142 lines
5.1 KiB
C++
142 lines
5.1 KiB
C++
/*
|
|
* Copyright (C) 2017 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "common/embedding-feature-extractor.h"
|
|
|
|
#include "lang_id/language-identifier-features.h"
|
|
#include "lang_id/light-sentence-features.h"
|
|
#include "lang_id/light-sentence.h"
|
|
#include "lang_id/relevant-script-feature.h"
|
|
#include "gtest/gtest.h"
|
|
|
|
namespace libtextclassifier {
|
|
namespace nlp_core {
|
|
|
|
class EmbeddingFeatureExtractorTest : public ::testing::Test {
|
|
public:
|
|
void SetUp() override {
|
|
// Make sure all relevant features are registered:
|
|
lang_id::ContinuousBagOfNgramsFunction::RegisterClass();
|
|
lang_id::RelevantScriptFeature::RegisterClass();
|
|
}
|
|
};
|
|
|
|
// Specialization of EmbeddingFeatureExtractor that extracts from LightSentence.
|
|
class TestEmbeddingFeatureExtractor
|
|
: public EmbeddingFeatureExtractor<lang_id::LightSentenceExtractor,
|
|
lang_id::LightSentence> {
|
|
public:
|
|
const std::string ArgPrefix() const override { return "test"; }
|
|
};
|
|
|
|
TEST_F(EmbeddingFeatureExtractorTest, NoEmbeddingSpaces) {
|
|
TaskContext context;
|
|
context.SetParameter("test_features", "");
|
|
context.SetParameter("test_embedding_names", "");
|
|
context.SetParameter("test_embedding_dims", "");
|
|
TestEmbeddingFeatureExtractor tefe;
|
|
ASSERT_TRUE(tefe.Init(&context));
|
|
EXPECT_EQ(tefe.NumEmbeddings(), 0);
|
|
}
|
|
|
|
TEST_F(EmbeddingFeatureExtractorTest, GoodSpec) {
|
|
TaskContext context;
|
|
const std::string spec =
|
|
"continuous-bag-of-ngrams(id_dim=5000,size=3);"
|
|
"continuous-bag-of-ngrams(id_dim=7000,size=4)";
|
|
context.SetParameter("test_features", spec);
|
|
context.SetParameter("test_embedding_names", "trigram;quadgram");
|
|
context.SetParameter("test_embedding_dims", "16;24");
|
|
TestEmbeddingFeatureExtractor tefe;
|
|
ASSERT_TRUE(tefe.Init(&context));
|
|
EXPECT_EQ(tefe.NumEmbeddings(), 2);
|
|
EXPECT_EQ(tefe.EmbeddingSize(0), 5000);
|
|
EXPECT_EQ(tefe.EmbeddingDims(0), 16);
|
|
EXPECT_EQ(tefe.EmbeddingSize(1), 7000);
|
|
EXPECT_EQ(tefe.EmbeddingDims(1), 24);
|
|
}
|
|
|
|
TEST_F(EmbeddingFeatureExtractorTest, MissmatchFmlVsNames) {
|
|
TaskContext context;
|
|
const std::string spec =
|
|
"continuous-bag-of-ngrams(id_dim=5000,size=3);"
|
|
"continuous-bag-of-ngrams(id_dim=7000,size=4)";
|
|
context.SetParameter("test_features", spec);
|
|
context.SetParameter("test_embedding_names", "trigram");
|
|
context.SetParameter("test_embedding_dims", "16;16");
|
|
TestEmbeddingFeatureExtractor tefe;
|
|
ASSERT_FALSE(tefe.Init(&context));
|
|
}
|
|
|
|
TEST_F(EmbeddingFeatureExtractorTest, MissmatchFmlVsDims) {
|
|
TaskContext context;
|
|
const std::string spec =
|
|
"continuous-bag-of-ngrams(id_dim=5000,size=3);"
|
|
"continuous-bag-of-ngrams(id_dim=7000,size=4)";
|
|
context.SetParameter("test_features", spec);
|
|
context.SetParameter("test_embedding_names", "trigram;quadgram");
|
|
context.SetParameter("test_embedding_dims", "16;16;32");
|
|
TestEmbeddingFeatureExtractor tefe;
|
|
ASSERT_FALSE(tefe.Init(&context));
|
|
}
|
|
|
|
TEST_F(EmbeddingFeatureExtractorTest, BrokenSpec) {
|
|
TaskContext context;
|
|
const std::string spec =
|
|
"continuous-bag-of-ngrams(id_dim=5000;"
|
|
"continuous-bag-of-ngrams(id_dim=7000,size=4)";
|
|
context.SetParameter("test_features", spec);
|
|
context.SetParameter("test_embedding_names", "trigram;quadgram");
|
|
context.SetParameter("test_embedding_dims", "16;16");
|
|
TestEmbeddingFeatureExtractor tefe;
|
|
ASSERT_FALSE(tefe.Init(&context));
|
|
}
|
|
|
|
TEST_F(EmbeddingFeatureExtractorTest, MissingFeature) {
|
|
TaskContext context;
|
|
const std::string spec =
|
|
"continuous-bag-of-ngrams(id_dim=5000,size=3);"
|
|
"no-such-feature";
|
|
context.SetParameter("test_features", spec);
|
|
context.SetParameter("test_embedding_names", "trigram;foo");
|
|
context.SetParameter("test_embedding_dims", "16;16");
|
|
TestEmbeddingFeatureExtractor tefe;
|
|
ASSERT_FALSE(tefe.Init(&context));
|
|
}
|
|
|
|
TEST_F(EmbeddingFeatureExtractorTest, MultipleFeatures) {
|
|
TaskContext context;
|
|
const std::string spec =
|
|
"continuous-bag-of-ngrams(id_dim=1000,size=3);"
|
|
"continuous-bag-of-relevant-scripts";
|
|
context.SetParameter("test_features", spec);
|
|
context.SetParameter("test_embedding_names", "trigram;script");
|
|
context.SetParameter("test_embedding_dims", "8;16");
|
|
TestEmbeddingFeatureExtractor tefe;
|
|
ASSERT_TRUE(tefe.Init(&context));
|
|
EXPECT_EQ(tefe.NumEmbeddings(), 2);
|
|
EXPECT_EQ(tefe.EmbeddingSize(0), 1000);
|
|
EXPECT_EQ(tefe.EmbeddingDims(0), 8);
|
|
|
|
// continuous-bag-of-relevant-scripts has its own hard-wired vocabulary size.
|
|
// We don't want this test to depend on that value; we just check it's bigger
|
|
// than 0.
|
|
EXPECT_GT(tefe.EmbeddingSize(1), 0);
|
|
EXPECT_EQ(tefe.EmbeddingDims(1), 16);
|
|
}
|
|
|
|
} // namespace nlp_core
|
|
} // namespace libtextclassifier
|