
|
|
|
close_and_free_files(td);
|
|
cleanup_io_u(td);
|
|
close_ioengine(td);
|
|
cgroup_shutdown(td, &cgroup_mnt);
|
|
verify_free_state(td);
|
|
|
|
if (td->zone_state_index) {
|
|
int i;
|
|
|
|
for (i = 0; i < DDIR_RWDIR_CNT; i++)
|
|
free(td->zone_state_index[i]);
|
|
free(td->zone_state_index);
|
|
td->zone_state_index = NULL;
|
|
}
|
|
|
|
if (fio_option_is_set(o, cpumask)) {
|
|
ret = fio_cpuset_exit(&o->cpumask);
|
|
if (ret)
|
|
td_verror(td, ret, "fio_cpuset_exit");
|
|
}
|
|
|
|
/*
|
|
* do this very late, it will log file closing as well
|
|
*/
|
|
if (o->write_iolog_file)
|
|
write_iolog_close(td);
|
|
|
|
td_set_runstate(td, TD_EXITED);
|
|
|
|
/*
|
|
* Do this last after setting our runstate to exited, so we
|
|
* know that the stat thread is signaled.
|
|
*/
|
|
check_update_rusage(td);
|
|
|
|
sk_out_drop();
|
|
return (void *) (uintptr_t) td->error;
|
|
}
|
|
|
|
/*
|
|
* Run over the job map and reap the threads that have exited, if any.
|
|
*/
|
|
static void reap_threads(unsigned int *nr_running, uint64_t *t_rate,
|
|
uint64_t *m_rate)
|
|
{
|
|
struct thread_data *td;
|
|
unsigned int cputhreads, realthreads, pending;
|
|
int i, status, ret;
|
|
|
|
/*
|
|
* reap exited threads (TD_EXITED -> TD_REAPED)
|
|
*/
|
|
realthreads = pending = cputhreads = 0;
|
|
for_each_td(td, i) {
|
|
int flags = 0;
|
|
|
|
/*
|
|
* ->io_ops is NULL for a thread that has closed its
|
|
* io engine
|
|
*/
|
|
if (td->io_ops && !strcmp(td->io_ops->name, "cpuio"))
|
|
cputhreads++;
|
|
else
|
|
realthreads++;
|
|
|
|
if (!td->pid) {
|
|
pending++;
|
|
continue;
|
|
}
|
|
if (td->runstate == TD_REAPED)
|
|
continue;
|
|
if (td->o.use_thread) {
|
|
if (td->runstate == TD_EXITED) {
|
|
td_set_runstate(td, TD_REAPED);
|
|
goto reaped;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
flags = WNOHANG;
|
|
if (td->runstate == TD_EXITED)
|
|
flags = 0;
|
|
|
|
/*
|
|
* check if someone quit or got killed in an unusual way
|
|
*/
|
|
ret = waitpid(td->pid, &status, flags);
|
|
if (ret < 0) {
|
|
if (errno == ECHILD) {
|
|
log_err("fio: pid=%d disappeared %d\n",
|
|
(int) td->pid, td->runstate);
|
|
td->sig = ECHILD;
|
|
td_set_runstate(td, TD_REAPED);
|
|
goto reaped;
|
|
}
|
|
perror("waitpid");
|
|
} else if (ret == td->pid) {
|
|
if (WIFSIGNALED(status)) {
|
|
int sig = WTERMSIG(status);
|
|
|
|
if (sig != SIGTERM && sig != SIGUSR2)
|
|
log_err("fio: pid=%d, got signal=%d\n",
|
|
(int) td->pid, sig);
|
|
td->sig = sig;
|
|
td_set_runstate(td, TD_REAPED);
|
|
goto reaped;
|
|
}
|
|
if (WIFEXITED(status)) {
|
|
if (WEXITSTATUS(status) && !td->error)
|
|
td->error = WEXITSTATUS(status);
|
|
|
|
td_set_runstate(td, TD_REAPED);
|
|
goto reaped;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* If the job is stuck, do a forceful timeout of it and
|
|
* move on.
|
|
*/
|
|
if (td->terminate &&
|
|
td->runstate < TD_FSYNCING &&
|
|
time_since_now(&td->terminate_time) >= FIO_REAP_TIMEOUT) {
|
|
log_err("fio: job '%s' (state=%d) hasn't exited in "
|
|
"%lu seconds, it appears to be stuck. Doing "
|
|
"forceful exit of this job.\n",
|
|
td->o.name, td->runstate,
|
|
(unsigned long) time_since_now(&td->terminate_time));
|
|
td_set_runstate(td, TD_REAPED);
|
|
goto reaped;
|
|
}
|
|
|
|
/*
|
|
* thread is not dead, continue
|
|
*/
|
|
pending++;
|
|
continue;
|
|
reaped:
|
|
(*nr_running)--;
|
|
(*m_rate) -= ddir_rw_sum(td->o.ratemin);
|
|
(*t_rate) -= ddir_rw_sum(td->o.rate);
|
|
if (!td->pid)
|
|
pending--;
|
|
|
|
if (td->error)
|
|
exit_value++;
|
|
|
|
done_secs += mtime_since_now(&td->epoch) / 1000;
|
|
profile_td_exit(td);
|
|
}
|
|
|
|
if (*nr_running == cputhreads && !pending && realthreads)
|
|
fio_terminate_threads(TERMINATE_ALL);
|
|
}
|
|
|
|
static bool __check_trigger_file(void)
|
|
{
|
|
struct stat sb;
|
|
|
|
if (!trigger_file)
|
|
return false;
|
|
|
|
if (stat(trigger_file, &sb))
|
|
return false;
|
|
|
|
if (unlink(trigger_file) < 0)
|
|
log_err("fio: failed to unlink %s: %s\n", trigger_file,
|
|
strerror(errno));
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool trigger_timedout(void)
|
|
{
|
|
if (trigger_timeout)
|
|
return time_since_genesis() >= trigger_timeout;
|
|
|
|
return false;
|
|
}
|
|
|
|
void exec_trigger(const char *cmd)
|
|
{
|
|
int ret;
|
|
|
|
if (!cmd)
|
|
return;
|
|
|
|
ret = system(cmd);
|
|
if (ret == -1)
|
|
log_err("fio: failed executing %s trigger\n", cmd);
|
|
}
|
|
|
|
void check_trigger_file(void)
|
|
{
|
|
if (__check_trigger_file() || trigger_timedout()) {
|
|
if (nr_clients)
|
|
fio_clients_send_trigger(trigger_remote_cmd);
|
|
else {
|
|
verify_save_state(IO_LIST_ALL);
|
|
fio_terminate_threads(TERMINATE_ALL);
|
|
exec_trigger(trigger_cmd);
|
|
}
|
|
}
|
|
}
|
|
|
|
static int fio_verify_load_state(struct thread_data *td)
|
|
{
|
|
int ret;
|
|
|
|
if (!td->o.verify_state)
|
|
return 0;
|
|
|
|
if (is_backend) {
|
|
void *data;
|
|
|
|
ret = fio_server_get_verify_state(td->o.name,
|
|
td->thread_number - 1, &data);
|
|
if (!ret)
|
|
verify_assign_state(td, data);
|
|
} else
|
|
ret = verify_load_state(td, "local");
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void do_usleep(unsigned int usecs)
|
|
{
|
|
check_for_running_stats();
|
|
check_trigger_file();
|
|
usleep(usecs);
|
|
}
|
|
|
|
static bool check_mount_writes(struct thread_data *td)
|
|
{
|
|
struct fio_file *f;
|
|
unsigned int i;
|
|
|
|
if (!td_write(td) || td->o.allow_mounted_write)
|
|
return false;
|
|
|
|
/*
|
|
* If FIO_HAVE_CHARDEV_SIZE is defined, it's likely that chrdevs
|
|
* are mkfs'd and mounted.
|
|
*/
|
|
for_each_file(td, f, i) {
|
|
#ifdef FIO_HAVE_CHARDEV_SIZE
|
|
if (f->filetype != FIO_TYPE_BLOCK && f->filetype != FIO_TYPE_CHAR)
|
|
#else
|
|
if (f->filetype != FIO_TYPE_BLOCK)
|
|
#endif
|
|
continue;
|
|
if (device_is_mounted(f->file_name))
|
|
goto mounted;
|
|
}
|
|
|
|
return false;
|
|
mounted:
|
|
log_err("fio: %s appears mounted, and 'allow_mounted_write' isn't set. Aborting.\n", f->file_name);
|
|
return true;
|
|
}
|
|
|
|
static bool waitee_running(struct thread_data *me)
|
|
{
|
|
const char *waitee = me->o.wait_for;
|
|
const char *self = me->o.name;
|
|
struct thread_data *td;
|
|
int i;
|
|
|
|
if (!waitee)
|
|
return false;
|
|
|
|
for_each_td(td, i) {
|
|
if (!strcmp(td->o.name, self) || strcmp(td->o.name, waitee))
|
|
continue;
|
|
|
|
if (td->runstate < TD_EXITED) {
|
|
dprint(FD_PROCESS, "%s fenced by %s(%s)\n",
|
|
self, td->o.name,
|
|
runstate_to_name(td->runstate));
|
|
return true;
|
|
}
|
|
}
|
|
|
|
dprint(FD_PROCESS, "%s: %s completed, can run\n", self, waitee);
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Main function for kicking off and reaping jobs, as needed.
|
|
*/
|
|
static void run_threads(struct sk_out *sk_out)
|
|
{
|
|
struct thread_data *td;
|
|
unsigned int i, todo, nr_running, nr_started;
|
|
uint64_t m_rate, t_rate;
|
|
uint64_t spent;
|
|
|
|
if (fio_gtod_offload && fio_start_gtod_thread())
|
|
return;
|
|
|
|
fio_idle_prof_init();
|
|
|
|
set_sig_handlers();
|
|
|
|
nr_thread = nr_process = 0;
|
|
for_each_td(td, i) {
|
|
if (check_mount_writes(td))
|
|
return;
|
|
if (td->o.use_thread)
|
|
nr_thread++;
|
|
else
|
|
nr_process++;
|
|
}
|
|
|
|
if (output_format & FIO_OUTPUT_NORMAL) {
|
|
log_info("Starting ");
|
|
if (nr_thread)
|
|
log_info("%d thread%s", nr_thread,
|
|
nr_thread > 1 ? "s" : "");
|
|
if (nr_process) {
|
|
if (nr_thread)
|
|
log_info(" and ");
|
|
log_info("%d process%s", nr_process,
|
|
nr_process > 1 ? "es" : "");
|
|
}
|
|
log_info("\n");
|
|
log_info_flush();
|
|
}
|
|
|
|
todo = thread_number;
|
|
nr_running = 0;
|
|
nr_started = 0;
|
|
m_rate = t_rate = 0;
|
|
|
|
for_each_td(td, i) {
|
|
print_status_init(td->thread_number - 1);
|
|
|
|
if (!td->o.create_serialize)
|
|
continue;
|
|
|
|
if (fio_verify_load_state(td))
|
|
goto reap;
|
|
|
|
/*
|
|
* do file setup here so it happens sequentially,
|
|
* we don't want X number of threads getting their
|
|
* client data interspersed on disk
|
|
*/
|
|
if (setup_files(td)) {
|
|
reap:
|
|
exit_value++;
|
|
if (td->error)
|
|
log_err("fio: pid=%d, err=%d/%s\n",
|
|
(int) td->pid, td->error, td->verror);
|
|
td_set_runstate(td, TD_REAPED);
|
|
todo--;
|
|
} else {
|
|
struct fio_file *f;
|
|
unsigned int j;
|
|
|
|
/*
|
|
* for sharing to work, each job must always open
|
|
* its own files. so close them, if we opened them
|
|
* for creation
|
|
*/
|
|
for_each_file(td, f, j) {
|
|
if (fio_file_open(f))
|
|
td_io_close_file(td, f);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* start idle threads before io threads start to run */
|
|
fio_idle_prof_start();
|
|
|
|
set_genesis_time();
|
|
|
|
while (todo) {
|
|
struct thread_data *map[REAL_MAX_JOBS];
|
|
struct timeval this_start;
|
|
int this_jobs = 0, left;
|
|
struct fork_data *fd;
|
|
|
|
/*
|
|
* create threads (TD_NOT_CREATED -> TD_CREATED)
|
|
*/
|
|
for_each_td(td, i) {
|
|
if (td->runstate != TD_NOT_CREATED)
|
|
continue;
|
|
|
|
/*
|
|
* never got a chance to start, killed by other
|
|
* thread for some reason
|
|
*/
|
|
if (td->terminate) {
|
|
todo--;
|
|
continue;
|
|
}
|
|
|
|
if (td->o.start_delay) {
|
|
spent = utime_since_genesis();
|
|
|
|
if (td->o.start_delay > spent)
|
|
continue;
|
|
}
|
|
|
|
if (td->o.stonewall && (nr_started || nr_running)) {
|
|
dprint(FD_PROCESS, "%s: stonewall wait\n",
|
|
td->o.name);
|
|
break;
|
|
}
|
|
|
|
if (waitee_running(td)) {
|
|
dprint(FD_PROCESS, "%s: waiting for %s\n",
|
|
td->o.name, td->o.wait_for);
|
|
continue;
|
|
}
|
|
|
|
init_disk_util(td);
|
|
|
|
td->rusage_sem = fio_mutex_init(FIO_MUTEX_LOCKED);
|
|
td->update_rusage = 0;
|
|
|
|
/*
|
|
* Set state to created. Thread will transition
|
|
* to TD_INITIALIZED when it's done setting up.
|
|
*/
|
|
td_set_runstate(td, TD_CREATED);
|
|
map[this_jobs++] = td;
|
|
nr_started++;
|
|
|
|
fd = calloc(1, sizeof(*fd));
|
|
fd->td = td;
|
|
fd->sk_out = sk_out;
|
|
|
|
if (td->o.use_thread) {
|
|
int ret;
|
|
|
|
dprint(FD_PROCESS, "will pthread_create\n");
|
|
ret = pthread_create(&td->thread, NULL,
|
|
thread_main, fd);
|
|
if (ret) {
|
|
log_err("pthread_create: %s\n",
|
|
strerror(ret));
|
|
free(fd);
|
|
nr_started--;
|
|
break;
|
|
}
|
|
ret = pthread_detach(td->thread);
|
|
if (ret)
|
|
log_err("pthread_detach: %s",
|
|
strerror(ret));
|
|
} else {
|
|
pid_t pid;
|
|
dprint(FD_PROCESS, "will fork\n");
|
|
pid = fork();
|
|
if (!pid) {
|
|
int ret;
|
|
|
|
ret = (int)(uintptr_t)thread_main(fd);
|
|
_exit(ret);
|
|
} else if (i == fio_debug_jobno)
|
|
*fio_debug_jobp = pid;
|
|
}
|
|
dprint(FD_MUTEX, "wait on startup_mutex\n");
|
|
if (fio_mutex_down_timeout(startup_mutex, 10000)) {
|
|
log_err("fio: job startup hung? exiting.\n");
|
|
fio_terminate_threads(TERMINATE_ALL);
|
|
fio_abort = 1;
|
|
nr_started--;
|
|
break;
|
|
}
|
|
dprint(FD_MUTEX, "done waiting on startup_mutex\n");
|
|
}
|
|
|
|
/*
|
|
* Wait for the started threads to transition to
|
|
* TD_INITIALIZED.
|
|
*/
|
|
fio_gettime(&this_start, NULL);
|
|
left = this_jobs;
|
|
while (left && !fio_abort) {
|
|
if (mtime_since_now(&this_start) > JOB_START_TIMEOUT)
|
|
break;
|
|
|
|
do_usleep(100000);
|
|
|
|
for (i = 0; i < this_jobs; i++) {
|
|
td = map[i];
|
|
if (!td)
|
|
continue;
|
|
if (td->runstate == TD_INITIALIZED) {
|
|
map[i] = NULL;
|
|
left--;
|
|
} else if (td->runstate >= TD_EXITED) {
|
|
map[i] = NULL;
|
|
left--;
|
|
todo--;
|
|
nr_running++; /* work-around... */
|
|
}
|
|
}
|
|
}
|
|
|
|
if (left) {
|
|
log_err("fio: %d job%s failed to start\n", left,
|
|
left > 1 ? "s" : "");
|
|
for (i = 0; i < this_jobs; i++) {
|
|
td = map[i];
|
|
if (!td)
|
|
continue;
|
|
kill(td->pid, SIGTERM);
|
|
}
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* start created threads (TD_INITIALIZED -> TD_RUNNING).
|
|
*/
|
|
for_each_td(td, i) {
|
|
if (td->runstate != TD_INITIALIZED)
|
|
continue;
|
|
|
|
if (in_ramp_time(td))
|
|
td_set_runstate(td, TD_RAMP);
|
|
else
|
|
td_set_runstate(td, TD_RUNNING);
|
|
nr_running++;
|
|
nr_started--;
|
|
m_rate += ddir_rw_sum(td->o.ratemin);
|
|
t_rate += ddir_rw_sum(td->o.rate);
|
|
todo--;
|
|
fio_mutex_up(td->mutex);
|
|
}
|
|
|
|
reap_threads(&nr_running, &t_rate, &m_rate);
|
|
|
|
if (todo)
|
|
do_usleep(100000);
|
|
}
|
|
|
|
while (nr_running) {
|
|
reap_threads(&nr_running, &t_rate, &m_rate);
|
|
do_usleep(10000);
|
|
}
|
|
|
|
fio_idle_prof_stop();
|
|
|
|
update_io_ticks();
|
|
}
|
|
|
|
static void free_disk_util(void)
|
|
{
|
|
disk_util_prune_entries();
|
|
helper_thread_destroy();
|
|
}
|
|
|
|
int fio_backend(struct sk_out *sk_out)
|
|
{
|
|
struct thread_data *td;
|
|
int i;
|
|
|
|
if (exec_profile) {
|
|
if (load_profile(exec_profile))
|
|
return 1;
|
|
free(exec_profile);
|
|
exec_profile = NULL;
|
|
}
|
|
if (!thread_number)
|
|
return 0;
|
|
|
|
if (write_bw_log) {
|
|
struct log_params p = {
|
|
.log_type = IO_LOG_TYPE_BW,
|
|
};
|
|
|
|
setup_log(&agg_io_log[DDIR_READ], &p, "agg-read_bw.log");
|
|
setup_log(&agg_io_log[DDIR_WRITE], &p, "agg-write_bw.log");
|
|
setup_log(&agg_io_log[DDIR_TRIM], &p, "agg-trim_bw.log");
|
|
}
|
|
|
|
startup_mutex = fio_mutex_init(FIO_MUTEX_LOCKED);
|
|
if (startup_mutex == NULL)
|
|
return 1;
|
|
|
|
set_genesis_time();
|
|
stat_init();
|
|
helper_thread_create(startup_mutex, sk_out);
|
|
|
|
cgroup_list = smalloc(sizeof(*cgroup_list));
|
|
INIT_FLIST_HEAD(cgroup_list);
|
|
|
|
run_threads(sk_out);
|
|
|
|
helper_thread_exit();
|
|
|
|
if (!fio_abort) {
|
|
__show_run_stats();
|
|
if (write_bw_log) {
|
|
for (i = 0; i < DDIR_RWDIR_CNT; i++) {
|
|
struct io_log *log = agg_io_log[i];
|
|
|
|
flush_log(log, false);
|
|
free_log(log);
|
|
}
|
|
}
|
|
}
|
|
|
|
for_each_td(td, i) {
|
|
if (td->ss.dur) {
|
|
if (td->ss.iops_data != NULL) {
|
|
free(td->ss.iops_data);
|
|
free(td->ss.bw_data);
|
|
}
|
|
}
|
|
fio_options_free(td);
|
|
if (td->rusage_sem) {
|
|
fio_mutex_remove(td->rusage_sem);
|
|
td->rusage_sem = NULL;
|
|
}
|
|
fio_mutex_remove(td->mutex);
|
|
td->mutex = NULL;
|
|
}
|
|
|
|
free_disk_util();
|
|
cgroup_kill(cgroup_list);
|
|
sfree(cgroup_list);
|
|
sfree(cgroup_mnt);
|
|
|
|
fio_mutex_remove(startup_mutex);
|
|
stat_exit();
|
|
return exit_value;
|
|
}
|