344 lines
10 KiB
C++
344 lines
10 KiB
C++
// Copyright 2006-2008 The RE2 Authors. All Rights Reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
#include "util/test.h"
|
|
#include "util/thread.h"
|
|
#include "re2/prog.h"
|
|
#include "re2/re2.h"
|
|
#include "re2/regexp.h"
|
|
#include "re2/testing/regexp_generator.h"
|
|
#include "re2/testing/string_generator.h"
|
|
|
|
DECLARE_bool(re2_dfa_bail_when_slow);
|
|
|
|
DEFINE_int32(size, 8, "log2(number of DFA nodes)");
|
|
DEFINE_int32(repeat, 2, "Repetition count.");
|
|
DEFINE_int32(threads, 4, "number of threads");
|
|
|
|
namespace re2 {
|
|
|
|
// Check that multithreaded access to DFA class works.
|
|
|
|
// Helper thread: builds entire DFA for prog.
|
|
class BuildThread : public Thread {
|
|
public:
|
|
BuildThread(Prog* prog) : prog_(prog) {}
|
|
virtual void Run() {
|
|
CHECK(prog_->BuildEntireDFA(Prog::kFirstMatch));
|
|
}
|
|
|
|
private:
|
|
Prog* prog_;
|
|
};
|
|
|
|
TEST(Multithreaded, BuildEntireDFA) {
|
|
// Create regexp with 2^FLAGS_size states in DFA.
|
|
string s = "a";
|
|
for (int i = 0; i < FLAGS_size; i++)
|
|
s += "[ab]";
|
|
s += "b";
|
|
|
|
// Check that single-threaded code works.
|
|
{
|
|
//LOG(INFO) << s;
|
|
Regexp* re = Regexp::Parse(s.c_str(), Regexp::LikePerl, NULL);
|
|
CHECK(re);
|
|
Prog* prog = re->CompileToProg(0);
|
|
CHECK(prog);
|
|
BuildThread* t = new BuildThread(prog);
|
|
t->SetJoinable(true);
|
|
t->Start();
|
|
t->Join();
|
|
delete t;
|
|
delete prog;
|
|
re->Decref();
|
|
}
|
|
|
|
// Build the DFA simultaneously in a bunch of threads.
|
|
for (int i = 0; i < FLAGS_repeat; i++) {
|
|
Regexp* re = Regexp::Parse(s.c_str(), Regexp::LikePerl, NULL);
|
|
CHECK(re);
|
|
Prog* prog = re->CompileToProg(0);
|
|
CHECK(prog);
|
|
|
|
vector<BuildThread*> threads;
|
|
for (int j = 0; j < FLAGS_threads; j++) {
|
|
BuildThread *t = new BuildThread(prog);
|
|
t->SetJoinable(true);
|
|
threads.push_back(t);
|
|
}
|
|
for (int j = 0; j < FLAGS_threads; j++)
|
|
threads[j]->Start();
|
|
for (int j = 0; j < FLAGS_threads; j++) {
|
|
threads[j]->Join();
|
|
delete threads[j];
|
|
}
|
|
|
|
// One more compile, to make sure everything is okay.
|
|
prog->BuildEntireDFA(Prog::kFirstMatch);
|
|
delete prog;
|
|
re->Decref();
|
|
}
|
|
}
|
|
|
|
// Check that DFA size requirements are followed.
|
|
// BuildEntireDFA will, like SearchDFA, stop building out
|
|
// the DFA once the memory limits are reached.
|
|
TEST(SingleThreaded, BuildEntireDFA) {
|
|
// Create regexp with 2^30 states in DFA.
|
|
string s = "a";
|
|
for (int i = 0; i < 30; i++)
|
|
s += "[ab]";
|
|
s += "b";
|
|
|
|
//LOG(INFO) << s;
|
|
Regexp* re = Regexp::Parse(s.c_str(), Regexp::LikePerl, NULL);
|
|
CHECK(re);
|
|
int max = 24;
|
|
for (int i = 17; i < max; i++) {
|
|
int limit = 1<<i;
|
|
int usage;
|
|
//int progusage, dfamem;
|
|
{
|
|
testing::MallocCounter m(testing::MallocCounter::THIS_THREAD_ONLY);
|
|
Prog* prog = re->CompileToProg(limit);
|
|
CHECK(prog);
|
|
//progusage = m.HeapGrowth();
|
|
//dfamem = prog->dfa_mem();
|
|
prog->BuildEntireDFA(Prog::kFirstMatch);
|
|
prog->BuildEntireDFA(Prog::kLongestMatch);
|
|
usage = m.HeapGrowth();
|
|
delete prog;
|
|
}
|
|
if (!UsingMallocCounter)
|
|
continue;
|
|
//LOG(INFO) << StringPrintf("Limit %d: prog used %d, DFA budget %d, total %d\n",
|
|
// limit, progusage, dfamem, usage);
|
|
CHECK_GT(usage, limit*9/10);
|
|
CHECK_LT(usage, limit + (16<<10)); // 16kB of slop okay
|
|
}
|
|
re->Decref();
|
|
}
|
|
|
|
// Generates and returns a string over binary alphabet {0,1} that contains
|
|
// all possible binary sequences of length n as subsequences. The obvious
|
|
// brute force method would generate a string of length n * 2^n, but this
|
|
// generates a string of length n + 2^n - 1 called a De Bruijn cycle.
|
|
// See Knuth, The Art of Computer Programming, Vol 2, Exercise 3.2.2 #17.
|
|
// Such a string is useful for testing a DFA. If you have a DFA
|
|
// where distinct last n bytes implies distinct states, then running on a
|
|
// DeBruijn string causes the DFA to need to create a new state at every
|
|
// position in the input, never reusing any states until it gets to the
|
|
// end of the string. This is the worst possible case for DFA execution.
|
|
static string DeBruijnString(int n) {
|
|
CHECK_LT(n, 8*sizeof(int));
|
|
CHECK_GT(n, 0);
|
|
|
|
vector<bool> did(1<<n);
|
|
for (int i = 0; i < 1<<n; i++)
|
|
did[i] = false;
|
|
|
|
string s;
|
|
for (int i = 0; i < n-1; i++)
|
|
s.append("0");
|
|
int bits = 0;
|
|
int mask = (1<<n) - 1;
|
|
for (int i = 0; i < (1<<n); i++) {
|
|
bits <<= 1;
|
|
bits &= mask;
|
|
if (!did[bits|1]) {
|
|
bits |= 1;
|
|
s.append("1");
|
|
} else {
|
|
s.append("0");
|
|
}
|
|
CHECK(!did[bits]);
|
|
did[bits] = true;
|
|
}
|
|
return s;
|
|
}
|
|
|
|
// Test that the DFA gets the right result even if it runs
|
|
// out of memory during a search. The regular expression
|
|
// 0[01]{n}$ matches a binary string of 0s and 1s only if
|
|
// the (n+1)th-to-last character is a 0. Matching this in
|
|
// a single forward pass (as done by the DFA) requires
|
|
// keeping one bit for each of the last n+1 characters
|
|
// (whether each was a 0), or 2^(n+1) possible states.
|
|
// If we run this regexp to search in a string that contains
|
|
// every possible n-character binary string as a substring,
|
|
// then it will have to run through at least 2^n states.
|
|
// States are big data structures -- certainly more than 1 byte --
|
|
// so if the DFA can search correctly while staying within a
|
|
// 2^n byte limit, it must be handling out-of-memory conditions
|
|
// gracefully.
|
|
TEST(SingleThreaded, SearchDFA) {
|
|
// Choice of n is mostly arbitrary, except that:
|
|
// * making n too big makes the test run for too long.
|
|
// * making n too small makes the DFA refuse to run,
|
|
// because it has so little memory compared to the program size.
|
|
// Empirically, n = 18 is a good compromise between the two.
|
|
const int n = 18;
|
|
|
|
Regexp* re = Regexp::Parse(StringPrintf("0[01]{%d}$", n),
|
|
Regexp::LikePerl, NULL);
|
|
CHECK(re);
|
|
|
|
// The De Bruijn string for n ends with a 1 followed by n 0s in a row,
|
|
// which is not a match for 0[01]{n}$. Adding one more 0 is a match.
|
|
string no_match = DeBruijnString(n);
|
|
string match = no_match + "0";
|
|
|
|
// The De Bruijn string is the worst case input for this regexp.
|
|
// By default, the DFA will notice that it is flushing its cache
|
|
// too frequently and will bail out early, so that RE2 can use the
|
|
// NFA implementation instead. (The DFA loses its speed advantage
|
|
// if it can't get a good cache hit rate.)
|
|
// Tell the DFA to trudge along instead.
|
|
FLAGS_re2_dfa_bail_when_slow = false;
|
|
|
|
int64 usage;
|
|
int64 peak_usage;
|
|
{
|
|
testing::MallocCounter m(testing::MallocCounter::THIS_THREAD_ONLY);
|
|
Prog* prog = re->CompileToProg(1<<n);
|
|
CHECK(prog);
|
|
for (int i = 0; i < 10; i++) {
|
|
bool matched, failed = false;
|
|
matched = prog->SearchDFA(match, NULL,
|
|
Prog::kUnanchored, Prog::kFirstMatch,
|
|
NULL, &failed, NULL);
|
|
CHECK(!failed);
|
|
CHECK(matched);
|
|
matched = prog->SearchDFA(no_match, NULL,
|
|
Prog::kUnanchored, Prog::kFirstMatch,
|
|
NULL, &failed, NULL);
|
|
CHECK(!failed);
|
|
CHECK(!matched);
|
|
}
|
|
usage = m.HeapGrowth();
|
|
peak_usage = m.PeakHeapGrowth();
|
|
delete prog;
|
|
}
|
|
re->Decref();
|
|
|
|
if (!UsingMallocCounter)
|
|
return;
|
|
//LOG(INFO) << "usage " << usage << " " << peak_usage;
|
|
CHECK_LT(usage, 1<<n);
|
|
CHECK_LT(peak_usage, 1<<n);
|
|
}
|
|
|
|
// Helper thread: searches for match, which should match,
|
|
// and no_match, which should not.
|
|
class SearchThread : public Thread {
|
|
public:
|
|
SearchThread(Prog* prog, const StringPiece& match,
|
|
const StringPiece& no_match)
|
|
: prog_(prog), match_(match), no_match_(no_match) {}
|
|
|
|
virtual void Run() {
|
|
for (int i = 0; i < 2; i++) {
|
|
bool matched, failed = false;
|
|
matched = prog_->SearchDFA(match_, NULL,
|
|
Prog::kUnanchored, Prog::kFirstMatch,
|
|
NULL, &failed, NULL);
|
|
CHECK(!failed);
|
|
CHECK(matched);
|
|
matched = prog_->SearchDFA(no_match_, NULL,
|
|
Prog::kUnanchored, Prog::kFirstMatch,
|
|
NULL, &failed, NULL);
|
|
CHECK(!failed);
|
|
CHECK(!matched);
|
|
}
|
|
}
|
|
|
|
private:
|
|
Prog* prog_;
|
|
StringPiece match_;
|
|
StringPiece no_match_;
|
|
};
|
|
|
|
TEST(Multithreaded, SearchDFA) {
|
|
// Same as single-threaded test above.
|
|
const int n = 18;
|
|
Regexp* re = Regexp::Parse(StringPrintf("0[01]{%d}$", n),
|
|
Regexp::LikePerl, NULL);
|
|
CHECK(re);
|
|
string no_match = DeBruijnString(n);
|
|
string match = no_match + "0";
|
|
FLAGS_re2_dfa_bail_when_slow = false;
|
|
|
|
// Check that single-threaded code works.
|
|
{
|
|
Prog* prog = re->CompileToProg(1<<n);
|
|
CHECK(prog);
|
|
SearchThread* t = new SearchThread(prog, match, no_match);
|
|
t->SetJoinable(true);
|
|
t->Start();
|
|
t->Join();
|
|
delete t;
|
|
delete prog;
|
|
}
|
|
|
|
// Run the search simultaneously in a bunch of threads.
|
|
// Reuse same flags for Multithreaded.BuildDFA above.
|
|
for (int i = 0; i < FLAGS_repeat; i++) {
|
|
//LOG(INFO) << "Search " << i;
|
|
Prog* prog = re->CompileToProg(1<<n);
|
|
CHECK(prog);
|
|
|
|
vector<SearchThread*> threads;
|
|
for (int j = 0; j < FLAGS_threads; j++) {
|
|
SearchThread *t = new SearchThread(prog, match, no_match);
|
|
t->SetJoinable(true);
|
|
threads.push_back(t);
|
|
}
|
|
for (int j = 0; j < FLAGS_threads; j++)
|
|
threads[j]->Start();
|
|
for (int j = 0; j < FLAGS_threads; j++) {
|
|
threads[j]->Join();
|
|
delete threads[j];
|
|
}
|
|
delete prog;
|
|
}
|
|
re->Decref();
|
|
}
|
|
|
|
struct ReverseTest {
|
|
const char *regexp;
|
|
const char *text;
|
|
bool match;
|
|
};
|
|
|
|
// Test that reverse DFA handles anchored/unanchored correctly.
|
|
// It's in the DFA interface but not used by RE2.
|
|
ReverseTest reverse_tests[] = {
|
|
{ "\\A(a|b)", "abc", true },
|
|
{ "(a|b)\\z", "cba", true },
|
|
{ "\\A(a|b)", "cba", false },
|
|
{ "(a|b)\\z", "abc", false },
|
|
};
|
|
|
|
TEST(DFA, ReverseMatch) {
|
|
int nfail = 0;
|
|
for (int i = 0; i < arraysize(reverse_tests); i++) {
|
|
const ReverseTest& t = reverse_tests[i];
|
|
Regexp* re = Regexp::Parse(t.regexp, Regexp::LikePerl, NULL);
|
|
CHECK(re);
|
|
Prog *prog = re->CompileToReverseProg(0);
|
|
CHECK(prog);
|
|
bool failed = false;
|
|
bool matched = prog->SearchDFA(t.text, NULL, Prog::kUnanchored, Prog::kFirstMatch, NULL, &failed, NULL);
|
|
if (matched != t.match) {
|
|
LOG(ERROR) << t.regexp << " on " << t.text << ": want " << t.match;
|
|
nfail++;
|
|
}
|
|
delete prog;
|
|
re->Decref();
|
|
}
|
|
EXPECT_EQ(nfail, 0);
|
|
}
|
|
|
|
} // namespace re2
|