149 lines
5.3 KiB
C++
149 lines
5.3 KiB
C++
/*
|
|
* Copyright (C) 2017 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "smartselect/cached-features.h"
|
|
|
|
#include "gmock/gmock.h"
|
|
#include "gtest/gtest.h"
|
|
|
|
namespace libtextclassifier {
|
|
namespace {
|
|
|
|
class TestingCachedFeatures : public CachedFeatures {
|
|
public:
|
|
using CachedFeatures::CachedFeatures;
|
|
using CachedFeatures::RemapV0FeatureVector;
|
|
};
|
|
|
|
TEST(CachedFeaturesTest, Simple) {
|
|
std::vector<Token> tokens;
|
|
tokens.push_back(Token());
|
|
tokens.push_back(Token());
|
|
tokens.push_back(Token("Hello", 0, 1));
|
|
tokens.push_back(Token("World", 1, 2));
|
|
tokens.push_back(Token("today!", 2, 3));
|
|
tokens.push_back(Token());
|
|
tokens.push_back(Token());
|
|
|
|
std::vector<std::vector<int>> sparse_features(tokens.size());
|
|
for (int i = 0; i < sparse_features.size(); ++i) {
|
|
sparse_features[i].push_back(i);
|
|
}
|
|
std::vector<std::vector<float>> dense_features(tokens.size());
|
|
for (int i = 0; i < dense_features.size(); ++i) {
|
|
dense_features[i].push_back(-i);
|
|
}
|
|
|
|
TestingCachedFeatures feature_extractor(
|
|
tokens, /*context_size=*/2, sparse_features, dense_features,
|
|
[](const std::vector<int>& sparse_features,
|
|
const std::vector<float>& dense_features, float* features) {
|
|
features[0] = sparse_features[0];
|
|
features[1] = sparse_features[0];
|
|
features[2] = dense_features[0];
|
|
features[3] = dense_features[0];
|
|
features[4] = 123;
|
|
return true;
|
|
},
|
|
5);
|
|
|
|
VectorSpan<float> features;
|
|
VectorSpan<Token> output_tokens;
|
|
EXPECT_TRUE(feature_extractor.Get(2, &features, &output_tokens));
|
|
for (int i = 0; i < 5; i++) {
|
|
EXPECT_EQ(features[i * 5 + 0], i) << "Feature " << i;
|
|
EXPECT_EQ(features[i * 5 + 1], i) << "Feature " << i;
|
|
EXPECT_EQ(features[i * 5 + 2], -i) << "Feature " << i;
|
|
EXPECT_EQ(features[i * 5 + 3], -i) << "Feature " << i;
|
|
EXPECT_EQ(features[i * 5 + 4], 123) << "Feature " << i;
|
|
}
|
|
}
|
|
|
|
TEST(CachedFeaturesTest, InvalidInput) {
|
|
std::vector<Token> tokens;
|
|
tokens.push_back(Token());
|
|
tokens.push_back(Token());
|
|
tokens.push_back(Token("Hello", 0, 1));
|
|
tokens.push_back(Token("World", 1, 2));
|
|
tokens.push_back(Token("today!", 2, 3));
|
|
tokens.push_back(Token());
|
|
tokens.push_back(Token());
|
|
|
|
std::vector<std::vector<int>> sparse_features(tokens.size());
|
|
std::vector<std::vector<float>> dense_features(tokens.size());
|
|
|
|
TestingCachedFeatures feature_extractor(
|
|
tokens, /*context_size=*/2, sparse_features, dense_features,
|
|
[](const std::vector<int>& sparse_features,
|
|
const std::vector<float>& dense_features,
|
|
float* features) { return true; },
|
|
/*feature_vector_size=*/5);
|
|
|
|
VectorSpan<float> features;
|
|
VectorSpan<Token> output_tokens;
|
|
EXPECT_FALSE(feature_extractor.Get(-1000, &features, &output_tokens));
|
|
EXPECT_FALSE(feature_extractor.Get(-1, &features, &output_tokens));
|
|
EXPECT_FALSE(feature_extractor.Get(0, &features, &output_tokens));
|
|
EXPECT_TRUE(feature_extractor.Get(2, &features, &output_tokens));
|
|
EXPECT_TRUE(feature_extractor.Get(4, &features, &output_tokens));
|
|
EXPECT_FALSE(feature_extractor.Get(5, &features, &output_tokens));
|
|
EXPECT_FALSE(feature_extractor.Get(500, &features, &output_tokens));
|
|
}
|
|
|
|
TEST(CachedFeaturesTest, RemapV0FeatureVector) {
|
|
std::vector<Token> tokens;
|
|
tokens.push_back(Token());
|
|
tokens.push_back(Token());
|
|
tokens.push_back(Token("Hello", 0, 1));
|
|
tokens.push_back(Token("World", 1, 2));
|
|
tokens.push_back(Token("today!", 2, 3));
|
|
tokens.push_back(Token());
|
|
tokens.push_back(Token());
|
|
|
|
std::vector<std::vector<int>> sparse_features(tokens.size());
|
|
std::vector<std::vector<float>> dense_features(tokens.size());
|
|
|
|
TestingCachedFeatures feature_extractor(
|
|
tokens, /*context_size=*/2, sparse_features, dense_features,
|
|
[](const std::vector<int>& sparse_features,
|
|
const std::vector<float>& dense_features,
|
|
float* features) { return true; },
|
|
/*feature_vector_size=*/5);
|
|
|
|
std::vector<float> features_orig(5 * 5);
|
|
for (int i = 0; i < features_orig.size(); i++) {
|
|
features_orig[i] = i;
|
|
}
|
|
VectorSpan<float> features;
|
|
|
|
feature_extractor.SetV0FeatureMode(0);
|
|
features = VectorSpan<float>(features_orig);
|
|
feature_extractor.RemapV0FeatureVector(&features);
|
|
EXPECT_EQ(
|
|
std::vector<float>({0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
|
|
13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24}),
|
|
std::vector<float>(features.begin(), features.end()));
|
|
|
|
feature_extractor.SetV0FeatureMode(2);
|
|
features = VectorSpan<float>(features_orig);
|
|
feature_extractor.RemapV0FeatureVector(&features);
|
|
EXPECT_EQ(std::vector<float>({0, 1, 5, 6, 10, 11, 15, 16, 20, 21, 2, 3, 4,
|
|
7, 8, 9, 12, 13, 14, 17, 18, 19, 22, 23, 24}),
|
|
std::vector<float>(features.begin(), features.end()));
|
|
}
|
|
|
|
} // namespace
|
|
} // namespace libtextclassifier
|