3268 lines
118 KiB
C++
3268 lines
118 KiB
C++
/*
|
|
* Copyright (C) 2015 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "intrinsics_mips.h"
|
|
|
|
#include "arch/mips/instruction_set_features_mips.h"
|
|
#include "art_method.h"
|
|
#include "code_generator_mips.h"
|
|
#include "entrypoints/quick/quick_entrypoints.h"
|
|
#include "intrinsics.h"
|
|
#include "mirror/array-inl.h"
|
|
#include "mirror/string.h"
|
|
#include "scoped_thread_state_change-inl.h"
|
|
#include "thread.h"
|
|
#include "utils/mips/assembler_mips.h"
|
|
#include "utils/mips/constants_mips.h"
|
|
|
|
namespace art {
|
|
|
|
namespace mips {
|
|
|
|
IntrinsicLocationsBuilderMIPS::IntrinsicLocationsBuilderMIPS(CodeGeneratorMIPS* codegen)
|
|
: codegen_(codegen), arena_(codegen->GetGraph()->GetArena()) {
|
|
}
|
|
|
|
MipsAssembler* IntrinsicCodeGeneratorMIPS::GetAssembler() {
|
|
return reinterpret_cast<MipsAssembler*>(codegen_->GetAssembler());
|
|
}
|
|
|
|
ArenaAllocator* IntrinsicCodeGeneratorMIPS::GetAllocator() {
|
|
return codegen_->GetGraph()->GetArena();
|
|
}
|
|
|
|
inline bool IntrinsicCodeGeneratorMIPS::IsR2OrNewer() const {
|
|
return codegen_->GetInstructionSetFeatures().IsMipsIsaRevGreaterThanEqual2();
|
|
}
|
|
|
|
inline bool IntrinsicCodeGeneratorMIPS::IsR6() const {
|
|
return codegen_->GetInstructionSetFeatures().IsR6();
|
|
}
|
|
|
|
inline bool IntrinsicCodeGeneratorMIPS::Is32BitFPU() const {
|
|
return codegen_->GetInstructionSetFeatures().Is32BitFloatingPoint();
|
|
}
|
|
|
|
#define __ codegen->GetAssembler()->
|
|
|
|
static void MoveFromReturnRegister(Location trg,
|
|
Primitive::Type type,
|
|
CodeGeneratorMIPS* codegen) {
|
|
if (!trg.IsValid()) {
|
|
DCHECK_EQ(type, Primitive::kPrimVoid);
|
|
return;
|
|
}
|
|
|
|
DCHECK_NE(type, Primitive::kPrimVoid);
|
|
|
|
if (Primitive::IsIntegralType(type) || type == Primitive::kPrimNot) {
|
|
Register trg_reg = trg.AsRegister<Register>();
|
|
if (trg_reg != V0) {
|
|
__ Move(V0, trg_reg);
|
|
}
|
|
} else {
|
|
FRegister trg_reg = trg.AsFpuRegister<FRegister>();
|
|
if (trg_reg != F0) {
|
|
if (type == Primitive::kPrimFloat) {
|
|
__ MovS(F0, trg_reg);
|
|
} else {
|
|
__ MovD(F0, trg_reg);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void MoveArguments(HInvoke* invoke, CodeGeneratorMIPS* codegen) {
|
|
InvokeDexCallingConventionVisitorMIPS calling_convention_visitor;
|
|
IntrinsicVisitor::MoveArguments(invoke, codegen, &calling_convention_visitor);
|
|
}
|
|
|
|
// Slow-path for fallback (calling the managed code to handle the
|
|
// intrinsic) in an intrinsified call. This will copy the arguments
|
|
// into the positions for a regular call.
|
|
//
|
|
// Note: The actual parameters are required to be in the locations
|
|
// given by the invoke's location summary. If an intrinsic
|
|
// modifies those locations before a slowpath call, they must be
|
|
// restored!
|
|
class IntrinsicSlowPathMIPS : public SlowPathCodeMIPS {
|
|
public:
|
|
explicit IntrinsicSlowPathMIPS(HInvoke* invoke) : SlowPathCodeMIPS(invoke), invoke_(invoke) { }
|
|
|
|
void EmitNativeCode(CodeGenerator* codegen_in) OVERRIDE {
|
|
CodeGeneratorMIPS* codegen = down_cast<CodeGeneratorMIPS*>(codegen_in);
|
|
|
|
__ Bind(GetEntryLabel());
|
|
|
|
SaveLiveRegisters(codegen, invoke_->GetLocations());
|
|
|
|
MoveArguments(invoke_, codegen);
|
|
|
|
if (invoke_->IsInvokeStaticOrDirect()) {
|
|
codegen->GenerateStaticOrDirectCall(
|
|
invoke_->AsInvokeStaticOrDirect(), Location::RegisterLocation(A0), this);
|
|
} else {
|
|
codegen->GenerateVirtualCall(
|
|
invoke_->AsInvokeVirtual(), Location::RegisterLocation(A0), this);
|
|
}
|
|
|
|
// Copy the result back to the expected output.
|
|
Location out = invoke_->GetLocations()->Out();
|
|
if (out.IsValid()) {
|
|
DCHECK(out.IsRegister()); // TODO: Replace this when we support output in memory.
|
|
DCHECK(!invoke_->GetLocations()->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
|
|
MoveFromReturnRegister(out, invoke_->GetType(), codegen);
|
|
}
|
|
|
|
RestoreLiveRegisters(codegen, invoke_->GetLocations());
|
|
__ B(GetExitLabel());
|
|
}
|
|
|
|
const char* GetDescription() const OVERRIDE { return "IntrinsicSlowPathMIPS"; }
|
|
|
|
private:
|
|
// The instruction where this slow path is happening.
|
|
HInvoke* const invoke_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(IntrinsicSlowPathMIPS);
|
|
};
|
|
|
|
#undef __
|
|
|
|
bool IntrinsicLocationsBuilderMIPS::TryDispatch(HInvoke* invoke) {
|
|
Dispatch(invoke);
|
|
LocationSummary* res = invoke->GetLocations();
|
|
return res != nullptr && res->Intrinsified();
|
|
}
|
|
|
|
#define __ assembler->
|
|
|
|
static void CreateFPToIntLocations(ArenaAllocator* arena, HInvoke* invoke) {
|
|
LocationSummary* locations = new (arena) LocationSummary(invoke,
|
|
LocationSummary::kNoCall,
|
|
kIntrinsified);
|
|
locations->SetInAt(0, Location::RequiresFpuRegister());
|
|
locations->SetOut(Location::RequiresRegister());
|
|
}
|
|
|
|
static void MoveFPToInt(LocationSummary* locations, bool is64bit, MipsAssembler* assembler) {
|
|
FRegister in = locations->InAt(0).AsFpuRegister<FRegister>();
|
|
|
|
if (is64bit) {
|
|
Register out_lo = locations->Out().AsRegisterPairLow<Register>();
|
|
Register out_hi = locations->Out().AsRegisterPairHigh<Register>();
|
|
|
|
__ Mfc1(out_lo, in);
|
|
__ MoveFromFpuHigh(out_hi, in);
|
|
} else {
|
|
Register out = locations->Out().AsRegister<Register>();
|
|
|
|
__ Mfc1(out, in);
|
|
}
|
|
}
|
|
|
|
// long java.lang.Double.doubleToRawLongBits(double)
|
|
void IntrinsicLocationsBuilderMIPS::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
|
|
CreateFPToIntLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
|
|
MoveFPToInt(invoke->GetLocations(), /* is64bit */ true, GetAssembler());
|
|
}
|
|
|
|
// int java.lang.Float.floatToRawIntBits(float)
|
|
void IntrinsicLocationsBuilderMIPS::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
|
|
CreateFPToIntLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
|
|
MoveFPToInt(invoke->GetLocations(), /* is64bit */ false, GetAssembler());
|
|
}
|
|
|
|
static void CreateIntToFPLocations(ArenaAllocator* arena, HInvoke* invoke) {
|
|
LocationSummary* locations = new (arena) LocationSummary(invoke,
|
|
LocationSummary::kNoCall,
|
|
kIntrinsified);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetOut(Location::RequiresFpuRegister());
|
|
}
|
|
|
|
static void MoveIntToFP(LocationSummary* locations, bool is64bit, MipsAssembler* assembler) {
|
|
FRegister out = locations->Out().AsFpuRegister<FRegister>();
|
|
|
|
if (is64bit) {
|
|
Register in_lo = locations->InAt(0).AsRegisterPairLow<Register>();
|
|
Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
|
|
|
|
__ Mtc1(in_lo, out);
|
|
__ MoveToFpuHigh(in_hi, out);
|
|
} else {
|
|
Register in = locations->InAt(0).AsRegister<Register>();
|
|
|
|
__ Mtc1(in, out);
|
|
}
|
|
}
|
|
|
|
// double java.lang.Double.longBitsToDouble(long)
|
|
void IntrinsicLocationsBuilderMIPS::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
|
|
CreateIntToFPLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
|
|
MoveIntToFP(invoke->GetLocations(), /* is64bit */ true, GetAssembler());
|
|
}
|
|
|
|
// float java.lang.Float.intBitsToFloat(int)
|
|
void IntrinsicLocationsBuilderMIPS::VisitFloatIntBitsToFloat(HInvoke* invoke) {
|
|
CreateIntToFPLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitFloatIntBitsToFloat(HInvoke* invoke) {
|
|
MoveIntToFP(invoke->GetLocations(), /* is64bit */ false, GetAssembler());
|
|
}
|
|
|
|
static void CreateIntToIntLocations(ArenaAllocator* arena,
|
|
HInvoke* invoke,
|
|
Location::OutputOverlap overlaps = Location::kNoOutputOverlap) {
|
|
LocationSummary* locations = new (arena) LocationSummary(invoke,
|
|
LocationSummary::kNoCall,
|
|
kIntrinsified);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetOut(Location::RequiresRegister(), overlaps);
|
|
}
|
|
|
|
static void GenReverse(LocationSummary* locations,
|
|
Primitive::Type type,
|
|
bool isR2OrNewer,
|
|
bool isR6,
|
|
bool reverseBits,
|
|
MipsAssembler* assembler) {
|
|
DCHECK(type == Primitive::kPrimShort ||
|
|
type == Primitive::kPrimInt ||
|
|
type == Primitive::kPrimLong);
|
|
DCHECK(type != Primitive::kPrimShort || !reverseBits);
|
|
|
|
if (type == Primitive::kPrimShort) {
|
|
Register in = locations->InAt(0).AsRegister<Register>();
|
|
Register out = locations->Out().AsRegister<Register>();
|
|
|
|
if (isR2OrNewer) {
|
|
__ Wsbh(out, in);
|
|
__ Seh(out, out);
|
|
} else {
|
|
__ Sll(TMP, in, 24);
|
|
__ Sra(TMP, TMP, 16);
|
|
__ Sll(out, in, 16);
|
|
__ Srl(out, out, 24);
|
|
__ Or(out, out, TMP);
|
|
}
|
|
} else if (type == Primitive::kPrimInt) {
|
|
Register in = locations->InAt(0).AsRegister<Register>();
|
|
Register out = locations->Out().AsRegister<Register>();
|
|
|
|
if (isR2OrNewer) {
|
|
__ Rotr(out, in, 16);
|
|
__ Wsbh(out, out);
|
|
} else {
|
|
// MIPS32r1
|
|
// __ Rotr(out, in, 16);
|
|
__ Sll(TMP, in, 16);
|
|
__ Srl(out, in, 16);
|
|
__ Or(out, out, TMP);
|
|
// __ Wsbh(out, out);
|
|
__ LoadConst32(AT, 0x00FF00FF);
|
|
__ And(TMP, out, AT);
|
|
__ Sll(TMP, TMP, 8);
|
|
__ Srl(out, out, 8);
|
|
__ And(out, out, AT);
|
|
__ Or(out, out, TMP);
|
|
}
|
|
if (reverseBits) {
|
|
if (isR6) {
|
|
__ Bitswap(out, out);
|
|
} else {
|
|
__ LoadConst32(AT, 0x0F0F0F0F);
|
|
__ And(TMP, out, AT);
|
|
__ Sll(TMP, TMP, 4);
|
|
__ Srl(out, out, 4);
|
|
__ And(out, out, AT);
|
|
__ Or(out, TMP, out);
|
|
__ LoadConst32(AT, 0x33333333);
|
|
__ And(TMP, out, AT);
|
|
__ Sll(TMP, TMP, 2);
|
|
__ Srl(out, out, 2);
|
|
__ And(out, out, AT);
|
|
__ Or(out, TMP, out);
|
|
__ LoadConst32(AT, 0x55555555);
|
|
__ And(TMP, out, AT);
|
|
__ Sll(TMP, TMP, 1);
|
|
__ Srl(out, out, 1);
|
|
__ And(out, out, AT);
|
|
__ Or(out, TMP, out);
|
|
}
|
|
}
|
|
} else if (type == Primitive::kPrimLong) {
|
|
Register in_lo = locations->InAt(0).AsRegisterPairLow<Register>();
|
|
Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
|
|
Register out_lo = locations->Out().AsRegisterPairLow<Register>();
|
|
Register out_hi = locations->Out().AsRegisterPairHigh<Register>();
|
|
|
|
if (isR2OrNewer) {
|
|
__ Rotr(AT, in_hi, 16);
|
|
__ Rotr(TMP, in_lo, 16);
|
|
__ Wsbh(out_lo, AT);
|
|
__ Wsbh(out_hi, TMP);
|
|
} else {
|
|
// When calling CreateIntToIntLocations() we promised that the
|
|
// use of the out_lo/out_hi wouldn't overlap with the use of
|
|
// in_lo/in_hi. Be very careful not to write to out_lo/out_hi
|
|
// until we're completely done reading from in_lo/in_hi.
|
|
// __ Rotr(TMP, in_lo, 16);
|
|
__ Sll(TMP, in_lo, 16);
|
|
__ Srl(AT, in_lo, 16);
|
|
__ Or(TMP, TMP, AT); // Hold in TMP until it's safe
|
|
// to write to out_hi.
|
|
// __ Rotr(out_lo, in_hi, 16);
|
|
__ Sll(AT, in_hi, 16);
|
|
__ Srl(out_lo, in_hi, 16); // Here we are finally done reading
|
|
// from in_lo/in_hi so it's okay to
|
|
// write to out_lo/out_hi.
|
|
__ Or(out_lo, out_lo, AT);
|
|
// __ Wsbh(out_hi, out_hi);
|
|
__ LoadConst32(AT, 0x00FF00FF);
|
|
__ And(out_hi, TMP, AT);
|
|
__ Sll(out_hi, out_hi, 8);
|
|
__ Srl(TMP, TMP, 8);
|
|
__ And(TMP, TMP, AT);
|
|
__ Or(out_hi, out_hi, TMP);
|
|
// __ Wsbh(out_lo, out_lo);
|
|
__ And(TMP, out_lo, AT); // AT already holds the correct mask value
|
|
__ Sll(TMP, TMP, 8);
|
|
__ Srl(out_lo, out_lo, 8);
|
|
__ And(out_lo, out_lo, AT);
|
|
__ Or(out_lo, out_lo, TMP);
|
|
}
|
|
if (reverseBits) {
|
|
if (isR6) {
|
|
__ Bitswap(out_hi, out_hi);
|
|
__ Bitswap(out_lo, out_lo);
|
|
} else {
|
|
__ LoadConst32(AT, 0x0F0F0F0F);
|
|
__ And(TMP, out_hi, AT);
|
|
__ Sll(TMP, TMP, 4);
|
|
__ Srl(out_hi, out_hi, 4);
|
|
__ And(out_hi, out_hi, AT);
|
|
__ Or(out_hi, TMP, out_hi);
|
|
__ And(TMP, out_lo, AT);
|
|
__ Sll(TMP, TMP, 4);
|
|
__ Srl(out_lo, out_lo, 4);
|
|
__ And(out_lo, out_lo, AT);
|
|
__ Or(out_lo, TMP, out_lo);
|
|
__ LoadConst32(AT, 0x33333333);
|
|
__ And(TMP, out_hi, AT);
|
|
__ Sll(TMP, TMP, 2);
|
|
__ Srl(out_hi, out_hi, 2);
|
|
__ And(out_hi, out_hi, AT);
|
|
__ Or(out_hi, TMP, out_hi);
|
|
__ And(TMP, out_lo, AT);
|
|
__ Sll(TMP, TMP, 2);
|
|
__ Srl(out_lo, out_lo, 2);
|
|
__ And(out_lo, out_lo, AT);
|
|
__ Or(out_lo, TMP, out_lo);
|
|
__ LoadConst32(AT, 0x55555555);
|
|
__ And(TMP, out_hi, AT);
|
|
__ Sll(TMP, TMP, 1);
|
|
__ Srl(out_hi, out_hi, 1);
|
|
__ And(out_hi, out_hi, AT);
|
|
__ Or(out_hi, TMP, out_hi);
|
|
__ And(TMP, out_lo, AT);
|
|
__ Sll(TMP, TMP, 1);
|
|
__ Srl(out_lo, out_lo, 1);
|
|
__ And(out_lo, out_lo, AT);
|
|
__ Or(out_lo, TMP, out_lo);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// int java.lang.Integer.reverseBytes(int)
|
|
void IntrinsicLocationsBuilderMIPS::VisitIntegerReverseBytes(HInvoke* invoke) {
|
|
CreateIntToIntLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitIntegerReverseBytes(HInvoke* invoke) {
|
|
GenReverse(invoke->GetLocations(),
|
|
Primitive::kPrimInt,
|
|
IsR2OrNewer(),
|
|
IsR6(),
|
|
/* reverseBits */ false,
|
|
GetAssembler());
|
|
}
|
|
|
|
// long java.lang.Long.reverseBytes(long)
|
|
void IntrinsicLocationsBuilderMIPS::VisitLongReverseBytes(HInvoke* invoke) {
|
|
CreateIntToIntLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitLongReverseBytes(HInvoke* invoke) {
|
|
GenReverse(invoke->GetLocations(),
|
|
Primitive::kPrimLong,
|
|
IsR2OrNewer(),
|
|
IsR6(),
|
|
/* reverseBits */ false,
|
|
GetAssembler());
|
|
}
|
|
|
|
// short java.lang.Short.reverseBytes(short)
|
|
void IntrinsicLocationsBuilderMIPS::VisitShortReverseBytes(HInvoke* invoke) {
|
|
CreateIntToIntLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitShortReverseBytes(HInvoke* invoke) {
|
|
GenReverse(invoke->GetLocations(),
|
|
Primitive::kPrimShort,
|
|
IsR2OrNewer(),
|
|
IsR6(),
|
|
/* reverseBits */ false,
|
|
GetAssembler());
|
|
}
|
|
|
|
static void GenNumberOfLeadingZeroes(LocationSummary* locations,
|
|
bool is64bit,
|
|
bool isR6,
|
|
MipsAssembler* assembler) {
|
|
Register out = locations->Out().AsRegister<Register>();
|
|
if (is64bit) {
|
|
Register in_lo = locations->InAt(0).AsRegisterPairLow<Register>();
|
|
Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
|
|
|
|
if (isR6) {
|
|
__ ClzR6(AT, in_hi);
|
|
__ ClzR6(TMP, in_lo);
|
|
__ Seleqz(TMP, TMP, in_hi);
|
|
} else {
|
|
__ ClzR2(AT, in_hi);
|
|
__ ClzR2(TMP, in_lo);
|
|
__ Movn(TMP, ZERO, in_hi);
|
|
}
|
|
__ Addu(out, AT, TMP);
|
|
} else {
|
|
Register in = locations->InAt(0).AsRegister<Register>();
|
|
|
|
if (isR6) {
|
|
__ ClzR6(out, in);
|
|
} else {
|
|
__ ClzR2(out, in);
|
|
}
|
|
}
|
|
}
|
|
|
|
// int java.lang.Integer.numberOfLeadingZeros(int i)
|
|
void IntrinsicLocationsBuilderMIPS::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) {
|
|
CreateIntToIntLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) {
|
|
GenNumberOfLeadingZeroes(invoke->GetLocations(), /* is64bit */ false, IsR6(), GetAssembler());
|
|
}
|
|
|
|
// int java.lang.Long.numberOfLeadingZeros(long i)
|
|
void IntrinsicLocationsBuilderMIPS::VisitLongNumberOfLeadingZeros(HInvoke* invoke) {
|
|
CreateIntToIntLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitLongNumberOfLeadingZeros(HInvoke* invoke) {
|
|
GenNumberOfLeadingZeroes(invoke->GetLocations(), /* is64bit */ true, IsR6(), GetAssembler());
|
|
}
|
|
|
|
static void GenNumberOfTrailingZeroes(LocationSummary* locations,
|
|
bool is64bit,
|
|
bool isR6,
|
|
MipsAssembler* assembler) {
|
|
Register out = locations->Out().AsRegister<Register>();
|
|
Register in_lo;
|
|
Register in;
|
|
|
|
if (is64bit) {
|
|
Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
|
|
|
|
in_lo = locations->InAt(0).AsRegisterPairLow<Register>();
|
|
|
|
// If in_lo is zero then count the number of trailing zeroes in in_hi;
|
|
// otherwise count the number of trailing zeroes in in_lo.
|
|
// out = in_lo ? in_lo : in_hi;
|
|
if (isR6) {
|
|
__ Seleqz(out, in_hi, in_lo);
|
|
__ Selnez(TMP, in_lo, in_lo);
|
|
__ Or(out, out, TMP);
|
|
} else {
|
|
__ Movz(out, in_hi, in_lo);
|
|
__ Movn(out, in_lo, in_lo);
|
|
}
|
|
|
|
in = out;
|
|
} else {
|
|
in = locations->InAt(0).AsRegister<Register>();
|
|
// Give in_lo a dummy value to keep the compiler from complaining.
|
|
// Since we only get here in the 32-bit case, this value will never
|
|
// be used.
|
|
in_lo = in;
|
|
}
|
|
|
|
if (isR6) {
|
|
// We don't have an instruction to count the number of trailing zeroes.
|
|
// Start by flipping the bits end-for-end so we can count the number of
|
|
// leading zeroes instead.
|
|
__ Rotr(out, in, 16);
|
|
__ Wsbh(out, out);
|
|
__ Bitswap(out, out);
|
|
__ ClzR6(out, out);
|
|
} else {
|
|
// Convert trailing zeroes to trailing ones, and bits to their left
|
|
// to zeroes.
|
|
__ Addiu(TMP, in, -1);
|
|
__ Xor(out, TMP, in);
|
|
__ And(out, out, TMP);
|
|
// Count number of leading zeroes.
|
|
__ ClzR2(out, out);
|
|
// Subtract number of leading zeroes from 32 to get number of trailing ones.
|
|
// Remember that the trailing ones were formerly trailing zeroes.
|
|
__ LoadConst32(TMP, 32);
|
|
__ Subu(out, TMP, out);
|
|
}
|
|
|
|
if (is64bit) {
|
|
// If in_lo is zero, then we counted the number of trailing zeroes in in_hi so we must add the
|
|
// number of trailing zeroes in in_lo (32) to get the correct final count
|
|
__ LoadConst32(TMP, 32);
|
|
if (isR6) {
|
|
__ Seleqz(TMP, TMP, in_lo);
|
|
} else {
|
|
__ Movn(TMP, ZERO, in_lo);
|
|
}
|
|
__ Addu(out, out, TMP);
|
|
}
|
|
}
|
|
|
|
// int java.lang.Integer.numberOfTrailingZeros(int i)
|
|
void IntrinsicLocationsBuilderMIPS::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) {
|
|
CreateIntToIntLocations(arena_, invoke, Location::kOutputOverlap);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) {
|
|
GenNumberOfTrailingZeroes(invoke->GetLocations(), /* is64bit */ false, IsR6(), GetAssembler());
|
|
}
|
|
|
|
// int java.lang.Long.numberOfTrailingZeros(long i)
|
|
void IntrinsicLocationsBuilderMIPS::VisitLongNumberOfTrailingZeros(HInvoke* invoke) {
|
|
CreateIntToIntLocations(arena_, invoke, Location::kOutputOverlap);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitLongNumberOfTrailingZeros(HInvoke* invoke) {
|
|
GenNumberOfTrailingZeroes(invoke->GetLocations(), /* is64bit */ true, IsR6(), GetAssembler());
|
|
}
|
|
|
|
// int java.lang.Integer.reverse(int)
|
|
void IntrinsicLocationsBuilderMIPS::VisitIntegerReverse(HInvoke* invoke) {
|
|
CreateIntToIntLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitIntegerReverse(HInvoke* invoke) {
|
|
GenReverse(invoke->GetLocations(),
|
|
Primitive::kPrimInt,
|
|
IsR2OrNewer(),
|
|
IsR6(),
|
|
/* reverseBits */ true,
|
|
GetAssembler());
|
|
}
|
|
|
|
// long java.lang.Long.reverse(long)
|
|
void IntrinsicLocationsBuilderMIPS::VisitLongReverse(HInvoke* invoke) {
|
|
CreateIntToIntLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitLongReverse(HInvoke* invoke) {
|
|
GenReverse(invoke->GetLocations(),
|
|
Primitive::kPrimLong,
|
|
IsR2OrNewer(),
|
|
IsR6(),
|
|
/* reverseBits */ true,
|
|
GetAssembler());
|
|
}
|
|
|
|
static void CreateFPToFPLocations(ArenaAllocator* arena, HInvoke* invoke) {
|
|
LocationSummary* locations = new (arena) LocationSummary(invoke,
|
|
LocationSummary::kNoCall,
|
|
kIntrinsified);
|
|
locations->SetInAt(0, Location::RequiresFpuRegister());
|
|
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
|
|
}
|
|
|
|
static void GenBitCount(LocationSummary* locations,
|
|
Primitive::Type type,
|
|
bool isR6,
|
|
MipsAssembler* assembler) {
|
|
Register out = locations->Out().AsRegister<Register>();
|
|
|
|
// https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel
|
|
//
|
|
// A generalization of the best bit counting method to integers of
|
|
// bit-widths up to 128 (parameterized by type T) is this:
|
|
//
|
|
// v = v - ((v >> 1) & (T)~(T)0/3); // temp
|
|
// v = (v & (T)~(T)0/15*3) + ((v >> 2) & (T)~(T)0/15*3); // temp
|
|
// v = (v + (v >> 4)) & (T)~(T)0/255*15; // temp
|
|
// c = (T)(v * ((T)~(T)0/255)) >> (sizeof(T) - 1) * BITS_PER_BYTE; // count
|
|
//
|
|
// For comparison, for 32-bit quantities, this algorithm can be executed
|
|
// using 20 MIPS instructions (the calls to LoadConst32() generate two
|
|
// machine instructions each for the values being used in this algorithm).
|
|
// A(n unrolled) loop-based algorithm required 25 instructions.
|
|
//
|
|
// For 64-bit quantities, this algorithm gets executed twice, (once
|
|
// for in_lo, and again for in_hi), but saves a few instructions
|
|
// because the mask values only have to be loaded once. Using this
|
|
// algorithm the count for a 64-bit operand can be performed in 29
|
|
// instructions compared to a loop-based algorithm which required 47
|
|
// instructions.
|
|
|
|
if (type == Primitive::kPrimInt) {
|
|
Register in = locations->InAt(0).AsRegister<Register>();
|
|
|
|
__ Srl(TMP, in, 1);
|
|
__ LoadConst32(AT, 0x55555555);
|
|
__ And(TMP, TMP, AT);
|
|
__ Subu(TMP, in, TMP);
|
|
__ LoadConst32(AT, 0x33333333);
|
|
__ And(out, TMP, AT);
|
|
__ Srl(TMP, TMP, 2);
|
|
__ And(TMP, TMP, AT);
|
|
__ Addu(TMP, out, TMP);
|
|
__ Srl(out, TMP, 4);
|
|
__ Addu(out, out, TMP);
|
|
__ LoadConst32(AT, 0x0F0F0F0F);
|
|
__ And(out, out, AT);
|
|
__ LoadConst32(TMP, 0x01010101);
|
|
if (isR6) {
|
|
__ MulR6(out, out, TMP);
|
|
} else {
|
|
__ MulR2(out, out, TMP);
|
|
}
|
|
__ Srl(out, out, 24);
|
|
} else {
|
|
DCHECK_EQ(type, Primitive::kPrimLong);
|
|
Register in_lo = locations->InAt(0).AsRegisterPairLow<Register>();
|
|
Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
|
|
Register tmp_hi = locations->GetTemp(0).AsRegister<Register>();
|
|
Register out_hi = locations->GetTemp(1).AsRegister<Register>();
|
|
Register tmp_lo = TMP;
|
|
Register out_lo = out;
|
|
|
|
__ Srl(tmp_lo, in_lo, 1);
|
|
__ Srl(tmp_hi, in_hi, 1);
|
|
|
|
__ LoadConst32(AT, 0x55555555);
|
|
|
|
__ And(tmp_lo, tmp_lo, AT);
|
|
__ Subu(tmp_lo, in_lo, tmp_lo);
|
|
|
|
__ And(tmp_hi, tmp_hi, AT);
|
|
__ Subu(tmp_hi, in_hi, tmp_hi);
|
|
|
|
__ LoadConst32(AT, 0x33333333);
|
|
|
|
__ And(out_lo, tmp_lo, AT);
|
|
__ Srl(tmp_lo, tmp_lo, 2);
|
|
__ And(tmp_lo, tmp_lo, AT);
|
|
__ Addu(tmp_lo, out_lo, tmp_lo);
|
|
|
|
__ And(out_hi, tmp_hi, AT);
|
|
__ Srl(tmp_hi, tmp_hi, 2);
|
|
__ And(tmp_hi, tmp_hi, AT);
|
|
__ Addu(tmp_hi, out_hi, tmp_hi);
|
|
|
|
// Here we deviate from the original algorithm a bit. We've reached
|
|
// the stage where the bitfields holding the subtotals are large
|
|
// enough to hold the combined subtotals for both the low word, and
|
|
// the high word. This means that we can add the subtotals for the
|
|
// the high, and low words into a single word, and compute the final
|
|
// result for both the high, and low words using fewer instructions.
|
|
__ LoadConst32(AT, 0x0F0F0F0F);
|
|
|
|
__ Addu(TMP, tmp_hi, tmp_lo);
|
|
|
|
__ Srl(out, TMP, 4);
|
|
__ And(out, out, AT);
|
|
__ And(TMP, TMP, AT);
|
|
__ Addu(out, out, TMP);
|
|
|
|
__ LoadConst32(AT, 0x01010101);
|
|
|
|
if (isR6) {
|
|
__ MulR6(out, out, AT);
|
|
} else {
|
|
__ MulR2(out, out, AT);
|
|
}
|
|
|
|
__ Srl(out, out, 24);
|
|
}
|
|
}
|
|
|
|
// int java.lang.Integer.bitCount(int)
|
|
void IntrinsicLocationsBuilderMIPS::VisitIntegerBitCount(HInvoke* invoke) {
|
|
CreateIntToIntLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitIntegerBitCount(HInvoke* invoke) {
|
|
GenBitCount(invoke->GetLocations(), Primitive::kPrimInt, IsR6(), GetAssembler());
|
|
}
|
|
|
|
// int java.lang.Long.bitCount(int)
|
|
void IntrinsicLocationsBuilderMIPS::VisitLongBitCount(HInvoke* invoke) {
|
|
LocationSummary* locations = new (arena_) LocationSummary(invoke,
|
|
LocationSummary::kNoCall,
|
|
kIntrinsified);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetOut(Location::RequiresRegister());
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitLongBitCount(HInvoke* invoke) {
|
|
GenBitCount(invoke->GetLocations(), Primitive::kPrimLong, IsR6(), GetAssembler());
|
|
}
|
|
|
|
static void MathAbsFP(LocationSummary* locations,
|
|
bool is64bit,
|
|
bool isR2OrNewer,
|
|
bool isR6,
|
|
MipsAssembler* assembler) {
|
|
FRegister in = locations->InAt(0).AsFpuRegister<FRegister>();
|
|
FRegister out = locations->Out().AsFpuRegister<FRegister>();
|
|
|
|
// Note, as a "quality of implementation", rather than pure "spec compliance", we require that
|
|
// Math.abs() clears the sign bit (but changes nothing else) for all numbers, including NaN
|
|
// (signaling NaN may become quiet though).
|
|
//
|
|
// The ABS.fmt instructions (abs.s and abs.d) do exactly that when NAN2008=1 (R6). For this case,
|
|
// both regular floating point numbers and NAN values are treated alike, only the sign bit is
|
|
// affected by this instruction.
|
|
// But when NAN2008=0 (R2 and before), the ABS.fmt instructions can't be used. For this case, any
|
|
// NaN operand signals invalid operation. This means that other bits (not just sign bit) might be
|
|
// changed when doing abs(NaN). Because of that, we clear sign bit in a different way.
|
|
if (isR6) {
|
|
if (is64bit) {
|
|
__ AbsD(out, in);
|
|
} else {
|
|
__ AbsS(out, in);
|
|
}
|
|
} else {
|
|
if (is64bit) {
|
|
if (in != out) {
|
|
__ MovD(out, in);
|
|
}
|
|
__ MoveFromFpuHigh(TMP, in);
|
|
// ins instruction is not available for R1.
|
|
if (isR2OrNewer) {
|
|
__ Ins(TMP, ZERO, 31, 1);
|
|
} else {
|
|
__ Sll(TMP, TMP, 1);
|
|
__ Srl(TMP, TMP, 1);
|
|
}
|
|
__ MoveToFpuHigh(TMP, out);
|
|
} else {
|
|
__ Mfc1(TMP, in);
|
|
// ins instruction is not available for R1.
|
|
if (isR2OrNewer) {
|
|
__ Ins(TMP, ZERO, 31, 1);
|
|
} else {
|
|
__ Sll(TMP, TMP, 1);
|
|
__ Srl(TMP, TMP, 1);
|
|
}
|
|
__ Mtc1(TMP, out);
|
|
}
|
|
}
|
|
}
|
|
|
|
// double java.lang.Math.abs(double)
|
|
void IntrinsicLocationsBuilderMIPS::VisitMathAbsDouble(HInvoke* invoke) {
|
|
CreateFPToFPLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitMathAbsDouble(HInvoke* invoke) {
|
|
MathAbsFP(invoke->GetLocations(), /* is64bit */ true, IsR2OrNewer(), IsR6(), GetAssembler());
|
|
}
|
|
|
|
// float java.lang.Math.abs(float)
|
|
void IntrinsicLocationsBuilderMIPS::VisitMathAbsFloat(HInvoke* invoke) {
|
|
CreateFPToFPLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitMathAbsFloat(HInvoke* invoke) {
|
|
MathAbsFP(invoke->GetLocations(), /* is64bit */ false, IsR2OrNewer(), IsR6(), GetAssembler());
|
|
}
|
|
|
|
static void GenAbsInteger(LocationSummary* locations, bool is64bit, MipsAssembler* assembler) {
|
|
if (is64bit) {
|
|
Register in_lo = locations->InAt(0).AsRegisterPairLow<Register>();
|
|
Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
|
|
Register out_lo = locations->Out().AsRegisterPairLow<Register>();
|
|
Register out_hi = locations->Out().AsRegisterPairHigh<Register>();
|
|
|
|
// The comments in this section show the analogous operations which would
|
|
// be performed if we had 64-bit registers "in", and "out".
|
|
// __ Dsra32(AT, in, 31);
|
|
__ Sra(AT, in_hi, 31);
|
|
// __ Xor(out, in, AT);
|
|
__ Xor(TMP, in_lo, AT);
|
|
__ Xor(out_hi, in_hi, AT);
|
|
// __ Dsubu(out, out, AT);
|
|
__ Subu(out_lo, TMP, AT);
|
|
__ Sltu(TMP, out_lo, TMP);
|
|
__ Addu(out_hi, out_hi, TMP);
|
|
} else {
|
|
Register in = locations->InAt(0).AsRegister<Register>();
|
|
Register out = locations->Out().AsRegister<Register>();
|
|
|
|
__ Sra(AT, in, 31);
|
|
__ Xor(out, in, AT);
|
|
__ Subu(out, out, AT);
|
|
}
|
|
}
|
|
|
|
// int java.lang.Math.abs(int)
|
|
void IntrinsicLocationsBuilderMIPS::VisitMathAbsInt(HInvoke* invoke) {
|
|
CreateIntToIntLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitMathAbsInt(HInvoke* invoke) {
|
|
GenAbsInteger(invoke->GetLocations(), /* is64bit */ false, GetAssembler());
|
|
}
|
|
|
|
// long java.lang.Math.abs(long)
|
|
void IntrinsicLocationsBuilderMIPS::VisitMathAbsLong(HInvoke* invoke) {
|
|
CreateIntToIntLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitMathAbsLong(HInvoke* invoke) {
|
|
GenAbsInteger(invoke->GetLocations(), /* is64bit */ true, GetAssembler());
|
|
}
|
|
|
|
static void GenMinMaxFP(LocationSummary* locations,
|
|
bool is_min,
|
|
Primitive::Type type,
|
|
bool is_R6,
|
|
MipsAssembler* assembler) {
|
|
FRegister out = locations->Out().AsFpuRegister<FRegister>();
|
|
FRegister a = locations->InAt(0).AsFpuRegister<FRegister>();
|
|
FRegister b = locations->InAt(1).AsFpuRegister<FRegister>();
|
|
|
|
if (is_R6) {
|
|
MipsLabel noNaNs;
|
|
MipsLabel done;
|
|
FRegister ftmp = ((out != a) && (out != b)) ? out : FTMP;
|
|
|
|
// When Java computes min/max it prefers a NaN to a number; the
|
|
// behavior of MIPSR6 is to prefer numbers to NaNs, i.e., if one of
|
|
// the inputs is a NaN and the other is a valid number, the MIPS
|
|
// instruction will return the number; Java wants the NaN value
|
|
// returned. This is why there is extra logic preceding the use of
|
|
// the MIPS min.fmt/max.fmt instructions. If either a, or b holds a
|
|
// NaN, return the NaN, otherwise return the min/max.
|
|
if (type == Primitive::kPrimDouble) {
|
|
__ CmpUnD(FTMP, a, b);
|
|
__ Bc1eqz(FTMP, &noNaNs);
|
|
|
|
// One of the inputs is a NaN
|
|
__ CmpEqD(ftmp, a, a);
|
|
// If a == a then b is the NaN, otherwise a is the NaN.
|
|
__ SelD(ftmp, a, b);
|
|
|
|
if (ftmp != out) {
|
|
__ MovD(out, ftmp);
|
|
}
|
|
|
|
__ B(&done);
|
|
|
|
__ Bind(&noNaNs);
|
|
|
|
if (is_min) {
|
|
__ MinD(out, a, b);
|
|
} else {
|
|
__ MaxD(out, a, b);
|
|
}
|
|
} else {
|
|
DCHECK_EQ(type, Primitive::kPrimFloat);
|
|
__ CmpUnS(FTMP, a, b);
|
|
__ Bc1eqz(FTMP, &noNaNs);
|
|
|
|
// One of the inputs is a NaN
|
|
__ CmpEqS(ftmp, a, a);
|
|
// If a == a then b is the NaN, otherwise a is the NaN.
|
|
__ SelS(ftmp, a, b);
|
|
|
|
if (ftmp != out) {
|
|
__ MovS(out, ftmp);
|
|
}
|
|
|
|
__ B(&done);
|
|
|
|
__ Bind(&noNaNs);
|
|
|
|
if (is_min) {
|
|
__ MinS(out, a, b);
|
|
} else {
|
|
__ MaxS(out, a, b);
|
|
}
|
|
}
|
|
|
|
__ Bind(&done);
|
|
} else {
|
|
MipsLabel ordered;
|
|
MipsLabel compare;
|
|
MipsLabel select;
|
|
MipsLabel done;
|
|
|
|
if (type == Primitive::kPrimDouble) {
|
|
__ CunD(a, b);
|
|
} else {
|
|
DCHECK_EQ(type, Primitive::kPrimFloat);
|
|
__ CunS(a, b);
|
|
}
|
|
__ Bc1f(&ordered);
|
|
|
|
// a or b (or both) is a NaN. Return one, which is a NaN.
|
|
if (type == Primitive::kPrimDouble) {
|
|
__ CeqD(b, b);
|
|
} else {
|
|
__ CeqS(b, b);
|
|
}
|
|
__ B(&select);
|
|
|
|
__ Bind(&ordered);
|
|
|
|
// Neither is a NaN.
|
|
// a == b? (-0.0 compares equal with +0.0)
|
|
// If equal, handle zeroes, else compare further.
|
|
if (type == Primitive::kPrimDouble) {
|
|
__ CeqD(a, b);
|
|
} else {
|
|
__ CeqS(a, b);
|
|
}
|
|
__ Bc1f(&compare);
|
|
|
|
// a == b either bit for bit or one is -0.0 and the other is +0.0.
|
|
if (type == Primitive::kPrimDouble) {
|
|
__ MoveFromFpuHigh(TMP, a);
|
|
__ MoveFromFpuHigh(AT, b);
|
|
} else {
|
|
__ Mfc1(TMP, a);
|
|
__ Mfc1(AT, b);
|
|
}
|
|
|
|
if (is_min) {
|
|
// -0.0 prevails over +0.0.
|
|
__ Or(TMP, TMP, AT);
|
|
} else {
|
|
// +0.0 prevails over -0.0.
|
|
__ And(TMP, TMP, AT);
|
|
}
|
|
|
|
if (type == Primitive::kPrimDouble) {
|
|
__ Mfc1(AT, a);
|
|
__ Mtc1(AT, out);
|
|
__ MoveToFpuHigh(TMP, out);
|
|
} else {
|
|
__ Mtc1(TMP, out);
|
|
}
|
|
__ B(&done);
|
|
|
|
__ Bind(&compare);
|
|
|
|
if (type == Primitive::kPrimDouble) {
|
|
if (is_min) {
|
|
// return (a <= b) ? a : b;
|
|
__ ColeD(a, b);
|
|
} else {
|
|
// return (a >= b) ? a : b;
|
|
__ ColeD(b, a); // b <= a
|
|
}
|
|
} else {
|
|
if (is_min) {
|
|
// return (a <= b) ? a : b;
|
|
__ ColeS(a, b);
|
|
} else {
|
|
// return (a >= b) ? a : b;
|
|
__ ColeS(b, a); // b <= a
|
|
}
|
|
}
|
|
|
|
__ Bind(&select);
|
|
|
|
if (type == Primitive::kPrimDouble) {
|
|
__ MovtD(out, a);
|
|
__ MovfD(out, b);
|
|
} else {
|
|
__ MovtS(out, a);
|
|
__ MovfS(out, b);
|
|
}
|
|
|
|
__ Bind(&done);
|
|
}
|
|
}
|
|
|
|
static void CreateFPFPToFPLocations(ArenaAllocator* arena, HInvoke* invoke) {
|
|
LocationSummary* locations = new (arena) LocationSummary(invoke,
|
|
LocationSummary::kNoCall,
|
|
kIntrinsified);
|
|
locations->SetInAt(0, Location::RequiresFpuRegister());
|
|
locations->SetInAt(1, Location::RequiresFpuRegister());
|
|
locations->SetOut(Location::RequiresFpuRegister(), Location::kOutputOverlap);
|
|
}
|
|
|
|
// double java.lang.Math.min(double, double)
|
|
void IntrinsicLocationsBuilderMIPS::VisitMathMinDoubleDouble(HInvoke* invoke) {
|
|
CreateFPFPToFPLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitMathMinDoubleDouble(HInvoke* invoke) {
|
|
GenMinMaxFP(invoke->GetLocations(),
|
|
/* is_min */ true,
|
|
Primitive::kPrimDouble,
|
|
IsR6(),
|
|
GetAssembler());
|
|
}
|
|
|
|
// float java.lang.Math.min(float, float)
|
|
void IntrinsicLocationsBuilderMIPS::VisitMathMinFloatFloat(HInvoke* invoke) {
|
|
CreateFPFPToFPLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitMathMinFloatFloat(HInvoke* invoke) {
|
|
GenMinMaxFP(invoke->GetLocations(),
|
|
/* is_min */ true,
|
|
Primitive::kPrimFloat,
|
|
IsR6(),
|
|
GetAssembler());
|
|
}
|
|
|
|
// double java.lang.Math.max(double, double)
|
|
void IntrinsicLocationsBuilderMIPS::VisitMathMaxDoubleDouble(HInvoke* invoke) {
|
|
CreateFPFPToFPLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitMathMaxDoubleDouble(HInvoke* invoke) {
|
|
GenMinMaxFP(invoke->GetLocations(),
|
|
/* is_min */ false,
|
|
Primitive::kPrimDouble,
|
|
IsR6(),
|
|
GetAssembler());
|
|
}
|
|
|
|
// float java.lang.Math.max(float, float)
|
|
void IntrinsicLocationsBuilderMIPS::VisitMathMaxFloatFloat(HInvoke* invoke) {
|
|
CreateFPFPToFPLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitMathMaxFloatFloat(HInvoke* invoke) {
|
|
GenMinMaxFP(invoke->GetLocations(),
|
|
/* is_min */ false,
|
|
Primitive::kPrimFloat,
|
|
IsR6(),
|
|
GetAssembler());
|
|
}
|
|
|
|
static void CreateIntIntToIntLocations(ArenaAllocator* arena, HInvoke* invoke) {
|
|
LocationSummary* locations = new (arena) LocationSummary(invoke,
|
|
LocationSummary::kNoCall,
|
|
kIntrinsified);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::RequiresRegister());
|
|
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
|
|
}
|
|
|
|
static void GenMinMax(LocationSummary* locations,
|
|
bool is_min,
|
|
Primitive::Type type,
|
|
bool is_R6,
|
|
MipsAssembler* assembler) {
|
|
if (is_R6) {
|
|
// Some architectures, such as ARM and MIPS (prior to r6), have a
|
|
// conditional move instruction which only changes the target
|
|
// (output) register if the condition is true (MIPS prior to r6 had
|
|
// MOVF, MOVT, MOVN, and MOVZ). The SELEQZ and SELNEZ instructions
|
|
// always change the target (output) register. If the condition is
|
|
// true the output register gets the contents of the "rs" register;
|
|
// otherwise, the output register is set to zero. One consequence
|
|
// of this is that to implement something like "rd = c==0 ? rs : rt"
|
|
// MIPS64r6 needs to use a pair of SELEQZ/SELNEZ instructions.
|
|
// After executing this pair of instructions one of the output
|
|
// registers from the pair will necessarily contain zero. Then the
|
|
// code ORs the output registers from the SELEQZ/SELNEZ instructions
|
|
// to get the final result.
|
|
//
|
|
// The initial test to see if the output register is same as the
|
|
// first input register is needed to make sure that value in the
|
|
// first input register isn't clobbered before we've finished
|
|
// computing the output value. The logic in the corresponding else
|
|
// clause performs the same task but makes sure the second input
|
|
// register isn't clobbered in the event that it's the same register
|
|
// as the output register; the else clause also handles the case
|
|
// where the output register is distinct from both the first, and the
|
|
// second input registers.
|
|
if (type == Primitive::kPrimLong) {
|
|
Register a_lo = locations->InAt(0).AsRegisterPairLow<Register>();
|
|
Register a_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
|
|
Register b_lo = locations->InAt(1).AsRegisterPairLow<Register>();
|
|
Register b_hi = locations->InAt(1).AsRegisterPairHigh<Register>();
|
|
Register out_lo = locations->Out().AsRegisterPairLow<Register>();
|
|
Register out_hi = locations->Out().AsRegisterPairHigh<Register>();
|
|
|
|
MipsLabel compare_done;
|
|
|
|
if (a_lo == b_lo) {
|
|
if (out_lo != a_lo) {
|
|
__ Move(out_lo, a_lo);
|
|
__ Move(out_hi, a_hi);
|
|
}
|
|
} else {
|
|
__ Slt(TMP, b_hi, a_hi);
|
|
__ Bne(b_hi, a_hi, &compare_done);
|
|
|
|
__ Sltu(TMP, b_lo, a_lo);
|
|
|
|
__ Bind(&compare_done);
|
|
|
|
if (is_min) {
|
|
__ Seleqz(AT, a_lo, TMP);
|
|
__ Selnez(out_lo, b_lo, TMP); // Safe even if out_lo == a_lo/b_lo
|
|
// because at this point we're
|
|
// done using a_lo/b_lo.
|
|
} else {
|
|
__ Selnez(AT, a_lo, TMP);
|
|
__ Seleqz(out_lo, b_lo, TMP); // ditto
|
|
}
|
|
__ Or(out_lo, out_lo, AT);
|
|
if (is_min) {
|
|
__ Seleqz(AT, a_hi, TMP);
|
|
__ Selnez(out_hi, b_hi, TMP); // ditto but for out_hi & a_hi/b_hi
|
|
} else {
|
|
__ Selnez(AT, a_hi, TMP);
|
|
__ Seleqz(out_hi, b_hi, TMP); // ditto but for out_hi & a_hi/b_hi
|
|
}
|
|
__ Or(out_hi, out_hi, AT);
|
|
}
|
|
} else {
|
|
DCHECK_EQ(type, Primitive::kPrimInt);
|
|
Register a = locations->InAt(0).AsRegister<Register>();
|
|
Register b = locations->InAt(1).AsRegister<Register>();
|
|
Register out = locations->Out().AsRegister<Register>();
|
|
|
|
if (a == b) {
|
|
if (out != a) {
|
|
__ Move(out, a);
|
|
}
|
|
} else {
|
|
__ Slt(AT, b, a);
|
|
if (is_min) {
|
|
__ Seleqz(TMP, a, AT);
|
|
__ Selnez(AT, b, AT);
|
|
} else {
|
|
__ Selnez(TMP, a, AT);
|
|
__ Seleqz(AT, b, AT);
|
|
}
|
|
__ Or(out, TMP, AT);
|
|
}
|
|
}
|
|
} else {
|
|
if (type == Primitive::kPrimLong) {
|
|
Register a_lo = locations->InAt(0).AsRegisterPairLow<Register>();
|
|
Register a_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
|
|
Register b_lo = locations->InAt(1).AsRegisterPairLow<Register>();
|
|
Register b_hi = locations->InAt(1).AsRegisterPairHigh<Register>();
|
|
Register out_lo = locations->Out().AsRegisterPairLow<Register>();
|
|
Register out_hi = locations->Out().AsRegisterPairHigh<Register>();
|
|
|
|
MipsLabel compare_done;
|
|
|
|
if (a_lo == b_lo) {
|
|
if (out_lo != a_lo) {
|
|
__ Move(out_lo, a_lo);
|
|
__ Move(out_hi, a_hi);
|
|
}
|
|
} else {
|
|
__ Slt(TMP, a_hi, b_hi);
|
|
__ Bne(a_hi, b_hi, &compare_done);
|
|
|
|
__ Sltu(TMP, a_lo, b_lo);
|
|
|
|
__ Bind(&compare_done);
|
|
|
|
if (is_min) {
|
|
if (out_lo != a_lo) {
|
|
__ Movn(out_hi, a_hi, TMP);
|
|
__ Movn(out_lo, a_lo, TMP);
|
|
}
|
|
if (out_lo != b_lo) {
|
|
__ Movz(out_hi, b_hi, TMP);
|
|
__ Movz(out_lo, b_lo, TMP);
|
|
}
|
|
} else {
|
|
if (out_lo != a_lo) {
|
|
__ Movz(out_hi, a_hi, TMP);
|
|
__ Movz(out_lo, a_lo, TMP);
|
|
}
|
|
if (out_lo != b_lo) {
|
|
__ Movn(out_hi, b_hi, TMP);
|
|
__ Movn(out_lo, b_lo, TMP);
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
DCHECK_EQ(type, Primitive::kPrimInt);
|
|
Register a = locations->InAt(0).AsRegister<Register>();
|
|
Register b = locations->InAt(1).AsRegister<Register>();
|
|
Register out = locations->Out().AsRegister<Register>();
|
|
|
|
if (a == b) {
|
|
if (out != a) {
|
|
__ Move(out, a);
|
|
}
|
|
} else {
|
|
__ Slt(AT, a, b);
|
|
if (is_min) {
|
|
if (out != a) {
|
|
__ Movn(out, a, AT);
|
|
}
|
|
if (out != b) {
|
|
__ Movz(out, b, AT);
|
|
}
|
|
} else {
|
|
if (out != a) {
|
|
__ Movz(out, a, AT);
|
|
}
|
|
if (out != b) {
|
|
__ Movn(out, b, AT);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// int java.lang.Math.min(int, int)
|
|
void IntrinsicLocationsBuilderMIPS::VisitMathMinIntInt(HInvoke* invoke) {
|
|
CreateIntIntToIntLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitMathMinIntInt(HInvoke* invoke) {
|
|
GenMinMax(invoke->GetLocations(),
|
|
/* is_min */ true,
|
|
Primitive::kPrimInt,
|
|
IsR6(),
|
|
GetAssembler());
|
|
}
|
|
|
|
// long java.lang.Math.min(long, long)
|
|
void IntrinsicLocationsBuilderMIPS::VisitMathMinLongLong(HInvoke* invoke) {
|
|
CreateIntIntToIntLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitMathMinLongLong(HInvoke* invoke) {
|
|
GenMinMax(invoke->GetLocations(),
|
|
/* is_min */ true,
|
|
Primitive::kPrimLong,
|
|
IsR6(),
|
|
GetAssembler());
|
|
}
|
|
|
|
// int java.lang.Math.max(int, int)
|
|
void IntrinsicLocationsBuilderMIPS::VisitMathMaxIntInt(HInvoke* invoke) {
|
|
CreateIntIntToIntLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitMathMaxIntInt(HInvoke* invoke) {
|
|
GenMinMax(invoke->GetLocations(),
|
|
/* is_min */ false,
|
|
Primitive::kPrimInt,
|
|
IsR6(),
|
|
GetAssembler());
|
|
}
|
|
|
|
// long java.lang.Math.max(long, long)
|
|
void IntrinsicLocationsBuilderMIPS::VisitMathMaxLongLong(HInvoke* invoke) {
|
|
CreateIntIntToIntLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitMathMaxLongLong(HInvoke* invoke) {
|
|
GenMinMax(invoke->GetLocations(),
|
|
/* is_min */ false,
|
|
Primitive::kPrimLong,
|
|
IsR6(),
|
|
GetAssembler());
|
|
}
|
|
|
|
// double java.lang.Math.sqrt(double)
|
|
void IntrinsicLocationsBuilderMIPS::VisitMathSqrt(HInvoke* invoke) {
|
|
CreateFPToFPLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitMathSqrt(HInvoke* invoke) {
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
MipsAssembler* assembler = GetAssembler();
|
|
FRegister in = locations->InAt(0).AsFpuRegister<FRegister>();
|
|
FRegister out = locations->Out().AsFpuRegister<FRegister>();
|
|
|
|
__ SqrtD(out, in);
|
|
}
|
|
|
|
// byte libcore.io.Memory.peekByte(long address)
|
|
void IntrinsicLocationsBuilderMIPS::VisitMemoryPeekByte(HInvoke* invoke) {
|
|
CreateIntToIntLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitMemoryPeekByte(HInvoke* invoke) {
|
|
MipsAssembler* assembler = GetAssembler();
|
|
Register adr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>();
|
|
Register out = invoke->GetLocations()->Out().AsRegister<Register>();
|
|
|
|
__ Lb(out, adr, 0);
|
|
}
|
|
|
|
// short libcore.io.Memory.peekShort(long address)
|
|
void IntrinsicLocationsBuilderMIPS::VisitMemoryPeekShortNative(HInvoke* invoke) {
|
|
CreateIntToIntLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitMemoryPeekShortNative(HInvoke* invoke) {
|
|
MipsAssembler* assembler = GetAssembler();
|
|
Register adr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>();
|
|
Register out = invoke->GetLocations()->Out().AsRegister<Register>();
|
|
|
|
if (IsR6()) {
|
|
__ Lh(out, adr, 0);
|
|
} else if (IsR2OrNewer()) {
|
|
// Unlike for words, there are no lhl/lhr instructions to load
|
|
// unaligned halfwords so the code loads individual bytes, in case
|
|
// the address isn't halfword-aligned, and assembles them into a
|
|
// signed halfword.
|
|
__ Lb(AT, adr, 1); // This byte must be sign-extended.
|
|
__ Lb(out, adr, 0); // This byte can be either sign-extended, or
|
|
// zero-extended because the following
|
|
// instruction overwrites the sign bits.
|
|
__ Ins(out, AT, 8, 24);
|
|
} else {
|
|
__ Lbu(AT, adr, 0); // This byte must be zero-extended. If it's not
|
|
// the "or" instruction below will destroy the upper
|
|
// 24 bits of the final result.
|
|
__ Lb(out, adr, 1); // This byte must be sign-extended.
|
|
__ Sll(out, out, 8);
|
|
__ Or(out, out, AT);
|
|
}
|
|
}
|
|
|
|
// int libcore.io.Memory.peekInt(long address)
|
|
void IntrinsicLocationsBuilderMIPS::VisitMemoryPeekIntNative(HInvoke* invoke) {
|
|
CreateIntToIntLocations(arena_, invoke, Location::kOutputOverlap);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitMemoryPeekIntNative(HInvoke* invoke) {
|
|
MipsAssembler* assembler = GetAssembler();
|
|
Register adr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>();
|
|
Register out = invoke->GetLocations()->Out().AsRegister<Register>();
|
|
|
|
if (IsR6()) {
|
|
__ Lw(out, adr, 0);
|
|
} else {
|
|
__ Lwr(out, adr, 0);
|
|
__ Lwl(out, adr, 3);
|
|
}
|
|
}
|
|
|
|
// long libcore.io.Memory.peekLong(long address)
|
|
void IntrinsicLocationsBuilderMIPS::VisitMemoryPeekLongNative(HInvoke* invoke) {
|
|
CreateIntToIntLocations(arena_, invoke, Location::kOutputOverlap);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitMemoryPeekLongNative(HInvoke* invoke) {
|
|
MipsAssembler* assembler = GetAssembler();
|
|
Register adr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>();
|
|
Register out_lo = invoke->GetLocations()->Out().AsRegisterPairLow<Register>();
|
|
Register out_hi = invoke->GetLocations()->Out().AsRegisterPairHigh<Register>();
|
|
|
|
if (IsR6()) {
|
|
__ Lw(out_lo, adr, 0);
|
|
__ Lw(out_hi, adr, 4);
|
|
} else {
|
|
__ Lwr(out_lo, adr, 0);
|
|
__ Lwl(out_lo, adr, 3);
|
|
__ Lwr(out_hi, adr, 4);
|
|
__ Lwl(out_hi, adr, 7);
|
|
}
|
|
}
|
|
|
|
static void CreateIntIntToVoidLocations(ArenaAllocator* arena, HInvoke* invoke) {
|
|
LocationSummary* locations = new (arena) LocationSummary(invoke,
|
|
LocationSummary::kNoCall,
|
|
kIntrinsified);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::RequiresRegister());
|
|
}
|
|
|
|
// void libcore.io.Memory.pokeByte(long address, byte value)
|
|
void IntrinsicLocationsBuilderMIPS::VisitMemoryPokeByte(HInvoke* invoke) {
|
|
CreateIntIntToVoidLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitMemoryPokeByte(HInvoke* invoke) {
|
|
MipsAssembler* assembler = GetAssembler();
|
|
Register adr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>();
|
|
Register val = invoke->GetLocations()->InAt(1).AsRegister<Register>();
|
|
|
|
__ Sb(val, adr, 0);
|
|
}
|
|
|
|
// void libcore.io.Memory.pokeShort(long address, short value)
|
|
void IntrinsicLocationsBuilderMIPS::VisitMemoryPokeShortNative(HInvoke* invoke) {
|
|
CreateIntIntToVoidLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitMemoryPokeShortNative(HInvoke* invoke) {
|
|
MipsAssembler* assembler = GetAssembler();
|
|
Register adr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>();
|
|
Register val = invoke->GetLocations()->InAt(1).AsRegister<Register>();
|
|
|
|
if (IsR6()) {
|
|
__ Sh(val, adr, 0);
|
|
} else {
|
|
// Unlike for words, there are no shl/shr instructions to store
|
|
// unaligned halfwords so the code stores individual bytes, in case
|
|
// the address isn't halfword-aligned.
|
|
__ Sb(val, adr, 0);
|
|
__ Srl(AT, val, 8);
|
|
__ Sb(AT, adr, 1);
|
|
}
|
|
}
|
|
|
|
// void libcore.io.Memory.pokeInt(long address, int value)
|
|
void IntrinsicLocationsBuilderMIPS::VisitMemoryPokeIntNative(HInvoke* invoke) {
|
|
CreateIntIntToVoidLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitMemoryPokeIntNative(HInvoke* invoke) {
|
|
MipsAssembler* assembler = GetAssembler();
|
|
Register adr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>();
|
|
Register val = invoke->GetLocations()->InAt(1).AsRegister<Register>();
|
|
|
|
if (IsR6()) {
|
|
__ Sw(val, adr, 0);
|
|
} else {
|
|
__ Swr(val, adr, 0);
|
|
__ Swl(val, adr, 3);
|
|
}
|
|
}
|
|
|
|
// void libcore.io.Memory.pokeLong(long address, long value)
|
|
void IntrinsicLocationsBuilderMIPS::VisitMemoryPokeLongNative(HInvoke* invoke) {
|
|
CreateIntIntToVoidLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitMemoryPokeLongNative(HInvoke* invoke) {
|
|
MipsAssembler* assembler = GetAssembler();
|
|
Register adr = invoke->GetLocations()->InAt(0).AsRegisterPairLow<Register>();
|
|
Register val_lo = invoke->GetLocations()->InAt(1).AsRegisterPairLow<Register>();
|
|
Register val_hi = invoke->GetLocations()->InAt(1).AsRegisterPairHigh<Register>();
|
|
|
|
if (IsR6()) {
|
|
__ Sw(val_lo, adr, 0);
|
|
__ Sw(val_hi, adr, 4);
|
|
} else {
|
|
__ Swr(val_lo, adr, 0);
|
|
__ Swl(val_lo, adr, 3);
|
|
__ Swr(val_hi, adr, 4);
|
|
__ Swl(val_hi, adr, 7);
|
|
}
|
|
}
|
|
|
|
// Thread java.lang.Thread.currentThread()
|
|
void IntrinsicLocationsBuilderMIPS::VisitThreadCurrentThread(HInvoke* invoke) {
|
|
LocationSummary* locations = new (arena_) LocationSummary(invoke,
|
|
LocationSummary::kNoCall,
|
|
kIntrinsified);
|
|
locations->SetOut(Location::RequiresRegister());
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitThreadCurrentThread(HInvoke* invoke) {
|
|
MipsAssembler* assembler = GetAssembler();
|
|
Register out = invoke->GetLocations()->Out().AsRegister<Register>();
|
|
|
|
__ LoadFromOffset(kLoadWord,
|
|
out,
|
|
TR,
|
|
Thread::PeerOffset<kMipsPointerSize>().Int32Value());
|
|
}
|
|
|
|
static void CreateIntIntIntToIntLocations(ArenaAllocator* arena,
|
|
HInvoke* invoke,
|
|
Primitive::Type type) {
|
|
bool can_call = kEmitCompilerReadBarrier &&
|
|
(invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObject ||
|
|
invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile);
|
|
LocationSummary* locations = new (arena) LocationSummary(invoke,
|
|
(can_call
|
|
? LocationSummary::kCallOnSlowPath
|
|
: LocationSummary::kNoCall),
|
|
kIntrinsified);
|
|
if (can_call && kUseBakerReadBarrier) {
|
|
locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
|
|
}
|
|
locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
|
|
locations->SetInAt(1, Location::RequiresRegister());
|
|
locations->SetInAt(2, Location::RequiresRegister());
|
|
locations->SetOut(Location::RequiresRegister(),
|
|
(can_call ? Location::kOutputOverlap : Location::kNoOutputOverlap));
|
|
if (type == Primitive::kPrimNot && kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
|
|
// We need a temporary register for the read barrier marking slow
|
|
// path in InstructionCodeGeneratorMIPS::GenerateReferenceLoadWithBakerReadBarrier.
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
}
|
|
}
|
|
|
|
// Note that the caller must supply a properly aligned memory address.
|
|
// If they do not, the behavior is undefined (atomicity not guaranteed, exception may occur).
|
|
static void GenUnsafeGet(HInvoke* invoke,
|
|
Primitive::Type type,
|
|
bool is_volatile,
|
|
bool is_R6,
|
|
CodeGeneratorMIPS* codegen) {
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
DCHECK((type == Primitive::kPrimInt) ||
|
|
(type == Primitive::kPrimLong) ||
|
|
(type == Primitive::kPrimNot)) << type;
|
|
MipsAssembler* assembler = codegen->GetAssembler();
|
|
// Target register.
|
|
Location trg_loc = locations->Out();
|
|
// Object pointer.
|
|
Location base_loc = locations->InAt(1);
|
|
Register base = base_loc.AsRegister<Register>();
|
|
// The "offset" argument is passed as a "long". Since this code is for
|
|
// a 32-bit processor, we can only use 32-bit addresses, so we only
|
|
// need the low 32-bits of offset.
|
|
Location offset_loc = locations->InAt(2);
|
|
Register offset_lo = offset_loc.AsRegisterPairLow<Register>();
|
|
|
|
if (!(kEmitCompilerReadBarrier && kUseBakerReadBarrier && (type == Primitive::kPrimNot))) {
|
|
__ Addu(TMP, base, offset_lo);
|
|
}
|
|
|
|
switch (type) {
|
|
case Primitive::kPrimLong: {
|
|
Register trg_lo = trg_loc.AsRegisterPairLow<Register>();
|
|
Register trg_hi = trg_loc.AsRegisterPairHigh<Register>();
|
|
CHECK(!is_volatile); // TODO: support atomic 8-byte volatile loads.
|
|
if (is_R6) {
|
|
__ Lw(trg_lo, TMP, 0);
|
|
__ Lw(trg_hi, TMP, 4);
|
|
} else {
|
|
__ Lwr(trg_lo, TMP, 0);
|
|
__ Lwl(trg_lo, TMP, 3);
|
|
__ Lwr(trg_hi, TMP, 4);
|
|
__ Lwl(trg_hi, TMP, 7);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimInt: {
|
|
Register trg = trg_loc.AsRegister<Register>();
|
|
if (is_R6) {
|
|
__ Lw(trg, TMP, 0);
|
|
} else {
|
|
__ Lwr(trg, TMP, 0);
|
|
__ Lwl(trg, TMP, 3);
|
|
}
|
|
if (is_volatile) {
|
|
__ Sync(0);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimNot: {
|
|
Register trg = trg_loc.AsRegister<Register>();
|
|
if (kEmitCompilerReadBarrier) {
|
|
if (kUseBakerReadBarrier) {
|
|
Location temp = locations->GetTemp(0);
|
|
codegen->GenerateReferenceLoadWithBakerReadBarrier(invoke,
|
|
trg_loc,
|
|
base,
|
|
/* offset */ 0U,
|
|
/* index */ offset_loc,
|
|
TIMES_1,
|
|
temp,
|
|
/* needs_null_check */ false);
|
|
if (is_volatile) {
|
|
__ Sync(0);
|
|
}
|
|
} else {
|
|
if (is_R6) {
|
|
__ Lw(trg, TMP, 0);
|
|
} else {
|
|
__ Lwr(trg, TMP, 0);
|
|
__ Lwl(trg, TMP, 3);
|
|
}
|
|
if (is_volatile) {
|
|
__ Sync(0);
|
|
}
|
|
codegen->GenerateReadBarrierSlow(invoke,
|
|
trg_loc,
|
|
trg_loc,
|
|
base_loc,
|
|
/* offset */ 0U,
|
|
/* index */ offset_loc);
|
|
}
|
|
} else {
|
|
if (is_R6) {
|
|
__ Lw(trg, TMP, 0);
|
|
} else {
|
|
__ Lwr(trg, TMP, 0);
|
|
__ Lwl(trg, TMP, 3);
|
|
}
|
|
if (is_volatile) {
|
|
__ Sync(0);
|
|
}
|
|
__ MaybeUnpoisonHeapReference(trg);
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
LOG(FATAL) << "Unexpected type " << type;
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
// int sun.misc.Unsafe.getInt(Object o, long offset)
|
|
void IntrinsicLocationsBuilderMIPS::VisitUnsafeGet(HInvoke* invoke) {
|
|
CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimInt);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitUnsafeGet(HInvoke* invoke) {
|
|
GenUnsafeGet(invoke, Primitive::kPrimInt, /* is_volatile */ false, IsR6(), codegen_);
|
|
}
|
|
|
|
// int sun.misc.Unsafe.getIntVolatile(Object o, long offset)
|
|
void IntrinsicLocationsBuilderMIPS::VisitUnsafeGetVolatile(HInvoke* invoke) {
|
|
CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimInt);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitUnsafeGetVolatile(HInvoke* invoke) {
|
|
GenUnsafeGet(invoke, Primitive::kPrimInt, /* is_volatile */ true, IsR6(), codegen_);
|
|
}
|
|
|
|
// long sun.misc.Unsafe.getLong(Object o, long offset)
|
|
void IntrinsicLocationsBuilderMIPS::VisitUnsafeGetLong(HInvoke* invoke) {
|
|
CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimLong);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitUnsafeGetLong(HInvoke* invoke) {
|
|
GenUnsafeGet(invoke, Primitive::kPrimLong, /* is_volatile */ false, IsR6(), codegen_);
|
|
}
|
|
|
|
// Object sun.misc.Unsafe.getObject(Object o, long offset)
|
|
void IntrinsicLocationsBuilderMIPS::VisitUnsafeGetObject(HInvoke* invoke) {
|
|
CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimNot);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitUnsafeGetObject(HInvoke* invoke) {
|
|
GenUnsafeGet(invoke, Primitive::kPrimNot, /* is_volatile */ false, IsR6(), codegen_);
|
|
}
|
|
|
|
// Object sun.misc.Unsafe.getObjectVolatile(Object o, long offset)
|
|
void IntrinsicLocationsBuilderMIPS::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
|
|
CreateIntIntIntToIntLocations(arena_, invoke, Primitive::kPrimNot);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
|
|
GenUnsafeGet(invoke, Primitive::kPrimNot, /* is_volatile */ true, IsR6(), codegen_);
|
|
}
|
|
|
|
static void CreateIntIntIntIntToVoidLocations(ArenaAllocator* arena, HInvoke* invoke) {
|
|
LocationSummary* locations = new (arena) LocationSummary(invoke,
|
|
LocationSummary::kNoCall,
|
|
kIntrinsified);
|
|
locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
|
|
locations->SetInAt(1, Location::RequiresRegister());
|
|
locations->SetInAt(2, Location::RequiresRegister());
|
|
locations->SetInAt(3, Location::RequiresRegister());
|
|
}
|
|
|
|
// Note that the caller must supply a properly aligned memory address.
|
|
// If they do not, the behavior is undefined (atomicity not guaranteed, exception may occur).
|
|
static void GenUnsafePut(LocationSummary* locations,
|
|
Primitive::Type type,
|
|
bool is_volatile,
|
|
bool is_ordered,
|
|
bool is_R6,
|
|
CodeGeneratorMIPS* codegen) {
|
|
DCHECK((type == Primitive::kPrimInt) ||
|
|
(type == Primitive::kPrimLong) ||
|
|
(type == Primitive::kPrimNot)) << type;
|
|
MipsAssembler* assembler = codegen->GetAssembler();
|
|
// Object pointer.
|
|
Register base = locations->InAt(1).AsRegister<Register>();
|
|
// The "offset" argument is passed as a "long", i.e., it's 64-bits in
|
|
// size. Since this code is for a 32-bit processor, we can only use
|
|
// 32-bit addresses, so we only need the low 32-bits of offset.
|
|
Register offset_lo = locations->InAt(2).AsRegisterPairLow<Register>();
|
|
|
|
__ Addu(TMP, base, offset_lo);
|
|
if (is_volatile || is_ordered) {
|
|
__ Sync(0);
|
|
}
|
|
if ((type == Primitive::kPrimInt) || (type == Primitive::kPrimNot)) {
|
|
Register value = locations->InAt(3).AsRegister<Register>();
|
|
|
|
if (kPoisonHeapReferences && type == Primitive::kPrimNot) {
|
|
__ PoisonHeapReference(AT, value);
|
|
value = AT;
|
|
}
|
|
|
|
if (is_R6) {
|
|
__ Sw(value, TMP, 0);
|
|
} else {
|
|
__ Swr(value, TMP, 0);
|
|
__ Swl(value, TMP, 3);
|
|
}
|
|
} else {
|
|
Register value_lo = locations->InAt(3).AsRegisterPairLow<Register>();
|
|
Register value_hi = locations->InAt(3).AsRegisterPairHigh<Register>();
|
|
CHECK(!is_volatile); // TODO: support atomic 8-byte volatile stores.
|
|
if (is_R6) {
|
|
__ Sw(value_lo, TMP, 0);
|
|
__ Sw(value_hi, TMP, 4);
|
|
} else {
|
|
__ Swr(value_lo, TMP, 0);
|
|
__ Swl(value_lo, TMP, 3);
|
|
__ Swr(value_hi, TMP, 4);
|
|
__ Swl(value_hi, TMP, 7);
|
|
}
|
|
}
|
|
|
|
if (is_volatile) {
|
|
__ Sync(0);
|
|
}
|
|
|
|
if (type == Primitive::kPrimNot) {
|
|
bool value_can_be_null = true; // TODO: Worth finding out this information?
|
|
codegen->MarkGCCard(base, locations->InAt(3).AsRegister<Register>(), value_can_be_null);
|
|
}
|
|
}
|
|
|
|
// void sun.misc.Unsafe.putInt(Object o, long offset, int x)
|
|
void IntrinsicLocationsBuilderMIPS::VisitUnsafePut(HInvoke* invoke) {
|
|
CreateIntIntIntIntToVoidLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitUnsafePut(HInvoke* invoke) {
|
|
GenUnsafePut(invoke->GetLocations(),
|
|
Primitive::kPrimInt,
|
|
/* is_volatile */ false,
|
|
/* is_ordered */ false,
|
|
IsR6(),
|
|
codegen_);
|
|
}
|
|
|
|
// void sun.misc.Unsafe.putOrderedInt(Object o, long offset, int x)
|
|
void IntrinsicLocationsBuilderMIPS::VisitUnsafePutOrdered(HInvoke* invoke) {
|
|
CreateIntIntIntIntToVoidLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitUnsafePutOrdered(HInvoke* invoke) {
|
|
GenUnsafePut(invoke->GetLocations(),
|
|
Primitive::kPrimInt,
|
|
/* is_volatile */ false,
|
|
/* is_ordered */ true,
|
|
IsR6(),
|
|
codegen_);
|
|
}
|
|
|
|
// void sun.misc.Unsafe.putIntVolatile(Object o, long offset, int x)
|
|
void IntrinsicLocationsBuilderMIPS::VisitUnsafePutVolatile(HInvoke* invoke) {
|
|
CreateIntIntIntIntToVoidLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitUnsafePutVolatile(HInvoke* invoke) {
|
|
GenUnsafePut(invoke->GetLocations(),
|
|
Primitive::kPrimInt,
|
|
/* is_volatile */ true,
|
|
/* is_ordered */ false,
|
|
IsR6(),
|
|
codegen_);
|
|
}
|
|
|
|
// void sun.misc.Unsafe.putObject(Object o, long offset, Object x)
|
|
void IntrinsicLocationsBuilderMIPS::VisitUnsafePutObject(HInvoke* invoke) {
|
|
CreateIntIntIntIntToVoidLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitUnsafePutObject(HInvoke* invoke) {
|
|
GenUnsafePut(invoke->GetLocations(),
|
|
Primitive::kPrimNot,
|
|
/* is_volatile */ false,
|
|
/* is_ordered */ false,
|
|
IsR6(),
|
|
codegen_);
|
|
}
|
|
|
|
// void sun.misc.Unsafe.putOrderedObject(Object o, long offset, Object x)
|
|
void IntrinsicLocationsBuilderMIPS::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
|
|
CreateIntIntIntIntToVoidLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
|
|
GenUnsafePut(invoke->GetLocations(),
|
|
Primitive::kPrimNot,
|
|
/* is_volatile */ false,
|
|
/* is_ordered */ true,
|
|
IsR6(),
|
|
codegen_);
|
|
}
|
|
|
|
// void sun.misc.Unsafe.putObjectVolatile(Object o, long offset, Object x)
|
|
void IntrinsicLocationsBuilderMIPS::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
|
|
CreateIntIntIntIntToVoidLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
|
|
GenUnsafePut(invoke->GetLocations(),
|
|
Primitive::kPrimNot,
|
|
/* is_volatile */ true,
|
|
/* is_ordered */ false,
|
|
IsR6(),
|
|
codegen_);
|
|
}
|
|
|
|
// void sun.misc.Unsafe.putLong(Object o, long offset, long x)
|
|
void IntrinsicLocationsBuilderMIPS::VisitUnsafePutLong(HInvoke* invoke) {
|
|
CreateIntIntIntIntToVoidLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitUnsafePutLong(HInvoke* invoke) {
|
|
GenUnsafePut(invoke->GetLocations(),
|
|
Primitive::kPrimLong,
|
|
/* is_volatile */ false,
|
|
/* is_ordered */ false,
|
|
IsR6(),
|
|
codegen_);
|
|
}
|
|
|
|
// void sun.misc.Unsafe.putOrderedLong(Object o, long offset, long x)
|
|
void IntrinsicLocationsBuilderMIPS::VisitUnsafePutLongOrdered(HInvoke* invoke) {
|
|
CreateIntIntIntIntToVoidLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitUnsafePutLongOrdered(HInvoke* invoke) {
|
|
GenUnsafePut(invoke->GetLocations(),
|
|
Primitive::kPrimLong,
|
|
/* is_volatile */ false,
|
|
/* is_ordered */ true,
|
|
IsR6(),
|
|
codegen_);
|
|
}
|
|
|
|
static void CreateIntIntIntIntIntToIntPlusTemps(ArenaAllocator* arena, HInvoke* invoke) {
|
|
bool can_call = kEmitCompilerReadBarrier &&
|
|
kUseBakerReadBarrier &&
|
|
(invoke->GetIntrinsic() == Intrinsics::kUnsafeCASObject);
|
|
LocationSummary* locations = new (arena) LocationSummary(invoke,
|
|
(can_call
|
|
? LocationSummary::kCallOnSlowPath
|
|
: LocationSummary::kNoCall),
|
|
kIntrinsified);
|
|
locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
|
|
locations->SetInAt(1, Location::RequiresRegister());
|
|
locations->SetInAt(2, Location::RequiresRegister());
|
|
locations->SetInAt(3, Location::RequiresRegister());
|
|
locations->SetInAt(4, Location::RequiresRegister());
|
|
locations->SetOut(Location::RequiresRegister());
|
|
|
|
// Temporary register used in CAS by (Baker) read barrier.
|
|
if (can_call) {
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
}
|
|
}
|
|
|
|
// Note that the caller must supply a properly aligned memory address.
|
|
// If they do not, the behavior is undefined (atomicity not guaranteed, exception may occur).
|
|
static void GenCas(HInvoke* invoke, Primitive::Type type, CodeGeneratorMIPS* codegen) {
|
|
MipsAssembler* assembler = codegen->GetAssembler();
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
bool isR6 = codegen->GetInstructionSetFeatures().IsR6();
|
|
Register base = locations->InAt(1).AsRegister<Register>();
|
|
Location offset_loc = locations->InAt(2);
|
|
Register offset_lo = offset_loc.AsRegisterPairLow<Register>();
|
|
Register expected = locations->InAt(3).AsRegister<Register>();
|
|
Register value = locations->InAt(4).AsRegister<Register>();
|
|
Location out_loc = locations->Out();
|
|
Register out = out_loc.AsRegister<Register>();
|
|
|
|
DCHECK_NE(base, out);
|
|
DCHECK_NE(offset_lo, out);
|
|
DCHECK_NE(expected, out);
|
|
|
|
if (type == Primitive::kPrimNot) {
|
|
// The only read barrier implementation supporting the
|
|
// UnsafeCASObject intrinsic is the Baker-style read barriers.
|
|
DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier);
|
|
|
|
// Mark card for object assuming new value is stored. Worst case we will mark an unchanged
|
|
// object and scan the receiver at the next GC for nothing.
|
|
bool value_can_be_null = true; // TODO: Worth finding out this information?
|
|
codegen->MarkGCCard(base, value, value_can_be_null);
|
|
|
|
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
|
|
Location temp = locations->GetTemp(0);
|
|
// Need to make sure the reference stored in the field is a to-space
|
|
// one before attempting the CAS or the CAS could fail incorrectly.
|
|
codegen->GenerateReferenceLoadWithBakerReadBarrier(
|
|
invoke,
|
|
out_loc, // Unused, used only as a "temporary" within the read barrier.
|
|
base,
|
|
/* offset */ 0u,
|
|
/* index */ offset_loc,
|
|
ScaleFactor::TIMES_1,
|
|
temp,
|
|
/* needs_null_check */ false,
|
|
/* always_update_field */ true);
|
|
}
|
|
}
|
|
|
|
MipsLabel loop_head, exit_loop;
|
|
__ Addu(TMP, base, offset_lo);
|
|
|
|
if (kPoisonHeapReferences && type == Primitive::kPrimNot) {
|
|
__ PoisonHeapReference(expected);
|
|
// Do not poison `value`, if it is the same register as
|
|
// `expected`, which has just been poisoned.
|
|
if (value != expected) {
|
|
__ PoisonHeapReference(value);
|
|
}
|
|
}
|
|
|
|
// do {
|
|
// tmp_value = [tmp_ptr] - expected;
|
|
// } while (tmp_value == 0 && failure([tmp_ptr] <- r_new_value));
|
|
// result = tmp_value != 0;
|
|
|
|
__ Sync(0);
|
|
__ Bind(&loop_head);
|
|
if ((type == Primitive::kPrimInt) || (type == Primitive::kPrimNot)) {
|
|
if (isR6) {
|
|
__ LlR6(out, TMP);
|
|
} else {
|
|
__ LlR2(out, TMP);
|
|
}
|
|
} else {
|
|
LOG(FATAL) << "Unsupported op size " << type;
|
|
UNREACHABLE();
|
|
}
|
|
__ Subu(out, out, expected); // If we didn't get the 'expected'
|
|
__ Sltiu(out, out, 1); // value, set 'out' to false, and
|
|
__ Beqz(out, &exit_loop); // return.
|
|
__ Move(out, value); // Use 'out' for the 'store conditional' instruction.
|
|
// If we use 'value' directly, we would lose 'value'
|
|
// in the case that the store fails. Whether the
|
|
// store succeeds, or fails, it will load the
|
|
// correct Boolean value into the 'out' register.
|
|
// This test isn't really necessary. We only support Primitive::kPrimInt,
|
|
// Primitive::kPrimNot, and we already verified that we're working on one
|
|
// of those two types. It's left here in case the code needs to support
|
|
// other types in the future.
|
|
if ((type == Primitive::kPrimInt) || (type == Primitive::kPrimNot)) {
|
|
if (isR6) {
|
|
__ ScR6(out, TMP);
|
|
} else {
|
|
__ ScR2(out, TMP);
|
|
}
|
|
}
|
|
__ Beqz(out, &loop_head); // If we couldn't do the read-modify-write
|
|
// cycle atomically then retry.
|
|
__ Bind(&exit_loop);
|
|
__ Sync(0);
|
|
|
|
if (kPoisonHeapReferences && type == Primitive::kPrimNot) {
|
|
__ UnpoisonHeapReference(expected);
|
|
// Do not unpoison `value`, if it is the same register as
|
|
// `expected`, which has just been unpoisoned.
|
|
if (value != expected) {
|
|
__ UnpoisonHeapReference(value);
|
|
}
|
|
}
|
|
}
|
|
|
|
// boolean sun.misc.Unsafe.compareAndSwapInt(Object o, long offset, int expected, int x)
|
|
void IntrinsicLocationsBuilderMIPS::VisitUnsafeCASInt(HInvoke* invoke) {
|
|
CreateIntIntIntIntIntToIntPlusTemps(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitUnsafeCASInt(HInvoke* invoke) {
|
|
GenCas(invoke, Primitive::kPrimInt, codegen_);
|
|
}
|
|
|
|
// boolean sun.misc.Unsafe.compareAndSwapObject(Object o, long offset, Object expected, Object x)
|
|
void IntrinsicLocationsBuilderMIPS::VisitUnsafeCASObject(HInvoke* invoke) {
|
|
// The only read barrier implementation supporting the
|
|
// UnsafeCASObject intrinsic is the Baker-style read barriers.
|
|
if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) {
|
|
return;
|
|
}
|
|
|
|
CreateIntIntIntIntIntToIntPlusTemps(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitUnsafeCASObject(HInvoke* invoke) {
|
|
// The only read barrier implementation supporting the
|
|
// UnsafeCASObject intrinsic is the Baker-style read barriers.
|
|
DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier);
|
|
|
|
GenCas(invoke, Primitive::kPrimNot, codegen_);
|
|
}
|
|
|
|
// int java.lang.String.compareTo(String anotherString)
|
|
void IntrinsicLocationsBuilderMIPS::VisitStringCompareTo(HInvoke* invoke) {
|
|
LocationSummary* locations = new (arena_) LocationSummary(invoke,
|
|
LocationSummary::kCallOnMainAndSlowPath,
|
|
kIntrinsified);
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
|
|
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
|
|
Location outLocation = calling_convention.GetReturnLocation(Primitive::kPrimInt);
|
|
locations->SetOut(Location::RegisterLocation(outLocation.AsRegister<Register>()));
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitStringCompareTo(HInvoke* invoke) {
|
|
MipsAssembler* assembler = GetAssembler();
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
|
|
// Note that the null check must have been done earlier.
|
|
DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
|
|
|
|
Register argument = locations->InAt(1).AsRegister<Register>();
|
|
SlowPathCodeMIPS* slow_path = new (GetAllocator()) IntrinsicSlowPathMIPS(invoke);
|
|
codegen_->AddSlowPath(slow_path);
|
|
__ Beqz(argument, slow_path->GetEntryLabel());
|
|
codegen_->InvokeRuntime(kQuickStringCompareTo, invoke, invoke->GetDexPc(), slow_path);
|
|
__ Bind(slow_path->GetExitLabel());
|
|
}
|
|
|
|
// boolean java.lang.String.equals(Object anObject)
|
|
void IntrinsicLocationsBuilderMIPS::VisitStringEquals(HInvoke* invoke) {
|
|
LocationSummary* locations = new (arena_) LocationSummary(invoke,
|
|
LocationSummary::kNoCall,
|
|
kIntrinsified);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::RequiresRegister());
|
|
locations->SetOut(Location::RequiresRegister());
|
|
|
|
// Temporary registers to store lengths of strings and for calculations.
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitStringEquals(HInvoke* invoke) {
|
|
MipsAssembler* assembler = GetAssembler();
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
|
|
Register str = locations->InAt(0).AsRegister<Register>();
|
|
Register arg = locations->InAt(1).AsRegister<Register>();
|
|
Register out = locations->Out().AsRegister<Register>();
|
|
|
|
Register temp1 = locations->GetTemp(0).AsRegister<Register>();
|
|
Register temp2 = locations->GetTemp(1).AsRegister<Register>();
|
|
Register temp3 = locations->GetTemp(2).AsRegister<Register>();
|
|
|
|
MipsLabel loop;
|
|
MipsLabel end;
|
|
MipsLabel return_true;
|
|
MipsLabel return_false;
|
|
|
|
// Get offsets of count, value, and class fields within a string object.
|
|
const uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
|
|
const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value();
|
|
const uint32_t class_offset = mirror::Object::ClassOffset().Uint32Value();
|
|
|
|
// Note that the null check must have been done earlier.
|
|
DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
|
|
|
|
// If the register containing the pointer to "this", and the register
|
|
// containing the pointer to "anObject" are the same register then
|
|
// "this", and "anObject" are the same object and we can
|
|
// short-circuit the logic to a true result.
|
|
if (str == arg) {
|
|
__ LoadConst32(out, 1);
|
|
return;
|
|
}
|
|
StringEqualsOptimizations optimizations(invoke);
|
|
if (!optimizations.GetArgumentNotNull()) {
|
|
// Check if input is null, return false if it is.
|
|
__ Beqz(arg, &return_false);
|
|
}
|
|
|
|
// Reference equality check, return true if same reference.
|
|
__ Beq(str, arg, &return_true);
|
|
|
|
if (!optimizations.GetArgumentIsString()) {
|
|
// Instanceof check for the argument by comparing class fields.
|
|
// All string objects must have the same type since String cannot be subclassed.
|
|
// Receiver must be a string object, so its class field is equal to all strings' class fields.
|
|
// If the argument is a string object, its class field must be equal to receiver's class field.
|
|
__ Lw(temp1, str, class_offset);
|
|
__ Lw(temp2, arg, class_offset);
|
|
__ Bne(temp1, temp2, &return_false);
|
|
}
|
|
|
|
// Load `count` fields of this and argument strings.
|
|
__ Lw(temp1, str, count_offset);
|
|
__ Lw(temp2, arg, count_offset);
|
|
// Check if `count` fields are equal, return false if they're not.
|
|
// Also compares the compression style, if differs return false.
|
|
__ Bne(temp1, temp2, &return_false);
|
|
// Return true if both strings are empty. Even with string compression `count == 0` means empty.
|
|
static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
|
|
"Expecting 0=compressed, 1=uncompressed");
|
|
__ Beqz(temp1, &return_true);
|
|
|
|
// Don't overwrite input registers
|
|
__ Move(TMP, str);
|
|
__ Move(temp3, arg);
|
|
|
|
// Assertions that must hold in order to compare strings 4 bytes at a time.
|
|
DCHECK_ALIGNED(value_offset, 4);
|
|
static_assert(IsAligned<4>(kObjectAlignment), "String of odd length is not zero padded");
|
|
|
|
// For string compression, calculate the number of bytes to compare (not chars).
|
|
if (mirror::kUseStringCompression) {
|
|
// Extract compression flag.
|
|
if (IsR2OrNewer()) {
|
|
__ Ext(temp2, temp1, 0, 1);
|
|
} else {
|
|
__ Sll(temp2, temp1, 31);
|
|
__ Srl(temp2, temp2, 31);
|
|
}
|
|
__ Srl(temp1, temp1, 1); // Extract length.
|
|
__ Sllv(temp1, temp1, temp2); // Double the byte count if uncompressed.
|
|
}
|
|
|
|
// Loop to compare strings 4 bytes at a time starting at the beginning of the string.
|
|
// Ok to do this because strings are zero-padded to kObjectAlignment.
|
|
__ Bind(&loop);
|
|
__ Lw(out, TMP, value_offset);
|
|
__ Lw(temp2, temp3, value_offset);
|
|
__ Bne(out, temp2, &return_false);
|
|
__ Addiu(TMP, TMP, 4);
|
|
__ Addiu(temp3, temp3, 4);
|
|
// With string compression, we have compared 4 bytes, otherwise 2 chars.
|
|
__ Addiu(temp1, temp1, mirror::kUseStringCompression ? -4 : -2);
|
|
__ Bgtz(temp1, &loop);
|
|
|
|
// Return true and exit the function.
|
|
// If loop does not result in returning false, we return true.
|
|
__ Bind(&return_true);
|
|
__ LoadConst32(out, 1);
|
|
__ B(&end);
|
|
|
|
// Return false and exit the function.
|
|
__ Bind(&return_false);
|
|
__ LoadConst32(out, 0);
|
|
__ Bind(&end);
|
|
}
|
|
|
|
static void GenerateStringIndexOf(HInvoke* invoke,
|
|
bool start_at_zero,
|
|
MipsAssembler* assembler,
|
|
CodeGeneratorMIPS* codegen,
|
|
ArenaAllocator* allocator) {
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
Register tmp_reg = start_at_zero ? locations->GetTemp(0).AsRegister<Register>() : TMP;
|
|
|
|
// Note that the null check must have been done earlier.
|
|
DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
|
|
|
|
// Check for code points > 0xFFFF. Either a slow-path check when we don't know statically,
|
|
// or directly dispatch for a large constant, or omit slow-path for a small constant or a char.
|
|
SlowPathCodeMIPS* slow_path = nullptr;
|
|
HInstruction* code_point = invoke->InputAt(1);
|
|
if (code_point->IsIntConstant()) {
|
|
if (!IsUint<16>(code_point->AsIntConstant()->GetValue())) {
|
|
// Always needs the slow-path. We could directly dispatch to it,
|
|
// but this case should be rare, so for simplicity just put the
|
|
// full slow-path down and branch unconditionally.
|
|
slow_path = new (allocator) IntrinsicSlowPathMIPS(invoke);
|
|
codegen->AddSlowPath(slow_path);
|
|
__ B(slow_path->GetEntryLabel());
|
|
__ Bind(slow_path->GetExitLabel());
|
|
return;
|
|
}
|
|
} else if (code_point->GetType() != Primitive::kPrimChar) {
|
|
Register char_reg = locations->InAt(1).AsRegister<Register>();
|
|
// The "bltu" conditional branch tests to see if the character value
|
|
// fits in a valid 16-bit (MIPS halfword) value. If it doesn't then
|
|
// the character being searched for, if it exists in the string, is
|
|
// encoded using UTF-16 and stored in the string as two (16-bit)
|
|
// halfwords. Currently the assembly code used to implement this
|
|
// intrinsic doesn't support searching for a character stored as
|
|
// two halfwords so we fallback to using the generic implementation
|
|
// of indexOf().
|
|
__ LoadConst32(tmp_reg, std::numeric_limits<uint16_t>::max());
|
|
slow_path = new (allocator) IntrinsicSlowPathMIPS(invoke);
|
|
codegen->AddSlowPath(slow_path);
|
|
__ Bltu(tmp_reg, char_reg, slow_path->GetEntryLabel());
|
|
}
|
|
|
|
if (start_at_zero) {
|
|
DCHECK_EQ(tmp_reg, A2);
|
|
// Start-index = 0.
|
|
__ Clear(tmp_reg);
|
|
}
|
|
|
|
codegen->InvokeRuntime(kQuickIndexOf, invoke, invoke->GetDexPc(), slow_path);
|
|
if (slow_path != nullptr) {
|
|
__ Bind(slow_path->GetExitLabel());
|
|
}
|
|
}
|
|
|
|
// int java.lang.String.indexOf(int ch)
|
|
void IntrinsicLocationsBuilderMIPS::VisitStringIndexOf(HInvoke* invoke) {
|
|
LocationSummary* locations = new (arena_) LocationSummary(invoke,
|
|
LocationSummary::kCallOnMainAndSlowPath,
|
|
kIntrinsified);
|
|
// We have a hand-crafted assembly stub that follows the runtime
|
|
// calling convention. So it's best to align the inputs accordingly.
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
|
|
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
|
|
Location outLocation = calling_convention.GetReturnLocation(Primitive::kPrimInt);
|
|
locations->SetOut(Location::RegisterLocation(outLocation.AsRegister<Register>()));
|
|
|
|
// Need a temp for slow-path codepoint compare, and need to send start-index=0.
|
|
locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitStringIndexOf(HInvoke* invoke) {
|
|
GenerateStringIndexOf(invoke,
|
|
/* start_at_zero */ true,
|
|
GetAssembler(),
|
|
codegen_,
|
|
GetAllocator());
|
|
}
|
|
|
|
// int java.lang.String.indexOf(int ch, int fromIndex)
|
|
void IntrinsicLocationsBuilderMIPS::VisitStringIndexOfAfter(HInvoke* invoke) {
|
|
LocationSummary* locations = new (arena_) LocationSummary(invoke,
|
|
LocationSummary::kCallOnMainAndSlowPath,
|
|
kIntrinsified);
|
|
// We have a hand-crafted assembly stub that follows the runtime
|
|
// calling convention. So it's best to align the inputs accordingly.
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
|
|
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
|
|
locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
|
|
Location outLocation = calling_convention.GetReturnLocation(Primitive::kPrimInt);
|
|
locations->SetOut(Location::RegisterLocation(outLocation.AsRegister<Register>()));
|
|
|
|
// Need a temp for slow-path codepoint compare.
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitStringIndexOfAfter(HInvoke* invoke) {
|
|
GenerateStringIndexOf(invoke,
|
|
/* start_at_zero */ false,
|
|
GetAssembler(),
|
|
codegen_,
|
|
GetAllocator());
|
|
}
|
|
|
|
// java.lang.StringFactory.newStringFromBytes(byte[] data, int high, int offset, int byteCount)
|
|
void IntrinsicLocationsBuilderMIPS::VisitStringNewStringFromBytes(HInvoke* invoke) {
|
|
LocationSummary* locations = new (arena_) LocationSummary(invoke,
|
|
LocationSummary::kCallOnMainAndSlowPath,
|
|
kIntrinsified);
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
|
|
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
|
|
locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
|
|
locations->SetInAt(3, Location::RegisterLocation(calling_convention.GetRegisterAt(3)));
|
|
Location outLocation = calling_convention.GetReturnLocation(Primitive::kPrimInt);
|
|
locations->SetOut(Location::RegisterLocation(outLocation.AsRegister<Register>()));
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitStringNewStringFromBytes(HInvoke* invoke) {
|
|
MipsAssembler* assembler = GetAssembler();
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
|
|
Register byte_array = locations->InAt(0).AsRegister<Register>();
|
|
SlowPathCodeMIPS* slow_path = new (GetAllocator()) IntrinsicSlowPathMIPS(invoke);
|
|
codegen_->AddSlowPath(slow_path);
|
|
__ Beqz(byte_array, slow_path->GetEntryLabel());
|
|
codegen_->InvokeRuntime(kQuickAllocStringFromBytes, invoke, invoke->GetDexPc(), slow_path);
|
|
__ Bind(slow_path->GetExitLabel());
|
|
}
|
|
|
|
// java.lang.StringFactory.newStringFromChars(int offset, int charCount, char[] data)
|
|
void IntrinsicLocationsBuilderMIPS::VisitStringNewStringFromChars(HInvoke* invoke) {
|
|
LocationSummary* locations = new (arena_) LocationSummary(invoke,
|
|
LocationSummary::kCallOnMainOnly,
|
|
kIntrinsified);
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
|
|
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
|
|
locations->SetInAt(2, Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
|
|
Location outLocation = calling_convention.GetReturnLocation(Primitive::kPrimInt);
|
|
locations->SetOut(Location::RegisterLocation(outLocation.AsRegister<Register>()));
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitStringNewStringFromChars(HInvoke* invoke) {
|
|
// No need to emit code checking whether `locations->InAt(2)` is a null
|
|
// pointer, as callers of the native method
|
|
//
|
|
// java.lang.StringFactory.newStringFromChars(int offset, int charCount, char[] data)
|
|
//
|
|
// all include a null check on `data` before calling that method.
|
|
codegen_->InvokeRuntime(kQuickAllocStringFromChars, invoke, invoke->GetDexPc());
|
|
}
|
|
|
|
// java.lang.StringFactory.newStringFromString(String toCopy)
|
|
void IntrinsicLocationsBuilderMIPS::VisitStringNewStringFromString(HInvoke* invoke) {
|
|
LocationSummary* locations = new (arena_) LocationSummary(invoke,
|
|
LocationSummary::kCallOnMainAndSlowPath,
|
|
kIntrinsified);
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
|
|
Location outLocation = calling_convention.GetReturnLocation(Primitive::kPrimInt);
|
|
locations->SetOut(Location::RegisterLocation(outLocation.AsRegister<Register>()));
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitStringNewStringFromString(HInvoke* invoke) {
|
|
MipsAssembler* assembler = GetAssembler();
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
|
|
Register string_to_copy = locations->InAt(0).AsRegister<Register>();
|
|
SlowPathCodeMIPS* slow_path = new (GetAllocator()) IntrinsicSlowPathMIPS(invoke);
|
|
codegen_->AddSlowPath(slow_path);
|
|
__ Beqz(string_to_copy, slow_path->GetEntryLabel());
|
|
codegen_->InvokeRuntime(kQuickAllocStringFromString, invoke, invoke->GetDexPc());
|
|
__ Bind(slow_path->GetExitLabel());
|
|
}
|
|
|
|
static void GenIsInfinite(LocationSummary* locations,
|
|
const Primitive::Type type,
|
|
const bool isR6,
|
|
MipsAssembler* assembler) {
|
|
FRegister in = locations->InAt(0).AsFpuRegister<FRegister>();
|
|
Register out = locations->Out().AsRegister<Register>();
|
|
|
|
DCHECK(type == Primitive::kPrimFloat || type == Primitive::kPrimDouble);
|
|
|
|
if (isR6) {
|
|
if (type == Primitive::kPrimDouble) {
|
|
__ ClassD(FTMP, in);
|
|
} else {
|
|
__ ClassS(FTMP, in);
|
|
}
|
|
__ Mfc1(out, FTMP);
|
|
__ Andi(out, out, kPositiveInfinity | kNegativeInfinity);
|
|
__ Sltu(out, ZERO, out);
|
|
} else {
|
|
// If one, or more, of the exponent bits is zero, then the number can't be infinite.
|
|
if (type == Primitive::kPrimDouble) {
|
|
__ MoveFromFpuHigh(TMP, in);
|
|
__ LoadConst32(AT, High32Bits(kPositiveInfinityDouble));
|
|
} else {
|
|
__ Mfc1(TMP, in);
|
|
__ LoadConst32(AT, kPositiveInfinityFloat);
|
|
}
|
|
__ Xor(TMP, TMP, AT);
|
|
|
|
__ Sll(TMP, TMP, 1);
|
|
|
|
if (type == Primitive::kPrimDouble) {
|
|
__ Mfc1(AT, in);
|
|
__ Or(TMP, TMP, AT);
|
|
}
|
|
// If any of the significand bits are one, then the number is not infinite.
|
|
__ Sltiu(out, TMP, 1);
|
|
}
|
|
}
|
|
|
|
// boolean java.lang.Float.isInfinite(float)
|
|
void IntrinsicLocationsBuilderMIPS::VisitFloatIsInfinite(HInvoke* invoke) {
|
|
CreateFPToIntLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitFloatIsInfinite(HInvoke* invoke) {
|
|
GenIsInfinite(invoke->GetLocations(), Primitive::kPrimFloat, IsR6(), GetAssembler());
|
|
}
|
|
|
|
// boolean java.lang.Double.isInfinite(double)
|
|
void IntrinsicLocationsBuilderMIPS::VisitDoubleIsInfinite(HInvoke* invoke) {
|
|
CreateFPToIntLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitDoubleIsInfinite(HInvoke* invoke) {
|
|
GenIsInfinite(invoke->GetLocations(), Primitive::kPrimDouble, IsR6(), GetAssembler());
|
|
}
|
|
|
|
static void GenHighestOneBit(LocationSummary* locations,
|
|
const Primitive::Type type,
|
|
bool isR6,
|
|
MipsAssembler* assembler) {
|
|
DCHECK(type == Primitive::kPrimInt || type == Primitive::kPrimLong);
|
|
|
|
if (type == Primitive::kPrimLong) {
|
|
Register in_lo = locations->InAt(0).AsRegisterPairLow<Register>();
|
|
Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
|
|
Register out_lo = locations->Out().AsRegisterPairLow<Register>();
|
|
Register out_hi = locations->Out().AsRegisterPairHigh<Register>();
|
|
|
|
if (isR6) {
|
|
__ ClzR6(TMP, in_hi);
|
|
} else {
|
|
__ ClzR2(TMP, in_hi);
|
|
}
|
|
__ LoadConst32(AT, 0x80000000);
|
|
__ Srlv(out_hi, AT, TMP);
|
|
__ And(out_hi, out_hi, in_hi);
|
|
if (isR6) {
|
|
__ ClzR6(TMP, in_lo);
|
|
} else {
|
|
__ ClzR2(TMP, in_lo);
|
|
}
|
|
__ Srlv(out_lo, AT, TMP);
|
|
__ And(out_lo, out_lo, in_lo);
|
|
if (isR6) {
|
|
__ Seleqz(out_lo, out_lo, out_hi);
|
|
} else {
|
|
__ Movn(out_lo, ZERO, out_hi);
|
|
}
|
|
} else {
|
|
Register in = locations->InAt(0).AsRegister<Register>();
|
|
Register out = locations->Out().AsRegister<Register>();
|
|
|
|
if (isR6) {
|
|
__ ClzR6(TMP, in);
|
|
} else {
|
|
__ ClzR2(TMP, in);
|
|
}
|
|
__ LoadConst32(AT, 0x80000000);
|
|
__ Srlv(AT, AT, TMP); // Srlv shifts in the range of [0;31] bits (lower 5 bits of arg).
|
|
__ And(out, AT, in); // So this is required for 0 (=shift by 32).
|
|
}
|
|
}
|
|
|
|
// int java.lang.Integer.highestOneBit(int)
|
|
void IntrinsicLocationsBuilderMIPS::VisitIntegerHighestOneBit(HInvoke* invoke) {
|
|
CreateIntToIntLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitIntegerHighestOneBit(HInvoke* invoke) {
|
|
GenHighestOneBit(invoke->GetLocations(), Primitive::kPrimInt, IsR6(), GetAssembler());
|
|
}
|
|
|
|
// long java.lang.Long.highestOneBit(long)
|
|
void IntrinsicLocationsBuilderMIPS::VisitLongHighestOneBit(HInvoke* invoke) {
|
|
CreateIntToIntLocations(arena_, invoke, Location::kOutputOverlap);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitLongHighestOneBit(HInvoke* invoke) {
|
|
GenHighestOneBit(invoke->GetLocations(), Primitive::kPrimLong, IsR6(), GetAssembler());
|
|
}
|
|
|
|
static void GenLowestOneBit(LocationSummary* locations,
|
|
const Primitive::Type type,
|
|
bool isR6,
|
|
MipsAssembler* assembler) {
|
|
DCHECK(type == Primitive::kPrimInt || type == Primitive::kPrimLong);
|
|
|
|
if (type == Primitive::kPrimLong) {
|
|
Register in_lo = locations->InAt(0).AsRegisterPairLow<Register>();
|
|
Register in_hi = locations->InAt(0).AsRegisterPairHigh<Register>();
|
|
Register out_lo = locations->Out().AsRegisterPairLow<Register>();
|
|
Register out_hi = locations->Out().AsRegisterPairHigh<Register>();
|
|
|
|
__ Subu(TMP, ZERO, in_lo);
|
|
__ And(out_lo, TMP, in_lo);
|
|
__ Subu(TMP, ZERO, in_hi);
|
|
__ And(out_hi, TMP, in_hi);
|
|
if (isR6) {
|
|
__ Seleqz(out_hi, out_hi, out_lo);
|
|
} else {
|
|
__ Movn(out_hi, ZERO, out_lo);
|
|
}
|
|
} else {
|
|
Register in = locations->InAt(0).AsRegister<Register>();
|
|
Register out = locations->Out().AsRegister<Register>();
|
|
|
|
__ Subu(TMP, ZERO, in);
|
|
__ And(out, TMP, in);
|
|
}
|
|
}
|
|
|
|
// int java.lang.Integer.lowestOneBit(int)
|
|
void IntrinsicLocationsBuilderMIPS::VisitIntegerLowestOneBit(HInvoke* invoke) {
|
|
CreateIntToIntLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitIntegerLowestOneBit(HInvoke* invoke) {
|
|
GenLowestOneBit(invoke->GetLocations(), Primitive::kPrimInt, IsR6(), GetAssembler());
|
|
}
|
|
|
|
// long java.lang.Long.lowestOneBit(long)
|
|
void IntrinsicLocationsBuilderMIPS::VisitLongLowestOneBit(HInvoke* invoke) {
|
|
CreateIntToIntLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitLongLowestOneBit(HInvoke* invoke) {
|
|
GenLowestOneBit(invoke->GetLocations(), Primitive::kPrimLong, IsR6(), GetAssembler());
|
|
}
|
|
|
|
// int java.lang.Math.round(float)
|
|
void IntrinsicLocationsBuilderMIPS::VisitMathRoundFloat(HInvoke* invoke) {
|
|
LocationSummary* locations = new (arena_) LocationSummary(invoke,
|
|
LocationSummary::kNoCall,
|
|
kIntrinsified);
|
|
locations->SetInAt(0, Location::RequiresFpuRegister());
|
|
locations->AddTemp(Location::RequiresFpuRegister());
|
|
locations->SetOut(Location::RequiresRegister());
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitMathRoundFloat(HInvoke* invoke) {
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
MipsAssembler* assembler = GetAssembler();
|
|
FRegister in = locations->InAt(0).AsFpuRegister<FRegister>();
|
|
FRegister half = locations->GetTemp(0).AsFpuRegister<FRegister>();
|
|
Register out = locations->Out().AsRegister<Register>();
|
|
|
|
MipsLabel done;
|
|
|
|
if (IsR6()) {
|
|
// out = floor(in);
|
|
//
|
|
// if (out != MAX_VALUE && out != MIN_VALUE) {
|
|
// TMP = ((in - out) >= 0.5) ? 1 : 0;
|
|
// return out += TMP;
|
|
// }
|
|
// return out;
|
|
|
|
// out = floor(in);
|
|
__ FloorWS(FTMP, in);
|
|
__ Mfc1(out, FTMP);
|
|
|
|
// if (out != MAX_VALUE && out != MIN_VALUE)
|
|
__ Addiu(TMP, out, 1);
|
|
__ Aui(TMP, TMP, 0x8000); // TMP = out + 0x8000 0001
|
|
// or out - 0x7FFF FFFF.
|
|
// IOW, TMP = 1 if out = Int.MIN_VALUE
|
|
// or TMP = 0 if out = Int.MAX_VALUE.
|
|
__ Srl(TMP, TMP, 1); // TMP = 0 if out = Int.MIN_VALUE
|
|
// or out = Int.MAX_VALUE.
|
|
__ Beqz(TMP, &done);
|
|
|
|
// TMP = (0.5f <= (in - out)) ? -1 : 0;
|
|
__ Cvtsw(FTMP, FTMP); // Convert output of floor.w.s back to "float".
|
|
__ LoadConst32(AT, bit_cast<int32_t, float>(0.5f));
|
|
__ SubS(FTMP, in, FTMP);
|
|
__ Mtc1(AT, half);
|
|
|
|
__ CmpLeS(FTMP, half, FTMP);
|
|
__ Mfc1(TMP, FTMP);
|
|
|
|
// Return out -= TMP.
|
|
__ Subu(out, out, TMP);
|
|
} else {
|
|
// if (in.isNaN) {
|
|
// return 0;
|
|
// }
|
|
//
|
|
// out = floor.w.s(in);
|
|
//
|
|
// /*
|
|
// * This "if" statement is only needed for the pre-R6 version of floor.w.s
|
|
// * which outputs Integer.MAX_VALUE for negative numbers with magnitudes
|
|
// * too large to fit in a 32-bit integer.
|
|
// */
|
|
// if (out == Integer.MAX_VALUE) {
|
|
// TMP = (in < 0.0f) ? 1 : 0;
|
|
// /*
|
|
// * If TMP is 1, then adding it to out will wrap its value from
|
|
// * Integer.MAX_VALUE to Integer.MIN_VALUE.
|
|
// */
|
|
// return out += TMP;
|
|
// }
|
|
//
|
|
// /*
|
|
// * For negative values not handled by the previous "if" statement the
|
|
// * test here will correctly set the value of TMP.
|
|
// */
|
|
// TMP = ((in - out) >= 0.5f) ? 1 : 0;
|
|
// return out += TMP;
|
|
|
|
MipsLabel finite;
|
|
MipsLabel add;
|
|
|
|
// Test for NaN.
|
|
__ CunS(in, in);
|
|
|
|
// Return zero for NaN.
|
|
__ Move(out, ZERO);
|
|
__ Bc1t(&done);
|
|
|
|
// out = floor(in);
|
|
__ FloorWS(FTMP, in);
|
|
__ Mfc1(out, FTMP);
|
|
|
|
__ LoadConst32(TMP, -1);
|
|
|
|
// TMP = (out = java.lang.Integer.MAX_VALUE) ? -1 : 0;
|
|
__ LoadConst32(AT, std::numeric_limits<int32_t>::max());
|
|
__ Bne(AT, out, &finite);
|
|
|
|
__ Mtc1(ZERO, FTMP);
|
|
__ ColtS(in, FTMP);
|
|
|
|
__ B(&add);
|
|
|
|
__ Bind(&finite);
|
|
|
|
// TMP = (0.5f <= (in - out)) ? -1 : 0;
|
|
__ Cvtsw(FTMP, FTMP); // Convert output of floor.w.s back to "float".
|
|
__ LoadConst32(AT, bit_cast<int32_t, float>(0.5f));
|
|
__ SubS(FTMP, in, FTMP);
|
|
__ Mtc1(AT, half);
|
|
__ ColeS(half, FTMP);
|
|
|
|
__ Bind(&add);
|
|
|
|
__ Movf(TMP, ZERO);
|
|
|
|
// Return out -= TMP.
|
|
__ Subu(out, out, TMP);
|
|
}
|
|
__ Bind(&done);
|
|
}
|
|
|
|
// void java.lang.String.getChars(int srcBegin, int srcEnd, char[] dst, int dstBegin)
|
|
void IntrinsicLocationsBuilderMIPS::VisitStringGetCharsNoCheck(HInvoke* invoke) {
|
|
LocationSummary* locations = new (arena_) LocationSummary(invoke,
|
|
LocationSummary::kNoCall,
|
|
kIntrinsified);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::RequiresRegister());
|
|
locations->SetInAt(2, Location::RequiresRegister());
|
|
locations->SetInAt(3, Location::RequiresRegister());
|
|
locations->SetInAt(4, Location::RequiresRegister());
|
|
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitStringGetCharsNoCheck(HInvoke* invoke) {
|
|
MipsAssembler* assembler = GetAssembler();
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
|
|
// Check assumption that sizeof(Char) is 2 (used in scaling below).
|
|
const size_t char_size = Primitive::ComponentSize(Primitive::kPrimChar);
|
|
DCHECK_EQ(char_size, 2u);
|
|
const size_t char_shift = Primitive::ComponentSizeShift(Primitive::kPrimChar);
|
|
|
|
Register srcObj = locations->InAt(0).AsRegister<Register>();
|
|
Register srcBegin = locations->InAt(1).AsRegister<Register>();
|
|
Register srcEnd = locations->InAt(2).AsRegister<Register>();
|
|
Register dstObj = locations->InAt(3).AsRegister<Register>();
|
|
Register dstBegin = locations->InAt(4).AsRegister<Register>();
|
|
|
|
Register dstPtr = locations->GetTemp(0).AsRegister<Register>();
|
|
Register srcPtr = locations->GetTemp(1).AsRegister<Register>();
|
|
Register numChrs = locations->GetTemp(2).AsRegister<Register>();
|
|
|
|
MipsLabel done;
|
|
MipsLabel loop;
|
|
|
|
// Location of data in char array buffer.
|
|
const uint32_t data_offset = mirror::Array::DataOffset(char_size).Uint32Value();
|
|
|
|
// Get offset of value field within a string object.
|
|
const int32_t value_offset = mirror::String::ValueOffset().Int32Value();
|
|
|
|
__ Beq(srcEnd, srcBegin, &done); // No characters to move.
|
|
|
|
// Calculate number of characters to be copied.
|
|
__ Subu(numChrs, srcEnd, srcBegin);
|
|
|
|
// Calculate destination address.
|
|
__ Addiu(dstPtr, dstObj, data_offset);
|
|
__ ShiftAndAdd(dstPtr, dstBegin, dstPtr, char_shift);
|
|
|
|
if (mirror::kUseStringCompression) {
|
|
MipsLabel uncompressed_copy, compressed_loop;
|
|
const uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
|
|
// Load count field and extract compression flag.
|
|
__ LoadFromOffset(kLoadWord, TMP, srcObj, count_offset);
|
|
__ Sll(TMP, TMP, 31);
|
|
|
|
// If string is uncompressed, use uncompressed path.
|
|
__ Bnez(TMP, &uncompressed_copy);
|
|
|
|
// Copy loop for compressed src, copying 1 character (8-bit) to (16-bit) at a time.
|
|
__ Addu(srcPtr, srcObj, srcBegin);
|
|
__ Bind(&compressed_loop);
|
|
__ LoadFromOffset(kLoadUnsignedByte, TMP, srcPtr, value_offset);
|
|
__ StoreToOffset(kStoreHalfword, TMP, dstPtr, 0);
|
|
__ Addiu(numChrs, numChrs, -1);
|
|
__ Addiu(srcPtr, srcPtr, 1);
|
|
__ Addiu(dstPtr, dstPtr, 2);
|
|
__ Bnez(numChrs, &compressed_loop);
|
|
|
|
__ B(&done);
|
|
__ Bind(&uncompressed_copy);
|
|
}
|
|
|
|
// Calculate source address.
|
|
__ Addiu(srcPtr, srcObj, value_offset);
|
|
__ ShiftAndAdd(srcPtr, srcBegin, srcPtr, char_shift);
|
|
|
|
__ Bind(&loop);
|
|
__ Lh(AT, srcPtr, 0);
|
|
__ Addiu(numChrs, numChrs, -1);
|
|
__ Addiu(srcPtr, srcPtr, char_size);
|
|
__ Sh(AT, dstPtr, 0);
|
|
__ Addiu(dstPtr, dstPtr, char_size);
|
|
__ Bnez(numChrs, &loop);
|
|
|
|
__ Bind(&done);
|
|
}
|
|
|
|
static void CreateFPToFPCallLocations(ArenaAllocator* arena, HInvoke* invoke) {
|
|
LocationSummary* locations = new (arena) LocationSummary(invoke,
|
|
LocationSummary::kCallOnMainOnly,
|
|
kIntrinsified);
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
|
|
locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
|
|
locations->SetOut(calling_convention.GetReturnLocation(Primitive::kPrimDouble));
|
|
}
|
|
|
|
static void CreateFPFPToFPCallLocations(ArenaAllocator* arena, HInvoke* invoke) {
|
|
LocationSummary* locations = new (arena) LocationSummary(invoke,
|
|
LocationSummary::kCallOnMainOnly,
|
|
kIntrinsified);
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
|
|
locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
|
|
locations->SetInAt(1, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(1)));
|
|
locations->SetOut(calling_convention.GetReturnLocation(Primitive::kPrimDouble));
|
|
}
|
|
|
|
static void GenFPToFPCall(HInvoke* invoke, CodeGeneratorMIPS* codegen, QuickEntrypointEnum entry) {
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
FRegister in = locations->InAt(0).AsFpuRegister<FRegister>();
|
|
DCHECK_EQ(in, F12);
|
|
FRegister out = locations->Out().AsFpuRegister<FRegister>();
|
|
DCHECK_EQ(out, F0);
|
|
|
|
codegen->InvokeRuntime(entry, invoke, invoke->GetDexPc());
|
|
}
|
|
|
|
static void GenFPFPToFPCall(HInvoke* invoke,
|
|
CodeGeneratorMIPS* codegen,
|
|
QuickEntrypointEnum entry) {
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
FRegister in0 = locations->InAt(0).AsFpuRegister<FRegister>();
|
|
DCHECK_EQ(in0, F12);
|
|
FRegister in1 = locations->InAt(1).AsFpuRegister<FRegister>();
|
|
DCHECK_EQ(in1, F14);
|
|
FRegister out = locations->Out().AsFpuRegister<FRegister>();
|
|
DCHECK_EQ(out, F0);
|
|
|
|
codegen->InvokeRuntime(entry, invoke, invoke->GetDexPc());
|
|
}
|
|
|
|
// static double java.lang.Math.cos(double a)
|
|
void IntrinsicLocationsBuilderMIPS::VisitMathCos(HInvoke* invoke) {
|
|
CreateFPToFPCallLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitMathCos(HInvoke* invoke) {
|
|
GenFPToFPCall(invoke, codegen_, kQuickCos);
|
|
}
|
|
|
|
// static double java.lang.Math.sin(double a)
|
|
void IntrinsicLocationsBuilderMIPS::VisitMathSin(HInvoke* invoke) {
|
|
CreateFPToFPCallLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitMathSin(HInvoke* invoke) {
|
|
GenFPToFPCall(invoke, codegen_, kQuickSin);
|
|
}
|
|
|
|
// static double java.lang.Math.acos(double a)
|
|
void IntrinsicLocationsBuilderMIPS::VisitMathAcos(HInvoke* invoke) {
|
|
CreateFPToFPCallLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitMathAcos(HInvoke* invoke) {
|
|
GenFPToFPCall(invoke, codegen_, kQuickAcos);
|
|
}
|
|
|
|
// static double java.lang.Math.asin(double a)
|
|
void IntrinsicLocationsBuilderMIPS::VisitMathAsin(HInvoke* invoke) {
|
|
CreateFPToFPCallLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitMathAsin(HInvoke* invoke) {
|
|
GenFPToFPCall(invoke, codegen_, kQuickAsin);
|
|
}
|
|
|
|
// static double java.lang.Math.atan(double a)
|
|
void IntrinsicLocationsBuilderMIPS::VisitMathAtan(HInvoke* invoke) {
|
|
CreateFPToFPCallLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitMathAtan(HInvoke* invoke) {
|
|
GenFPToFPCall(invoke, codegen_, kQuickAtan);
|
|
}
|
|
|
|
// static double java.lang.Math.atan2(double y, double x)
|
|
void IntrinsicLocationsBuilderMIPS::VisitMathAtan2(HInvoke* invoke) {
|
|
CreateFPFPToFPCallLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitMathAtan2(HInvoke* invoke) {
|
|
GenFPFPToFPCall(invoke, codegen_, kQuickAtan2);
|
|
}
|
|
|
|
// static double java.lang.Math.cbrt(double a)
|
|
void IntrinsicLocationsBuilderMIPS::VisitMathCbrt(HInvoke* invoke) {
|
|
CreateFPToFPCallLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitMathCbrt(HInvoke* invoke) {
|
|
GenFPToFPCall(invoke, codegen_, kQuickCbrt);
|
|
}
|
|
|
|
// static double java.lang.Math.cosh(double x)
|
|
void IntrinsicLocationsBuilderMIPS::VisitMathCosh(HInvoke* invoke) {
|
|
CreateFPToFPCallLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitMathCosh(HInvoke* invoke) {
|
|
GenFPToFPCall(invoke, codegen_, kQuickCosh);
|
|
}
|
|
|
|
// static double java.lang.Math.exp(double a)
|
|
void IntrinsicLocationsBuilderMIPS::VisitMathExp(HInvoke* invoke) {
|
|
CreateFPToFPCallLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitMathExp(HInvoke* invoke) {
|
|
GenFPToFPCall(invoke, codegen_, kQuickExp);
|
|
}
|
|
|
|
// static double java.lang.Math.expm1(double x)
|
|
void IntrinsicLocationsBuilderMIPS::VisitMathExpm1(HInvoke* invoke) {
|
|
CreateFPToFPCallLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitMathExpm1(HInvoke* invoke) {
|
|
GenFPToFPCall(invoke, codegen_, kQuickExpm1);
|
|
}
|
|
|
|
// static double java.lang.Math.hypot(double x, double y)
|
|
void IntrinsicLocationsBuilderMIPS::VisitMathHypot(HInvoke* invoke) {
|
|
CreateFPFPToFPCallLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitMathHypot(HInvoke* invoke) {
|
|
GenFPFPToFPCall(invoke, codegen_, kQuickHypot);
|
|
}
|
|
|
|
// static double java.lang.Math.log(double a)
|
|
void IntrinsicLocationsBuilderMIPS::VisitMathLog(HInvoke* invoke) {
|
|
CreateFPToFPCallLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitMathLog(HInvoke* invoke) {
|
|
GenFPToFPCall(invoke, codegen_, kQuickLog);
|
|
}
|
|
|
|
// static double java.lang.Math.log10(double x)
|
|
void IntrinsicLocationsBuilderMIPS::VisitMathLog10(HInvoke* invoke) {
|
|
CreateFPToFPCallLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitMathLog10(HInvoke* invoke) {
|
|
GenFPToFPCall(invoke, codegen_, kQuickLog10);
|
|
}
|
|
|
|
// static double java.lang.Math.nextAfter(double start, double direction)
|
|
void IntrinsicLocationsBuilderMIPS::VisitMathNextAfter(HInvoke* invoke) {
|
|
CreateFPFPToFPCallLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitMathNextAfter(HInvoke* invoke) {
|
|
GenFPFPToFPCall(invoke, codegen_, kQuickNextAfter);
|
|
}
|
|
|
|
// static double java.lang.Math.sinh(double x)
|
|
void IntrinsicLocationsBuilderMIPS::VisitMathSinh(HInvoke* invoke) {
|
|
CreateFPToFPCallLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitMathSinh(HInvoke* invoke) {
|
|
GenFPToFPCall(invoke, codegen_, kQuickSinh);
|
|
}
|
|
|
|
// static double java.lang.Math.tan(double a)
|
|
void IntrinsicLocationsBuilderMIPS::VisitMathTan(HInvoke* invoke) {
|
|
CreateFPToFPCallLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitMathTan(HInvoke* invoke) {
|
|
GenFPToFPCall(invoke, codegen_, kQuickTan);
|
|
}
|
|
|
|
// static double java.lang.Math.tanh(double x)
|
|
void IntrinsicLocationsBuilderMIPS::VisitMathTanh(HInvoke* invoke) {
|
|
CreateFPToFPCallLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitMathTanh(HInvoke* invoke) {
|
|
GenFPToFPCall(invoke, codegen_, kQuickTanh);
|
|
}
|
|
|
|
// static void java.lang.System.arraycopy(Object src, int srcPos,
|
|
// Object dest, int destPos,
|
|
// int length)
|
|
void IntrinsicLocationsBuilderMIPS::VisitSystemArrayCopyChar(HInvoke* invoke) {
|
|
HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant();
|
|
HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant();
|
|
HIntConstant* length = invoke->InputAt(4)->AsIntConstant();
|
|
|
|
// As long as we are checking, we might as well check to see if the src and dest
|
|
// positions are >= 0.
|
|
if ((src_pos != nullptr && src_pos->GetValue() < 0) ||
|
|
(dest_pos != nullptr && dest_pos->GetValue() < 0)) {
|
|
// We will have to fail anyways.
|
|
return;
|
|
}
|
|
|
|
// And since we are already checking, check the length too.
|
|
if (length != nullptr) {
|
|
int32_t len = length->GetValue();
|
|
if (len < 0) {
|
|
// Just call as normal.
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Okay, it is safe to generate inline code.
|
|
LocationSummary* locations =
|
|
new (arena_) LocationSummary(invoke, LocationSummary::kCallOnSlowPath, kIntrinsified);
|
|
// arraycopy(Object src, int srcPos, Object dest, int destPos, int length).
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::RegisterOrConstant(invoke->InputAt(1)));
|
|
locations->SetInAt(2, Location::RequiresRegister());
|
|
locations->SetInAt(3, Location::RegisterOrConstant(invoke->InputAt(3)));
|
|
locations->SetInAt(4, Location::RegisterOrConstant(invoke->InputAt(4)));
|
|
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
}
|
|
|
|
// Utility routine to verify that "length(input) - pos >= length"
|
|
static void EnoughItems(MipsAssembler* assembler,
|
|
Register length_input_minus_pos,
|
|
Location length,
|
|
SlowPathCodeMIPS* slow_path) {
|
|
if (length.IsConstant()) {
|
|
int32_t length_constant = length.GetConstant()->AsIntConstant()->GetValue();
|
|
|
|
if (IsInt<16>(length_constant)) {
|
|
__ Slti(TMP, length_input_minus_pos, length_constant);
|
|
__ Bnez(TMP, slow_path->GetEntryLabel());
|
|
} else {
|
|
__ LoadConst32(TMP, length_constant);
|
|
__ Blt(length_input_minus_pos, TMP, slow_path->GetEntryLabel());
|
|
}
|
|
} else {
|
|
__ Blt(length_input_minus_pos, length.AsRegister<Register>(), slow_path->GetEntryLabel());
|
|
}
|
|
}
|
|
|
|
static void CheckPosition(MipsAssembler* assembler,
|
|
Location pos,
|
|
Register input,
|
|
Location length,
|
|
SlowPathCodeMIPS* slow_path,
|
|
bool length_is_input_length = false) {
|
|
// Where is the length in the Array?
|
|
const uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value();
|
|
|
|
// Calculate length(input) - pos.
|
|
if (pos.IsConstant()) {
|
|
int32_t pos_const = pos.GetConstant()->AsIntConstant()->GetValue();
|
|
if (pos_const == 0) {
|
|
if (!length_is_input_length) {
|
|
// Check that length(input) >= length.
|
|
__ LoadFromOffset(kLoadWord, AT, input, length_offset);
|
|
EnoughItems(assembler, AT, length, slow_path);
|
|
}
|
|
} else {
|
|
// Check that (length(input) - pos) >= zero.
|
|
__ LoadFromOffset(kLoadWord, AT, input, length_offset);
|
|
DCHECK_GT(pos_const, 0);
|
|
__ Addiu32(AT, AT, -pos_const, TMP);
|
|
__ Bltz(AT, slow_path->GetEntryLabel());
|
|
|
|
// Verify that (length(input) - pos) >= length.
|
|
EnoughItems(assembler, AT, length, slow_path);
|
|
}
|
|
} else if (length_is_input_length) {
|
|
// The only way the copy can succeed is if pos is zero.
|
|
Register pos_reg = pos.AsRegister<Register>();
|
|
__ Bnez(pos_reg, slow_path->GetEntryLabel());
|
|
} else {
|
|
// Verify that pos >= 0.
|
|
Register pos_reg = pos.AsRegister<Register>();
|
|
__ Bltz(pos_reg, slow_path->GetEntryLabel());
|
|
|
|
// Check that (length(input) - pos) >= zero.
|
|
__ LoadFromOffset(kLoadWord, AT, input, length_offset);
|
|
__ Subu(AT, AT, pos_reg);
|
|
__ Bltz(AT, slow_path->GetEntryLabel());
|
|
|
|
// Verify that (length(input) - pos) >= length.
|
|
EnoughItems(assembler, AT, length, slow_path);
|
|
}
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitSystemArrayCopyChar(HInvoke* invoke) {
|
|
MipsAssembler* assembler = GetAssembler();
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
|
|
Register src = locations->InAt(0).AsRegister<Register>();
|
|
Location src_pos = locations->InAt(1);
|
|
Register dest = locations->InAt(2).AsRegister<Register>();
|
|
Location dest_pos = locations->InAt(3);
|
|
Location length = locations->InAt(4);
|
|
|
|
MipsLabel loop;
|
|
|
|
Register dest_base = locations->GetTemp(0).AsRegister<Register>();
|
|
Register src_base = locations->GetTemp(1).AsRegister<Register>();
|
|
Register count = locations->GetTemp(2).AsRegister<Register>();
|
|
|
|
SlowPathCodeMIPS* slow_path = new (GetAllocator()) IntrinsicSlowPathMIPS(invoke);
|
|
codegen_->AddSlowPath(slow_path);
|
|
|
|
// Bail out if the source and destination are the same (to handle overlap).
|
|
__ Beq(src, dest, slow_path->GetEntryLabel());
|
|
|
|
// Bail out if the source is null.
|
|
__ Beqz(src, slow_path->GetEntryLabel());
|
|
|
|
// Bail out if the destination is null.
|
|
__ Beqz(dest, slow_path->GetEntryLabel());
|
|
|
|
// Load length into register for count.
|
|
if (length.IsConstant()) {
|
|
__ LoadConst32(count, length.GetConstant()->AsIntConstant()->GetValue());
|
|
} else {
|
|
// If the length is negative, bail out.
|
|
// We have already checked in the LocationsBuilder for the constant case.
|
|
__ Bltz(length.AsRegister<Register>(), slow_path->GetEntryLabel());
|
|
|
|
__ Move(count, length.AsRegister<Register>());
|
|
}
|
|
|
|
// Validity checks: source.
|
|
CheckPosition(assembler, src_pos, src, Location::RegisterLocation(count), slow_path);
|
|
|
|
// Validity checks: dest.
|
|
CheckPosition(assembler, dest_pos, dest, Location::RegisterLocation(count), slow_path);
|
|
|
|
// If count is zero, we're done.
|
|
__ Beqz(count, slow_path->GetExitLabel());
|
|
|
|
// Okay, everything checks out. Finally time to do the copy.
|
|
// Check assumption that sizeof(Char) is 2 (used in scaling below).
|
|
const size_t char_size = Primitive::ComponentSize(Primitive::kPrimChar);
|
|
DCHECK_EQ(char_size, 2u);
|
|
|
|
const size_t char_shift = Primitive::ComponentSizeShift(Primitive::kPrimChar);
|
|
|
|
const uint32_t data_offset = mirror::Array::DataOffset(char_size).Uint32Value();
|
|
|
|
// Calculate source and destination addresses.
|
|
if (src_pos.IsConstant()) {
|
|
int32_t src_pos_const = src_pos.GetConstant()->AsIntConstant()->GetValue();
|
|
|
|
__ Addiu32(src_base, src, data_offset + char_size * src_pos_const, TMP);
|
|
} else {
|
|
__ Addiu32(src_base, src, data_offset, TMP);
|
|
__ ShiftAndAdd(src_base, src_pos.AsRegister<Register>(), src_base, char_shift);
|
|
}
|
|
if (dest_pos.IsConstant()) {
|
|
int32_t dest_pos_const = dest_pos.GetConstant()->AsIntConstant()->GetValue();
|
|
|
|
__ Addiu32(dest_base, dest, data_offset + char_size * dest_pos_const, TMP);
|
|
} else {
|
|
__ Addiu32(dest_base, dest, data_offset, TMP);
|
|
__ ShiftAndAdd(dest_base, dest_pos.AsRegister<Register>(), dest_base, char_shift);
|
|
}
|
|
|
|
__ Bind(&loop);
|
|
__ Lh(TMP, src_base, 0);
|
|
__ Addiu(src_base, src_base, char_size);
|
|
__ Addiu(count, count, -1);
|
|
__ Sh(TMP, dest_base, 0);
|
|
__ Addiu(dest_base, dest_base, char_size);
|
|
__ Bnez(count, &loop);
|
|
|
|
__ Bind(slow_path->GetExitLabel());
|
|
}
|
|
|
|
// long java.lang.Integer.valueOf(long)
|
|
void IntrinsicLocationsBuilderMIPS::VisitIntegerValueOf(HInvoke* invoke) {
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
IntrinsicVisitor::ComputeIntegerValueOfLocations(
|
|
invoke,
|
|
codegen_,
|
|
calling_convention.GetReturnLocation(Primitive::kPrimNot),
|
|
Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorMIPS::VisitIntegerValueOf(HInvoke* invoke) {
|
|
IntrinsicVisitor::IntegerValueOfInfo info = IntrinsicVisitor::ComputeIntegerValueOfInfo();
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
MipsAssembler* assembler = GetAssembler();
|
|
InstructionCodeGeneratorMIPS* icodegen =
|
|
down_cast<InstructionCodeGeneratorMIPS*>(codegen_->GetInstructionVisitor());
|
|
|
|
Register out = locations->Out().AsRegister<Register>();
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
if (invoke->InputAt(0)->IsConstant()) {
|
|
int32_t value = invoke->InputAt(0)->AsIntConstant()->GetValue();
|
|
if (value >= info.low && value <= info.high) {
|
|
// Just embed the j.l.Integer in the code.
|
|
ScopedObjectAccess soa(Thread::Current());
|
|
mirror::Object* boxed = info.cache->Get(value + (-info.low));
|
|
DCHECK(boxed != nullptr && Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(boxed));
|
|
uint32_t address = dchecked_integral_cast<uint32_t>(reinterpret_cast<uintptr_t>(boxed));
|
|
__ LoadConst32(out, address);
|
|
} else {
|
|
// Allocate and initialize a new j.l.Integer.
|
|
// TODO: If we JIT, we could allocate the j.l.Integer now, and store it in the
|
|
// JIT object table.
|
|
uint32_t address =
|
|
dchecked_integral_cast<uint32_t>(reinterpret_cast<uintptr_t>(info.integer));
|
|
__ LoadConst32(calling_convention.GetRegisterAt(0), address);
|
|
codegen_->InvokeRuntime(kQuickAllocObjectInitialized, invoke, invoke->GetDexPc());
|
|
CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>();
|
|
__ StoreConstToOffset(kStoreWord, value, out, info.value_offset, TMP);
|
|
// `value` is a final field :-( Ideally, we'd merge this memory barrier with the allocation
|
|
// one.
|
|
icodegen->GenerateMemoryBarrier(MemBarrierKind::kStoreStore);
|
|
}
|
|
} else {
|
|
Register in = locations->InAt(0).AsRegister<Register>();
|
|
MipsLabel allocate, done;
|
|
int32_t count = static_cast<uint32_t>(info.high) - info.low + 1;
|
|
|
|
// Is (info.low <= in) && (in <= info.high)?
|
|
__ Addiu32(out, in, -info.low);
|
|
// As unsigned quantities is out < (info.high - info.low + 1)?
|
|
if (IsInt<16>(count)) {
|
|
__ Sltiu(AT, out, count);
|
|
} else {
|
|
__ LoadConst32(AT, count);
|
|
__ Sltu(AT, out, AT);
|
|
}
|
|
// Branch if out >= (info.high - info.low + 1).
|
|
// This means that "in" is outside of the range [info.low, info.high].
|
|
__ Beqz(AT, &allocate);
|
|
|
|
// If the value is within the bounds, load the j.l.Integer directly from the array.
|
|
uint32_t data_offset = mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value();
|
|
uint32_t address = dchecked_integral_cast<uint32_t>(reinterpret_cast<uintptr_t>(info.cache));
|
|
__ LoadConst32(TMP, data_offset + address);
|
|
__ ShiftAndAdd(out, out, TMP, TIMES_4);
|
|
__ Lw(out, out, 0);
|
|
__ MaybeUnpoisonHeapReference(out);
|
|
__ B(&done);
|
|
|
|
__ Bind(&allocate);
|
|
// Otherwise allocate and initialize a new j.l.Integer.
|
|
address = dchecked_integral_cast<uint32_t>(reinterpret_cast<uintptr_t>(info.integer));
|
|
__ LoadConst32(calling_convention.GetRegisterAt(0), address);
|
|
codegen_->InvokeRuntime(kQuickAllocObjectInitialized, invoke, invoke->GetDexPc());
|
|
CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>();
|
|
__ StoreToOffset(kStoreWord, in, out, info.value_offset);
|
|
// `value` is a final field :-( Ideally, we'd merge this memory barrier with the allocation
|
|
// one.
|
|
icodegen->GenerateMemoryBarrier(MemBarrierKind::kStoreStore);
|
|
__ Bind(&done);
|
|
}
|
|
}
|
|
|
|
// Unimplemented intrinsics.
|
|
|
|
UNIMPLEMENTED_INTRINSIC(MIPS, MathCeil)
|
|
UNIMPLEMENTED_INTRINSIC(MIPS, MathFloor)
|
|
UNIMPLEMENTED_INTRINSIC(MIPS, MathRint)
|
|
UNIMPLEMENTED_INTRINSIC(MIPS, MathRoundDouble)
|
|
UNIMPLEMENTED_INTRINSIC(MIPS, UnsafeGetLongVolatile);
|
|
UNIMPLEMENTED_INTRINSIC(MIPS, UnsafePutLongVolatile);
|
|
UNIMPLEMENTED_INTRINSIC(MIPS, UnsafeCASLong)
|
|
|
|
UNIMPLEMENTED_INTRINSIC(MIPS, ReferenceGetReferent)
|
|
UNIMPLEMENTED_INTRINSIC(MIPS, SystemArrayCopy)
|
|
|
|
UNIMPLEMENTED_INTRINSIC(MIPS, StringStringIndexOf);
|
|
UNIMPLEMENTED_INTRINSIC(MIPS, StringStringIndexOfAfter);
|
|
UNIMPLEMENTED_INTRINSIC(MIPS, StringBufferAppend);
|
|
UNIMPLEMENTED_INTRINSIC(MIPS, StringBufferLength);
|
|
UNIMPLEMENTED_INTRINSIC(MIPS, StringBufferToString);
|
|
UNIMPLEMENTED_INTRINSIC(MIPS, StringBuilderAppend);
|
|
UNIMPLEMENTED_INTRINSIC(MIPS, StringBuilderLength);
|
|
UNIMPLEMENTED_INTRINSIC(MIPS, StringBuilderToString);
|
|
|
|
// 1.8.
|
|
UNIMPLEMENTED_INTRINSIC(MIPS, UnsafeGetAndAddInt)
|
|
UNIMPLEMENTED_INTRINSIC(MIPS, UnsafeGetAndAddLong)
|
|
UNIMPLEMENTED_INTRINSIC(MIPS, UnsafeGetAndSetInt)
|
|
UNIMPLEMENTED_INTRINSIC(MIPS, UnsafeGetAndSetLong)
|
|
UNIMPLEMENTED_INTRINSIC(MIPS, UnsafeGetAndSetObject)
|
|
|
|
UNIMPLEMENTED_INTRINSIC(MIPS, ThreadInterrupted)
|
|
|
|
UNREACHABLE_INTRINSICS(MIPS)
|
|
|
|
#undef __
|
|
|
|
} // namespace mips
|
|
} // namespace art
|