4674 lines
168 KiB
C++
Executable file
4674 lines
168 KiB
C++
Executable file
/*
|
|
* Copyright (C) 2007 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
// #define LOG_NDEBUG 0
|
|
#define ATRACE_TAG ATRACE_TAG_GRAPHICS
|
|
|
|
#include <stdint.h>
|
|
#include <sys/types.h>
|
|
#include <algorithm>
|
|
#include <errno.h>
|
|
#include <math.h>
|
|
#include <mutex>
|
|
#include <dlfcn.h>
|
|
#include <inttypes.h>
|
|
#include <stdatomic.h>
|
|
#include <optional>
|
|
|
|
#include <EGL/egl.h>
|
|
|
|
#include <cutils/properties.h>
|
|
#include <log/log.h>
|
|
|
|
#include <binder/IPCThreadState.h>
|
|
#include <binder/IServiceManager.h>
|
|
#include <binder/PermissionCache.h>
|
|
|
|
#include <dvr/vr_flinger.h>
|
|
|
|
#include <ui/DebugUtils.h>
|
|
#include <ui/DisplayInfo.h>
|
|
#include <ui/DisplayStatInfo.h>
|
|
|
|
#include <gui/BufferQueue.h>
|
|
#include <gui/GuiConfig.h>
|
|
#include <gui/IDisplayEventConnection.h>
|
|
#include <gui/Surface.h>
|
|
|
|
#include <ui/GraphicBufferAllocator.h>
|
|
#include <ui/PixelFormat.h>
|
|
#include <ui/UiConfig.h>
|
|
|
|
#include <utils/misc.h>
|
|
#include <utils/String8.h>
|
|
#include <utils/String16.h>
|
|
#include <utils/StopWatch.h>
|
|
#include <utils/Timers.h>
|
|
#include <utils/Trace.h>
|
|
|
|
#include <private/android_filesystem_config.h>
|
|
#include <private/gui/SyncFeatures.h>
|
|
|
|
#include "Client.h"
|
|
#include "clz.h"
|
|
#include "Colorizer.h"
|
|
#include "DdmConnection.h"
|
|
#include "DisplayDevice.h"
|
|
#include "DispSync.h"
|
|
#include "EventControlThread.h"
|
|
#include "EventThread.h"
|
|
#include "Layer.h"
|
|
#include "LayerVector.h"
|
|
#include "LayerDim.h"
|
|
#include "MonitoredProducer.h"
|
|
#include "SurfaceFlinger.h"
|
|
|
|
#include "DisplayHardware/ComposerHal.h"
|
|
#include "DisplayHardware/FramebufferSurface.h"
|
|
#include "DisplayHardware/HWComposer.h"
|
|
#include "DisplayHardware/VirtualDisplaySurface.h"
|
|
|
|
#include "Effects/Daltonizer.h"
|
|
|
|
#include "RenderEngine/RenderEngine.h"
|
|
#include <cutils/compiler.h>
|
|
|
|
#include <android/hardware/configstore/1.0/ISurfaceFlingerConfigs.h>
|
|
#include <configstore/Utils.h>
|
|
|
|
#define DISPLAY_COUNT 1
|
|
|
|
/*
|
|
* DEBUG_SCREENSHOTS: set to true to check that screenshots are not all
|
|
* black pixels.
|
|
*/
|
|
#define DEBUG_SCREENSHOTS false
|
|
|
|
extern "C" EGLAPI const char* eglQueryStringImplementationANDROID(EGLDisplay dpy, EGLint name);
|
|
|
|
namespace android {
|
|
|
|
using namespace android::hardware::configstore;
|
|
using namespace android::hardware::configstore::V1_0;
|
|
|
|
namespace {
|
|
class ConditionalLock {
|
|
public:
|
|
ConditionalLock(Mutex& mutex, bool lock) : mMutex(mutex), mLocked(lock) {
|
|
if (lock) {
|
|
mMutex.lock();
|
|
}
|
|
}
|
|
~ConditionalLock() { if (mLocked) mMutex.unlock(); }
|
|
private:
|
|
Mutex& mMutex;
|
|
bool mLocked;
|
|
};
|
|
} // namespace anonymous
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
const String16 sHardwareTest("android.permission.HARDWARE_TEST");
|
|
const String16 sAccessSurfaceFlinger("android.permission.ACCESS_SURFACE_FLINGER");
|
|
const String16 sReadFramebuffer("android.permission.READ_FRAME_BUFFER");
|
|
const String16 sDump("android.permission.DUMP");
|
|
|
|
// ---------------------------------------------------------------------------
|
|
int64_t SurfaceFlinger::vsyncPhaseOffsetNs;
|
|
int64_t SurfaceFlinger::sfVsyncPhaseOffsetNs;
|
|
bool SurfaceFlinger::useContextPriority;
|
|
int64_t SurfaceFlinger::dispSyncPresentTimeOffset;
|
|
bool SurfaceFlinger::useHwcForRgbToYuv;
|
|
uint64_t SurfaceFlinger::maxVirtualDisplaySize;
|
|
bool SurfaceFlinger::hasSyncFramework;
|
|
bool SurfaceFlinger::useVrFlinger;
|
|
int64_t SurfaceFlinger::maxFrameBufferAcquiredBuffers;
|
|
bool SurfaceFlinger::hasWideColorDisplay;
|
|
|
|
SurfaceFlinger::SurfaceFlinger()
|
|
: BnSurfaceComposer(),
|
|
mTransactionFlags(0),
|
|
mTransactionPending(false),
|
|
mAnimTransactionPending(false),
|
|
mLayersRemoved(false),
|
|
mLayersAdded(false),
|
|
mRepaintEverything(0),
|
|
mRenderEngine(nullptr),
|
|
mBootTime(systemTime()),
|
|
mBuiltinDisplays(),
|
|
mVisibleRegionsDirty(false),
|
|
mGeometryInvalid(false),
|
|
mAnimCompositionPending(false),
|
|
mDebugRegion(0),
|
|
mDebugDDMS(0),
|
|
mDebugDisableHWC(0),
|
|
mDebugDisableTransformHint(0),
|
|
mDebugInSwapBuffers(0),
|
|
mLastSwapBufferTime(0),
|
|
mDebugInTransaction(0),
|
|
mLastTransactionTime(0),
|
|
mBootFinished(false),
|
|
mForceFullDamage(false),
|
|
mInterceptor(this),
|
|
mPrimaryDispSync("PrimaryDispSync"),
|
|
mPrimaryHWVsyncEnabled(false),
|
|
mHWVsyncAvailable(false),
|
|
mHasColorMatrix(false),
|
|
mHasPoweredOff(false),
|
|
mFrameBuckets(),
|
|
mTotalTime(0),
|
|
mLastSwapTime(0),
|
|
mNumLayers(0),
|
|
mVrFlingerRequestsDisplay(false),
|
|
mMainThreadId(std::this_thread::get_id()),
|
|
mComposerSequenceId(0)
|
|
{
|
|
ALOGI("SurfaceFlinger is starting");
|
|
|
|
vsyncPhaseOffsetNs = getInt64< ISurfaceFlingerConfigs,
|
|
&ISurfaceFlingerConfigs::vsyncEventPhaseOffsetNs>(1000000);
|
|
|
|
sfVsyncPhaseOffsetNs = getInt64< ISurfaceFlingerConfigs,
|
|
&ISurfaceFlingerConfigs::vsyncSfEventPhaseOffsetNs>(1000000);
|
|
|
|
hasSyncFramework = getBool< ISurfaceFlingerConfigs,
|
|
&ISurfaceFlingerConfigs::hasSyncFramework>(true);
|
|
|
|
useContextPriority = getBool< ISurfaceFlingerConfigs,
|
|
&ISurfaceFlingerConfigs::useContextPriority>(false);
|
|
|
|
dispSyncPresentTimeOffset = getInt64< ISurfaceFlingerConfigs,
|
|
&ISurfaceFlingerConfigs::presentTimeOffsetFromVSyncNs>(0);
|
|
|
|
useHwcForRgbToYuv = getBool< ISurfaceFlingerConfigs,
|
|
&ISurfaceFlingerConfigs::useHwcForRGBtoYUV>(false);
|
|
|
|
maxVirtualDisplaySize = getUInt64<ISurfaceFlingerConfigs,
|
|
&ISurfaceFlingerConfigs::maxVirtualDisplaySize>(0);
|
|
|
|
// Vr flinger is only enabled on Daydream ready devices.
|
|
useVrFlinger = getBool< ISurfaceFlingerConfigs,
|
|
&ISurfaceFlingerConfigs::useVrFlinger>(false);
|
|
|
|
maxFrameBufferAcquiredBuffers = getInt64< ISurfaceFlingerConfigs,
|
|
&ISurfaceFlingerConfigs::maxFrameBufferAcquiredBuffers>(2);
|
|
|
|
hasWideColorDisplay =
|
|
getBool<ISurfaceFlingerConfigs, &ISurfaceFlingerConfigs::hasWideColorDisplay>(false);
|
|
|
|
mPrimaryDispSync.init(hasSyncFramework, dispSyncPresentTimeOffset);
|
|
|
|
// debugging stuff...
|
|
char value[PROPERTY_VALUE_MAX];
|
|
|
|
property_get("ro.bq.gpu_to_cpu_unsupported", value, "0");
|
|
mGpuToCpuSupported = !atoi(value);
|
|
|
|
property_get("debug.sf.showupdates", value, "0");
|
|
mDebugRegion = atoi(value);
|
|
|
|
property_get("debug.sf.ddms", value, "0");
|
|
mDebugDDMS = atoi(value);
|
|
if (mDebugDDMS) {
|
|
if (!startDdmConnection()) {
|
|
// start failed, and DDMS debugging not enabled
|
|
mDebugDDMS = 0;
|
|
}
|
|
}
|
|
ALOGI_IF(mDebugRegion, "showupdates enabled");
|
|
ALOGI_IF(mDebugDDMS, "DDMS debugging enabled");
|
|
|
|
property_get("debug.sf.disable_backpressure", value, "0");
|
|
mPropagateBackpressure = !atoi(value);
|
|
ALOGI_IF(!mPropagateBackpressure, "Disabling backpressure propagation");
|
|
|
|
property_get("debug.sf.enable_hwc_vds", value, "0");
|
|
mUseHwcVirtualDisplays = atoi(value);
|
|
ALOGI_IF(!mUseHwcVirtualDisplays, "Enabling HWC virtual displays");
|
|
|
|
property_get("ro.sf.disable_triple_buffer", value, "1");
|
|
mLayerTripleBufferingDisabled = atoi(value);
|
|
ALOGI_IF(mLayerTripleBufferingDisabled, "Disabling Triple Buffering");
|
|
|
|
// We should be reading 'persist.sys.sf.color_saturation' here
|
|
// but since /data may be encrypted, we need to wait until after vold
|
|
// comes online to attempt to read the property. The property is
|
|
// instead read after the boot animation
|
|
}
|
|
|
|
void SurfaceFlinger::onFirstRef()
|
|
{
|
|
mEventQueue.init(this);
|
|
}
|
|
|
|
SurfaceFlinger::~SurfaceFlinger()
|
|
{
|
|
EGLDisplay display = eglGetDisplay(EGL_DEFAULT_DISPLAY);
|
|
eglMakeCurrent(display, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
|
|
eglTerminate(display);
|
|
}
|
|
|
|
void SurfaceFlinger::binderDied(const wp<IBinder>& /* who */)
|
|
{
|
|
// the window manager died on us. prepare its eulogy.
|
|
|
|
// restore initial conditions (default device unblank, etc)
|
|
initializeDisplays();
|
|
|
|
// restart the boot-animation
|
|
startBootAnim();
|
|
}
|
|
|
|
static sp<ISurfaceComposerClient> initClient(const sp<Client>& client) {
|
|
status_t err = client->initCheck();
|
|
if (err == NO_ERROR) {
|
|
return client;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
sp<ISurfaceComposerClient> SurfaceFlinger::createConnection() {
|
|
return initClient(new Client(this));
|
|
}
|
|
|
|
sp<ISurfaceComposerClient> SurfaceFlinger::createScopedConnection(
|
|
const sp<IGraphicBufferProducer>& gbp) {
|
|
if (authenticateSurfaceTexture(gbp) == false) {
|
|
return nullptr;
|
|
}
|
|
const auto& layer = (static_cast<MonitoredProducer*>(gbp.get()))->getLayer();
|
|
if (layer == nullptr) {
|
|
return nullptr;
|
|
}
|
|
|
|
return initClient(new Client(this, layer));
|
|
}
|
|
|
|
sp<IBinder> SurfaceFlinger::createDisplay(const String8& displayName,
|
|
bool secure)
|
|
{
|
|
class DisplayToken : public BBinder {
|
|
sp<SurfaceFlinger> flinger;
|
|
virtual ~DisplayToken() {
|
|
// no more references, this display must be terminated
|
|
Mutex::Autolock _l(flinger->mStateLock);
|
|
flinger->mCurrentState.displays.removeItem(this);
|
|
flinger->setTransactionFlags(eDisplayTransactionNeeded);
|
|
}
|
|
public:
|
|
explicit DisplayToken(const sp<SurfaceFlinger>& flinger)
|
|
: flinger(flinger) {
|
|
}
|
|
};
|
|
|
|
sp<BBinder> token = new DisplayToken(this);
|
|
|
|
Mutex::Autolock _l(mStateLock);
|
|
DisplayDeviceState info(DisplayDevice::DISPLAY_VIRTUAL, secure);
|
|
info.displayName = displayName;
|
|
mCurrentState.displays.add(token, info);
|
|
mInterceptor.saveDisplayCreation(info);
|
|
return token;
|
|
}
|
|
|
|
void SurfaceFlinger::destroyDisplay(const sp<IBinder>& display) {
|
|
Mutex::Autolock _l(mStateLock);
|
|
|
|
ssize_t idx = mCurrentState.displays.indexOfKey(display);
|
|
if (idx < 0) {
|
|
ALOGW("destroyDisplay: invalid display token");
|
|
return;
|
|
}
|
|
|
|
const DisplayDeviceState& info(mCurrentState.displays.valueAt(idx));
|
|
if (!info.isVirtualDisplay()) {
|
|
ALOGE("destroyDisplay called for non-virtual display");
|
|
return;
|
|
}
|
|
mInterceptor.saveDisplayDeletion(info.displayId);
|
|
mCurrentState.displays.removeItemsAt(idx);
|
|
setTransactionFlags(eDisplayTransactionNeeded);
|
|
}
|
|
|
|
void SurfaceFlinger::createBuiltinDisplayLocked(DisplayDevice::DisplayType type) {
|
|
ALOGD("createBuiltinDisplayLocked(%d)", type);
|
|
ALOGW_IF(mBuiltinDisplays[type],
|
|
"Overwriting display token for display type %d", type);
|
|
mBuiltinDisplays[type] = new BBinder();
|
|
// All non-virtual displays are currently considered secure.
|
|
DisplayDeviceState info(type, true);
|
|
mCurrentState.displays.add(mBuiltinDisplays[type], info);
|
|
mInterceptor.saveDisplayCreation(info);
|
|
}
|
|
|
|
sp<IBinder> SurfaceFlinger::getBuiltInDisplay(int32_t id) {
|
|
if (uint32_t(id) >= DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES) {
|
|
ALOGE("getDefaultDisplay: id=%d is not a valid default display id", id);
|
|
return NULL;
|
|
}
|
|
return mBuiltinDisplays[id];
|
|
}
|
|
|
|
void SurfaceFlinger::bootFinished()
|
|
{
|
|
if (mStartPropertySetThread->join() != NO_ERROR) {
|
|
ALOGE("Join StartPropertySetThread failed!");
|
|
}
|
|
const nsecs_t now = systemTime();
|
|
const nsecs_t duration = now - mBootTime;
|
|
ALOGI("Boot is finished (%ld ms)", long(ns2ms(duration)) );
|
|
|
|
// wait patiently for the window manager death
|
|
const String16 name("window");
|
|
sp<IBinder> window(defaultServiceManager()->getService(name));
|
|
if (window != 0) {
|
|
window->linkToDeath(static_cast<IBinder::DeathRecipient*>(this));
|
|
}
|
|
|
|
if (mVrFlinger) {
|
|
mVrFlinger->OnBootFinished();
|
|
}
|
|
|
|
// stop boot animation
|
|
// formerly we would just kill the process, but we now ask it to exit so it
|
|
// can choose where to stop the animation.
|
|
property_set("service.bootanim.exit", "1");
|
|
|
|
const int LOGTAG_SF_STOP_BOOTANIM = 60110;
|
|
LOG_EVENT_LONG(LOGTAG_SF_STOP_BOOTANIM,
|
|
ns2ms(systemTime(SYSTEM_TIME_MONOTONIC)));
|
|
|
|
sp<LambdaMessage> readProperties = new LambdaMessage([&]() {
|
|
readPersistentProperties();
|
|
});
|
|
postMessageAsync(readProperties);
|
|
}
|
|
|
|
void SurfaceFlinger::deleteTextureAsync(uint32_t texture) {
|
|
class MessageDestroyGLTexture : public MessageBase {
|
|
RenderEngine& engine;
|
|
uint32_t texture;
|
|
public:
|
|
MessageDestroyGLTexture(RenderEngine& engine, uint32_t texture)
|
|
: engine(engine), texture(texture) {
|
|
}
|
|
virtual bool handler() {
|
|
engine.deleteTextures(1, &texture);
|
|
return true;
|
|
}
|
|
};
|
|
postMessageAsync(new MessageDestroyGLTexture(getRenderEngine(), texture));
|
|
}
|
|
|
|
class DispSyncSource : public VSyncSource, private DispSync::Callback {
|
|
public:
|
|
DispSyncSource(DispSync* dispSync, nsecs_t phaseOffset, bool traceVsync,
|
|
const char* name) :
|
|
mName(name),
|
|
mValue(0),
|
|
mTraceVsync(traceVsync),
|
|
mVsyncOnLabel(String8::format("VsyncOn-%s", name)),
|
|
mVsyncEventLabel(String8::format("VSYNC-%s", name)),
|
|
mDispSync(dispSync),
|
|
mCallbackMutex(),
|
|
mCallback(),
|
|
mVsyncMutex(),
|
|
mPhaseOffset(phaseOffset),
|
|
mEnabled(false) {}
|
|
|
|
virtual ~DispSyncSource() {}
|
|
|
|
virtual void setVSyncEnabled(bool enable) {
|
|
Mutex::Autolock lock(mVsyncMutex);
|
|
if (enable) {
|
|
status_t err = mDispSync->addEventListener(mName, mPhaseOffset,
|
|
static_cast<DispSync::Callback*>(this));
|
|
if (err != NO_ERROR) {
|
|
ALOGE("error registering vsync callback: %s (%d)",
|
|
strerror(-err), err);
|
|
}
|
|
//ATRACE_INT(mVsyncOnLabel.string(), 1);
|
|
} else {
|
|
status_t err = mDispSync->removeEventListener(
|
|
static_cast<DispSync::Callback*>(this));
|
|
if (err != NO_ERROR) {
|
|
ALOGE("error unregistering vsync callback: %s (%d)",
|
|
strerror(-err), err);
|
|
}
|
|
//ATRACE_INT(mVsyncOnLabel.string(), 0);
|
|
}
|
|
mEnabled = enable;
|
|
}
|
|
|
|
virtual void setCallback(const sp<VSyncSource::Callback>& callback) {
|
|
Mutex::Autolock lock(mCallbackMutex);
|
|
mCallback = callback;
|
|
}
|
|
|
|
virtual void setPhaseOffset(nsecs_t phaseOffset) {
|
|
Mutex::Autolock lock(mVsyncMutex);
|
|
|
|
// Normalize phaseOffset to [0, period)
|
|
auto period = mDispSync->getPeriod();
|
|
phaseOffset %= period;
|
|
if (phaseOffset < 0) {
|
|
// If we're here, then phaseOffset is in (-period, 0). After this
|
|
// operation, it will be in (0, period)
|
|
phaseOffset += period;
|
|
}
|
|
mPhaseOffset = phaseOffset;
|
|
|
|
// If we're not enabled, we don't need to mess with the listeners
|
|
if (!mEnabled) {
|
|
return;
|
|
}
|
|
|
|
// Remove the listener with the old offset
|
|
status_t err = mDispSync->removeEventListener(
|
|
static_cast<DispSync::Callback*>(this));
|
|
if (err != NO_ERROR) {
|
|
ALOGE("error unregistering vsync callback: %s (%d)",
|
|
strerror(-err), err);
|
|
}
|
|
|
|
// Add a listener with the new offset
|
|
err = mDispSync->addEventListener(mName, mPhaseOffset,
|
|
static_cast<DispSync::Callback*>(this));
|
|
if (err != NO_ERROR) {
|
|
ALOGE("error registering vsync callback: %s (%d)",
|
|
strerror(-err), err);
|
|
}
|
|
}
|
|
|
|
private:
|
|
virtual void onDispSyncEvent(nsecs_t when) {
|
|
sp<VSyncSource::Callback> callback;
|
|
{
|
|
Mutex::Autolock lock(mCallbackMutex);
|
|
callback = mCallback;
|
|
|
|
if (mTraceVsync) {
|
|
mValue = (mValue + 1) % 2;
|
|
ATRACE_INT(mVsyncEventLabel.string(), mValue);
|
|
}
|
|
}
|
|
|
|
if (callback != NULL) {
|
|
callback->onVSyncEvent(when);
|
|
}
|
|
}
|
|
|
|
const char* const mName;
|
|
|
|
int mValue;
|
|
|
|
const bool mTraceVsync;
|
|
const String8 mVsyncOnLabel;
|
|
const String8 mVsyncEventLabel;
|
|
|
|
DispSync* mDispSync;
|
|
|
|
Mutex mCallbackMutex; // Protects the following
|
|
sp<VSyncSource::Callback> mCallback;
|
|
|
|
Mutex mVsyncMutex; // Protects the following
|
|
nsecs_t mPhaseOffset;
|
|
bool mEnabled;
|
|
};
|
|
|
|
class InjectVSyncSource : public VSyncSource {
|
|
public:
|
|
InjectVSyncSource() {}
|
|
|
|
virtual ~InjectVSyncSource() {}
|
|
|
|
virtual void setCallback(const sp<VSyncSource::Callback>& callback) {
|
|
std::lock_guard<std::mutex> lock(mCallbackMutex);
|
|
mCallback = callback;
|
|
}
|
|
|
|
virtual void onInjectSyncEvent(nsecs_t when) {
|
|
std::lock_guard<std::mutex> lock(mCallbackMutex);
|
|
if (mCallback != nullptr) {
|
|
mCallback->onVSyncEvent(when);
|
|
}
|
|
}
|
|
|
|
virtual void setVSyncEnabled(bool) {}
|
|
virtual void setPhaseOffset(nsecs_t) {}
|
|
|
|
private:
|
|
std::mutex mCallbackMutex; // Protects the following
|
|
sp<VSyncSource::Callback> mCallback;
|
|
};
|
|
|
|
// Do not call property_set on main thread which will be blocked by init
|
|
// Use StartPropertySetThread instead.
|
|
void SurfaceFlinger::init() {
|
|
ALOGI( "SurfaceFlinger's main thread ready to run. "
|
|
"Initializing graphics H/W...");
|
|
|
|
ALOGI("Phase offest NS: %" PRId64 "", vsyncPhaseOffsetNs);
|
|
|
|
Mutex::Autolock _l(mStateLock);
|
|
|
|
// initialize EGL for the default display
|
|
mEGLDisplay = eglGetDisplay(EGL_DEFAULT_DISPLAY);
|
|
eglInitialize(mEGLDisplay, NULL, NULL);
|
|
|
|
// start the EventThread
|
|
sp<VSyncSource> vsyncSrc = new DispSyncSource(&mPrimaryDispSync,
|
|
vsyncPhaseOffsetNs, true, "app");
|
|
mEventThread = new EventThread(vsyncSrc, *this, false);
|
|
sp<VSyncSource> sfVsyncSrc = new DispSyncSource(&mPrimaryDispSync,
|
|
sfVsyncPhaseOffsetNs, true, "sf");
|
|
mSFEventThread = new EventThread(sfVsyncSrc, *this, true);
|
|
mEventQueue.setEventThread(mSFEventThread);
|
|
|
|
// set EventThread and SFEventThread to SCHED_FIFO to minimize jitter
|
|
struct sched_param param = {0};
|
|
param.sched_priority = 2;
|
|
if (sched_setscheduler(mSFEventThread->getTid(), SCHED_FIFO, ¶m) != 0) {
|
|
ALOGE("Couldn't set SCHED_FIFO for SFEventThread");
|
|
}
|
|
if (sched_setscheduler(mEventThread->getTid(), SCHED_FIFO, ¶m) != 0) {
|
|
ALOGE("Couldn't set SCHED_FIFO for EventThread");
|
|
}
|
|
|
|
// Get a RenderEngine for the given display / config (can't fail)
|
|
mRenderEngine = RenderEngine::create(mEGLDisplay,
|
|
HAL_PIXEL_FORMAT_RGBA_8888,
|
|
hasWideColorDisplay ? RenderEngine::WIDE_COLOR_SUPPORT : 0);
|
|
|
|
// retrieve the EGL context that was selected/created
|
|
mEGLContext = mRenderEngine->getEGLContext();
|
|
|
|
LOG_ALWAYS_FATAL_IF(mEGLContext == EGL_NO_CONTEXT,
|
|
"couldn't create EGLContext");
|
|
|
|
LOG_ALWAYS_FATAL_IF(mVrFlingerRequestsDisplay,
|
|
"Starting with vr flinger active is not currently supported.");
|
|
mHwc.reset(new HWComposer(false));
|
|
mHwc->registerCallback(this, mComposerSequenceId);
|
|
|
|
if (useVrFlinger) {
|
|
auto vrFlingerRequestDisplayCallback = [this] (bool requestDisplay) {
|
|
// This callback is called from the vr flinger dispatch thread. We
|
|
// need to call signalTransaction(), which requires holding
|
|
// mStateLock when we're not on the main thread. Acquiring
|
|
// mStateLock from the vr flinger dispatch thread might trigger a
|
|
// deadlock in surface flinger (see b/66916578), so post a message
|
|
// to be handled on the main thread instead.
|
|
sp<LambdaMessage> message = new LambdaMessage([=]() {
|
|
ALOGI("VR request display mode: requestDisplay=%d", requestDisplay);
|
|
mVrFlingerRequestsDisplay = requestDisplay;
|
|
signalTransaction();
|
|
});
|
|
postMessageAsync(message);
|
|
};
|
|
mVrFlinger = dvr::VrFlinger::Create(mHwc->getComposer(),
|
|
vrFlingerRequestDisplayCallback);
|
|
if (!mVrFlinger) {
|
|
ALOGE("Failed to start vrflinger");
|
|
}
|
|
}
|
|
|
|
mEventControlThread = new EventControlThread(this);
|
|
mEventControlThread->run("EventControl", PRIORITY_URGENT_DISPLAY);
|
|
|
|
// initialize our drawing state
|
|
mDrawingState = mCurrentState;
|
|
|
|
// set initial conditions (e.g. unblank default device)
|
|
initializeDisplays();
|
|
|
|
mRenderEngine->primeCache();
|
|
|
|
// Inform native graphics APIs whether the present timestamp is supported:
|
|
if (getHwComposer().hasCapability(
|
|
HWC2::Capability::PresentFenceIsNotReliable)) {
|
|
mStartPropertySetThread = new StartPropertySetThread(false);
|
|
} else {
|
|
mStartPropertySetThread = new StartPropertySetThread(true);
|
|
}
|
|
|
|
if (mStartPropertySetThread->Start() != NO_ERROR) {
|
|
ALOGE("Run StartPropertySetThread failed!");
|
|
}
|
|
|
|
ALOGV("Done initializing");
|
|
}
|
|
|
|
void SurfaceFlinger::readPersistentProperties() {
|
|
char value[PROPERTY_VALUE_MAX];
|
|
|
|
property_get("persist.sys.sf.color_saturation", value, "1.0");
|
|
mSaturation = atof(value);
|
|
ALOGV("Saturation is set to %.2f", mSaturation);
|
|
|
|
property_get("persist.sys.sf.native_mode", value, "0");
|
|
mForceNativeColorMode = atoi(value) == 1;
|
|
if (mForceNativeColorMode) {
|
|
ALOGV("Forcing native color mode");
|
|
}
|
|
}
|
|
|
|
void SurfaceFlinger::startBootAnim() {
|
|
// Start boot animation service by setting a property mailbox
|
|
// if property setting thread is already running, Start() will be just a NOP
|
|
mStartPropertySetThread->Start();
|
|
// Wait until property was set
|
|
if (mStartPropertySetThread->join() != NO_ERROR) {
|
|
ALOGE("Join StartPropertySetThread failed!");
|
|
}
|
|
}
|
|
|
|
size_t SurfaceFlinger::getMaxTextureSize() const {
|
|
return mRenderEngine->getMaxTextureSize();
|
|
}
|
|
|
|
size_t SurfaceFlinger::getMaxViewportDims() const {
|
|
return mRenderEngine->getMaxViewportDims();
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
bool SurfaceFlinger::authenticateSurfaceTexture(
|
|
const sp<IGraphicBufferProducer>& bufferProducer) const {
|
|
Mutex::Autolock _l(mStateLock);
|
|
return authenticateSurfaceTextureLocked(bufferProducer);
|
|
}
|
|
|
|
bool SurfaceFlinger::authenticateSurfaceTextureLocked(
|
|
const sp<IGraphicBufferProducer>& bufferProducer) const {
|
|
sp<IBinder> surfaceTextureBinder(IInterface::asBinder(bufferProducer));
|
|
return mGraphicBufferProducerList.indexOf(surfaceTextureBinder) >= 0;
|
|
}
|
|
|
|
status_t SurfaceFlinger::getSupportedFrameTimestamps(
|
|
std::vector<FrameEvent>* outSupported) const {
|
|
*outSupported = {
|
|
FrameEvent::REQUESTED_PRESENT,
|
|
FrameEvent::ACQUIRE,
|
|
FrameEvent::LATCH,
|
|
FrameEvent::FIRST_REFRESH_START,
|
|
FrameEvent::LAST_REFRESH_START,
|
|
FrameEvent::GPU_COMPOSITION_DONE,
|
|
FrameEvent::DEQUEUE_READY,
|
|
FrameEvent::RELEASE,
|
|
};
|
|
ConditionalLock _l(mStateLock,
|
|
std::this_thread::get_id() != mMainThreadId);
|
|
if (!getHwComposer().hasCapability(
|
|
HWC2::Capability::PresentFenceIsNotReliable)) {
|
|
outSupported->push_back(FrameEvent::DISPLAY_PRESENT);
|
|
}
|
|
return NO_ERROR;
|
|
}
|
|
|
|
status_t SurfaceFlinger::getDisplayConfigs(const sp<IBinder>& display,
|
|
Vector<DisplayInfo>* configs) {
|
|
if ((configs == NULL) || (display.get() == NULL)) {
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
if (!display.get())
|
|
return NAME_NOT_FOUND;
|
|
|
|
int32_t type = NAME_NOT_FOUND;
|
|
for (int i=0 ; i<DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES ; i++) {
|
|
if (display == mBuiltinDisplays[i]) {
|
|
type = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (type < 0) {
|
|
return type;
|
|
}
|
|
|
|
// TODO: Not sure if display density should handled by SF any longer
|
|
class Density {
|
|
static int getDensityFromProperty(char const* propName) {
|
|
char property[PROPERTY_VALUE_MAX];
|
|
int density = 0;
|
|
if (property_get(propName, property, NULL) > 0) {
|
|
density = atoi(property);
|
|
}
|
|
return density;
|
|
}
|
|
public:
|
|
static int getEmuDensity() {
|
|
return getDensityFromProperty("qemu.sf.lcd_density"); }
|
|
static int getBuildDensity() {
|
|
return getDensityFromProperty("ro.sf.lcd_density"); }
|
|
};
|
|
|
|
configs->clear();
|
|
|
|
ConditionalLock _l(mStateLock,
|
|
std::this_thread::get_id() != mMainThreadId);
|
|
for (const auto& hwConfig : getHwComposer().getConfigs(type)) {
|
|
DisplayInfo info = DisplayInfo();
|
|
|
|
float xdpi = hwConfig->getDpiX();
|
|
float ydpi = hwConfig->getDpiY();
|
|
|
|
if (type == DisplayDevice::DISPLAY_PRIMARY) {
|
|
// The density of the device is provided by a build property
|
|
float density = Density::getBuildDensity() / 160.0f;
|
|
if (density == 0) {
|
|
// the build doesn't provide a density -- this is wrong!
|
|
// use xdpi instead
|
|
ALOGE("ro.sf.lcd_density must be defined as a build property");
|
|
density = xdpi / 160.0f;
|
|
}
|
|
if (Density::getEmuDensity()) {
|
|
// if "qemu.sf.lcd_density" is specified, it overrides everything
|
|
xdpi = ydpi = density = Density::getEmuDensity();
|
|
density /= 160.0f;
|
|
}
|
|
info.density = density;
|
|
|
|
// TODO: this needs to go away (currently needed only by webkit)
|
|
sp<const DisplayDevice> hw(getDefaultDisplayDeviceLocked());
|
|
info.orientation = hw->getOrientation();
|
|
} else {
|
|
// TODO: where should this value come from?
|
|
static const int TV_DENSITY = 213;
|
|
info.density = TV_DENSITY / 160.0f;
|
|
info.orientation = 0;
|
|
}
|
|
|
|
info.w = hwConfig->getWidth();
|
|
info.h = hwConfig->getHeight();
|
|
info.xdpi = xdpi;
|
|
info.ydpi = ydpi;
|
|
info.fps = 1e9 / hwConfig->getVsyncPeriod();
|
|
info.appVsyncOffset = vsyncPhaseOffsetNs;
|
|
if (type == DisplayDevice::DISPLAY_PRIMARY) {
|
|
char property[PROPERTY_VALUE_MAX];
|
|
if (property_get("ro.sf.rotation", property, NULL) > 0) {
|
|
switch (atoi(property)) {
|
|
case 90:
|
|
info.orientation = (info.orientation - 1 + 4) % 4;
|
|
info.w = hwConfig->getHeight();
|
|
info.h = hwConfig->getWidth();
|
|
info.xdpi = ydpi;
|
|
info.ydpi = xdpi;
|
|
break;
|
|
case 180:
|
|
info.orientation = (info.orientation - 2 + 4) % 4;
|
|
break;
|
|
case 270:
|
|
info.orientation = (info.orientation - 3 + 4) % 4;
|
|
info.w = hwConfig->getHeight();
|
|
info.h = hwConfig->getWidth();
|
|
info.xdpi = ydpi;
|
|
info.ydpi = xdpi;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// This is how far in advance a buffer must be queued for
|
|
// presentation at a given time. If you want a buffer to appear
|
|
// on the screen at time N, you must submit the buffer before
|
|
// (N - presentationDeadline).
|
|
//
|
|
// Normally it's one full refresh period (to give SF a chance to
|
|
// latch the buffer), but this can be reduced by configuring a
|
|
// DispSync offset. Any additional delays introduced by the hardware
|
|
// composer or panel must be accounted for here.
|
|
//
|
|
// We add an additional 1ms to allow for processing time and
|
|
// differences between the ideal and actual refresh rate.
|
|
info.presentationDeadline = hwConfig->getVsyncPeriod() -
|
|
sfVsyncPhaseOffsetNs + 1000000;
|
|
|
|
// All non-virtual displays are currently considered secure.
|
|
info.secure = true;
|
|
|
|
configs->push_back(info);
|
|
}
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
status_t SurfaceFlinger::getDisplayStats(const sp<IBinder>& /* display */,
|
|
DisplayStatInfo* stats) {
|
|
if (stats == NULL) {
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
// FIXME for now we always return stats for the primary display
|
|
memset(stats, 0, sizeof(*stats));
|
|
stats->vsyncTime = mPrimaryDispSync.computeNextRefresh(0);
|
|
stats->vsyncPeriod = mPrimaryDispSync.getPeriod();
|
|
return NO_ERROR;
|
|
}
|
|
|
|
int SurfaceFlinger::getActiveConfig(const sp<IBinder>& display) {
|
|
if (display == NULL) {
|
|
ALOGE("%s : display is NULL", __func__);
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
sp<const DisplayDevice> device(getDisplayDevice(display));
|
|
if (device != NULL) {
|
|
return device->getActiveConfig();
|
|
}
|
|
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
void SurfaceFlinger::setActiveConfigInternal(const sp<DisplayDevice>& hw, int mode) {
|
|
ALOGD("Set active config mode=%d, type=%d flinger=%p", mode, hw->getDisplayType(),
|
|
this);
|
|
int32_t type = hw->getDisplayType();
|
|
int currentMode = hw->getActiveConfig();
|
|
|
|
if (mode == currentMode) {
|
|
ALOGD("Screen type=%d is already mode=%d", hw->getDisplayType(), mode);
|
|
return;
|
|
}
|
|
|
|
if (type >= DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES) {
|
|
ALOGW("Trying to set config for virtual display");
|
|
return;
|
|
}
|
|
|
|
hw->setActiveConfig(mode);
|
|
getHwComposer().setActiveConfig(type, mode);
|
|
}
|
|
|
|
status_t SurfaceFlinger::setActiveConfig(const sp<IBinder>& display, int mode) {
|
|
class MessageSetActiveConfig: public MessageBase {
|
|
SurfaceFlinger& mFlinger;
|
|
sp<IBinder> mDisplay;
|
|
int mMode;
|
|
public:
|
|
MessageSetActiveConfig(SurfaceFlinger& flinger, const sp<IBinder>& disp,
|
|
int mode) :
|
|
mFlinger(flinger), mDisplay(disp) { mMode = mode; }
|
|
virtual bool handler() {
|
|
Vector<DisplayInfo> configs;
|
|
mFlinger.getDisplayConfigs(mDisplay, &configs);
|
|
if (mMode < 0 || mMode >= static_cast<int>(configs.size())) {
|
|
ALOGE("Attempt to set active config = %d for display with %zu configs",
|
|
mMode, configs.size());
|
|
return true;
|
|
}
|
|
sp<DisplayDevice> hw(mFlinger.getDisplayDevice(mDisplay));
|
|
if (hw == NULL) {
|
|
ALOGE("Attempt to set active config = %d for null display %p",
|
|
mMode, mDisplay.get());
|
|
} else if (hw->getDisplayType() >= DisplayDevice::DISPLAY_VIRTUAL) {
|
|
ALOGW("Attempt to set active config = %d for virtual display",
|
|
mMode);
|
|
} else {
|
|
mFlinger.setActiveConfigInternal(hw, mMode);
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
sp<MessageBase> msg = new MessageSetActiveConfig(*this, display, mode);
|
|
postMessageSync(msg);
|
|
return NO_ERROR;
|
|
}
|
|
status_t SurfaceFlinger::getDisplayColorModes(const sp<IBinder>& display,
|
|
Vector<android_color_mode_t>* outColorModes) {
|
|
if ((outColorModes == nullptr) || (display.get() == nullptr)) {
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
if (!display.get()) {
|
|
return NAME_NOT_FOUND;
|
|
}
|
|
|
|
int32_t type = NAME_NOT_FOUND;
|
|
for (int i=0 ; i<DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES ; i++) {
|
|
if (display == mBuiltinDisplays[i]) {
|
|
type = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (type < 0) {
|
|
return type;
|
|
}
|
|
|
|
std::vector<android_color_mode_t> modes;
|
|
{
|
|
ConditionalLock _l(mStateLock,
|
|
std::this_thread::get_id() != mMainThreadId);
|
|
modes = getHwComposer().getColorModes(type);
|
|
}
|
|
outColorModes->clear();
|
|
std::copy(modes.cbegin(), modes.cend(), std::back_inserter(*outColorModes));
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
android_color_mode_t SurfaceFlinger::getActiveColorMode(const sp<IBinder>& display) {
|
|
sp<const DisplayDevice> device(getDisplayDevice(display));
|
|
if (device != nullptr) {
|
|
return device->getActiveColorMode();
|
|
}
|
|
return static_cast<android_color_mode_t>(BAD_VALUE);
|
|
}
|
|
|
|
void SurfaceFlinger::setActiveColorModeInternal(const sp<DisplayDevice>& hw,
|
|
android_color_mode_t mode) {
|
|
int32_t type = hw->getDisplayType();
|
|
android_color_mode_t currentMode = hw->getActiveColorMode();
|
|
|
|
if (mode == currentMode) {
|
|
return;
|
|
}
|
|
|
|
if (type >= DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES) {
|
|
ALOGW("Trying to set config for virtual display");
|
|
return;
|
|
}
|
|
|
|
ALOGD("Set active color mode: %s (%d), type=%d", decodeColorMode(mode).c_str(), mode,
|
|
hw->getDisplayType());
|
|
|
|
hw->setActiveColorMode(mode);
|
|
getHwComposer().setActiveColorMode(type, mode);
|
|
}
|
|
|
|
|
|
status_t SurfaceFlinger::setActiveColorMode(const sp<IBinder>& display,
|
|
android_color_mode_t colorMode) {
|
|
class MessageSetActiveColorMode: public MessageBase {
|
|
SurfaceFlinger& mFlinger;
|
|
sp<IBinder> mDisplay;
|
|
android_color_mode_t mMode;
|
|
public:
|
|
MessageSetActiveColorMode(SurfaceFlinger& flinger, const sp<IBinder>& disp,
|
|
android_color_mode_t mode) :
|
|
mFlinger(flinger), mDisplay(disp) { mMode = mode; }
|
|
virtual bool handler() {
|
|
Vector<android_color_mode_t> modes;
|
|
mFlinger.getDisplayColorModes(mDisplay, &modes);
|
|
bool exists = std::find(std::begin(modes), std::end(modes), mMode) != std::end(modes);
|
|
if (mMode < 0 || !exists) {
|
|
ALOGE("Attempt to set invalid active color mode %s (%d) for display %p",
|
|
decodeColorMode(mMode).c_str(), mMode, mDisplay.get());
|
|
return true;
|
|
}
|
|
sp<DisplayDevice> hw(mFlinger.getDisplayDevice(mDisplay));
|
|
if (hw == nullptr) {
|
|
ALOGE("Attempt to set active color mode %s (%d) for null display %p",
|
|
decodeColorMode(mMode).c_str(), mMode, mDisplay.get());
|
|
} else if (hw->getDisplayType() >= DisplayDevice::DISPLAY_VIRTUAL) {
|
|
ALOGW("Attempt to set active color mode %s %d for virtual display",
|
|
decodeColorMode(mMode).c_str(), mMode);
|
|
} else {
|
|
mFlinger.setActiveColorModeInternal(hw, mMode);
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
sp<MessageBase> msg = new MessageSetActiveColorMode(*this, display, colorMode);
|
|
postMessageSync(msg);
|
|
return NO_ERROR;
|
|
}
|
|
|
|
status_t SurfaceFlinger::clearAnimationFrameStats() {
|
|
Mutex::Autolock _l(mStateLock);
|
|
mAnimFrameTracker.clearStats();
|
|
return NO_ERROR;
|
|
}
|
|
|
|
status_t SurfaceFlinger::getAnimationFrameStats(FrameStats* outStats) const {
|
|
Mutex::Autolock _l(mStateLock);
|
|
mAnimFrameTracker.getStats(outStats);
|
|
return NO_ERROR;
|
|
}
|
|
|
|
status_t SurfaceFlinger::getHdrCapabilities(const sp<IBinder>& display,
|
|
HdrCapabilities* outCapabilities) const {
|
|
Mutex::Autolock _l(mStateLock);
|
|
|
|
sp<const DisplayDevice> displayDevice(getDisplayDeviceLocked(display));
|
|
if (displayDevice == nullptr) {
|
|
ALOGE("getHdrCapabilities: Invalid display %p", displayDevice.get());
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
std::unique_ptr<HdrCapabilities> capabilities =
|
|
mHwc->getHdrCapabilities(displayDevice->getHwcDisplayId());
|
|
if (capabilities) {
|
|
std::swap(*outCapabilities, *capabilities);
|
|
} else {
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
void SurfaceFlinger::enableVSyncInjectionsInternal(bool enable) {
|
|
Mutex::Autolock _l(mStateLock);
|
|
|
|
if (mInjectVSyncs == enable) {
|
|
return;
|
|
}
|
|
|
|
if (enable) {
|
|
ALOGV("VSync Injections enabled");
|
|
if (mVSyncInjector.get() == nullptr) {
|
|
mVSyncInjector = new InjectVSyncSource();
|
|
mInjectorEventThread = new EventThread(mVSyncInjector, *this, false);
|
|
}
|
|
mEventQueue.setEventThread(mInjectorEventThread);
|
|
} else {
|
|
ALOGV("VSync Injections disabled");
|
|
mEventQueue.setEventThread(mSFEventThread);
|
|
}
|
|
|
|
mInjectVSyncs = enable;
|
|
}
|
|
|
|
status_t SurfaceFlinger::enableVSyncInjections(bool enable) {
|
|
class MessageEnableVSyncInjections : public MessageBase {
|
|
SurfaceFlinger* mFlinger;
|
|
bool mEnable;
|
|
public:
|
|
MessageEnableVSyncInjections(SurfaceFlinger* flinger, bool enable)
|
|
: mFlinger(flinger), mEnable(enable) { }
|
|
virtual bool handler() {
|
|
mFlinger->enableVSyncInjectionsInternal(mEnable);
|
|
return true;
|
|
}
|
|
};
|
|
sp<MessageBase> msg = new MessageEnableVSyncInjections(this, enable);
|
|
postMessageSync(msg);
|
|
return NO_ERROR;
|
|
}
|
|
|
|
status_t SurfaceFlinger::injectVSync(nsecs_t when) {
|
|
Mutex::Autolock _l(mStateLock);
|
|
|
|
if (!mInjectVSyncs) {
|
|
ALOGE("VSync Injections not enabled");
|
|
return BAD_VALUE;
|
|
}
|
|
if (mInjectVSyncs && mInjectorEventThread.get() != nullptr) {
|
|
ALOGV("Injecting VSync inside SurfaceFlinger");
|
|
mVSyncInjector->onInjectSyncEvent(when);
|
|
}
|
|
return NO_ERROR;
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
sp<IDisplayEventConnection> SurfaceFlinger::createDisplayEventConnection(
|
|
ISurfaceComposer::VsyncSource vsyncSource) {
|
|
if (vsyncSource == eVsyncSourceSurfaceFlinger) {
|
|
return mSFEventThread->createEventConnection();
|
|
} else {
|
|
return mEventThread->createEventConnection();
|
|
}
|
|
}
|
|
|
|
// ----------------------------------------------------------------------------
|
|
|
|
void SurfaceFlinger::waitForEvent() {
|
|
mEventQueue.waitMessage();
|
|
}
|
|
|
|
void SurfaceFlinger::signalTransaction() {
|
|
mEventQueue.invalidate();
|
|
}
|
|
|
|
void SurfaceFlinger::signalLayerUpdate() {
|
|
mEventQueue.invalidate();
|
|
}
|
|
|
|
void SurfaceFlinger::signalRefresh() {
|
|
mRefreshPending = true;
|
|
mEventQueue.refresh();
|
|
}
|
|
|
|
status_t SurfaceFlinger::postMessageAsync(const sp<MessageBase>& msg,
|
|
nsecs_t reltime, uint32_t /* flags */) {
|
|
return mEventQueue.postMessage(msg, reltime);
|
|
}
|
|
|
|
status_t SurfaceFlinger::postMessageSync(const sp<MessageBase>& msg,
|
|
nsecs_t reltime, uint32_t /* flags */) {
|
|
status_t res = mEventQueue.postMessage(msg, reltime);
|
|
if (res == NO_ERROR) {
|
|
msg->wait();
|
|
}
|
|
return res;
|
|
}
|
|
|
|
void SurfaceFlinger::run() {
|
|
do {
|
|
waitForEvent();
|
|
} while (true);
|
|
}
|
|
|
|
void SurfaceFlinger::enableHardwareVsync() {
|
|
Mutex::Autolock _l(mHWVsyncLock);
|
|
if (!mPrimaryHWVsyncEnabled && mHWVsyncAvailable) {
|
|
mPrimaryDispSync.beginResync();
|
|
//eventControl(HWC_DISPLAY_PRIMARY, SurfaceFlinger::EVENT_VSYNC, true);
|
|
mEventControlThread->setVsyncEnabled(true);
|
|
mPrimaryHWVsyncEnabled = true;
|
|
}
|
|
}
|
|
|
|
void SurfaceFlinger::resyncToHardwareVsync(bool makeAvailable) {
|
|
Mutex::Autolock _l(mHWVsyncLock);
|
|
|
|
if (makeAvailable) {
|
|
mHWVsyncAvailable = true;
|
|
} else if (!mHWVsyncAvailable) {
|
|
// Hardware vsync is not currently available, so abort the resync
|
|
// attempt for now
|
|
return;
|
|
}
|
|
|
|
const auto& activeConfig = mHwc->getActiveConfig(HWC_DISPLAY_PRIMARY);
|
|
const nsecs_t period = activeConfig->getVsyncPeriod();
|
|
|
|
mPrimaryDispSync.reset();
|
|
mPrimaryDispSync.setPeriod(period);
|
|
|
|
if (!mPrimaryHWVsyncEnabled) {
|
|
mPrimaryDispSync.beginResync();
|
|
//eventControl(HWC_DISPLAY_PRIMARY, SurfaceFlinger::EVENT_VSYNC, true);
|
|
mEventControlThread->setVsyncEnabled(true);
|
|
mPrimaryHWVsyncEnabled = true;
|
|
}
|
|
}
|
|
|
|
void SurfaceFlinger::disableHardwareVsync(bool makeUnavailable) {
|
|
Mutex::Autolock _l(mHWVsyncLock);
|
|
if (mPrimaryHWVsyncEnabled) {
|
|
//eventControl(HWC_DISPLAY_PRIMARY, SurfaceFlinger::EVENT_VSYNC, false);
|
|
mEventControlThread->setVsyncEnabled(false);
|
|
mPrimaryDispSync.endResync();
|
|
mPrimaryHWVsyncEnabled = false;
|
|
}
|
|
if (makeUnavailable) {
|
|
mHWVsyncAvailable = false;
|
|
}
|
|
}
|
|
|
|
void SurfaceFlinger::resyncWithRateLimit() {
|
|
static constexpr nsecs_t kIgnoreDelay = ms2ns(500);
|
|
|
|
// No explicit locking is needed here since EventThread holds a lock while calling this method
|
|
static nsecs_t sLastResyncAttempted = 0;
|
|
const nsecs_t now = systemTime();
|
|
if (now - sLastResyncAttempted > kIgnoreDelay) {
|
|
resyncToHardwareVsync(false);
|
|
}
|
|
sLastResyncAttempted = now;
|
|
}
|
|
|
|
void SurfaceFlinger::onVsyncReceived(int32_t sequenceId,
|
|
hwc2_display_t displayId, int64_t timestamp) {
|
|
Mutex::Autolock lock(mStateLock);
|
|
// Ignore any vsyncs from a previous hardware composer.
|
|
if (sequenceId != mComposerSequenceId) {
|
|
return;
|
|
}
|
|
|
|
int32_t type;
|
|
if (!mHwc->onVsync(displayId, timestamp, &type)) {
|
|
return;
|
|
}
|
|
|
|
bool needsHwVsync = false;
|
|
|
|
{ // Scope for the lock
|
|
Mutex::Autolock _l(mHWVsyncLock);
|
|
if (type == DisplayDevice::DISPLAY_PRIMARY && mPrimaryHWVsyncEnabled) {
|
|
needsHwVsync = mPrimaryDispSync.addResyncSample(timestamp);
|
|
}
|
|
}
|
|
|
|
if (needsHwVsync) {
|
|
enableHardwareVsync();
|
|
} else {
|
|
disableHardwareVsync(false);
|
|
}
|
|
}
|
|
|
|
void SurfaceFlinger::getCompositorTiming(CompositorTiming* compositorTiming) {
|
|
std::lock_guard<std::mutex> lock(mCompositorTimingLock);
|
|
*compositorTiming = mCompositorTiming;
|
|
}
|
|
|
|
void SurfaceFlinger::createDefaultDisplayDevice() {
|
|
const DisplayDevice::DisplayType type = DisplayDevice::DISPLAY_PRIMARY;
|
|
wp<IBinder> token = mBuiltinDisplays[type];
|
|
|
|
// All non-virtual displays are currently considered secure.
|
|
const bool isSecure = true;
|
|
|
|
sp<IGraphicBufferProducer> producer;
|
|
sp<IGraphicBufferConsumer> consumer;
|
|
BufferQueue::createBufferQueue(&producer, &consumer);
|
|
|
|
sp<FramebufferSurface> fbs = new FramebufferSurface(*mHwc, type, consumer);
|
|
|
|
bool hasWideColorModes = false;
|
|
std::vector<android_color_mode_t> modes = getHwComposer().getColorModes(type);
|
|
for (android_color_mode_t colorMode : modes) {
|
|
switch (colorMode) {
|
|
case HAL_COLOR_MODE_DISPLAY_P3:
|
|
case HAL_COLOR_MODE_ADOBE_RGB:
|
|
case HAL_COLOR_MODE_DCI_P3:
|
|
hasWideColorModes = true;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
bool useWideColorMode = hasWideColorModes && hasWideColorDisplay && !mForceNativeColorMode;
|
|
sp<DisplayDevice> hw = new DisplayDevice(this, DisplayDevice::DISPLAY_PRIMARY, type, isSecure,
|
|
token, fbs, producer, mRenderEngine->getEGLConfig(),
|
|
useWideColorMode);
|
|
mDisplays.add(token, hw);
|
|
android_color_mode defaultColorMode = HAL_COLOR_MODE_NATIVE;
|
|
if (useWideColorMode) {
|
|
defaultColorMode = HAL_COLOR_MODE_SRGB;
|
|
}
|
|
setActiveColorModeInternal(hw, defaultColorMode);
|
|
hw->setCompositionDataSpace(HAL_DATASPACE_UNKNOWN);
|
|
|
|
// Add the primary display token to mDrawingState so we don't try to
|
|
// recreate the DisplayDevice for the primary display.
|
|
mDrawingState.displays.add(token, DisplayDeviceState(type, true));
|
|
|
|
// make the GLContext current so that we can create textures when creating
|
|
// Layers (which may happens before we render something)
|
|
hw->makeCurrent(mEGLDisplay, mEGLContext);
|
|
}
|
|
|
|
void SurfaceFlinger::onHotplugReceived(int32_t sequenceId,
|
|
hwc2_display_t display, HWC2::Connection connection,
|
|
bool primaryDisplay) {
|
|
ALOGV("onHotplugReceived(%d, %" PRIu64 ", %s, %s)",
|
|
sequenceId, display,
|
|
connection == HWC2::Connection::Connected ?
|
|
"connected" : "disconnected",
|
|
primaryDisplay ? "primary" : "external");
|
|
|
|
// Only lock if we're not on the main thread. This function is normally
|
|
// called on a hwbinder thread, but for the primary display it's called on
|
|
// the main thread with the state lock already held, so don't attempt to
|
|
// acquire it here.
|
|
ConditionalLock lock(mStateLock,
|
|
std::this_thread::get_id() != mMainThreadId);
|
|
|
|
if (primaryDisplay) {
|
|
mHwc->onHotplug(display, connection);
|
|
if (!mBuiltinDisplays[DisplayDevice::DISPLAY_PRIMARY].get()) {
|
|
createBuiltinDisplayLocked(DisplayDevice::DISPLAY_PRIMARY);
|
|
}
|
|
createDefaultDisplayDevice();
|
|
} else {
|
|
if (sequenceId != mComposerSequenceId) {
|
|
return;
|
|
}
|
|
if (mHwc->isUsingVrComposer()) {
|
|
ALOGE("External displays are not supported by the vr hardware composer.");
|
|
return;
|
|
}
|
|
mHwc->onHotplug(display, connection);
|
|
auto type = DisplayDevice::DISPLAY_EXTERNAL;
|
|
if (connection == HWC2::Connection::Connected) {
|
|
createBuiltinDisplayLocked(type);
|
|
} else {
|
|
mCurrentState.displays.removeItem(mBuiltinDisplays[type]);
|
|
mBuiltinDisplays[type].clear();
|
|
}
|
|
setTransactionFlags(eDisplayTransactionNeeded);
|
|
|
|
// Defer EventThread notification until SF has updated mDisplays.
|
|
}
|
|
}
|
|
|
|
void SurfaceFlinger::onRefreshReceived(int sequenceId,
|
|
hwc2_display_t /*display*/) {
|
|
Mutex::Autolock lock(mStateLock);
|
|
if (sequenceId != mComposerSequenceId) {
|
|
return;
|
|
}
|
|
repaintEverythingLocked();
|
|
}
|
|
|
|
void SurfaceFlinger::setVsyncEnabled(int disp, int enabled) {
|
|
ATRACE_CALL();
|
|
Mutex::Autolock lock(mStateLock);
|
|
getHwComposer().setVsyncEnabled(disp,
|
|
enabled ? HWC2::Vsync::Enable : HWC2::Vsync::Disable);
|
|
}
|
|
|
|
// Note: it is assumed the caller holds |mStateLock| when this is called
|
|
void SurfaceFlinger::resetDisplayState() {
|
|
disableHardwareVsync(true);
|
|
// Clear the drawing state so that the logic inside of
|
|
// handleTransactionLocked will fire. It will determine the delta between
|
|
// mCurrentState and mDrawingState and re-apply all changes when we make the
|
|
// transition.
|
|
mDrawingState.displays.clear();
|
|
eglMakeCurrent(mEGLDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
|
|
mDisplays.clear();
|
|
}
|
|
|
|
void SurfaceFlinger::updateVrFlinger() {
|
|
if (!mVrFlinger)
|
|
return;
|
|
bool vrFlingerRequestsDisplay = mVrFlingerRequestsDisplay;
|
|
if (vrFlingerRequestsDisplay == mHwc->isUsingVrComposer()) {
|
|
return;
|
|
}
|
|
|
|
if (vrFlingerRequestsDisplay && !mHwc->getComposer()->isRemote()) {
|
|
ALOGE("Vr flinger is only supported for remote hardware composer"
|
|
" service connections. Ignoring request to transition to vr"
|
|
" flinger.");
|
|
mVrFlingerRequestsDisplay = false;
|
|
return;
|
|
}
|
|
|
|
Mutex::Autolock _l(mStateLock);
|
|
|
|
int currentDisplayPowerMode = getDisplayDeviceLocked(
|
|
mBuiltinDisplays[DisplayDevice::DISPLAY_PRIMARY])->getPowerMode();
|
|
|
|
if (!vrFlingerRequestsDisplay) {
|
|
mVrFlinger->SeizeDisplayOwnership();
|
|
}
|
|
|
|
resetDisplayState();
|
|
mHwc.reset(); // Delete the current instance before creating the new one
|
|
mHwc.reset(new HWComposer(vrFlingerRequestsDisplay));
|
|
mHwc->registerCallback(this, ++mComposerSequenceId);
|
|
|
|
LOG_ALWAYS_FATAL_IF(!mHwc->getComposer()->isRemote(),
|
|
"Switched to non-remote hardware composer");
|
|
|
|
if (vrFlingerRequestsDisplay) {
|
|
mVrFlinger->GrantDisplayOwnership();
|
|
} else {
|
|
enableHardwareVsync();
|
|
}
|
|
|
|
mVisibleRegionsDirty = true;
|
|
invalidateHwcGeometry();
|
|
|
|
// Re-enable default display.
|
|
sp<DisplayDevice> hw(getDisplayDeviceLocked(
|
|
mBuiltinDisplays[DisplayDevice::DISPLAY_PRIMARY]));
|
|
setPowerModeInternal(hw, currentDisplayPowerMode, /*stateLockHeld*/ true);
|
|
|
|
// Reset the timing values to account for the period of the swapped in HWC
|
|
const auto& activeConfig = mHwc->getActiveConfig(HWC_DISPLAY_PRIMARY);
|
|
const nsecs_t period = activeConfig->getVsyncPeriod();
|
|
mAnimFrameTracker.setDisplayRefreshPeriod(period);
|
|
|
|
// Use phase of 0 since phase is not known.
|
|
// Use latency of 0, which will snap to the ideal latency.
|
|
setCompositorTimingSnapped(0, period, 0);
|
|
|
|
android_atomic_or(1, &mRepaintEverything);
|
|
setTransactionFlags(eDisplayTransactionNeeded);
|
|
}
|
|
|
|
void SurfaceFlinger::onMessageReceived(int32_t what) {
|
|
ATRACE_CALL();
|
|
switch (what) {
|
|
case MessageQueue::INVALIDATE: {
|
|
bool frameMissed = !mHadClientComposition &&
|
|
mPreviousPresentFence != Fence::NO_FENCE &&
|
|
(mPreviousPresentFence->getSignalTime() ==
|
|
Fence::SIGNAL_TIME_PENDING);
|
|
ATRACE_INT("FrameMissed", static_cast<int>(frameMissed));
|
|
if (mPropagateBackpressure && frameMissed) {
|
|
signalLayerUpdate();
|
|
break;
|
|
}
|
|
|
|
// Now that we're going to make it to the handleMessageTransaction()
|
|
// call below it's safe to call updateVrFlinger(), which will
|
|
// potentially trigger a display handoff.
|
|
updateVrFlinger();
|
|
|
|
bool refreshNeeded = handleMessageTransaction();
|
|
refreshNeeded |= handleMessageInvalidate();
|
|
refreshNeeded |= mRepaintEverything;
|
|
if (refreshNeeded) {
|
|
// Signal a refresh if a transaction modified the window state,
|
|
// a new buffer was latched, or if HWC has requested a full
|
|
// repaint
|
|
signalRefresh();
|
|
}
|
|
break;
|
|
}
|
|
case MessageQueue::REFRESH: {
|
|
handleMessageRefresh();
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool SurfaceFlinger::handleMessageTransaction() {
|
|
uint32_t transactionFlags = peekTransactionFlags();
|
|
if (transactionFlags) {
|
|
handleTransaction(transactionFlags);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool SurfaceFlinger::handleMessageInvalidate() {
|
|
ATRACE_CALL();
|
|
return handlePageFlip();
|
|
}
|
|
|
|
void SurfaceFlinger::handleMessageRefresh() {
|
|
ATRACE_CALL();
|
|
|
|
mRefreshPending = false;
|
|
|
|
nsecs_t refreshStartTime = systemTime(SYSTEM_TIME_MONOTONIC);
|
|
|
|
preComposition(refreshStartTime);
|
|
rebuildLayerStacks();
|
|
setUpHWComposer();
|
|
doDebugFlashRegions();
|
|
doComposition();
|
|
postComposition(refreshStartTime);
|
|
|
|
mPreviousPresentFence = mHwc->getPresentFence(HWC_DISPLAY_PRIMARY);
|
|
|
|
mHadClientComposition = false;
|
|
for (size_t displayId = 0; displayId < mDisplays.size(); ++displayId) {
|
|
const sp<DisplayDevice>& displayDevice = mDisplays[displayId];
|
|
mHadClientComposition = mHadClientComposition ||
|
|
mHwc->hasClientComposition(displayDevice->getHwcDisplayId());
|
|
}
|
|
|
|
mLayersWithQueuedFrames.clear();
|
|
}
|
|
|
|
void SurfaceFlinger::doDebugFlashRegions()
|
|
{
|
|
// is debugging enabled
|
|
if (CC_LIKELY(!mDebugRegion))
|
|
return;
|
|
|
|
const bool repaintEverything = mRepaintEverything;
|
|
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
|
|
const sp<DisplayDevice>& hw(mDisplays[dpy]);
|
|
if (hw->isDisplayOn()) {
|
|
// transform the dirty region into this screen's coordinate space
|
|
const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
|
|
if (!dirtyRegion.isEmpty()) {
|
|
// redraw the whole screen
|
|
doComposeSurfaces(hw, Region(hw->bounds()));
|
|
|
|
// and draw the dirty region
|
|
const int32_t height = hw->getHeight();
|
|
RenderEngine& engine(getRenderEngine());
|
|
engine.fillRegionWithColor(dirtyRegion, height, 1, 0, 1, 1);
|
|
|
|
hw->swapBuffers(getHwComposer());
|
|
}
|
|
}
|
|
}
|
|
|
|
postFramebuffer();
|
|
|
|
if (mDebugRegion > 1) {
|
|
usleep(mDebugRegion * 1000);
|
|
}
|
|
|
|
for (size_t displayId = 0; displayId < mDisplays.size(); ++displayId) {
|
|
auto& displayDevice = mDisplays[displayId];
|
|
if (!displayDevice->isDisplayOn()) {
|
|
continue;
|
|
}
|
|
|
|
status_t result = displayDevice->prepareFrame(*mHwc);
|
|
ALOGE_IF(result != NO_ERROR, "prepareFrame for display %zd failed:"
|
|
" %d (%s)", displayId, result, strerror(-result));
|
|
}
|
|
}
|
|
|
|
void SurfaceFlinger::preComposition(nsecs_t refreshStartTime)
|
|
{
|
|
ATRACE_CALL();
|
|
ALOGV("preComposition");
|
|
|
|
bool needExtraInvalidate = false;
|
|
mDrawingState.traverseInZOrder([&](Layer* layer) {
|
|
if (layer->onPreComposition(refreshStartTime)) {
|
|
needExtraInvalidate = true;
|
|
}
|
|
});
|
|
|
|
if (needExtraInvalidate) {
|
|
signalLayerUpdate();
|
|
}
|
|
}
|
|
|
|
void SurfaceFlinger::updateCompositorTiming(
|
|
nsecs_t vsyncPhase, nsecs_t vsyncInterval, nsecs_t compositeTime,
|
|
std::shared_ptr<FenceTime>& presentFenceTime) {
|
|
// Update queue of past composite+present times and determine the
|
|
// most recently known composite to present latency.
|
|
mCompositePresentTimes.push({compositeTime, presentFenceTime});
|
|
nsecs_t compositeToPresentLatency = -1;
|
|
while (!mCompositePresentTimes.empty()) {
|
|
CompositePresentTime& cpt = mCompositePresentTimes.front();
|
|
// Cached values should have been updated before calling this method,
|
|
// which helps avoid duplicate syscalls.
|
|
nsecs_t displayTime = cpt.display->getCachedSignalTime();
|
|
if (displayTime == Fence::SIGNAL_TIME_PENDING) {
|
|
break;
|
|
}
|
|
compositeToPresentLatency = displayTime - cpt.composite;
|
|
mCompositePresentTimes.pop();
|
|
}
|
|
|
|
// Don't let mCompositePresentTimes grow unbounded, just in case.
|
|
while (mCompositePresentTimes.size() > 16) {
|
|
mCompositePresentTimes.pop();
|
|
}
|
|
|
|
setCompositorTimingSnapped(
|
|
vsyncPhase, vsyncInterval, compositeToPresentLatency);
|
|
}
|
|
|
|
void SurfaceFlinger::setCompositorTimingSnapped(nsecs_t vsyncPhase,
|
|
nsecs_t vsyncInterval, nsecs_t compositeToPresentLatency) {
|
|
// Integer division and modulo round toward 0 not -inf, so we need to
|
|
// treat negative and positive offsets differently.
|
|
nsecs_t idealLatency = (sfVsyncPhaseOffsetNs > 0) ?
|
|
(vsyncInterval - (sfVsyncPhaseOffsetNs % vsyncInterval)) :
|
|
((-sfVsyncPhaseOffsetNs) % vsyncInterval);
|
|
|
|
// Just in case sfVsyncPhaseOffsetNs == -vsyncInterval.
|
|
if (idealLatency <= 0) {
|
|
idealLatency = vsyncInterval;
|
|
}
|
|
|
|
// Snap the latency to a value that removes scheduling jitter from the
|
|
// composition and present times, which often have >1ms of jitter.
|
|
// Reducing jitter is important if an app attempts to extrapolate
|
|
// something (such as user input) to an accurate diasplay time.
|
|
// Snapping also allows an app to precisely calculate sfVsyncPhaseOffsetNs
|
|
// with (presentLatency % interval).
|
|
nsecs_t bias = vsyncInterval / 2;
|
|
int64_t extraVsyncs =
|
|
(compositeToPresentLatency - idealLatency + bias) / vsyncInterval;
|
|
nsecs_t snappedCompositeToPresentLatency = (extraVsyncs > 0) ?
|
|
idealLatency + (extraVsyncs * vsyncInterval) : idealLatency;
|
|
|
|
std::lock_guard<std::mutex> lock(mCompositorTimingLock);
|
|
mCompositorTiming.deadline = vsyncPhase - idealLatency;
|
|
mCompositorTiming.interval = vsyncInterval;
|
|
mCompositorTiming.presentLatency = snappedCompositeToPresentLatency;
|
|
}
|
|
|
|
void SurfaceFlinger::postComposition(nsecs_t refreshStartTime)
|
|
{
|
|
ATRACE_CALL();
|
|
ALOGV("postComposition");
|
|
|
|
// Release any buffers which were replaced this frame
|
|
nsecs_t dequeueReadyTime = systemTime();
|
|
for (auto& layer : mLayersWithQueuedFrames) {
|
|
layer->releasePendingBuffer(dequeueReadyTime);
|
|
}
|
|
|
|
// |mStateLock| not needed as we are on the main thread
|
|
const sp<const DisplayDevice> hw(getDefaultDisplayDeviceLocked());
|
|
|
|
mGlCompositionDoneTimeline.updateSignalTimes();
|
|
std::shared_ptr<FenceTime> glCompositionDoneFenceTime;
|
|
if (mHwc->hasClientComposition(HWC_DISPLAY_PRIMARY)) {
|
|
glCompositionDoneFenceTime =
|
|
std::make_shared<FenceTime>(hw->getClientTargetAcquireFence());
|
|
mGlCompositionDoneTimeline.push(glCompositionDoneFenceTime);
|
|
} else {
|
|
glCompositionDoneFenceTime = FenceTime::NO_FENCE;
|
|
}
|
|
|
|
mDisplayTimeline.updateSignalTimes();
|
|
sp<Fence> presentFence = mHwc->getPresentFence(HWC_DISPLAY_PRIMARY);
|
|
auto presentFenceTime = std::make_shared<FenceTime>(presentFence);
|
|
mDisplayTimeline.push(presentFenceTime);
|
|
|
|
nsecs_t vsyncPhase = mPrimaryDispSync.computeNextRefresh(0);
|
|
nsecs_t vsyncInterval = mPrimaryDispSync.getPeriod();
|
|
|
|
// We use the refreshStartTime which might be sampled a little later than
|
|
// when we started doing work for this frame, but that should be okay
|
|
// since updateCompositorTiming has snapping logic.
|
|
updateCompositorTiming(
|
|
vsyncPhase, vsyncInterval, refreshStartTime, presentFenceTime);
|
|
CompositorTiming compositorTiming;
|
|
{
|
|
std::lock_guard<std::mutex> lock(mCompositorTimingLock);
|
|
compositorTiming = mCompositorTiming;
|
|
}
|
|
|
|
mDrawingState.traverseInZOrder([&](Layer* layer) {
|
|
bool frameLatched = layer->onPostComposition(glCompositionDoneFenceTime,
|
|
presentFenceTime, compositorTiming);
|
|
if (frameLatched) {
|
|
recordBufferingStats(layer->getName().string(),
|
|
layer->getOccupancyHistory(false));
|
|
}
|
|
});
|
|
|
|
if (presentFenceTime->isValid()) {
|
|
if (mPrimaryDispSync.addPresentFence(presentFenceTime)) {
|
|
enableHardwareVsync();
|
|
} else {
|
|
disableHardwareVsync(false);
|
|
}
|
|
}
|
|
|
|
if (!hasSyncFramework) {
|
|
if (hw->isDisplayOn()) {
|
|
enableHardwareVsync();
|
|
}
|
|
}
|
|
|
|
if (mAnimCompositionPending) {
|
|
mAnimCompositionPending = false;
|
|
|
|
if (presentFenceTime->isValid()) {
|
|
mAnimFrameTracker.setActualPresentFence(
|
|
std::move(presentFenceTime));
|
|
} else {
|
|
// The HWC doesn't support present fences, so use the refresh
|
|
// timestamp instead.
|
|
nsecs_t presentTime =
|
|
mHwc->getRefreshTimestamp(HWC_DISPLAY_PRIMARY);
|
|
mAnimFrameTracker.setActualPresentTime(presentTime);
|
|
}
|
|
mAnimFrameTracker.advanceFrame();
|
|
}
|
|
|
|
if (hw->getPowerMode() == HWC_POWER_MODE_OFF) {
|
|
return;
|
|
}
|
|
|
|
nsecs_t currentTime = systemTime();
|
|
if (mHasPoweredOff) {
|
|
mHasPoweredOff = false;
|
|
} else {
|
|
nsecs_t elapsedTime = currentTime - mLastSwapTime;
|
|
size_t numPeriods = static_cast<size_t>(elapsedTime / vsyncInterval);
|
|
if (numPeriods < NUM_BUCKETS - 1) {
|
|
mFrameBuckets[numPeriods] += elapsedTime;
|
|
} else {
|
|
mFrameBuckets[NUM_BUCKETS - 1] += elapsedTime;
|
|
}
|
|
mTotalTime += elapsedTime;
|
|
}
|
|
mLastSwapTime = currentTime;
|
|
}
|
|
|
|
void SurfaceFlinger::rebuildLayerStacks() {
|
|
ATRACE_CALL();
|
|
ALOGV("rebuildLayerStacks");
|
|
|
|
// rebuild the visible layer list per screen
|
|
if (CC_UNLIKELY(mVisibleRegionsDirty)) {
|
|
ATRACE_CALL();
|
|
mVisibleRegionsDirty = false;
|
|
invalidateHwcGeometry();
|
|
|
|
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
|
|
Region opaqueRegion;
|
|
Region dirtyRegion;
|
|
Vector<sp<Layer>> layersSortedByZ;
|
|
const sp<DisplayDevice>& displayDevice(mDisplays[dpy]);
|
|
const Transform& tr(displayDevice->getTransform());
|
|
const Rect bounds(displayDevice->getBounds());
|
|
if (displayDevice->isDisplayOn()) {
|
|
computeVisibleRegions(displayDevice, dirtyRegion, opaqueRegion);
|
|
|
|
mDrawingState.traverseInZOrder([&](Layer* layer) {
|
|
if (layer->belongsToDisplay(displayDevice->getLayerStack(),
|
|
displayDevice->isPrimary())) {
|
|
Region drawRegion(tr.transform(
|
|
layer->visibleNonTransparentRegion));
|
|
drawRegion.andSelf(bounds);
|
|
if (!drawRegion.isEmpty()) {
|
|
layersSortedByZ.add(layer);
|
|
} else {
|
|
// Clear out the HWC layer if this layer was
|
|
// previously visible, but no longer is
|
|
layer->destroyHwcLayer(
|
|
displayDevice->getHwcDisplayId());
|
|
}
|
|
} else {
|
|
// WM changes displayDevice->layerStack upon sleep/awake.
|
|
// Here we make sure we delete the HWC layers even if
|
|
// WM changed their layer stack.
|
|
layer->destroyHwcLayer(displayDevice->getHwcDisplayId());
|
|
}
|
|
});
|
|
}
|
|
displayDevice->setVisibleLayersSortedByZ(layersSortedByZ);
|
|
displayDevice->undefinedRegion.set(bounds);
|
|
displayDevice->undefinedRegion.subtractSelf(
|
|
tr.transform(opaqueRegion));
|
|
displayDevice->dirtyRegion.orSelf(dirtyRegion);
|
|
}
|
|
}
|
|
}
|
|
|
|
mat4 SurfaceFlinger::computeSaturationMatrix() const {
|
|
if (mSaturation == 1.0f) {
|
|
return mat4();
|
|
}
|
|
|
|
// Rec.709 luma coefficients
|
|
float3 luminance{0.213f, 0.715f, 0.072f};
|
|
luminance *= 1.0f - mSaturation;
|
|
return mat4(
|
|
vec4{luminance.r + mSaturation, luminance.r, luminance.r, 0.0f},
|
|
vec4{luminance.g, luminance.g + mSaturation, luminance.g, 0.0f},
|
|
vec4{luminance.b, luminance.b, luminance.b + mSaturation, 0.0f},
|
|
vec4{0.0f, 0.0f, 0.0f, 1.0f}
|
|
);
|
|
}
|
|
|
|
// pickColorMode translates a given dataspace into the best available color mode.
|
|
// Currently only support sRGB and Display-P3.
|
|
android_color_mode SurfaceFlinger::pickColorMode(android_dataspace dataSpace) const {
|
|
if (mForceNativeColorMode) {
|
|
return HAL_COLOR_MODE_NATIVE;
|
|
}
|
|
|
|
switch (dataSpace) {
|
|
// treat Unknown as regular SRGB buffer, since that's what the rest of the
|
|
// system expects.
|
|
case HAL_DATASPACE_UNKNOWN:
|
|
case HAL_DATASPACE_SRGB:
|
|
case HAL_DATASPACE_V0_SRGB:
|
|
return HAL_COLOR_MODE_SRGB;
|
|
break;
|
|
|
|
case HAL_DATASPACE_DISPLAY_P3:
|
|
return HAL_COLOR_MODE_DISPLAY_P3;
|
|
break;
|
|
|
|
default:
|
|
// TODO (courtneygo): Do we want to assert an error here?
|
|
ALOGE("No color mode mapping for %s (%#x)", dataspaceDetails(dataSpace).c_str(),
|
|
dataSpace);
|
|
return HAL_COLOR_MODE_SRGB;
|
|
break;
|
|
}
|
|
}
|
|
|
|
android_dataspace SurfaceFlinger::bestTargetDataSpace(
|
|
android_dataspace a, android_dataspace b) const {
|
|
// Only support sRGB and Display-P3 right now.
|
|
if (a == HAL_DATASPACE_DISPLAY_P3 || b == HAL_DATASPACE_DISPLAY_P3) {
|
|
return HAL_DATASPACE_DISPLAY_P3;
|
|
}
|
|
if (a == HAL_DATASPACE_V0_SCRGB_LINEAR || b == HAL_DATASPACE_V0_SCRGB_LINEAR) {
|
|
return HAL_DATASPACE_DISPLAY_P3;
|
|
}
|
|
if (a == HAL_DATASPACE_V0_SCRGB || b == HAL_DATASPACE_V0_SCRGB) {
|
|
return HAL_DATASPACE_DISPLAY_P3;
|
|
}
|
|
|
|
return HAL_DATASPACE_V0_SRGB;
|
|
}
|
|
|
|
void SurfaceFlinger::setUpHWComposer() {
|
|
ATRACE_CALL();
|
|
ALOGV("setUpHWComposer");
|
|
|
|
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
|
|
bool dirty = !mDisplays[dpy]->getDirtyRegion(false).isEmpty();
|
|
bool empty = mDisplays[dpy]->getVisibleLayersSortedByZ().size() == 0;
|
|
bool wasEmpty = !mDisplays[dpy]->lastCompositionHadVisibleLayers;
|
|
|
|
// If nothing has changed (!dirty), don't recompose.
|
|
// If something changed, but we don't currently have any visible layers,
|
|
// and didn't when we last did a composition, then skip it this time.
|
|
// The second rule does two things:
|
|
// - When all layers are removed from a display, we'll emit one black
|
|
// frame, then nothing more until we get new layers.
|
|
// - When a display is created with a private layer stack, we won't
|
|
// emit any black frames until a layer is added to the layer stack.
|
|
bool mustRecompose = dirty && !(empty && wasEmpty);
|
|
|
|
ALOGV_IF(mDisplays[dpy]->getDisplayType() == DisplayDevice::DISPLAY_VIRTUAL,
|
|
"dpy[%zu]: %s composition (%sdirty %sempty %swasEmpty)", dpy,
|
|
mustRecompose ? "doing" : "skipping",
|
|
dirty ? "+" : "-",
|
|
empty ? "+" : "-",
|
|
wasEmpty ? "+" : "-");
|
|
|
|
mDisplays[dpy]->beginFrame(mustRecompose);
|
|
|
|
if (mustRecompose) {
|
|
mDisplays[dpy]->lastCompositionHadVisibleLayers = !empty;
|
|
}
|
|
}
|
|
|
|
// build the h/w work list
|
|
if (CC_UNLIKELY(mGeometryInvalid)) {
|
|
mGeometryInvalid = false;
|
|
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
|
|
sp<const DisplayDevice> displayDevice(mDisplays[dpy]);
|
|
const auto hwcId = displayDevice->getHwcDisplayId();
|
|
if (hwcId >= 0) {
|
|
const Vector<sp<Layer>>& currentLayers(
|
|
displayDevice->getVisibleLayersSortedByZ());
|
|
for (size_t i = 0; i < currentLayers.size(); i++) {
|
|
const auto& layer = currentLayers[i];
|
|
if (!layer->hasHwcLayer(hwcId)) {
|
|
if (!layer->createHwcLayer(mHwc.get(), hwcId)) {
|
|
layer->forceClientComposition(hwcId);
|
|
continue;
|
|
}
|
|
}
|
|
|
|
layer->setGeometry(displayDevice, i);
|
|
if (mDebugDisableHWC || mDebugRegion) {
|
|
layer->forceClientComposition(hwcId);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
mat4 colorMatrix = mColorMatrix * computeSaturationMatrix() * mDaltonizer();
|
|
|
|
// Set the per-frame data
|
|
for (size_t displayId = 0; displayId < mDisplays.size(); ++displayId) {
|
|
auto& displayDevice = mDisplays[displayId];
|
|
const auto hwcId = displayDevice->getHwcDisplayId();
|
|
|
|
if (hwcId < 0) {
|
|
continue;
|
|
}
|
|
if (colorMatrix != mPreviousColorMatrix) {
|
|
status_t result = mHwc->setColorTransform(hwcId, colorMatrix);
|
|
ALOGE_IF(result != NO_ERROR, "Failed to set color transform on "
|
|
"display %zd: %d", displayId, result);
|
|
}
|
|
for (auto& layer : displayDevice->getVisibleLayersSortedByZ()) {
|
|
layer->setPerFrameData(displayDevice);
|
|
}
|
|
|
|
if (hasWideColorDisplay) {
|
|
android_color_mode newColorMode;
|
|
android_dataspace newDataSpace = HAL_DATASPACE_V0_SRGB;
|
|
|
|
for (auto& layer : displayDevice->getVisibleLayersSortedByZ()) {
|
|
newDataSpace = bestTargetDataSpace(layer->getDataSpace(), newDataSpace);
|
|
ALOGV("layer: %s, dataspace: %s (%#x), newDataSpace: %s (%#x)",
|
|
layer->getName().string(), dataspaceDetails(layer->getDataSpace()).c_str(),
|
|
layer->getDataSpace(), dataspaceDetails(newDataSpace).c_str(), newDataSpace);
|
|
}
|
|
newColorMode = pickColorMode(newDataSpace);
|
|
|
|
setActiveColorModeInternal(displayDevice, newColorMode);
|
|
}
|
|
}
|
|
|
|
mPreviousColorMatrix = colorMatrix;
|
|
|
|
for (size_t displayId = 0; displayId < mDisplays.size(); ++displayId) {
|
|
auto& displayDevice = mDisplays[displayId];
|
|
if (!displayDevice->isDisplayOn()) {
|
|
continue;
|
|
}
|
|
|
|
status_t result = displayDevice->prepareFrame(*mHwc);
|
|
ALOGE_IF(result != NO_ERROR, "prepareFrame for display %zd failed:"
|
|
" %d (%s)", displayId, result, strerror(-result));
|
|
}
|
|
}
|
|
|
|
void SurfaceFlinger::doComposition() {
|
|
ATRACE_CALL();
|
|
ALOGV("doComposition");
|
|
|
|
const bool repaintEverything = android_atomic_and(0, &mRepaintEverything);
|
|
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
|
|
const sp<DisplayDevice>& hw(mDisplays[dpy]);
|
|
if (hw->isDisplayOn()) {
|
|
// transform the dirty region into this screen's coordinate space
|
|
const Region dirtyRegion(hw->getDirtyRegion(repaintEverything));
|
|
|
|
// repaint the framebuffer (if needed)
|
|
doDisplayComposition(hw, dirtyRegion);
|
|
|
|
hw->dirtyRegion.clear();
|
|
hw->flip(hw->swapRegion);
|
|
hw->swapRegion.clear();
|
|
}
|
|
}
|
|
postFramebuffer();
|
|
}
|
|
|
|
void SurfaceFlinger::postFramebuffer()
|
|
{
|
|
ATRACE_CALL();
|
|
ALOGV("postFramebuffer");
|
|
|
|
const nsecs_t now = systemTime();
|
|
mDebugInSwapBuffers = now;
|
|
|
|
for (size_t displayId = 0; displayId < mDisplays.size(); ++displayId) {
|
|
auto& displayDevice = mDisplays[displayId];
|
|
if (!displayDevice->isDisplayOn()) {
|
|
continue;
|
|
}
|
|
const auto hwcId = displayDevice->getHwcDisplayId();
|
|
if (hwcId >= 0) {
|
|
mHwc->presentAndGetReleaseFences(hwcId);
|
|
}
|
|
displayDevice->onSwapBuffersCompleted();
|
|
displayDevice->makeCurrent(mEGLDisplay, mEGLContext);
|
|
for (auto& layer : displayDevice->getVisibleLayersSortedByZ()) {
|
|
sp<Fence> releaseFence = Fence::NO_FENCE;
|
|
if (layer->getCompositionType(hwcId) == HWC2::Composition::Client) {
|
|
releaseFence = displayDevice->getClientTargetAcquireFence();
|
|
} else {
|
|
auto hwcLayer = layer->getHwcLayer(hwcId);
|
|
releaseFence = mHwc->getLayerReleaseFence(hwcId, hwcLayer);
|
|
}
|
|
layer->onLayerDisplayed(releaseFence);
|
|
}
|
|
if (hwcId >= 0) {
|
|
mHwc->clearReleaseFences(hwcId);
|
|
}
|
|
}
|
|
|
|
mLastSwapBufferTime = systemTime() - now;
|
|
mDebugInSwapBuffers = 0;
|
|
|
|
// |mStateLock| not needed as we are on the main thread
|
|
uint32_t flipCount = getDefaultDisplayDeviceLocked()->getPageFlipCount();
|
|
if (flipCount % LOG_FRAME_STATS_PERIOD == 0) {
|
|
logFrameStats();
|
|
}
|
|
}
|
|
|
|
void SurfaceFlinger::handleTransaction(uint32_t transactionFlags)
|
|
{
|
|
ATRACE_CALL();
|
|
|
|
// here we keep a copy of the drawing state (that is the state that's
|
|
// going to be overwritten by handleTransactionLocked()) outside of
|
|
// mStateLock so that the side-effects of the State assignment
|
|
// don't happen with mStateLock held (which can cause deadlocks).
|
|
State drawingState(mDrawingState);
|
|
|
|
Mutex::Autolock _l(mStateLock);
|
|
const nsecs_t now = systemTime();
|
|
mDebugInTransaction = now;
|
|
|
|
// Here we're guaranteed that some transaction flags are set
|
|
// so we can call handleTransactionLocked() unconditionally.
|
|
// We call getTransactionFlags(), which will also clear the flags,
|
|
// with mStateLock held to guarantee that mCurrentState won't change
|
|
// until the transaction is committed.
|
|
|
|
transactionFlags = getTransactionFlags(eTransactionMask);
|
|
handleTransactionLocked(transactionFlags);
|
|
|
|
mLastTransactionTime = systemTime() - now;
|
|
mDebugInTransaction = 0;
|
|
invalidateHwcGeometry();
|
|
// here the transaction has been committed
|
|
}
|
|
|
|
void SurfaceFlinger::handleTransactionLocked(uint32_t transactionFlags)
|
|
{
|
|
// Notify all layers of available frames
|
|
mCurrentState.traverseInZOrder([](Layer* layer) {
|
|
layer->notifyAvailableFrames();
|
|
});
|
|
|
|
/*
|
|
* Traversal of the children
|
|
* (perform the transaction for each of them if needed)
|
|
*/
|
|
|
|
if (transactionFlags & eTraversalNeeded) {
|
|
mCurrentState.traverseInZOrder([&](Layer* layer) {
|
|
uint32_t trFlags = layer->getTransactionFlags(eTransactionNeeded);
|
|
if (!trFlags) return;
|
|
|
|
const uint32_t flags = layer->doTransaction(0);
|
|
if (flags & Layer::eVisibleRegion)
|
|
mVisibleRegionsDirty = true;
|
|
});
|
|
}
|
|
|
|
/*
|
|
* Perform display own transactions if needed
|
|
*/
|
|
|
|
if (transactionFlags & eDisplayTransactionNeeded) {
|
|
// here we take advantage of Vector's copy-on-write semantics to
|
|
// improve performance by skipping the transaction entirely when
|
|
// know that the lists are identical
|
|
const KeyedVector< wp<IBinder>, DisplayDeviceState>& curr(mCurrentState.displays);
|
|
const KeyedVector< wp<IBinder>, DisplayDeviceState>& draw(mDrawingState.displays);
|
|
if (!curr.isIdenticalTo(draw)) {
|
|
mVisibleRegionsDirty = true;
|
|
const size_t cc = curr.size();
|
|
size_t dc = draw.size();
|
|
|
|
// find the displays that were removed
|
|
// (ie: in drawing state but not in current state)
|
|
// also handle displays that changed
|
|
// (ie: displays that are in both lists)
|
|
for (size_t i=0 ; i<dc ; i++) {
|
|
const ssize_t j = curr.indexOfKey(draw.keyAt(i));
|
|
if (j < 0) {
|
|
// in drawing state but not in current state
|
|
if (!draw[i].isMainDisplay()) {
|
|
// Call makeCurrent() on the primary display so we can
|
|
// be sure that nothing associated with this display
|
|
// is current.
|
|
const sp<const DisplayDevice> defaultDisplay(getDefaultDisplayDeviceLocked());
|
|
defaultDisplay->makeCurrent(mEGLDisplay, mEGLContext);
|
|
sp<DisplayDevice> hw(getDisplayDeviceLocked(draw.keyAt(i)));
|
|
if (hw != NULL)
|
|
hw->disconnect(getHwComposer());
|
|
if (draw[i].type < DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES)
|
|
mEventThread->onHotplugReceived(draw[i].type, false);
|
|
mDisplays.removeItem(draw.keyAt(i));
|
|
} else {
|
|
ALOGW("trying to remove the main display");
|
|
}
|
|
} else {
|
|
// this display is in both lists. see if something changed.
|
|
const DisplayDeviceState& state(curr[j]);
|
|
const wp<IBinder>& display(curr.keyAt(j));
|
|
const sp<IBinder> state_binder = IInterface::asBinder(state.surface);
|
|
const sp<IBinder> draw_binder = IInterface::asBinder(draw[i].surface);
|
|
if (state_binder != draw_binder) {
|
|
// changing the surface is like destroying and
|
|
// recreating the DisplayDevice, so we just remove it
|
|
// from the drawing state, so that it get re-added
|
|
// below.
|
|
sp<DisplayDevice> hw(getDisplayDeviceLocked(display));
|
|
if (hw != NULL)
|
|
hw->disconnect(getHwComposer());
|
|
mDisplays.removeItem(display);
|
|
mDrawingState.displays.removeItemsAt(i);
|
|
dc--; i--;
|
|
// at this point we must loop to the next item
|
|
continue;
|
|
}
|
|
|
|
const sp<DisplayDevice> disp(getDisplayDeviceLocked(display));
|
|
if (disp != NULL) {
|
|
if (state.layerStack != draw[i].layerStack) {
|
|
disp->setLayerStack(state.layerStack);
|
|
}
|
|
if ((state.orientation != draw[i].orientation)
|
|
|| (state.viewport != draw[i].viewport)
|
|
|| (state.frame != draw[i].frame))
|
|
{
|
|
int orientation = state.orientation;
|
|
if (state.type == DisplayDevice::DISPLAY_PRIMARY) {
|
|
char property[PROPERTY_VALUE_MAX];
|
|
if (property_get("ro.sf.rotation", property, NULL) > 0) {
|
|
switch (atoi(property)) {
|
|
case 90:
|
|
orientation = (state.orientation + 1) % 4;
|
|
break;
|
|
case 180:
|
|
orientation = (state.orientation + 2) % 4;
|
|
break;
|
|
case 270:
|
|
orientation = (state.orientation + 3) % 4;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
disp->setProjection(orientation,
|
|
state.viewport, state.frame);
|
|
}
|
|
if (state.width != draw[i].width || state.height != draw[i].height) {
|
|
disp->setDisplaySize(state.width, state.height);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// find displays that were added
|
|
// (ie: in current state but not in drawing state)
|
|
for (size_t i=0 ; i<cc ; i++) {
|
|
if (draw.indexOfKey(curr.keyAt(i)) < 0) {
|
|
const DisplayDeviceState& state(curr[i]);
|
|
|
|
sp<DisplaySurface> dispSurface;
|
|
sp<IGraphicBufferProducer> producer;
|
|
sp<IGraphicBufferProducer> bqProducer;
|
|
sp<IGraphicBufferConsumer> bqConsumer;
|
|
BufferQueue::createBufferQueue(&bqProducer, &bqConsumer);
|
|
|
|
int32_t hwcId = -1;
|
|
if (state.isVirtualDisplay()) {
|
|
// Virtual displays without a surface are dormant:
|
|
// they have external state (layer stack, projection,
|
|
// etc.) but no internal state (i.e. a DisplayDevice).
|
|
if (state.surface != NULL) {
|
|
|
|
// Allow VR composer to use virtual displays.
|
|
if (mUseHwcVirtualDisplays || mHwc->isUsingVrComposer()) {
|
|
int width = 0;
|
|
int status = state.surface->query(
|
|
NATIVE_WINDOW_WIDTH, &width);
|
|
ALOGE_IF(status != NO_ERROR,
|
|
"Unable to query width (%d)", status);
|
|
int height = 0;
|
|
status = state.surface->query(
|
|
NATIVE_WINDOW_HEIGHT, &height);
|
|
ALOGE_IF(status != NO_ERROR,
|
|
"Unable to query height (%d)", status);
|
|
int intFormat = 0;
|
|
status = state.surface->query(
|
|
NATIVE_WINDOW_FORMAT, &intFormat);
|
|
ALOGE_IF(status != NO_ERROR,
|
|
"Unable to query format (%d)", status);
|
|
auto format = static_cast<android_pixel_format_t>(
|
|
intFormat);
|
|
|
|
mHwc->allocateVirtualDisplay(width, height, &format,
|
|
&hwcId);
|
|
}
|
|
|
|
// TODO: Plumb requested format back up to consumer
|
|
|
|
sp<VirtualDisplaySurface> vds =
|
|
new VirtualDisplaySurface(*mHwc,
|
|
hwcId, state.surface, bqProducer,
|
|
bqConsumer, state.displayName);
|
|
|
|
dispSurface = vds;
|
|
producer = vds;
|
|
}
|
|
} else {
|
|
ALOGE_IF(state.surface!=NULL,
|
|
"adding a supported display, but rendering "
|
|
"surface is provided (%p), ignoring it",
|
|
state.surface.get());
|
|
|
|
hwcId = state.type;
|
|
dispSurface = new FramebufferSurface(*mHwc, hwcId, bqConsumer);
|
|
producer = bqProducer;
|
|
}
|
|
|
|
const wp<IBinder>& display(curr.keyAt(i));
|
|
if (dispSurface != NULL) {
|
|
sp<DisplayDevice> hw =
|
|
new DisplayDevice(this, state.type, hwcId, state.isSecure, display,
|
|
dispSurface, producer,
|
|
mRenderEngine->getEGLConfig(),
|
|
hasWideColorDisplay);
|
|
hw->setLayerStack(state.layerStack);
|
|
hw->setProjection(state.orientation,
|
|
state.viewport, state.frame);
|
|
hw->setDisplayName(state.displayName);
|
|
mDisplays.add(display, hw);
|
|
if (!state.isVirtualDisplay()) {
|
|
mEventThread->onHotplugReceived(state.type, true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (transactionFlags & (eTraversalNeeded|eDisplayTransactionNeeded)) {
|
|
// The transform hint might have changed for some layers
|
|
// (either because a display has changed, or because a layer
|
|
// as changed).
|
|
//
|
|
// Walk through all the layers in currentLayers,
|
|
// and update their transform hint.
|
|
//
|
|
// If a layer is visible only on a single display, then that
|
|
// display is used to calculate the hint, otherwise we use the
|
|
// default display.
|
|
//
|
|
// NOTE: we do this here, rather than in rebuildLayerStacks() so that
|
|
// the hint is set before we acquire a buffer from the surface texture.
|
|
//
|
|
// NOTE: layer transactions have taken place already, so we use their
|
|
// drawing state. However, SurfaceFlinger's own transaction has not
|
|
// happened yet, so we must use the current state layer list
|
|
// (soon to become the drawing state list).
|
|
//
|
|
sp<const DisplayDevice> disp;
|
|
uint32_t currentlayerStack = 0;
|
|
bool first = true;
|
|
mCurrentState.traverseInZOrder([&](Layer* layer) {
|
|
// NOTE: we rely on the fact that layers are sorted by
|
|
// layerStack first (so we don't have to traverse the list
|
|
// of displays for every layer).
|
|
uint32_t layerStack = layer->getLayerStack();
|
|
if (first || currentlayerStack != layerStack) {
|
|
currentlayerStack = layerStack;
|
|
// figure out if this layerstack is mirrored
|
|
// (more than one display) if so, pick the default display,
|
|
// if not, pick the only display it's on.
|
|
disp.clear();
|
|
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
|
|
sp<const DisplayDevice> hw(mDisplays[dpy]);
|
|
if (layer->belongsToDisplay(hw->getLayerStack(), hw->isPrimary())) {
|
|
if (disp == NULL) {
|
|
disp = hw;
|
|
} else {
|
|
disp = NULL;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (disp == NULL) {
|
|
// NOTE: TEMPORARY FIX ONLY. Real fix should cause layers to
|
|
// redraw after transform hint changes. See bug 8508397.
|
|
|
|
// could be null when this layer is using a layerStack
|
|
// that is not visible on any display. Also can occur at
|
|
// screen off/on times.
|
|
disp = getDefaultDisplayDeviceLocked();
|
|
}
|
|
layer->updateTransformHint(disp);
|
|
|
|
first = false;
|
|
});
|
|
}
|
|
|
|
|
|
/*
|
|
* Perform our own transaction if needed
|
|
*/
|
|
|
|
if (mLayersAdded) {
|
|
mLayersAdded = false;
|
|
// Layers have been added.
|
|
mVisibleRegionsDirty = true;
|
|
}
|
|
|
|
// some layers might have been removed, so
|
|
// we need to update the regions they're exposing.
|
|
if (mLayersRemoved) {
|
|
mLayersRemoved = false;
|
|
mVisibleRegionsDirty = true;
|
|
mDrawingState.traverseInZOrder([&](Layer* layer) {
|
|
if (mLayersPendingRemoval.indexOf(layer) >= 0) {
|
|
// this layer is not visible anymore
|
|
// TODO: we could traverse the tree from front to back and
|
|
// compute the actual visible region
|
|
// TODO: we could cache the transformed region
|
|
Region visibleReg;
|
|
visibleReg.set(layer->computeScreenBounds());
|
|
invalidateLayerStack(layer, visibleReg);
|
|
}
|
|
});
|
|
}
|
|
|
|
commitTransaction();
|
|
|
|
updateCursorAsync();
|
|
}
|
|
|
|
void SurfaceFlinger::updateCursorAsync()
|
|
{
|
|
for (size_t displayId = 0; displayId < mDisplays.size(); ++displayId) {
|
|
auto& displayDevice = mDisplays[displayId];
|
|
if (displayDevice->getHwcDisplayId() < 0) {
|
|
continue;
|
|
}
|
|
|
|
for (auto& layer : displayDevice->getVisibleLayersSortedByZ()) {
|
|
layer->updateCursorPosition(displayDevice);
|
|
}
|
|
}
|
|
}
|
|
|
|
void SurfaceFlinger::commitTransaction()
|
|
{
|
|
if (!mLayersPendingRemoval.isEmpty()) {
|
|
// Notify removed layers now that they can't be drawn from
|
|
for (const auto& l : mLayersPendingRemoval) {
|
|
recordBufferingStats(l->getName().string(),
|
|
l->getOccupancyHistory(true));
|
|
l->onRemoved();
|
|
}
|
|
mLayersPendingRemoval.clear();
|
|
}
|
|
|
|
// If this transaction is part of a window animation then the next frame
|
|
// we composite should be considered an animation as well.
|
|
mAnimCompositionPending = mAnimTransactionPending;
|
|
|
|
mDrawingState = mCurrentState;
|
|
mDrawingState.traverseInZOrder([](Layer* layer) {
|
|
layer->commitChildList();
|
|
});
|
|
mTransactionPending = false;
|
|
mAnimTransactionPending = false;
|
|
mTransactionCV.broadcast();
|
|
}
|
|
|
|
void SurfaceFlinger::computeVisibleRegions(const sp<const DisplayDevice>& displayDevice,
|
|
Region& outDirtyRegion, Region& outOpaqueRegion)
|
|
{
|
|
ATRACE_CALL();
|
|
ALOGV("computeVisibleRegions");
|
|
|
|
Region aboveOpaqueLayers;
|
|
Region aboveCoveredLayers;
|
|
Region dirty;
|
|
|
|
outDirtyRegion.clear();
|
|
|
|
mDrawingState.traverseInReverseZOrder([&](Layer* layer) {
|
|
// start with the whole surface at its current location
|
|
const Layer::State& s(layer->getDrawingState());
|
|
|
|
// only consider the layers on the given layer stack
|
|
if (!layer->belongsToDisplay(displayDevice->getLayerStack(), displayDevice->isPrimary()))
|
|
return;
|
|
|
|
/*
|
|
* opaqueRegion: area of a surface that is fully opaque.
|
|
*/
|
|
Region opaqueRegion;
|
|
|
|
/*
|
|
* visibleRegion: area of a surface that is visible on screen
|
|
* and not fully transparent. This is essentially the layer's
|
|
* footprint minus the opaque regions above it.
|
|
* Areas covered by a translucent surface are considered visible.
|
|
*/
|
|
Region visibleRegion;
|
|
|
|
/*
|
|
* coveredRegion: area of a surface that is covered by all
|
|
* visible regions above it (which includes the translucent areas).
|
|
*/
|
|
Region coveredRegion;
|
|
|
|
/*
|
|
* transparentRegion: area of a surface that is hinted to be completely
|
|
* transparent. This is only used to tell when the layer has no visible
|
|
* non-transparent regions and can be removed from the layer list. It
|
|
* does not affect the visibleRegion of this layer or any layers
|
|
* beneath it. The hint may not be correct if apps don't respect the
|
|
* SurfaceView restrictions (which, sadly, some don't).
|
|
*/
|
|
Region transparentRegion;
|
|
|
|
|
|
// handle hidden surfaces by setting the visible region to empty
|
|
if (CC_LIKELY(layer->isVisible())) {
|
|
const bool translucent = !layer->isOpaque(s);
|
|
Rect bounds(layer->computeScreenBounds());
|
|
visibleRegion.set(bounds);
|
|
Transform tr = layer->getTransform();
|
|
if (!visibleRegion.isEmpty()) {
|
|
// Remove the transparent area from the visible region
|
|
if (translucent) {
|
|
if (tr.preserveRects()) {
|
|
// transform the transparent region
|
|
transparentRegion = tr.transform(s.activeTransparentRegion);
|
|
} else {
|
|
// transformation too complex, can't do the
|
|
// transparent region optimization.
|
|
transparentRegion.clear();
|
|
}
|
|
}
|
|
|
|
// compute the opaque region
|
|
const int32_t layerOrientation = tr.getOrientation();
|
|
if (s.alpha == 1.0f && !translucent &&
|
|
((layerOrientation & Transform::ROT_INVALID) == false)) {
|
|
// the opaque region is the layer's footprint
|
|
opaqueRegion = visibleRegion;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Clip the covered region to the visible region
|
|
coveredRegion = aboveCoveredLayers.intersect(visibleRegion);
|
|
|
|
// Update aboveCoveredLayers for next (lower) layer
|
|
aboveCoveredLayers.orSelf(visibleRegion);
|
|
|
|
// subtract the opaque region covered by the layers above us
|
|
visibleRegion.subtractSelf(aboveOpaqueLayers);
|
|
|
|
// compute this layer's dirty region
|
|
if (layer->contentDirty) {
|
|
// we need to invalidate the whole region
|
|
dirty = visibleRegion;
|
|
// as well, as the old visible region
|
|
dirty.orSelf(layer->visibleRegion);
|
|
layer->contentDirty = false;
|
|
} else {
|
|
/* compute the exposed region:
|
|
* the exposed region consists of two components:
|
|
* 1) what's VISIBLE now and was COVERED before
|
|
* 2) what's EXPOSED now less what was EXPOSED before
|
|
*
|
|
* note that (1) is conservative, we start with the whole
|
|
* visible region but only keep what used to be covered by
|
|
* something -- which mean it may have been exposed.
|
|
*
|
|
* (2) handles areas that were not covered by anything but got
|
|
* exposed because of a resize.
|
|
*/
|
|
const Region newExposed = visibleRegion - coveredRegion;
|
|
const Region oldVisibleRegion = layer->visibleRegion;
|
|
const Region oldCoveredRegion = layer->coveredRegion;
|
|
const Region oldExposed = oldVisibleRegion - oldCoveredRegion;
|
|
dirty = (visibleRegion&oldCoveredRegion) | (newExposed-oldExposed);
|
|
}
|
|
dirty.subtractSelf(aboveOpaqueLayers);
|
|
|
|
// accumulate to the screen dirty region
|
|
outDirtyRegion.orSelf(dirty);
|
|
|
|
// Update aboveOpaqueLayers for next (lower) layer
|
|
aboveOpaqueLayers.orSelf(opaqueRegion);
|
|
|
|
// Store the visible region in screen space
|
|
layer->setVisibleRegion(visibleRegion);
|
|
layer->setCoveredRegion(coveredRegion);
|
|
layer->setVisibleNonTransparentRegion(
|
|
visibleRegion.subtract(transparentRegion));
|
|
});
|
|
|
|
outOpaqueRegion = aboveOpaqueLayers;
|
|
}
|
|
|
|
void SurfaceFlinger::invalidateLayerStack(const sp<const Layer>& layer, const Region& dirty) {
|
|
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
|
|
const sp<DisplayDevice>& hw(mDisplays[dpy]);
|
|
if (layer->belongsToDisplay(hw->getLayerStack(), hw->isPrimary())) {
|
|
hw->dirtyRegion.orSelf(dirty);
|
|
}
|
|
}
|
|
}
|
|
|
|
bool SurfaceFlinger::handlePageFlip()
|
|
{
|
|
ALOGV("handlePageFlip");
|
|
|
|
nsecs_t latchTime = systemTime();
|
|
|
|
bool visibleRegions = false;
|
|
bool frameQueued = false;
|
|
bool newDataLatched = false;
|
|
|
|
// Store the set of layers that need updates. This set must not change as
|
|
// buffers are being latched, as this could result in a deadlock.
|
|
// Example: Two producers share the same command stream and:
|
|
// 1.) Layer 0 is latched
|
|
// 2.) Layer 0 gets a new frame
|
|
// 2.) Layer 1 gets a new frame
|
|
// 3.) Layer 1 is latched.
|
|
// Display is now waiting on Layer 1's frame, which is behind layer 0's
|
|
// second frame. But layer 0's second frame could be waiting on display.
|
|
mDrawingState.traverseInZOrder([&](Layer* layer) {
|
|
if (layer->hasQueuedFrame()) {
|
|
frameQueued = true;
|
|
if (layer->shouldPresentNow(mPrimaryDispSync)) {
|
|
mLayersWithQueuedFrames.push_back(layer);
|
|
} else {
|
|
layer->useEmptyDamage();
|
|
}
|
|
} else {
|
|
layer->useEmptyDamage();
|
|
}
|
|
});
|
|
|
|
for (auto& layer : mLayersWithQueuedFrames) {
|
|
const Region dirty(layer->latchBuffer(visibleRegions, latchTime));
|
|
layer->useSurfaceDamage();
|
|
invalidateLayerStack(layer, dirty);
|
|
if (layer->isBufferLatched()) {
|
|
newDataLatched = true;
|
|
}
|
|
}
|
|
|
|
mVisibleRegionsDirty |= visibleRegions;
|
|
|
|
// If we will need to wake up at some time in the future to deal with a
|
|
// queued frame that shouldn't be displayed during this vsync period, wake
|
|
// up during the next vsync period to check again.
|
|
if (frameQueued && (mLayersWithQueuedFrames.empty() || !newDataLatched)) {
|
|
signalLayerUpdate();
|
|
}
|
|
|
|
// Only continue with the refresh if there is actually new work to do
|
|
return !mLayersWithQueuedFrames.empty() && newDataLatched;
|
|
}
|
|
|
|
void SurfaceFlinger::invalidateHwcGeometry()
|
|
{
|
|
mGeometryInvalid = true;
|
|
}
|
|
|
|
|
|
void SurfaceFlinger::doDisplayComposition(
|
|
const sp<const DisplayDevice>& displayDevice,
|
|
const Region& inDirtyRegion)
|
|
{
|
|
// We only need to actually compose the display if:
|
|
// 1) It is being handled by hardware composer, which may need this to
|
|
// keep its virtual display state machine in sync, or
|
|
// 2) There is work to be done (the dirty region isn't empty)
|
|
bool isHwcDisplay = displayDevice->getHwcDisplayId() >= 0;
|
|
if (!isHwcDisplay && inDirtyRegion.isEmpty()) {
|
|
ALOGV("Skipping display composition");
|
|
return;
|
|
}
|
|
|
|
ALOGV("doDisplayComposition");
|
|
|
|
Region dirtyRegion(inDirtyRegion);
|
|
|
|
// compute the invalid region
|
|
displayDevice->swapRegion.orSelf(dirtyRegion);
|
|
|
|
uint32_t flags = displayDevice->getFlags();
|
|
if (flags & DisplayDevice::SWAP_RECTANGLE) {
|
|
// we can redraw only what's dirty, but since SWAP_RECTANGLE only
|
|
// takes a rectangle, we must make sure to update that whole
|
|
// rectangle in that case
|
|
dirtyRegion.set(displayDevice->swapRegion.bounds());
|
|
} else {
|
|
if (flags & DisplayDevice::PARTIAL_UPDATES) {
|
|
// We need to redraw the rectangle that will be updated
|
|
// (pushed to the framebuffer).
|
|
// This is needed because PARTIAL_UPDATES only takes one
|
|
// rectangle instead of a region (see DisplayDevice::flip())
|
|
dirtyRegion.set(displayDevice->swapRegion.bounds());
|
|
} else {
|
|
// we need to redraw everything (the whole screen)
|
|
dirtyRegion.set(displayDevice->bounds());
|
|
displayDevice->swapRegion = dirtyRegion;
|
|
}
|
|
}
|
|
|
|
if (!doComposeSurfaces(displayDevice, dirtyRegion)) return;
|
|
|
|
// update the swap region and clear the dirty region
|
|
displayDevice->swapRegion.orSelf(dirtyRegion);
|
|
|
|
// swap buffers (presentation)
|
|
displayDevice->swapBuffers(getHwComposer());
|
|
}
|
|
|
|
bool SurfaceFlinger::doComposeSurfaces(
|
|
const sp<const DisplayDevice>& displayDevice, const Region& dirty)
|
|
{
|
|
ALOGV("doComposeSurfaces");
|
|
|
|
const auto hwcId = displayDevice->getHwcDisplayId();
|
|
|
|
mat4 oldColorMatrix;
|
|
const bool applyColorMatrix = !mHwc->hasDeviceComposition(hwcId) &&
|
|
!mHwc->hasCapability(HWC2::Capability::SkipClientColorTransform);
|
|
if (applyColorMatrix) {
|
|
mat4 colorMatrix = mColorMatrix * mDaltonizer();
|
|
oldColorMatrix = getRenderEngine().setupColorTransform(colorMatrix);
|
|
}
|
|
|
|
bool hasClientComposition = mHwc->hasClientComposition(hwcId);
|
|
if (hasClientComposition) {
|
|
ALOGV("hasClientComposition");
|
|
|
|
#ifdef USE_HWC2
|
|
mRenderEngine->setWideColor(
|
|
displayDevice->getWideColorSupport() && !mForceNativeColorMode);
|
|
mRenderEngine->setColorMode(mForceNativeColorMode ?
|
|
HAL_COLOR_MODE_NATIVE : displayDevice->getActiveColorMode());
|
|
#endif
|
|
if (!displayDevice->makeCurrent(mEGLDisplay, mEGLContext)) {
|
|
ALOGW("DisplayDevice::makeCurrent failed. Aborting surface composition for display %s",
|
|
displayDevice->getDisplayName().string());
|
|
eglMakeCurrent(mEGLDisplay, EGL_NO_SURFACE, EGL_NO_SURFACE, EGL_NO_CONTEXT);
|
|
|
|
// |mStateLock| not needed as we are on the main thread
|
|
if(!getDefaultDisplayDeviceLocked()->makeCurrent(mEGLDisplay, mEGLContext)) {
|
|
ALOGE("DisplayDevice::makeCurrent on default display failed. Aborting.");
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Never touch the framebuffer if we don't have any framebuffer layers
|
|
const bool hasDeviceComposition = mHwc->hasDeviceComposition(hwcId);
|
|
if (hasDeviceComposition) {
|
|
// when using overlays, we assume a fully transparent framebuffer
|
|
// NOTE: we could reduce how much we need to clear, for instance
|
|
// remove where there are opaque FB layers. however, on some
|
|
// GPUs doing a "clean slate" clear might be more efficient.
|
|
// We'll revisit later if needed.
|
|
mRenderEngine->clearWithColor(0, 0, 0, 0);
|
|
} else {
|
|
// we start with the whole screen area
|
|
const Region bounds(displayDevice->getBounds());
|
|
|
|
// we remove the scissor part
|
|
// we're left with the letterbox region
|
|
// (common case is that letterbox ends-up being empty)
|
|
const Region letterbox(bounds.subtract(displayDevice->getScissor()));
|
|
|
|
// compute the area to clear
|
|
Region region(displayDevice->undefinedRegion.merge(letterbox));
|
|
|
|
// but limit it to the dirty region
|
|
region.andSelf(dirty);
|
|
|
|
// screen is already cleared here
|
|
if (!region.isEmpty()) {
|
|
// can happen with SurfaceView
|
|
drawWormhole(displayDevice, region);
|
|
}
|
|
}
|
|
|
|
if (displayDevice->getDisplayType() != DisplayDevice::DISPLAY_PRIMARY) {
|
|
// just to be on the safe side, we don't set the
|
|
// scissor on the main display. It should never be needed
|
|
// anyways (though in theory it could since the API allows it).
|
|
const Rect& bounds(displayDevice->getBounds());
|
|
const Rect& scissor(displayDevice->getScissor());
|
|
if (scissor != bounds) {
|
|
// scissor doesn't match the screen's dimensions, so we
|
|
// need to clear everything outside of it and enable
|
|
// the GL scissor so we don't draw anything where we shouldn't
|
|
|
|
// enable scissor for this frame
|
|
const uint32_t height = displayDevice->getHeight();
|
|
mRenderEngine->setScissor(scissor.left, height - scissor.bottom,
|
|
scissor.getWidth(), scissor.getHeight());
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* and then, render the layers targeted at the framebuffer
|
|
*/
|
|
|
|
ALOGV("Rendering client layers");
|
|
const Transform& displayTransform = displayDevice->getTransform();
|
|
if (hwcId >= 0) {
|
|
// we're using h/w composer
|
|
bool firstLayer = true;
|
|
for (auto& layer : displayDevice->getVisibleLayersSortedByZ()) {
|
|
const Region clip(dirty.intersect(
|
|
displayTransform.transform(layer->visibleRegion)));
|
|
ALOGV("Layer: %s", layer->getName().string());
|
|
ALOGV(" Composition type: %s",
|
|
to_string(layer->getCompositionType(hwcId)).c_str());
|
|
if (!clip.isEmpty()) {
|
|
switch (layer->getCompositionType(hwcId)) {
|
|
case HWC2::Composition::Cursor:
|
|
case HWC2::Composition::Device:
|
|
case HWC2::Composition::Sideband:
|
|
case HWC2::Composition::SolidColor: {
|
|
const Layer::State& state(layer->getDrawingState());
|
|
if (layer->getClearClientTarget(hwcId) && !firstLayer &&
|
|
layer->isOpaque(state) && (state.alpha == 1.0f)
|
|
&& hasClientComposition) {
|
|
// never clear the very first layer since we're
|
|
// guaranteed the FB is already cleared
|
|
layer->clearWithOpenGL(displayDevice);
|
|
}
|
|
break;
|
|
}
|
|
case HWC2::Composition::Client: {
|
|
layer->draw(displayDevice, clip);
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
} else {
|
|
ALOGV(" Skipping for empty clip");
|
|
}
|
|
firstLayer = false;
|
|
}
|
|
} else {
|
|
// we're not using h/w composer
|
|
for (auto& layer : displayDevice->getVisibleLayersSortedByZ()) {
|
|
const Region clip(dirty.intersect(
|
|
displayTransform.transform(layer->visibleRegion)));
|
|
if (!clip.isEmpty()) {
|
|
layer->draw(displayDevice, clip);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (applyColorMatrix) {
|
|
getRenderEngine().setupColorTransform(oldColorMatrix);
|
|
}
|
|
|
|
// disable scissor at the end of the frame
|
|
mRenderEngine->disableScissor();
|
|
return true;
|
|
}
|
|
|
|
void SurfaceFlinger::drawWormhole(const sp<const DisplayDevice>& displayDevice, const Region& region) const {
|
|
const int32_t height = displayDevice->getHeight();
|
|
RenderEngine& engine(getRenderEngine());
|
|
engine.fillRegionWithColor(region, height, 0, 0, 0, 0);
|
|
}
|
|
|
|
status_t SurfaceFlinger::addClientLayer(const sp<Client>& client,
|
|
const sp<IBinder>& handle,
|
|
const sp<IGraphicBufferProducer>& gbc,
|
|
const sp<Layer>& lbc,
|
|
const sp<Layer>& parent)
|
|
{
|
|
// add this layer to the current state list
|
|
{
|
|
Mutex::Autolock _l(mStateLock);
|
|
if (mNumLayers >= MAX_LAYERS) {
|
|
ALOGE("AddClientLayer failed, mNumLayers (%zu) >= MAX_LAYERS (%zu)", mNumLayers,
|
|
MAX_LAYERS);
|
|
return NO_MEMORY;
|
|
}
|
|
if (parent == nullptr) {
|
|
mCurrentState.layersSortedByZ.add(lbc);
|
|
} else {
|
|
if (mCurrentState.layersSortedByZ.indexOf(parent) < 0) {
|
|
ALOGE("addClientLayer called with a removed parent");
|
|
return NAME_NOT_FOUND;
|
|
}
|
|
parent->addChild(lbc);
|
|
}
|
|
|
|
mGraphicBufferProducerList.add(IInterface::asBinder(gbc));
|
|
mLayersAdded = true;
|
|
mNumLayers++;
|
|
}
|
|
|
|
// attach this layer to the client
|
|
client->attachLayer(handle, lbc);
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
status_t SurfaceFlinger::removeLayer(const sp<Layer>& layer, bool topLevelOnly) {
|
|
Mutex::Autolock _l(mStateLock);
|
|
|
|
const auto& p = layer->getParent();
|
|
ssize_t index;
|
|
if (p != nullptr) {
|
|
if (topLevelOnly) {
|
|
return NO_ERROR;
|
|
}
|
|
|
|
sp<Layer> ancestor = p;
|
|
while (ancestor->getParent() != nullptr) {
|
|
ancestor = ancestor->getParent();
|
|
}
|
|
if (mCurrentState.layersSortedByZ.indexOf(ancestor) < 0) {
|
|
ALOGE("removeLayer called with a layer whose parent has been removed");
|
|
return NAME_NOT_FOUND;
|
|
}
|
|
|
|
index = p->removeChild(layer);
|
|
} else {
|
|
index = mCurrentState.layersSortedByZ.remove(layer);
|
|
}
|
|
|
|
// As a matter of normal operation, the LayerCleaner will produce a second
|
|
// attempt to remove the surface. The Layer will be kept alive in mDrawingState
|
|
// so we will succeed in promoting it, but it's already been removed
|
|
// from mCurrentState. As long as we can find it in mDrawingState we have no problem
|
|
// otherwise something has gone wrong and we are leaking the layer.
|
|
if (index < 0 && mDrawingState.layersSortedByZ.indexOf(layer) < 0) {
|
|
ALOGE("Failed to find layer (%s) in layer parent (%s).",
|
|
layer->getName().string(),
|
|
(p != nullptr) ? p->getName().string() : "no-parent");
|
|
return BAD_VALUE;
|
|
} else if (index < 0) {
|
|
return NO_ERROR;
|
|
}
|
|
|
|
layer->onRemovedFromCurrentState();
|
|
mLayersPendingRemoval.add(layer);
|
|
mLayersRemoved = true;
|
|
mNumLayers -= 1 + layer->getChildrenCount();
|
|
setTransactionFlags(eTransactionNeeded);
|
|
return NO_ERROR;
|
|
}
|
|
|
|
uint32_t SurfaceFlinger::peekTransactionFlags() {
|
|
return android_atomic_release_load(&mTransactionFlags);
|
|
}
|
|
|
|
uint32_t SurfaceFlinger::getTransactionFlags(uint32_t flags) {
|
|
return android_atomic_and(~flags, &mTransactionFlags) & flags;
|
|
}
|
|
|
|
uint32_t SurfaceFlinger::setTransactionFlags(uint32_t flags) {
|
|
uint32_t old = android_atomic_or(flags, &mTransactionFlags);
|
|
if ((old & flags)==0) { // wake the server up
|
|
signalTransaction();
|
|
}
|
|
return old;
|
|
}
|
|
|
|
void SurfaceFlinger::setTransactionState(
|
|
const Vector<ComposerState>& state,
|
|
const Vector<DisplayState>& displays,
|
|
uint32_t flags)
|
|
{
|
|
ATRACE_CALL();
|
|
Mutex::Autolock _l(mStateLock);
|
|
uint32_t transactionFlags = 0;
|
|
|
|
if (flags & eAnimation) {
|
|
// For window updates that are part of an animation we must wait for
|
|
// previous animation "frames" to be handled.
|
|
while (mAnimTransactionPending) {
|
|
status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
|
|
if (CC_UNLIKELY(err != NO_ERROR)) {
|
|
// just in case something goes wrong in SF, return to the
|
|
// caller after a few seconds.
|
|
ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out "
|
|
"waiting for previous animation frame");
|
|
mAnimTransactionPending = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
size_t count = displays.size();
|
|
for (size_t i=0 ; i<count ; i++) {
|
|
const DisplayState& s(displays[i]);
|
|
transactionFlags |= setDisplayStateLocked(s);
|
|
}
|
|
|
|
count = state.size();
|
|
for (size_t i=0 ; i<count ; i++) {
|
|
const ComposerState& s(state[i]);
|
|
// Here we need to check that the interface we're given is indeed
|
|
// one of our own. A malicious client could give us a NULL
|
|
// IInterface, or one of its own or even one of our own but a
|
|
// different type. All these situations would cause us to crash.
|
|
//
|
|
// NOTE: it would be better to use RTTI as we could directly check
|
|
// that we have a Client*. however, RTTI is disabled in Android.
|
|
if (s.client != NULL) {
|
|
sp<IBinder> binder = IInterface::asBinder(s.client);
|
|
if (binder != NULL) {
|
|
if (binder->queryLocalInterface(ISurfaceComposerClient::descriptor) != NULL) {
|
|
sp<Client> client( static_cast<Client *>(s.client.get()) );
|
|
transactionFlags |= setClientStateLocked(client, s.state);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// If a synchronous transaction is explicitly requested without any changes, force a transaction
|
|
// anyway. This can be used as a flush mechanism for previous async transactions.
|
|
// Empty animation transaction can be used to simulate back-pressure, so also force a
|
|
// transaction for empty animation transactions.
|
|
if (transactionFlags == 0 &&
|
|
((flags & eSynchronous) || (flags & eAnimation))) {
|
|
transactionFlags = eTransactionNeeded;
|
|
}
|
|
|
|
if (transactionFlags) {
|
|
if (mInterceptor.isEnabled()) {
|
|
mInterceptor.saveTransaction(state, mCurrentState.displays, displays, flags);
|
|
}
|
|
|
|
// this triggers the transaction
|
|
setTransactionFlags(transactionFlags);
|
|
|
|
// if this is a synchronous transaction, wait for it to take effect
|
|
// before returning.
|
|
if (flags & eSynchronous) {
|
|
mTransactionPending = true;
|
|
}
|
|
if (flags & eAnimation) {
|
|
mAnimTransactionPending = true;
|
|
}
|
|
while (mTransactionPending) {
|
|
status_t err = mTransactionCV.waitRelative(mStateLock, s2ns(5));
|
|
if (CC_UNLIKELY(err != NO_ERROR)) {
|
|
// just in case something goes wrong in SF, return to the
|
|
// called after a few seconds.
|
|
ALOGW_IF(err == TIMED_OUT, "setTransactionState timed out!");
|
|
mTransactionPending = false;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
uint32_t SurfaceFlinger::setDisplayStateLocked(const DisplayState& s)
|
|
{
|
|
ssize_t dpyIdx = mCurrentState.displays.indexOfKey(s.token);
|
|
if (dpyIdx < 0)
|
|
return 0;
|
|
|
|
uint32_t flags = 0;
|
|
DisplayDeviceState& disp(mCurrentState.displays.editValueAt(dpyIdx));
|
|
if (disp.isValid()) {
|
|
const uint32_t what = s.what;
|
|
if (what & DisplayState::eSurfaceChanged) {
|
|
if (IInterface::asBinder(disp.surface) != IInterface::asBinder(s.surface)) {
|
|
disp.surface = s.surface;
|
|
flags |= eDisplayTransactionNeeded;
|
|
}
|
|
}
|
|
if (what & DisplayState::eLayerStackChanged) {
|
|
if (disp.layerStack != s.layerStack) {
|
|
disp.layerStack = s.layerStack;
|
|
flags |= eDisplayTransactionNeeded;
|
|
}
|
|
}
|
|
if (what & DisplayState::eDisplayProjectionChanged) {
|
|
if (disp.orientation != s.orientation) {
|
|
disp.orientation = s.orientation;
|
|
flags |= eDisplayTransactionNeeded;
|
|
}
|
|
if (disp.frame != s.frame) {
|
|
disp.frame = s.frame;
|
|
flags |= eDisplayTransactionNeeded;
|
|
}
|
|
if (disp.viewport != s.viewport) {
|
|
disp.viewport = s.viewport;
|
|
flags |= eDisplayTransactionNeeded;
|
|
}
|
|
}
|
|
if (what & DisplayState::eDisplaySizeChanged) {
|
|
if (disp.width != s.width) {
|
|
disp.width = s.width;
|
|
flags |= eDisplayTransactionNeeded;
|
|
}
|
|
if (disp.height != s.height) {
|
|
disp.height = s.height;
|
|
flags |= eDisplayTransactionNeeded;
|
|
}
|
|
}
|
|
}
|
|
return flags;
|
|
}
|
|
|
|
uint32_t SurfaceFlinger::setClientStateLocked(
|
|
const sp<Client>& client,
|
|
const layer_state_t& s)
|
|
{
|
|
uint32_t flags = 0;
|
|
sp<Layer> layer(client->getLayerUser(s.surface));
|
|
if (layer != 0) {
|
|
const uint32_t what = s.what;
|
|
bool geometryAppliesWithResize =
|
|
what & layer_state_t::eGeometryAppliesWithResize;
|
|
if (what & layer_state_t::ePositionChanged) {
|
|
if (layer->setPosition(s.x, s.y, !geometryAppliesWithResize)) {
|
|
flags |= eTraversalNeeded;
|
|
}
|
|
}
|
|
if (what & layer_state_t::eLayerChanged) {
|
|
// NOTE: index needs to be calculated before we update the state
|
|
const auto& p = layer->getParent();
|
|
if (p == nullptr) {
|
|
ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
|
|
if (layer->setLayer(s.z) && idx >= 0) {
|
|
mCurrentState.layersSortedByZ.removeAt(idx);
|
|
mCurrentState.layersSortedByZ.add(layer);
|
|
// we need traversal (state changed)
|
|
// AND transaction (list changed)
|
|
flags |= eTransactionNeeded|eTraversalNeeded;
|
|
}
|
|
} else {
|
|
if (p->setChildLayer(layer, s.z)) {
|
|
flags |= eTransactionNeeded|eTraversalNeeded;
|
|
}
|
|
}
|
|
}
|
|
if (what & layer_state_t::eRelativeLayerChanged) {
|
|
if (layer->setRelativeLayer(s.relativeLayerHandle, s.z)) {
|
|
flags |= eTransactionNeeded|eTraversalNeeded;
|
|
}
|
|
}
|
|
if (what & layer_state_t::eSizeChanged) {
|
|
if (layer->setSize(s.w, s.h)) {
|
|
flags |= eTraversalNeeded;
|
|
}
|
|
}
|
|
if (what & layer_state_t::eAlphaChanged) {
|
|
if (layer->setAlpha(s.alpha))
|
|
flags |= eTraversalNeeded;
|
|
}
|
|
if (what & layer_state_t::eMatrixChanged) {
|
|
if (layer->setMatrix(s.matrix))
|
|
flags |= eTraversalNeeded;
|
|
}
|
|
if (what & layer_state_t::eTransparentRegionChanged) {
|
|
if (layer->setTransparentRegionHint(s.transparentRegion))
|
|
flags |= eTraversalNeeded;
|
|
}
|
|
if (what & layer_state_t::eFlagsChanged) {
|
|
if (layer->setFlags(s.flags, s.mask))
|
|
flags |= eTraversalNeeded;
|
|
}
|
|
if (what & layer_state_t::eCropChanged) {
|
|
if (layer->setCrop(s.crop, !geometryAppliesWithResize))
|
|
flags |= eTraversalNeeded;
|
|
}
|
|
if (what & layer_state_t::eFinalCropChanged) {
|
|
if (layer->setFinalCrop(s.finalCrop, !geometryAppliesWithResize))
|
|
flags |= eTraversalNeeded;
|
|
}
|
|
if (what & layer_state_t::eLayerStackChanged) {
|
|
ssize_t idx = mCurrentState.layersSortedByZ.indexOf(layer);
|
|
// We only allow setting layer stacks for top level layers,
|
|
// everything else inherits layer stack from its parent.
|
|
if (layer->hasParent()) {
|
|
ALOGE("Attempt to set layer stack on layer with parent (%s) is invalid",
|
|
layer->getName().string());
|
|
} else if (idx < 0) {
|
|
ALOGE("Attempt to set layer stack on layer without parent (%s) that "
|
|
"that also does not appear in the top level layer list. Something"
|
|
" has gone wrong.", layer->getName().string());
|
|
} else if (layer->setLayerStack(s.layerStack)) {
|
|
mCurrentState.layersSortedByZ.removeAt(idx);
|
|
mCurrentState.layersSortedByZ.add(layer);
|
|
// we need traversal (state changed)
|
|
// AND transaction (list changed)
|
|
flags |= eTransactionNeeded|eTraversalNeeded;
|
|
}
|
|
}
|
|
if (what & layer_state_t::eDeferTransaction) {
|
|
if (s.barrierHandle != nullptr) {
|
|
layer->deferTransactionUntil(s.barrierHandle, s.frameNumber);
|
|
} else if (s.barrierGbp != nullptr) {
|
|
const sp<IGraphicBufferProducer>& gbp = s.barrierGbp;
|
|
if (authenticateSurfaceTextureLocked(gbp)) {
|
|
const auto& otherLayer =
|
|
(static_cast<MonitoredProducer*>(gbp.get()))->getLayer();
|
|
layer->deferTransactionUntil(otherLayer, s.frameNumber);
|
|
} else {
|
|
ALOGE("Attempt to defer transaction to to an"
|
|
" unrecognized GraphicBufferProducer");
|
|
}
|
|
}
|
|
// We don't trigger a traversal here because if no other state is
|
|
// changed, we don't want this to cause any more work
|
|
}
|
|
if (what & layer_state_t::eReparentChildren) {
|
|
if (layer->reparentChildren(s.reparentHandle)) {
|
|
flags |= eTransactionNeeded|eTraversalNeeded;
|
|
}
|
|
}
|
|
if (what & layer_state_t::eDetachChildren) {
|
|
layer->detachChildren();
|
|
}
|
|
if (what & layer_state_t::eOverrideScalingModeChanged) {
|
|
layer->setOverrideScalingMode(s.overrideScalingMode);
|
|
// We don't trigger a traversal here because if no other state is
|
|
// changed, we don't want this to cause any more work
|
|
}
|
|
}
|
|
return flags;
|
|
}
|
|
|
|
status_t SurfaceFlinger::createLayer(
|
|
const String8& name,
|
|
const sp<Client>& client,
|
|
uint32_t w, uint32_t h, PixelFormat format, uint32_t flags,
|
|
uint32_t windowType, uint32_t ownerUid, sp<IBinder>* handle,
|
|
sp<IGraphicBufferProducer>* gbp, sp<Layer>* parent)
|
|
{
|
|
if (int32_t(w|h) < 0) {
|
|
ALOGE("createLayer() failed, w or h is negative (w=%d, h=%d)",
|
|
int(w), int(h));
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
status_t result = NO_ERROR;
|
|
|
|
sp<Layer> layer;
|
|
|
|
String8 uniqueName = getUniqueLayerName(name);
|
|
|
|
switch (flags & ISurfaceComposerClient::eFXSurfaceMask) {
|
|
case ISurfaceComposerClient::eFXSurfaceNormal:
|
|
result = createNormalLayer(client,
|
|
uniqueName, w, h, flags, format,
|
|
handle, gbp, &layer);
|
|
break;
|
|
case ISurfaceComposerClient::eFXSurfaceDim:
|
|
result = createDimLayer(client,
|
|
uniqueName, w, h, flags,
|
|
handle, gbp, &layer);
|
|
break;
|
|
default:
|
|
result = BAD_VALUE;
|
|
break;
|
|
}
|
|
|
|
if (result != NO_ERROR) {
|
|
return result;
|
|
}
|
|
|
|
// window type is WINDOW_TYPE_DONT_SCREENSHOT from SurfaceControl.java
|
|
// TODO b/64227542
|
|
if (windowType == 441731) {
|
|
windowType = 2024; // TYPE_NAVIGATION_BAR_PANEL
|
|
layer->setPrimaryDisplayOnly();
|
|
}
|
|
|
|
layer->setInfo(windowType, ownerUid);
|
|
|
|
result = addClientLayer(client, *handle, *gbp, layer, *parent);
|
|
if (result != NO_ERROR) {
|
|
return result;
|
|
}
|
|
mInterceptor.saveSurfaceCreation(layer);
|
|
|
|
setTransactionFlags(eTransactionNeeded);
|
|
return result;
|
|
}
|
|
|
|
String8 SurfaceFlinger::getUniqueLayerName(const String8& name)
|
|
{
|
|
bool matchFound = true;
|
|
uint32_t dupeCounter = 0;
|
|
|
|
// Tack on our counter whether there is a hit or not, so everyone gets a tag
|
|
String8 uniqueName = name + "#" + String8(std::to_string(dupeCounter).c_str());
|
|
|
|
// Loop over layers until we're sure there is no matching name
|
|
while (matchFound) {
|
|
matchFound = false;
|
|
mDrawingState.traverseInZOrder([&](Layer* layer) {
|
|
if (layer->getName() == uniqueName) {
|
|
matchFound = true;
|
|
uniqueName = name + "#" + String8(std::to_string(++dupeCounter).c_str());
|
|
}
|
|
});
|
|
}
|
|
|
|
ALOGD_IF(dupeCounter > 0, "duplicate layer name: changing %s to %s", name.c_str(), uniqueName.c_str());
|
|
|
|
return uniqueName;
|
|
}
|
|
|
|
status_t SurfaceFlinger::createNormalLayer(const sp<Client>& client,
|
|
const String8& name, uint32_t w, uint32_t h, uint32_t flags, PixelFormat& format,
|
|
sp<IBinder>* handle, sp<IGraphicBufferProducer>* gbp, sp<Layer>* outLayer)
|
|
{
|
|
// initialize the surfaces
|
|
switch (format) {
|
|
case PIXEL_FORMAT_TRANSPARENT:
|
|
case PIXEL_FORMAT_TRANSLUCENT:
|
|
format = PIXEL_FORMAT_RGBA_8888;
|
|
break;
|
|
case PIXEL_FORMAT_OPAQUE:
|
|
format = PIXEL_FORMAT_RGBX_8888;
|
|
break;
|
|
}
|
|
|
|
*outLayer = new Layer(this, client, name, w, h, flags);
|
|
status_t err = (*outLayer)->setBuffers(w, h, format, flags);
|
|
if (err == NO_ERROR) {
|
|
*handle = (*outLayer)->getHandle();
|
|
*gbp = (*outLayer)->getProducer();
|
|
}
|
|
|
|
ALOGE_IF(err, "createNormalLayer() failed (%s)", strerror(-err));
|
|
return err;
|
|
}
|
|
|
|
status_t SurfaceFlinger::createDimLayer(const sp<Client>& client,
|
|
const String8& name, uint32_t w, uint32_t h, uint32_t flags,
|
|
sp<IBinder>* handle, sp<IGraphicBufferProducer>* gbp, sp<Layer>* outLayer)
|
|
{
|
|
*outLayer = new LayerDim(this, client, name, w, h, flags);
|
|
*handle = (*outLayer)->getHandle();
|
|
*gbp = (*outLayer)->getProducer();
|
|
return NO_ERROR;
|
|
}
|
|
|
|
status_t SurfaceFlinger::onLayerRemoved(const sp<Client>& client, const sp<IBinder>& handle)
|
|
{
|
|
// called by a client when it wants to remove a Layer
|
|
status_t err = NO_ERROR;
|
|
sp<Layer> l(client->getLayerUser(handle));
|
|
if (l != NULL) {
|
|
mInterceptor.saveSurfaceDeletion(l);
|
|
err = removeLayer(l);
|
|
ALOGE_IF(err<0 && err != NAME_NOT_FOUND,
|
|
"error removing layer=%p (%s)", l.get(), strerror(-err));
|
|
}
|
|
return err;
|
|
}
|
|
|
|
status_t SurfaceFlinger::onLayerDestroyed(const wp<Layer>& layer)
|
|
{
|
|
// called by ~LayerCleaner() when all references to the IBinder (handle)
|
|
// are gone
|
|
sp<Layer> l = layer.promote();
|
|
if (l == nullptr) {
|
|
// The layer has already been removed, carry on
|
|
return NO_ERROR;
|
|
}
|
|
// If we have a parent, then we can continue to live as long as it does.
|
|
return removeLayer(l, true);
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
void SurfaceFlinger::onInitializeDisplays() {
|
|
// reset screen orientation and use primary layer stack
|
|
Vector<ComposerState> state;
|
|
Vector<DisplayState> displays;
|
|
DisplayState d;
|
|
d.what = DisplayState::eDisplayProjectionChanged |
|
|
DisplayState::eLayerStackChanged;
|
|
d.token = mBuiltinDisplays[DisplayDevice::DISPLAY_PRIMARY];
|
|
d.layerStack = 0;
|
|
d.orientation = DisplayState::eOrientationDefault;
|
|
d.frame.makeInvalid();
|
|
d.viewport.makeInvalid();
|
|
d.width = 0;
|
|
d.height = 0;
|
|
char property[PROPERTY_VALUE_MAX];
|
|
if (property_get("ro.sf.rotation", property, NULL) > 0) {
|
|
sp<const DisplayDevice> hw(getDefaultDisplayDevice());
|
|
const uint32_t hw_w = hw->getWidth();
|
|
const uint32_t hw_h = hw->getHeight();
|
|
switch (atoi(property)) {
|
|
case 90:
|
|
d.frame = Rect(hw_h, hw_w);
|
|
d.viewport = Rect(hw_h, hw_w);
|
|
break;
|
|
case 180:
|
|
d.frame = Rect(hw_w, hw_h);
|
|
d.viewport = Rect(hw_w, hw_h);
|
|
break;
|
|
case 270:
|
|
d.frame = Rect(hw_h, hw_w);
|
|
d.viewport = Rect(hw_h, hw_w);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
displays.add(d);
|
|
setTransactionState(state, displays, 0);
|
|
setPowerModeInternal(getDisplayDevice(d.token), HWC_POWER_MODE_NORMAL,
|
|
/*stateLockHeld*/ false);
|
|
|
|
const auto& activeConfig = mHwc->getActiveConfig(HWC_DISPLAY_PRIMARY);
|
|
const nsecs_t period = activeConfig->getVsyncPeriod();
|
|
mAnimFrameTracker.setDisplayRefreshPeriod(period);
|
|
|
|
// Use phase of 0 since phase is not known.
|
|
// Use latency of 0, which will snap to the ideal latency.
|
|
setCompositorTimingSnapped(0, period, 0);
|
|
}
|
|
|
|
void SurfaceFlinger::initializeDisplays() {
|
|
class MessageScreenInitialized : public MessageBase {
|
|
SurfaceFlinger* flinger;
|
|
public:
|
|
explicit MessageScreenInitialized(SurfaceFlinger* flinger) : flinger(flinger) { }
|
|
virtual bool handler() {
|
|
flinger->onInitializeDisplays();
|
|
return true;
|
|
}
|
|
};
|
|
sp<MessageBase> msg = new MessageScreenInitialized(this);
|
|
postMessageAsync(msg); // we may be called from main thread, use async message
|
|
}
|
|
|
|
void SurfaceFlinger::setPowerModeInternal(const sp<DisplayDevice>& hw,
|
|
int mode, bool stateLockHeld) {
|
|
ALOGD("Set power mode=%d, type=%d flinger=%p", mode, hw->getDisplayType(),
|
|
this);
|
|
int32_t type = hw->getDisplayType();
|
|
int currentMode = hw->getPowerMode();
|
|
|
|
if (mode == currentMode) {
|
|
return;
|
|
}
|
|
|
|
hw->setPowerMode(mode);
|
|
if (type >= DisplayDevice::NUM_BUILTIN_DISPLAY_TYPES) {
|
|
ALOGW("Trying to set power mode for virtual display");
|
|
return;
|
|
}
|
|
|
|
if (mInterceptor.isEnabled()) {
|
|
ConditionalLock lock(mStateLock, !stateLockHeld);
|
|
ssize_t idx = mCurrentState.displays.indexOfKey(hw->getDisplayToken());
|
|
if (idx < 0) {
|
|
ALOGW("Surface Interceptor SavePowerMode: invalid display token");
|
|
return;
|
|
}
|
|
mInterceptor.savePowerModeUpdate(mCurrentState.displays.valueAt(idx).displayId, mode);
|
|
}
|
|
|
|
if (currentMode == HWC_POWER_MODE_OFF) {
|
|
// Turn on the display
|
|
getHwComposer().setPowerMode(type, mode);
|
|
if (type == DisplayDevice::DISPLAY_PRIMARY &&
|
|
mode != HWC_POWER_MODE_DOZE_SUSPEND) {
|
|
// FIXME: eventthread only knows about the main display right now
|
|
mEventThread->onScreenAcquired();
|
|
resyncToHardwareVsync(true);
|
|
}
|
|
|
|
mVisibleRegionsDirty = true;
|
|
mHasPoweredOff = true;
|
|
repaintEverythingLocked();
|
|
|
|
struct sched_param param = {0};
|
|
param.sched_priority = 1;
|
|
if (sched_setscheduler(0, SCHED_FIFO, ¶m) != 0) {
|
|
ALOGW("Couldn't set SCHED_FIFO on display on");
|
|
}
|
|
} else if (mode == HWC_POWER_MODE_OFF) {
|
|
// Turn off the display
|
|
struct sched_param param = {0};
|
|
if (sched_setscheduler(0, SCHED_OTHER, ¶m) != 0) {
|
|
ALOGW("Couldn't set SCHED_OTHER on display off");
|
|
}
|
|
|
|
if (type == DisplayDevice::DISPLAY_PRIMARY) {
|
|
disableHardwareVsync(true); // also cancels any in-progress resync
|
|
|
|
// FIXME: eventthread only knows about the main display right now
|
|
mEventThread->onScreenReleased();
|
|
}
|
|
|
|
getHwComposer().setPowerMode(type, mode);
|
|
mVisibleRegionsDirty = true;
|
|
// from this point on, SF will stop drawing on this display
|
|
} else if (mode == HWC_POWER_MODE_DOZE ||
|
|
mode == HWC_POWER_MODE_NORMAL) {
|
|
// Update display while dozing
|
|
getHwComposer().setPowerMode(type, mode);
|
|
if (type == DisplayDevice::DISPLAY_PRIMARY) {
|
|
// FIXME: eventthread only knows about the main display right now
|
|
mEventThread->onScreenAcquired();
|
|
resyncToHardwareVsync(true);
|
|
}
|
|
} else if (mode == HWC_POWER_MODE_DOZE_SUSPEND) {
|
|
// Leave display going to doze
|
|
if (type == DisplayDevice::DISPLAY_PRIMARY) {
|
|
disableHardwareVsync(true); // also cancels any in-progress resync
|
|
// FIXME: eventthread only knows about the main display right now
|
|
mEventThread->onScreenReleased();
|
|
}
|
|
getHwComposer().setPowerMode(type, mode);
|
|
} else {
|
|
ALOGE("Attempting to set unknown power mode: %d\n", mode);
|
|
getHwComposer().setPowerMode(type, mode);
|
|
}
|
|
}
|
|
|
|
void SurfaceFlinger::setPowerMode(const sp<IBinder>& display, int mode) {
|
|
class MessageSetPowerMode: public MessageBase {
|
|
SurfaceFlinger& mFlinger;
|
|
sp<IBinder> mDisplay;
|
|
int mMode;
|
|
public:
|
|
MessageSetPowerMode(SurfaceFlinger& flinger,
|
|
const sp<IBinder>& disp, int mode) : mFlinger(flinger),
|
|
mDisplay(disp) { mMode = mode; }
|
|
virtual bool handler() {
|
|
sp<DisplayDevice> hw(mFlinger.getDisplayDevice(mDisplay));
|
|
if (hw == NULL) {
|
|
ALOGE("Attempt to set power mode = %d for null display %p",
|
|
mMode, mDisplay.get());
|
|
} else if (hw->getDisplayType() >= DisplayDevice::DISPLAY_VIRTUAL) {
|
|
ALOGW("Attempt to set power mode = %d for virtual display",
|
|
mMode);
|
|
} else {
|
|
mFlinger.setPowerModeInternal(
|
|
hw, mMode, /*stateLockHeld*/ false);
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
sp<MessageBase> msg = new MessageSetPowerMode(*this, display, mode);
|
|
postMessageSync(msg);
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
status_t SurfaceFlinger::dump(int fd, const Vector<String16>& args)
|
|
{
|
|
String8 result;
|
|
|
|
IPCThreadState* ipc = IPCThreadState::self();
|
|
const int pid = ipc->getCallingPid();
|
|
const int uid = ipc->getCallingUid();
|
|
if ((uid != AID_SHELL) &&
|
|
!PermissionCache::checkPermission(sDump, pid, uid)) {
|
|
result.appendFormat("Permission Denial: "
|
|
"can't dump SurfaceFlinger from pid=%d, uid=%d\n", pid, uid);
|
|
} else {
|
|
// Try to get the main lock, but give up after one second
|
|
// (this would indicate SF is stuck, but we want to be able to
|
|
// print something in dumpsys).
|
|
status_t err = mStateLock.timedLock(s2ns(1));
|
|
bool locked = (err == NO_ERROR);
|
|
if (!locked) {
|
|
result.appendFormat(
|
|
"SurfaceFlinger appears to be unresponsive (%s [%d]), "
|
|
"dumping anyways (no locks held)\n", strerror(-err), err);
|
|
}
|
|
|
|
bool dumpAll = true;
|
|
size_t index = 0;
|
|
size_t numArgs = args.size();
|
|
if (numArgs) {
|
|
if ((index < numArgs) &&
|
|
(args[index] == String16("--list"))) {
|
|
index++;
|
|
listLayersLocked(args, index, result);
|
|
dumpAll = false;
|
|
}
|
|
|
|
if ((index < numArgs) &&
|
|
(args[index] == String16("--latency"))) {
|
|
index++;
|
|
dumpStatsLocked(args, index, result);
|
|
dumpAll = false;
|
|
}
|
|
|
|
if ((index < numArgs) &&
|
|
(args[index] == String16("--latency-clear"))) {
|
|
index++;
|
|
clearStatsLocked(args, index, result);
|
|
dumpAll = false;
|
|
}
|
|
|
|
if ((index < numArgs) &&
|
|
(args[index] == String16("--dispsync"))) {
|
|
index++;
|
|
mPrimaryDispSync.dump(result);
|
|
dumpAll = false;
|
|
}
|
|
|
|
if ((index < numArgs) &&
|
|
(args[index] == String16("--static-screen"))) {
|
|
index++;
|
|
dumpStaticScreenStats(result);
|
|
dumpAll = false;
|
|
}
|
|
|
|
if ((index < numArgs) &&
|
|
(args[index] == String16("--frame-events"))) {
|
|
index++;
|
|
dumpFrameEventsLocked(result);
|
|
dumpAll = false;
|
|
}
|
|
|
|
if ((index < numArgs) && (args[index] == String16("--wide-color"))) {
|
|
index++;
|
|
dumpWideColorInfo(result);
|
|
dumpAll = false;
|
|
}
|
|
}
|
|
|
|
if (dumpAll) {
|
|
dumpAllLocked(args, index, result);
|
|
}
|
|
|
|
if (locked) {
|
|
mStateLock.unlock();
|
|
}
|
|
}
|
|
write(fd, result.string(), result.size());
|
|
return NO_ERROR;
|
|
}
|
|
|
|
void SurfaceFlinger::listLayersLocked(const Vector<String16>& /* args */,
|
|
size_t& /* index */, String8& result) const
|
|
{
|
|
mCurrentState.traverseInZOrder([&](Layer* layer) {
|
|
result.appendFormat("%s\n", layer->getName().string());
|
|
});
|
|
}
|
|
|
|
void SurfaceFlinger::dumpStatsLocked(const Vector<String16>& args, size_t& index,
|
|
String8& result) const
|
|
{
|
|
String8 name;
|
|
if (index < args.size()) {
|
|
name = String8(args[index]);
|
|
index++;
|
|
}
|
|
|
|
const auto& activeConfig = mHwc->getActiveConfig(HWC_DISPLAY_PRIMARY);
|
|
const nsecs_t period = activeConfig->getVsyncPeriod();
|
|
result.appendFormat("%" PRId64 "\n", period);
|
|
|
|
if (name.isEmpty()) {
|
|
mAnimFrameTracker.dumpStats(result);
|
|
} else {
|
|
mCurrentState.traverseInZOrder([&](Layer* layer) {
|
|
if (name == layer->getName()) {
|
|
layer->dumpFrameStats(result);
|
|
}
|
|
});
|
|
}
|
|
}
|
|
|
|
void SurfaceFlinger::clearStatsLocked(const Vector<String16>& args, size_t& index,
|
|
String8& /* result */)
|
|
{
|
|
String8 name;
|
|
if (index < args.size()) {
|
|
name = String8(args[index]);
|
|
index++;
|
|
}
|
|
|
|
mCurrentState.traverseInZOrder([&](Layer* layer) {
|
|
if (name.isEmpty() || (name == layer->getName())) {
|
|
layer->clearFrameStats();
|
|
}
|
|
});
|
|
|
|
mAnimFrameTracker.clearStats();
|
|
}
|
|
|
|
// This should only be called from the main thread. Otherwise it would need
|
|
// the lock and should use mCurrentState rather than mDrawingState.
|
|
void SurfaceFlinger::logFrameStats() {
|
|
mDrawingState.traverseInZOrder([&](Layer* layer) {
|
|
layer->logFrameStats();
|
|
});
|
|
|
|
mAnimFrameTracker.logAndResetStats(String8("<win-anim>"));
|
|
}
|
|
|
|
void SurfaceFlinger::appendSfConfigString(String8& result) const
|
|
{
|
|
result.append(" [sf");
|
|
result.appendFormat(" HAS_CONTEXT_PRIORITY=%d", useContextPriority);
|
|
|
|
if (isLayerTripleBufferingDisabled())
|
|
result.append(" DISABLE_TRIPLE_BUFFERING");
|
|
|
|
result.appendFormat(" PRESENT_TIME_OFFSET=%" PRId64 , dispSyncPresentTimeOffset);
|
|
result.appendFormat(" FORCE_HWC_FOR_RBG_TO_YUV=%d", useHwcForRgbToYuv);
|
|
result.appendFormat(" MAX_VIRT_DISPLAY_DIM=%" PRIu64, maxVirtualDisplaySize);
|
|
result.appendFormat(" RUNNING_WITHOUT_SYNC_FRAMEWORK=%d", !hasSyncFramework);
|
|
result.appendFormat(" NUM_FRAMEBUFFER_SURFACE_BUFFERS=%" PRId64,
|
|
maxFrameBufferAcquiredBuffers);
|
|
result.append("]");
|
|
}
|
|
|
|
void SurfaceFlinger::dumpStaticScreenStats(String8& result) const
|
|
{
|
|
result.appendFormat("Static screen stats:\n");
|
|
for (size_t b = 0; b < NUM_BUCKETS - 1; ++b) {
|
|
float bucketTimeSec = mFrameBuckets[b] / 1e9;
|
|
float percent = 100.0f *
|
|
static_cast<float>(mFrameBuckets[b]) / mTotalTime;
|
|
result.appendFormat(" < %zd frames: %.3f s (%.1f%%)\n",
|
|
b + 1, bucketTimeSec, percent);
|
|
}
|
|
float bucketTimeSec = mFrameBuckets[NUM_BUCKETS - 1] / 1e9;
|
|
float percent = 100.0f *
|
|
static_cast<float>(mFrameBuckets[NUM_BUCKETS - 1]) / mTotalTime;
|
|
result.appendFormat(" %zd+ frames: %.3f s (%.1f%%)\n",
|
|
NUM_BUCKETS - 1, bucketTimeSec, percent);
|
|
}
|
|
|
|
void SurfaceFlinger::recordBufferingStats(const char* layerName,
|
|
std::vector<OccupancyTracker::Segment>&& history) {
|
|
Mutex::Autolock lock(mBufferingStatsMutex);
|
|
auto& stats = mBufferingStats[layerName];
|
|
for (const auto& segment : history) {
|
|
if (!segment.usedThirdBuffer) {
|
|
stats.twoBufferTime += segment.totalTime;
|
|
}
|
|
if (segment.occupancyAverage < 1.0f) {
|
|
stats.doubleBufferedTime += segment.totalTime;
|
|
} else if (segment.occupancyAverage < 2.0f) {
|
|
stats.tripleBufferedTime += segment.totalTime;
|
|
}
|
|
++stats.numSegments;
|
|
stats.totalTime += segment.totalTime;
|
|
}
|
|
}
|
|
|
|
void SurfaceFlinger::dumpFrameEventsLocked(String8& result) {
|
|
result.appendFormat("Layer frame timestamps:\n");
|
|
|
|
const LayerVector& currentLayers = mCurrentState.layersSortedByZ;
|
|
const size_t count = currentLayers.size();
|
|
for (size_t i=0 ; i<count ; i++) {
|
|
currentLayers[i]->dumpFrameEvents(result);
|
|
}
|
|
}
|
|
|
|
void SurfaceFlinger::dumpBufferingStats(String8& result) const {
|
|
result.append("Buffering stats:\n");
|
|
result.append(" [Layer name] <Active time> <Two buffer> "
|
|
"<Double buffered> <Triple buffered>\n");
|
|
Mutex::Autolock lock(mBufferingStatsMutex);
|
|
typedef std::tuple<std::string, float, float, float> BufferTuple;
|
|
std::map<float, BufferTuple, std::greater<float>> sorted;
|
|
for (const auto& statsPair : mBufferingStats) {
|
|
const char* name = statsPair.first.c_str();
|
|
const BufferingStats& stats = statsPair.second;
|
|
if (stats.numSegments == 0) {
|
|
continue;
|
|
}
|
|
float activeTime = ns2ms(stats.totalTime) / 1000.0f;
|
|
float twoBufferRatio = static_cast<float>(stats.twoBufferTime) /
|
|
stats.totalTime;
|
|
float doubleBufferRatio = static_cast<float>(
|
|
stats.doubleBufferedTime) / stats.totalTime;
|
|
float tripleBufferRatio = static_cast<float>(
|
|
stats.tripleBufferedTime) / stats.totalTime;
|
|
sorted.insert({activeTime, {name, twoBufferRatio,
|
|
doubleBufferRatio, tripleBufferRatio}});
|
|
}
|
|
for (const auto& sortedPair : sorted) {
|
|
float activeTime = sortedPair.first;
|
|
const BufferTuple& values = sortedPair.second;
|
|
result.appendFormat(" [%s] %.2f %.3f %.3f %.3f\n",
|
|
std::get<0>(values).c_str(), activeTime,
|
|
std::get<1>(values), std::get<2>(values),
|
|
std::get<3>(values));
|
|
}
|
|
result.append("\n");
|
|
}
|
|
|
|
void SurfaceFlinger::dumpWideColorInfo(String8& result) const {
|
|
result.appendFormat("hasWideColorDisplay: %d\n", hasWideColorDisplay);
|
|
result.appendFormat("forceNativeColorMode: %d\n", mForceNativeColorMode);
|
|
|
|
// TODO: print out if wide-color mode is active or not
|
|
|
|
for (size_t d = 0; d < mDisplays.size(); d++) {
|
|
const sp<const DisplayDevice>& displayDevice(mDisplays[d]);
|
|
int32_t hwcId = displayDevice->getHwcDisplayId();
|
|
if (hwcId == DisplayDevice::DISPLAY_ID_INVALID) {
|
|
continue;
|
|
}
|
|
|
|
result.appendFormat("Display %d color modes:\n", hwcId);
|
|
std::vector<android_color_mode_t> modes = getHwComposer().getColorModes(hwcId);
|
|
for (auto&& mode : modes) {
|
|
result.appendFormat(" %s (%d)\n", decodeColorMode(mode).c_str(), mode);
|
|
}
|
|
|
|
android_color_mode_t currentMode = displayDevice->getActiveColorMode();
|
|
result.appendFormat(" Current color mode: %s (%d)\n",
|
|
decodeColorMode(currentMode).c_str(), currentMode);
|
|
}
|
|
result.append("\n");
|
|
}
|
|
|
|
void SurfaceFlinger::dumpAllLocked(const Vector<String16>& args, size_t& index,
|
|
String8& result) const
|
|
{
|
|
bool colorize = false;
|
|
if (index < args.size()
|
|
&& (args[index] == String16("--color"))) {
|
|
colorize = true;
|
|
index++;
|
|
}
|
|
|
|
Colorizer colorizer(colorize);
|
|
|
|
// figure out if we're stuck somewhere
|
|
const nsecs_t now = systemTime();
|
|
const nsecs_t inSwapBuffers(mDebugInSwapBuffers);
|
|
const nsecs_t inTransaction(mDebugInTransaction);
|
|
nsecs_t inSwapBuffersDuration = (inSwapBuffers) ? now-inSwapBuffers : 0;
|
|
nsecs_t inTransactionDuration = (inTransaction) ? now-inTransaction : 0;
|
|
|
|
/*
|
|
* Dump library configuration.
|
|
*/
|
|
|
|
colorizer.bold(result);
|
|
result.append("Build configuration:");
|
|
colorizer.reset(result);
|
|
appendSfConfigString(result);
|
|
appendUiConfigString(result);
|
|
appendGuiConfigString(result);
|
|
result.append("\n");
|
|
|
|
result.append("\nWide-Color information:\n");
|
|
dumpWideColorInfo(result);
|
|
|
|
colorizer.bold(result);
|
|
result.append("Sync configuration: ");
|
|
colorizer.reset(result);
|
|
result.append(SyncFeatures::getInstance().toString());
|
|
result.append("\n");
|
|
|
|
const auto& activeConfig = mHwc->getActiveConfig(HWC_DISPLAY_PRIMARY);
|
|
|
|
colorizer.bold(result);
|
|
result.append("DispSync configuration: ");
|
|
colorizer.reset(result);
|
|
result.appendFormat("app phase %" PRId64 " ns, sf phase %" PRId64 " ns, "
|
|
"present offset %" PRId64 " ns (refresh %" PRId64 " ns)",
|
|
vsyncPhaseOffsetNs, sfVsyncPhaseOffsetNs,
|
|
dispSyncPresentTimeOffset, activeConfig->getVsyncPeriod());
|
|
result.append("\n");
|
|
|
|
// Dump static screen stats
|
|
result.append("\n");
|
|
dumpStaticScreenStats(result);
|
|
result.append("\n");
|
|
|
|
dumpBufferingStats(result);
|
|
|
|
/*
|
|
* Dump the visible layer list
|
|
*/
|
|
colorizer.bold(result);
|
|
result.appendFormat("Visible layers (count = %zu)\n", mNumLayers);
|
|
colorizer.reset(result);
|
|
mCurrentState.traverseInZOrder([&](Layer* layer) {
|
|
layer->dump(result, colorizer);
|
|
});
|
|
|
|
/*
|
|
* Dump Display state
|
|
*/
|
|
|
|
colorizer.bold(result);
|
|
result.appendFormat("Displays (%zu entries)\n", mDisplays.size());
|
|
colorizer.reset(result);
|
|
for (size_t dpy=0 ; dpy<mDisplays.size() ; dpy++) {
|
|
const sp<const DisplayDevice>& hw(mDisplays[dpy]);
|
|
hw->dump(result);
|
|
}
|
|
|
|
/*
|
|
* Dump SurfaceFlinger global state
|
|
*/
|
|
|
|
colorizer.bold(result);
|
|
result.append("SurfaceFlinger global state:\n");
|
|
colorizer.reset(result);
|
|
|
|
HWComposer& hwc(getHwComposer());
|
|
sp<const DisplayDevice> hw(getDefaultDisplayDeviceLocked());
|
|
|
|
colorizer.bold(result);
|
|
result.appendFormat("EGL implementation : %s\n",
|
|
eglQueryStringImplementationANDROID(mEGLDisplay, EGL_VERSION));
|
|
colorizer.reset(result);
|
|
result.appendFormat("%s\n",
|
|
eglQueryStringImplementationANDROID(mEGLDisplay, EGL_EXTENSIONS));
|
|
|
|
mRenderEngine->dump(result);
|
|
|
|
hw->undefinedRegion.dump(result, "undefinedRegion");
|
|
result.appendFormat(" orientation=%d, isDisplayOn=%d\n",
|
|
hw->getOrientation(), hw->isDisplayOn());
|
|
result.appendFormat(
|
|
" last eglSwapBuffers() time: %f us\n"
|
|
" last transaction time : %f us\n"
|
|
" transaction-flags : %08x\n"
|
|
" refresh-rate : %f fps\n"
|
|
" x-dpi : %f\n"
|
|
" y-dpi : %f\n"
|
|
" gpu_to_cpu_unsupported : %d\n"
|
|
,
|
|
mLastSwapBufferTime/1000.0,
|
|
mLastTransactionTime/1000.0,
|
|
mTransactionFlags,
|
|
1e9 / activeConfig->getVsyncPeriod(),
|
|
activeConfig->getDpiX(),
|
|
activeConfig->getDpiY(),
|
|
!mGpuToCpuSupported);
|
|
|
|
result.appendFormat(" eglSwapBuffers time: %f us\n",
|
|
inSwapBuffersDuration/1000.0);
|
|
|
|
result.appendFormat(" transaction time: %f us\n",
|
|
inTransactionDuration/1000.0);
|
|
|
|
/*
|
|
* VSYNC state
|
|
*/
|
|
mEventThread->dump(result);
|
|
result.append("\n");
|
|
|
|
/*
|
|
* HWC layer minidump
|
|
*/
|
|
for (size_t d = 0; d < mDisplays.size(); d++) {
|
|
const sp<const DisplayDevice>& displayDevice(mDisplays[d]);
|
|
int32_t hwcId = displayDevice->getHwcDisplayId();
|
|
if (hwcId == DisplayDevice::DISPLAY_ID_INVALID) {
|
|
continue;
|
|
}
|
|
|
|
result.appendFormat("Display %d HWC layers:\n", hwcId);
|
|
Layer::miniDumpHeader(result);
|
|
mCurrentState.traverseInZOrder([&](Layer* layer) {
|
|
layer->miniDump(result, hwcId);
|
|
});
|
|
result.append("\n");
|
|
}
|
|
|
|
/*
|
|
* Dump HWComposer state
|
|
*/
|
|
colorizer.bold(result);
|
|
result.append("h/w composer state:\n");
|
|
colorizer.reset(result);
|
|
bool hwcDisabled = mDebugDisableHWC || mDebugRegion;
|
|
result.appendFormat(" h/w composer %s\n",
|
|
hwcDisabled ? "disabled" : "enabled");
|
|
hwc.dump(result);
|
|
|
|
/*
|
|
* Dump gralloc state
|
|
*/
|
|
const GraphicBufferAllocator& alloc(GraphicBufferAllocator::get());
|
|
alloc.dump(result);
|
|
|
|
/*
|
|
* Dump VrFlinger state if in use.
|
|
*/
|
|
if (mVrFlingerRequestsDisplay && mVrFlinger) {
|
|
result.append("VrFlinger state:\n");
|
|
result.append(mVrFlinger->Dump().c_str());
|
|
result.append("\n");
|
|
}
|
|
}
|
|
|
|
const Vector< sp<Layer> >&
|
|
SurfaceFlinger::getLayerSortedByZForHwcDisplay(int id) {
|
|
// Note: mStateLock is held here
|
|
wp<IBinder> dpy;
|
|
for (size_t i=0 ; i<mDisplays.size() ; i++) {
|
|
if (mDisplays.valueAt(i)->getHwcDisplayId() == id) {
|
|
dpy = mDisplays.keyAt(i);
|
|
break;
|
|
}
|
|
}
|
|
if (dpy == NULL) {
|
|
ALOGE("getLayerSortedByZForHwcDisplay: invalid hwc display id %d", id);
|
|
// Just use the primary display so we have something to return
|
|
dpy = getBuiltInDisplay(DisplayDevice::DISPLAY_PRIMARY);
|
|
}
|
|
return getDisplayDeviceLocked(dpy)->getVisibleLayersSortedByZ();
|
|
}
|
|
|
|
bool SurfaceFlinger::startDdmConnection()
|
|
{
|
|
void* libddmconnection_dso =
|
|
dlopen("libsurfaceflinger_ddmconnection.so", RTLD_NOW);
|
|
if (!libddmconnection_dso) {
|
|
return false;
|
|
}
|
|
void (*DdmConnection_start)(const char* name);
|
|
DdmConnection_start =
|
|
(decltype(DdmConnection_start))dlsym(libddmconnection_dso, "DdmConnection_start");
|
|
if (!DdmConnection_start) {
|
|
dlclose(libddmconnection_dso);
|
|
return false;
|
|
}
|
|
(*DdmConnection_start)(getServiceName());
|
|
return true;
|
|
}
|
|
|
|
status_t SurfaceFlinger::CheckTransactCodeCredentials(uint32_t code) {
|
|
switch (code) {
|
|
case CREATE_CONNECTION:
|
|
case CREATE_DISPLAY:
|
|
case BOOT_FINISHED:
|
|
case CLEAR_ANIMATION_FRAME_STATS:
|
|
case GET_ANIMATION_FRAME_STATS:
|
|
case SET_POWER_MODE:
|
|
case GET_HDR_CAPABILITIES:
|
|
case ENABLE_VSYNC_INJECTIONS:
|
|
case INJECT_VSYNC:
|
|
{
|
|
// codes that require permission check
|
|
IPCThreadState* ipc = IPCThreadState::self();
|
|
const int pid = ipc->getCallingPid();
|
|
const int uid = ipc->getCallingUid();
|
|
if ((uid != AID_GRAPHICS && uid != AID_SYSTEM) &&
|
|
!PermissionCache::checkPermission(sAccessSurfaceFlinger, pid, uid)) {
|
|
ALOGE("Permission Denial: can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
|
|
return PERMISSION_DENIED;
|
|
}
|
|
break;
|
|
}
|
|
/*
|
|
* Calling setTransactionState is safe, because you need to have been
|
|
* granted a reference to Client* and Handle* to do anything with it.
|
|
*
|
|
* Creating a scoped connection is safe, as per discussion in ISurfaceComposer.h
|
|
*/
|
|
case SET_TRANSACTION_STATE:
|
|
case CREATE_SCOPED_CONNECTION:
|
|
{
|
|
return OK;
|
|
}
|
|
case CAPTURE_SCREEN:
|
|
{
|
|
// codes that require permission check
|
|
IPCThreadState* ipc = IPCThreadState::self();
|
|
const int pid = ipc->getCallingPid();
|
|
const int uid = ipc->getCallingUid();
|
|
if ((uid != AID_GRAPHICS) &&
|
|
!PermissionCache::checkPermission(sReadFramebuffer, pid, uid)) {
|
|
ALOGE("Permission Denial: can't read framebuffer pid=%d, uid=%d", pid, uid);
|
|
return PERMISSION_DENIED;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
return OK;
|
|
}
|
|
|
|
status_t SurfaceFlinger::onTransact(
|
|
uint32_t code, const Parcel& data, Parcel* reply, uint32_t flags)
|
|
{
|
|
status_t credentialCheck = CheckTransactCodeCredentials(code);
|
|
if (credentialCheck != OK) {
|
|
return credentialCheck;
|
|
}
|
|
|
|
status_t err = BnSurfaceComposer::onTransact(code, data, reply, flags);
|
|
if (err == UNKNOWN_TRANSACTION || err == PERMISSION_DENIED) {
|
|
CHECK_INTERFACE(ISurfaceComposer, data, reply);
|
|
IPCThreadState* ipc = IPCThreadState::self();
|
|
const int uid = ipc->getCallingUid();
|
|
if (CC_UNLIKELY(uid != AID_SYSTEM
|
|
&& !PermissionCache::checkCallingPermission(sHardwareTest))) {
|
|
const int pid = ipc->getCallingPid();
|
|
ALOGE("Permission Denial: "
|
|
"can't access SurfaceFlinger pid=%d, uid=%d", pid, uid);
|
|
return PERMISSION_DENIED;
|
|
}
|
|
int n;
|
|
switch (code) {
|
|
case 1000: // SHOW_CPU, NOT SUPPORTED ANYMORE
|
|
case 1001: // SHOW_FPS, NOT SUPPORTED ANYMORE
|
|
return NO_ERROR;
|
|
case 1002: // SHOW_UPDATES
|
|
n = data.readInt32();
|
|
mDebugRegion = n ? n : (mDebugRegion ? 0 : 1);
|
|
invalidateHwcGeometry();
|
|
repaintEverything();
|
|
return NO_ERROR;
|
|
case 1004:{ // repaint everything
|
|
repaintEverything();
|
|
return NO_ERROR;
|
|
}
|
|
case 1005:{ // force transaction
|
|
Mutex::Autolock _l(mStateLock);
|
|
setTransactionFlags(
|
|
eTransactionNeeded|
|
|
eDisplayTransactionNeeded|
|
|
eTraversalNeeded);
|
|
return NO_ERROR;
|
|
}
|
|
case 1006:{ // send empty update
|
|
signalRefresh();
|
|
return NO_ERROR;
|
|
}
|
|
case 1008: // toggle use of hw composer
|
|
n = data.readInt32();
|
|
mDebugDisableHWC = n ? 1 : 0;
|
|
invalidateHwcGeometry();
|
|
repaintEverything();
|
|
return NO_ERROR;
|
|
case 1009: // toggle use of transform hint
|
|
n = data.readInt32();
|
|
mDebugDisableTransformHint = n ? 1 : 0;
|
|
invalidateHwcGeometry();
|
|
repaintEverything();
|
|
return NO_ERROR;
|
|
case 1010: // interrogate.
|
|
reply->writeInt32(0);
|
|
reply->writeInt32(0);
|
|
reply->writeInt32(mDebugRegion);
|
|
reply->writeInt32(0);
|
|
reply->writeInt32(mDebugDisableHWC);
|
|
return NO_ERROR;
|
|
case 1013: {
|
|
sp<const DisplayDevice> hw(getDefaultDisplayDevice());
|
|
reply->writeInt32(hw->getPageFlipCount());
|
|
return NO_ERROR;
|
|
}
|
|
case 1014: {
|
|
// daltonize
|
|
n = data.readInt32();
|
|
switch (n % 10) {
|
|
case 1:
|
|
mDaltonizer.setType(ColorBlindnessType::Protanomaly);
|
|
break;
|
|
case 2:
|
|
mDaltonizer.setType(ColorBlindnessType::Deuteranomaly);
|
|
break;
|
|
case 3:
|
|
mDaltonizer.setType(ColorBlindnessType::Tritanomaly);
|
|
break;
|
|
default:
|
|
mDaltonizer.setType(ColorBlindnessType::None);
|
|
break;
|
|
}
|
|
if (n >= 10) {
|
|
mDaltonizer.setMode(ColorBlindnessMode::Correction);
|
|
} else {
|
|
mDaltonizer.setMode(ColorBlindnessMode::Simulation);
|
|
}
|
|
invalidateHwcGeometry();
|
|
repaintEverything();
|
|
return NO_ERROR;
|
|
}
|
|
case 1015: {
|
|
// apply a color matrix
|
|
n = data.readInt32();
|
|
if (n) {
|
|
// color matrix is sent as a column-major mat4 matrix
|
|
for (size_t i = 0 ; i < 4; i++) {
|
|
for (size_t j = 0; j < 4; j++) {
|
|
mColorMatrix[i][j] = data.readFloat();
|
|
}
|
|
}
|
|
} else {
|
|
mColorMatrix = mat4();
|
|
}
|
|
|
|
// Check that supplied matrix's last row is {0,0,0,1} so we can avoid
|
|
// the division by w in the fragment shader
|
|
float4 lastRow(transpose(mColorMatrix)[3]);
|
|
if (any(greaterThan(abs(lastRow - float4{0, 0, 0, 1}), float4{1e-4f}))) {
|
|
ALOGE("The color transform's last row must be (0, 0, 0, 1)");
|
|
}
|
|
|
|
invalidateHwcGeometry();
|
|
repaintEverything();
|
|
return NO_ERROR;
|
|
}
|
|
// This is an experimental interface
|
|
// Needs to be shifted to proper binder interface when we productize
|
|
case 1016: {
|
|
n = data.readInt32();
|
|
mPrimaryDispSync.setRefreshSkipCount(n);
|
|
return NO_ERROR;
|
|
}
|
|
case 1017: {
|
|
n = data.readInt32();
|
|
mForceFullDamage = static_cast<bool>(n);
|
|
return NO_ERROR;
|
|
}
|
|
case 1018: { // Modify Choreographer's phase offset
|
|
n = data.readInt32();
|
|
mEventThread->setPhaseOffset(static_cast<nsecs_t>(n));
|
|
return NO_ERROR;
|
|
}
|
|
case 1019: { // Modify SurfaceFlinger's phase offset
|
|
n = data.readInt32();
|
|
mSFEventThread->setPhaseOffset(static_cast<nsecs_t>(n));
|
|
return NO_ERROR;
|
|
}
|
|
case 1020: { // Layer updates interceptor
|
|
n = data.readInt32();
|
|
if (n) {
|
|
ALOGV("Interceptor enabled");
|
|
mInterceptor.enable(mDrawingState.layersSortedByZ, mDrawingState.displays);
|
|
}
|
|
else{
|
|
ALOGV("Interceptor disabled");
|
|
mInterceptor.disable();
|
|
}
|
|
return NO_ERROR;
|
|
}
|
|
case 1021: { // Disable HWC virtual displays
|
|
n = data.readInt32();
|
|
mUseHwcVirtualDisplays = !n;
|
|
return NO_ERROR;
|
|
}
|
|
case 1022: { // Set saturation boost
|
|
mSaturation = std::max(0.0f, std::min(data.readFloat(), 2.0f));
|
|
|
|
invalidateHwcGeometry();
|
|
repaintEverything();
|
|
return NO_ERROR;
|
|
}
|
|
case 1023: { // Set native mode
|
|
mForceNativeColorMode = data.readInt32() == 1;
|
|
|
|
invalidateHwcGeometry();
|
|
repaintEverything();
|
|
return NO_ERROR;
|
|
}
|
|
case 1024: { // Is wide color gamut rendering/color management supported?
|
|
reply->writeBool(hasWideColorDisplay);
|
|
return NO_ERROR;
|
|
}
|
|
}
|
|
}
|
|
return err;
|
|
}
|
|
|
|
void SurfaceFlinger::repaintEverythingLocked() {
|
|
android_atomic_or(1, &mRepaintEverything);
|
|
signalTransaction();
|
|
}
|
|
|
|
void SurfaceFlinger::repaintEverything() {
|
|
ConditionalLock _l(mStateLock,
|
|
std::this_thread::get_id() != mMainThreadId);
|
|
repaintEverythingLocked();
|
|
}
|
|
|
|
// Checks that the requested width and height are valid and updates them to the display dimensions
|
|
// if they are set to 0
|
|
static status_t updateDimensionsLocked(const sp<const DisplayDevice>& displayDevice,
|
|
Transform::orientation_flags rotation,
|
|
uint32_t* requestedWidth, uint32_t* requestedHeight) {
|
|
// get screen geometry
|
|
uint32_t displayWidth = displayDevice->getWidth();
|
|
uint32_t displayHeight = displayDevice->getHeight();
|
|
|
|
if (rotation & Transform::ROT_90) {
|
|
std::swap(displayWidth, displayHeight);
|
|
}
|
|
|
|
if ((*requestedWidth > displayWidth) || (*requestedHeight > displayHeight)) {
|
|
ALOGE("size mismatch (%d, %d) > (%d, %d)",
|
|
*requestedWidth, *requestedHeight, displayWidth, displayHeight);
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
if (*requestedWidth == 0) {
|
|
*requestedWidth = displayWidth;
|
|
}
|
|
if (*requestedHeight == 0) {
|
|
*requestedHeight = displayHeight;
|
|
}
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
// A simple RAII class to disconnect from an ANativeWindow* when it goes out of scope
|
|
class WindowDisconnector {
|
|
public:
|
|
WindowDisconnector(ANativeWindow* window, int api) : mWindow(window), mApi(api) {}
|
|
~WindowDisconnector() {
|
|
native_window_api_disconnect(mWindow, mApi);
|
|
}
|
|
|
|
private:
|
|
ANativeWindow* mWindow;
|
|
const int mApi;
|
|
};
|
|
|
|
static status_t getWindowBuffer(ANativeWindow* window, uint32_t requestedWidth,
|
|
uint32_t requestedHeight, bool hasWideColorDisplay,
|
|
bool renderEngineUsesWideColor, ANativeWindowBuffer** outBuffer) {
|
|
const uint32_t usage = GRALLOC_USAGE_SW_READ_OFTEN | GRALLOC_USAGE_SW_WRITE_OFTEN |
|
|
GRALLOC_USAGE_HW_RENDER | GRALLOC_USAGE_HW_TEXTURE;
|
|
|
|
int err = 0;
|
|
err = native_window_set_buffers_dimensions(window, requestedWidth, requestedHeight);
|
|
err |= native_window_set_scaling_mode(window, NATIVE_WINDOW_SCALING_MODE_SCALE_TO_WINDOW);
|
|
err |= native_window_set_buffers_format(window, HAL_PIXEL_FORMAT_RGBA_8888);
|
|
err |= native_window_set_usage(window, usage);
|
|
|
|
if (hasWideColorDisplay) {
|
|
err |= native_window_set_buffers_data_space(window,
|
|
renderEngineUsesWideColor
|
|
? HAL_DATASPACE_DISPLAY_P3
|
|
: HAL_DATASPACE_V0_SRGB);
|
|
}
|
|
|
|
if (err != NO_ERROR) {
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
/* TODO: Once we have the sync framework everywhere this can use
|
|
* server-side waits on the fence that dequeueBuffer returns.
|
|
*/
|
|
err = native_window_dequeue_buffer_and_wait(window, outBuffer);
|
|
if (err != NO_ERROR) {
|
|
return err;
|
|
}
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
status_t SurfaceFlinger::captureScreen(const sp<IBinder>& display,
|
|
const sp<IGraphicBufferProducer>& producer,
|
|
Rect sourceCrop, uint32_t reqWidth, uint32_t reqHeight,
|
|
int32_t minLayerZ, int32_t maxLayerZ,
|
|
bool useIdentityTransform, ISurfaceComposer::Rotation rotation) {
|
|
ATRACE_CALL();
|
|
|
|
if (CC_UNLIKELY(display == 0))
|
|
return BAD_VALUE;
|
|
|
|
if (CC_UNLIKELY(producer == 0))
|
|
return BAD_VALUE;
|
|
|
|
// if we have secure windows on this display, never allow the screen capture
|
|
// unless the producer interface is local (i.e.: we can take a screenshot for
|
|
// ourselves).
|
|
bool isLocalScreenshot = IInterface::asBinder(producer)->localBinder();
|
|
|
|
// Convert to surfaceflinger's internal rotation type.
|
|
Transform::orientation_flags rotationFlags;
|
|
switch (rotation) {
|
|
case ISurfaceComposer::eRotateNone:
|
|
rotationFlags = Transform::ROT_0;
|
|
break;
|
|
case ISurfaceComposer::eRotate90:
|
|
rotationFlags = Transform::ROT_90;
|
|
break;
|
|
case ISurfaceComposer::eRotate180:
|
|
rotationFlags = Transform::ROT_180;
|
|
break;
|
|
case ISurfaceComposer::eRotate270:
|
|
rotationFlags = Transform::ROT_270;
|
|
break;
|
|
default:
|
|
rotationFlags = Transform::ROT_0;
|
|
ALOGE("Invalid rotation passed to captureScreen(): %d\n", rotation);
|
|
break;
|
|
}
|
|
|
|
{ // Autolock scope
|
|
Mutex::Autolock lock(mStateLock);
|
|
sp<const DisplayDevice> displayDevice(getDisplayDeviceLocked(display));
|
|
updateDimensionsLocked(displayDevice, rotationFlags, &reqWidth, &reqHeight);
|
|
}
|
|
|
|
// create a surface (because we're a producer, and we need to
|
|
// dequeue/queue a buffer)
|
|
sp<Surface> surface = new Surface(producer, false);
|
|
|
|
// Put the screenshot Surface into async mode so that
|
|
// Layer::headFenceHasSignaled will always return true and we'll latch the
|
|
// first buffer regardless of whether or not its acquire fence has
|
|
// signaled. This is needed to avoid a race condition in the rotation
|
|
// animation. See b/30209608
|
|
surface->setAsyncMode(true);
|
|
|
|
ANativeWindow* window = surface.get();
|
|
|
|
status_t result = native_window_api_connect(window, NATIVE_WINDOW_API_EGL);
|
|
if (result != NO_ERROR) {
|
|
return result;
|
|
}
|
|
WindowDisconnector disconnector(window, NATIVE_WINDOW_API_EGL);
|
|
|
|
ANativeWindowBuffer* buffer = nullptr;
|
|
result = getWindowBuffer(window, reqWidth, reqHeight,
|
|
hasWideColorDisplay && !mForceNativeColorMode,
|
|
getRenderEngine().usesWideColor(), &buffer);
|
|
if (result != NO_ERROR) {
|
|
return result;
|
|
}
|
|
|
|
// This mutex protects syncFd and captureResult for communication of the return values from the
|
|
// main thread back to this Binder thread
|
|
std::mutex captureMutex;
|
|
std::condition_variable captureCondition;
|
|
std::unique_lock<std::mutex> captureLock(captureMutex);
|
|
int syncFd = -1;
|
|
std::optional<status_t> captureResult;
|
|
|
|
sp<LambdaMessage> message = new LambdaMessage([&]() {
|
|
// If there is a refresh pending, bug out early and tell the binder thread to try again
|
|
// after the refresh.
|
|
if (mRefreshPending) {
|
|
ATRACE_NAME("Skipping screenshot for now");
|
|
std::unique_lock<std::mutex> captureLock(captureMutex);
|
|
captureResult = std::make_optional<status_t>(EAGAIN);
|
|
captureCondition.notify_one();
|
|
return;
|
|
}
|
|
|
|
status_t result = NO_ERROR;
|
|
int fd = -1;
|
|
{
|
|
Mutex::Autolock _l(mStateLock);
|
|
sp<const DisplayDevice> device(getDisplayDeviceLocked(display));
|
|
result = captureScreenImplLocked(device, buffer, sourceCrop, reqWidth, reqHeight,
|
|
minLayerZ, maxLayerZ, useIdentityTransform,
|
|
rotationFlags, isLocalScreenshot, &fd);
|
|
}
|
|
|
|
{
|
|
std::unique_lock<std::mutex> captureLock(captureMutex);
|
|
syncFd = fd;
|
|
captureResult = std::make_optional<status_t>(result);
|
|
captureCondition.notify_one();
|
|
}
|
|
});
|
|
|
|
result = postMessageAsync(message);
|
|
if (result == NO_ERROR) {
|
|
captureCondition.wait(captureLock, [&]() { return captureResult; });
|
|
while (*captureResult == EAGAIN) {
|
|
captureResult.reset();
|
|
result = postMessageAsync(message);
|
|
if (result != NO_ERROR) {
|
|
return result;
|
|
}
|
|
captureCondition.wait(captureLock, [&]() { return captureResult; });
|
|
}
|
|
result = *captureResult;
|
|
}
|
|
|
|
if (result == NO_ERROR) {
|
|
// queueBuffer takes ownership of syncFd
|
|
result = window->queueBuffer(window, buffer, syncFd);
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
|
|
void SurfaceFlinger::renderScreenImplLocked(
|
|
const sp<const DisplayDevice>& hw,
|
|
Rect sourceCrop, uint32_t reqWidth, uint32_t reqHeight,
|
|
int32_t minLayerZ, int32_t maxLayerZ,
|
|
bool yswap, bool useIdentityTransform, Transform::orientation_flags rotation)
|
|
{
|
|
ATRACE_CALL();
|
|
RenderEngine& engine(getRenderEngine());
|
|
|
|
// get screen geometry
|
|
const int32_t hw_w = hw->getWidth();
|
|
const int32_t hw_h = hw->getHeight();
|
|
const bool filtering = static_cast<int32_t>(reqWidth) != hw_w ||
|
|
static_cast<int32_t>(reqHeight) != hw_h;
|
|
|
|
// if a default or invalid sourceCrop is passed in, set reasonable values
|
|
if (sourceCrop.width() == 0 || sourceCrop.height() == 0 ||
|
|
!sourceCrop.isValid()) {
|
|
sourceCrop.setLeftTop(Point(0, 0));
|
|
sourceCrop.setRightBottom(Point(hw_w, hw_h));
|
|
}
|
|
|
|
// ensure that sourceCrop is inside screen
|
|
if (sourceCrop.left < 0) {
|
|
ALOGE("Invalid crop rect: l = %d (< 0)", sourceCrop.left);
|
|
}
|
|
if (sourceCrop.right > hw_w) {
|
|
ALOGE("Invalid crop rect: r = %d (> %d)", sourceCrop.right, hw_w);
|
|
}
|
|
if (sourceCrop.top < 0) {
|
|
ALOGE("Invalid crop rect: t = %d (< 0)", sourceCrop.top);
|
|
}
|
|
if (sourceCrop.bottom > hw_h) {
|
|
ALOGE("Invalid crop rect: b = %d (> %d)", sourceCrop.bottom, hw_h);
|
|
}
|
|
|
|
#ifdef USE_HWC2
|
|
engine.setWideColor(hw->getWideColorSupport() && !mForceNativeColorMode);
|
|
engine.setColorMode(mForceNativeColorMode ? HAL_COLOR_MODE_NATIVE : hw->getActiveColorMode());
|
|
#endif
|
|
|
|
// make sure to clear all GL error flags
|
|
engine.checkErrors();
|
|
|
|
// set-up our viewport
|
|
engine.setViewportAndProjection(
|
|
reqWidth, reqHeight, sourceCrop, hw_h, yswap, rotation);
|
|
engine.disableTexturing();
|
|
|
|
// redraw the screen entirely...
|
|
engine.clearWithColor(0, 0, 0, 1);
|
|
|
|
// We loop through the first level of layers without traversing,
|
|
// as we need to interpret min/max layer Z in the top level Z space.
|
|
for (const auto& layer : mDrawingState.layersSortedByZ) {
|
|
if (!layer->belongsToDisplay(hw->getLayerStack(), false)) {
|
|
continue;
|
|
}
|
|
const Layer::State& state(layer->getDrawingState());
|
|
if (state.z < minLayerZ || state.z > maxLayerZ) {
|
|
continue;
|
|
}
|
|
layer->traverseInZOrder(LayerVector::StateSet::Drawing, [&](Layer* layer) {
|
|
if (!layer->isVisible()) {
|
|
return;
|
|
}
|
|
if (filtering) layer->setFiltering(true);
|
|
layer->draw(hw, useIdentityTransform);
|
|
if (filtering) layer->setFiltering(false);
|
|
});
|
|
}
|
|
|
|
hw->setViewportAndProjection();
|
|
}
|
|
|
|
// A simple RAII class that holds an EGLImage and destroys it either:
|
|
// a) When the destroy() method is called
|
|
// b) When the object goes out of scope
|
|
class ImageHolder {
|
|
public:
|
|
ImageHolder(EGLDisplay display, EGLImageKHR image) : mDisplay(display), mImage(image) {}
|
|
~ImageHolder() { destroy(); }
|
|
|
|
void destroy() {
|
|
if (mImage != EGL_NO_IMAGE_KHR) {
|
|
eglDestroyImageKHR(mDisplay, mImage);
|
|
mImage = EGL_NO_IMAGE_KHR;
|
|
}
|
|
}
|
|
|
|
private:
|
|
const EGLDisplay mDisplay;
|
|
EGLImageKHR mImage;
|
|
};
|
|
|
|
status_t SurfaceFlinger::captureScreenImplLocked(const sp<const DisplayDevice>& hw,
|
|
ANativeWindowBuffer* buffer, Rect sourceCrop,
|
|
uint32_t reqWidth, uint32_t reqHeight,
|
|
int32_t minLayerZ, int32_t maxLayerZ,
|
|
bool useIdentityTransform,
|
|
Transform::orientation_flags rotation,
|
|
bool isLocalScreenshot, int* outSyncFd) {
|
|
ATRACE_CALL();
|
|
|
|
bool secureLayerIsVisible = false;
|
|
for (const auto& layer : mDrawingState.layersSortedByZ) {
|
|
const Layer::State& state(layer->getDrawingState());
|
|
if (!layer->belongsToDisplay(hw->getLayerStack(), false) ||
|
|
(state.z < minLayerZ || state.z > maxLayerZ)) {
|
|
continue;
|
|
}
|
|
layer->traverseInZOrder(LayerVector::StateSet::Drawing, [&](Layer *layer) {
|
|
secureLayerIsVisible = secureLayerIsVisible || (layer->isVisible() &&
|
|
layer->isSecure());
|
|
});
|
|
}
|
|
|
|
if (!isLocalScreenshot && secureLayerIsVisible) {
|
|
ALOGW("FB is protected: PERMISSION_DENIED");
|
|
return PERMISSION_DENIED;
|
|
}
|
|
|
|
int syncFd = -1;
|
|
// create an EGLImage from the buffer so we can later
|
|
// turn it into a texture
|
|
EGLImageKHR image = eglCreateImageKHR(mEGLDisplay, EGL_NO_CONTEXT,
|
|
EGL_NATIVE_BUFFER_ANDROID, buffer, NULL);
|
|
if (image == EGL_NO_IMAGE_KHR) {
|
|
return BAD_VALUE;
|
|
}
|
|
|
|
// This will automatically destroy the image if we return before calling its destroy method
|
|
ImageHolder imageHolder(mEGLDisplay, image);
|
|
|
|
// this binds the given EGLImage as a framebuffer for the
|
|
// duration of this scope.
|
|
RenderEngine::BindImageAsFramebuffer imageBond(getRenderEngine(), image);
|
|
if (imageBond.getStatus() != NO_ERROR) {
|
|
ALOGE("got GL_FRAMEBUFFER_COMPLETE_OES error while taking screenshot");
|
|
return INVALID_OPERATION;
|
|
}
|
|
|
|
// this will in fact render into our dequeued buffer
|
|
// via an FBO, which means we didn't have to create
|
|
// an EGLSurface and therefore we're not
|
|
// dependent on the context's EGLConfig.
|
|
renderScreenImplLocked(
|
|
hw, sourceCrop, reqWidth, reqHeight, minLayerZ, maxLayerZ, true,
|
|
useIdentityTransform, rotation);
|
|
|
|
// Attempt to create a sync khr object that can produce a sync point. If that
|
|
// isn't available, create a non-dupable sync object in the fallback path and
|
|
// wait on it directly.
|
|
EGLSyncKHR sync = EGL_NO_SYNC_KHR;
|
|
if (!DEBUG_SCREENSHOTS) {
|
|
sync = eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_NATIVE_FENCE_ANDROID, NULL);
|
|
// native fence fd will not be populated until flush() is done.
|
|
getRenderEngine().flush();
|
|
}
|
|
|
|
if (sync != EGL_NO_SYNC_KHR) {
|
|
// get the sync fd
|
|
syncFd = eglDupNativeFenceFDANDROID(mEGLDisplay, sync);
|
|
if (syncFd == EGL_NO_NATIVE_FENCE_FD_ANDROID) {
|
|
ALOGW("captureScreen: failed to dup sync khr object");
|
|
syncFd = -1;
|
|
}
|
|
eglDestroySyncKHR(mEGLDisplay, sync);
|
|
} else {
|
|
// fallback path
|
|
sync = eglCreateSyncKHR(mEGLDisplay, EGL_SYNC_FENCE_KHR, NULL);
|
|
if (sync != EGL_NO_SYNC_KHR) {
|
|
EGLint result = eglClientWaitSyncKHR(mEGLDisplay, sync,
|
|
EGL_SYNC_FLUSH_COMMANDS_BIT_KHR, 2000000000 /*2 sec*/);
|
|
EGLint eglErr = eglGetError();
|
|
if (result == EGL_TIMEOUT_EXPIRED_KHR) {
|
|
ALOGW("captureScreen: fence wait timed out");
|
|
} else {
|
|
ALOGW_IF(eglErr != EGL_SUCCESS,
|
|
"captureScreen: error waiting on EGL fence: %#x", eglErr);
|
|
}
|
|
eglDestroySyncKHR(mEGLDisplay, sync);
|
|
} else {
|
|
ALOGW("captureScreen: error creating EGL fence: %#x", eglGetError());
|
|
}
|
|
}
|
|
*outSyncFd = syncFd;
|
|
|
|
if (DEBUG_SCREENSHOTS) {
|
|
uint32_t* pixels = new uint32_t[reqWidth*reqHeight];
|
|
getRenderEngine().readPixels(0, 0, reqWidth, reqHeight, pixels);
|
|
checkScreenshot(reqWidth, reqHeight, reqWidth, pixels,
|
|
hw, minLayerZ, maxLayerZ);
|
|
delete [] pixels;
|
|
}
|
|
|
|
// destroy our image
|
|
imageHolder.destroy();
|
|
|
|
return NO_ERROR;
|
|
}
|
|
|
|
void SurfaceFlinger::checkScreenshot(size_t w, size_t s, size_t h, void const* vaddr,
|
|
const sp<const DisplayDevice>& hw, int32_t minLayerZ, int32_t maxLayerZ) {
|
|
if (DEBUG_SCREENSHOTS) {
|
|
for (size_t y=0 ; y<h ; y++) {
|
|
uint32_t const * p = (uint32_t const *)vaddr + y*s;
|
|
for (size_t x=0 ; x<w ; x++) {
|
|
if (p[x] != 0xFF000000) return;
|
|
}
|
|
}
|
|
ALOGE("*** we just took a black screenshot ***\n"
|
|
"requested minz=%d, maxz=%d, layerStack=%d",
|
|
minLayerZ, maxLayerZ, hw->getLayerStack());
|
|
|
|
size_t i = 0;
|
|
for (const auto& layer : mDrawingState.layersSortedByZ) {
|
|
const Layer::State& state(layer->getDrawingState());
|
|
if (layer->belongsToDisplay(hw->getLayerStack(), false) && state.z >= minLayerZ &&
|
|
state.z <= maxLayerZ) {
|
|
layer->traverseInZOrder(LayerVector::StateSet::Drawing, [&](Layer* layer) {
|
|
ALOGE("%c index=%zu, name=%s, layerStack=%d, z=%d, visible=%d, flags=%x, alpha=%.3f",
|
|
layer->isVisible() ? '+' : '-',
|
|
i, layer->getName().string(), layer->getLayerStack(), state.z,
|
|
layer->isVisible(), state.flags, state.alpha);
|
|
i++;
|
|
});
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// ---------------------------------------------------------------------------
|
|
|
|
void SurfaceFlinger::State::traverseInZOrder(const LayerVector::Visitor& visitor) const {
|
|
layersSortedByZ.traverseInZOrder(stateSet, visitor);
|
|
}
|
|
|
|
void SurfaceFlinger::State::traverseInReverseZOrder(const LayerVector::Visitor& visitor) const {
|
|
layersSortedByZ.traverseInReverseZOrder(stateSet, visitor);
|
|
}
|
|
|
|
}; // namespace android
|
|
|
|
|
|
#if defined(__gl_h_)
|
|
#error "don't include gl/gl.h in this file"
|
|
#endif
|
|
|
|
#if defined(__gl2_h_)
|
|
#error "don't include gl2/gl2.h in this file"
|
|
#endif
|