2153 lines
46 KiB
C
2153 lines
46 KiB
C
#include <unistd.h>
|
|
#include <fcntl.h>
|
|
#include <string.h>
|
|
#include <signal.h>
|
|
#include <time.h>
|
|
#include <assert.h>
|
|
|
|
#include "fio.h"
|
|
#include "hash.h"
|
|
#include "verify.h"
|
|
#include "trim.h"
|
|
#include "lib/rand.h"
|
|
#include "lib/axmap.h"
|
|
#include "err.h"
|
|
#include "lib/pow2.h"
|
|
#include "minmax.h"
|
|
|
|
struct io_completion_data {
|
|
int nr; /* input */
|
|
|
|
int error; /* output */
|
|
uint64_t bytes_done[DDIR_RWDIR_CNT]; /* output */
|
|
struct timeval time; /* output */
|
|
};
|
|
|
|
/*
|
|
* The ->io_axmap contains a map of blocks we have or have not done io
|
|
* to yet. Used to make sure we cover the entire range in a fair fashion.
|
|
*/
|
|
static bool random_map_free(struct fio_file *f, const uint64_t block)
|
|
{
|
|
return !axmap_isset(f->io_axmap, block);
|
|
}
|
|
|
|
/*
|
|
* Mark a given offset as used in the map.
|
|
*/
|
|
static void mark_random_map(struct thread_data *td, struct io_u *io_u)
|
|
{
|
|
unsigned int min_bs = td->o.rw_min_bs;
|
|
struct fio_file *f = io_u->file;
|
|
unsigned int nr_blocks;
|
|
uint64_t block;
|
|
|
|
block = (io_u->offset - f->file_offset) / (uint64_t) min_bs;
|
|
nr_blocks = (io_u->buflen + min_bs - 1) / min_bs;
|
|
|
|
if (!(io_u->flags & IO_U_F_BUSY_OK))
|
|
nr_blocks = axmap_set_nr(f->io_axmap, block, nr_blocks);
|
|
|
|
if ((nr_blocks * min_bs) < io_u->buflen)
|
|
io_u->buflen = nr_blocks * min_bs;
|
|
}
|
|
|
|
static uint64_t last_block(struct thread_data *td, struct fio_file *f,
|
|
enum fio_ddir ddir)
|
|
{
|
|
uint64_t max_blocks;
|
|
uint64_t max_size;
|
|
|
|
assert(ddir_rw(ddir));
|
|
|
|
/*
|
|
* Hmm, should we make sure that ->io_size <= ->real_file_size?
|
|
* -> not for now since there is code assuming it could go either.
|
|
*/
|
|
max_size = f->io_size;
|
|
if (max_size > f->real_file_size)
|
|
max_size = f->real_file_size;
|
|
|
|
if (td->o.zone_range)
|
|
max_size = td->o.zone_range;
|
|
|
|
if (td->o.min_bs[ddir] > td->o.ba[ddir])
|
|
max_size -= td->o.min_bs[ddir] - td->o.ba[ddir];
|
|
|
|
max_blocks = max_size / (uint64_t) td->o.ba[ddir];
|
|
if (!max_blocks)
|
|
return 0;
|
|
|
|
return max_blocks;
|
|
}
|
|
|
|
struct rand_off {
|
|
struct flist_head list;
|
|
uint64_t off;
|
|
};
|
|
|
|
static int __get_next_rand_offset(struct thread_data *td, struct fio_file *f,
|
|
enum fio_ddir ddir, uint64_t *b,
|
|
uint64_t lastb)
|
|
{
|
|
uint64_t r;
|
|
|
|
if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE ||
|
|
td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE64) {
|
|
|
|
r = __rand(&td->random_state);
|
|
|
|
dprint(FD_RANDOM, "off rand %llu\n", (unsigned long long) r);
|
|
|
|
*b = lastb * (r / (rand_max(&td->random_state) + 1.0));
|
|
} else {
|
|
uint64_t off = 0;
|
|
|
|
assert(fio_file_lfsr(f));
|
|
|
|
if (lfsr_next(&f->lfsr, &off))
|
|
return 1;
|
|
|
|
*b = off;
|
|
}
|
|
|
|
/*
|
|
* if we are not maintaining a random map, we are done.
|
|
*/
|
|
if (!file_randommap(td, f))
|
|
goto ret;
|
|
|
|
/*
|
|
* calculate map offset and check if it's free
|
|
*/
|
|
if (random_map_free(f, *b))
|
|
goto ret;
|
|
|
|
dprint(FD_RANDOM, "get_next_rand_offset: offset %llu busy\n",
|
|
(unsigned long long) *b);
|
|
|
|
*b = axmap_next_free(f->io_axmap, *b);
|
|
if (*b == (uint64_t) -1ULL)
|
|
return 1;
|
|
ret:
|
|
return 0;
|
|
}
|
|
|
|
static int __get_next_rand_offset_zipf(struct thread_data *td,
|
|
struct fio_file *f, enum fio_ddir ddir,
|
|
uint64_t *b)
|
|
{
|
|
*b = zipf_next(&f->zipf);
|
|
return 0;
|
|
}
|
|
|
|
static int __get_next_rand_offset_pareto(struct thread_data *td,
|
|
struct fio_file *f, enum fio_ddir ddir,
|
|
uint64_t *b)
|
|
{
|
|
*b = pareto_next(&f->zipf);
|
|
return 0;
|
|
}
|
|
|
|
static int __get_next_rand_offset_gauss(struct thread_data *td,
|
|
struct fio_file *f, enum fio_ddir ddir,
|
|
uint64_t *b)
|
|
{
|
|
*b = gauss_next(&f->gauss);
|
|
return 0;
|
|
}
|
|
|
|
static int __get_next_rand_offset_zoned(struct thread_data *td,
|
|
struct fio_file *f, enum fio_ddir ddir,
|
|
uint64_t *b)
|
|
{
|
|
unsigned int v, send, stotal;
|
|
uint64_t offset, lastb;
|
|
static int warned;
|
|
struct zone_split_index *zsi;
|
|
|
|
lastb = last_block(td, f, ddir);
|
|
if (!lastb)
|
|
return 1;
|
|
|
|
if (!td->o.zone_split_nr[ddir]) {
|
|
bail:
|
|
return __get_next_rand_offset(td, f, ddir, b, lastb);
|
|
}
|
|
|
|
/*
|
|
* Generate a value, v, between 1 and 100, both inclusive
|
|
*/
|
|
v = rand32_between(&td->zone_state, 1, 100);
|
|
|
|
zsi = &td->zone_state_index[ddir][v - 1];
|
|
stotal = zsi->size_perc_prev;
|
|
send = zsi->size_perc;
|
|
|
|
/*
|
|
* Should never happen
|
|
*/
|
|
if (send == -1U) {
|
|
if (!warned) {
|
|
log_err("fio: bug in zoned generation\n");
|
|
warned = 1;
|
|
}
|
|
goto bail;
|
|
}
|
|
|
|
/*
|
|
* 'send' is some percentage below or equal to 100 that
|
|
* marks the end of the current IO range. 'stotal' marks
|
|
* the start, in percent.
|
|
*/
|
|
if (stotal)
|
|
offset = stotal * lastb / 100ULL;
|
|
else
|
|
offset = 0;
|
|
|
|
lastb = lastb * (send - stotal) / 100ULL;
|
|
|
|
/*
|
|
* Generate index from 0..send-of-lastb
|
|
*/
|
|
if (__get_next_rand_offset(td, f, ddir, b, lastb) == 1)
|
|
return 1;
|
|
|
|
/*
|
|
* Add our start offset, if any
|
|
*/
|
|
if (offset)
|
|
*b += offset;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int flist_cmp(void *data, struct flist_head *a, struct flist_head *b)
|
|
{
|
|
struct rand_off *r1 = flist_entry(a, struct rand_off, list);
|
|
struct rand_off *r2 = flist_entry(b, struct rand_off, list);
|
|
|
|
return r1->off - r2->off;
|
|
}
|
|
|
|
static int get_off_from_method(struct thread_data *td, struct fio_file *f,
|
|
enum fio_ddir ddir, uint64_t *b)
|
|
{
|
|
if (td->o.random_distribution == FIO_RAND_DIST_RANDOM) {
|
|
uint64_t lastb;
|
|
|
|
lastb = last_block(td, f, ddir);
|
|
if (!lastb)
|
|
return 1;
|
|
|
|
return __get_next_rand_offset(td, f, ddir, b, lastb);
|
|
} else if (td->o.random_distribution == FIO_RAND_DIST_ZIPF)
|
|
return __get_next_rand_offset_zipf(td, f, ddir, b);
|
|
else if (td->o.random_distribution == FIO_RAND_DIST_PARETO)
|
|
return __get_next_rand_offset_pareto(td, f, ddir, b);
|
|
else if (td->o.random_distribution == FIO_RAND_DIST_GAUSS)
|
|
return __get_next_rand_offset_gauss(td, f, ddir, b);
|
|
else if (td->o.random_distribution == FIO_RAND_DIST_ZONED)
|
|
return __get_next_rand_offset_zoned(td, f, ddir, b);
|
|
|
|
log_err("fio: unknown random distribution: %d\n", td->o.random_distribution);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Sort the reads for a verify phase in batches of verifysort_nr, if
|
|
* specified.
|
|
*/
|
|
static inline bool should_sort_io(struct thread_data *td)
|
|
{
|
|
if (!td->o.verifysort_nr || !td->o.do_verify)
|
|
return false;
|
|
if (!td_random(td))
|
|
return false;
|
|
if (td->runstate != TD_VERIFYING)
|
|
return false;
|
|
if (td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE ||
|
|
td->o.random_generator == FIO_RAND_GEN_TAUSWORTHE64)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool should_do_random(struct thread_data *td, enum fio_ddir ddir)
|
|
{
|
|
unsigned int v;
|
|
|
|
if (td->o.perc_rand[ddir] == 100)
|
|
return true;
|
|
|
|
v = rand32_between(&td->seq_rand_state[ddir], 1, 100);
|
|
|
|
return v <= td->o.perc_rand[ddir];
|
|
}
|
|
|
|
static int get_next_rand_offset(struct thread_data *td, struct fio_file *f,
|
|
enum fio_ddir ddir, uint64_t *b)
|
|
{
|
|
struct rand_off *r;
|
|
int i, ret = 1;
|
|
|
|
if (!should_sort_io(td))
|
|
return get_off_from_method(td, f, ddir, b);
|
|
|
|
if (!flist_empty(&td->next_rand_list)) {
|
|
fetch:
|
|
r = flist_first_entry(&td->next_rand_list, struct rand_off, list);
|
|
flist_del(&r->list);
|
|
*b = r->off;
|
|
free(r);
|
|
return 0;
|
|
}
|
|
|
|
for (i = 0; i < td->o.verifysort_nr; i++) {
|
|
r = malloc(sizeof(*r));
|
|
|
|
ret = get_off_from_method(td, f, ddir, &r->off);
|
|
if (ret) {
|
|
free(r);
|
|
break;
|
|
}
|
|
|
|
flist_add(&r->list, &td->next_rand_list);
|
|
}
|
|
|
|
if (ret && !i)
|
|
return ret;
|
|
|
|
assert(!flist_empty(&td->next_rand_list));
|
|
flist_sort(NULL, &td->next_rand_list, flist_cmp);
|
|
goto fetch;
|
|
}
|
|
|
|
static int get_next_rand_block(struct thread_data *td, struct fio_file *f,
|
|
enum fio_ddir ddir, uint64_t *b)
|
|
{
|
|
if (!get_next_rand_offset(td, f, ddir, b))
|
|
return 0;
|
|
|
|
if (td->o.time_based ||
|
|
(td->o.file_service_type & __FIO_FSERVICE_NONUNIFORM)) {
|
|
fio_file_reset(td, f);
|
|
if (!get_next_rand_offset(td, f, ddir, b))
|
|
return 0;
|
|
}
|
|
|
|
dprint(FD_IO, "%s: rand offset failed, last=%llu, size=%llu\n",
|
|
f->file_name, (unsigned long long) f->last_pos[ddir],
|
|
(unsigned long long) f->real_file_size);
|
|
return 1;
|
|
}
|
|
|
|
static int get_next_seq_offset(struct thread_data *td, struct fio_file *f,
|
|
enum fio_ddir ddir, uint64_t *offset)
|
|
{
|
|
struct thread_options *o = &td->o;
|
|
|
|
assert(ddir_rw(ddir));
|
|
|
|
if (f->last_pos[ddir] >= f->io_size + get_start_offset(td, f) &&
|
|
o->time_based) {
|
|
struct thread_options *o = &td->o;
|
|
uint64_t io_size = f->io_size + (f->io_size % o->min_bs[ddir]);
|
|
|
|
if (io_size > f->last_pos[ddir])
|
|
f->last_pos[ddir] = 0;
|
|
else
|
|
f->last_pos[ddir] = f->last_pos[ddir] - io_size;
|
|
}
|
|
|
|
if (f->last_pos[ddir] < f->real_file_size) {
|
|
uint64_t pos;
|
|
|
|
if (f->last_pos[ddir] == f->file_offset && o->ddir_seq_add < 0) {
|
|
if (f->real_file_size > f->io_size)
|
|
f->last_pos[ddir] = f->io_size;
|
|
else
|
|
f->last_pos[ddir] = f->real_file_size;
|
|
}
|
|
|
|
pos = f->last_pos[ddir] - f->file_offset;
|
|
if (pos && o->ddir_seq_add) {
|
|
pos += o->ddir_seq_add;
|
|
|
|
/*
|
|
* If we reach beyond the end of the file
|
|
* with holed IO, wrap around to the
|
|
* beginning again. If we're doing backwards IO,
|
|
* wrap to the end.
|
|
*/
|
|
if (pos >= f->real_file_size) {
|
|
if (o->ddir_seq_add > 0)
|
|
pos = f->file_offset;
|
|
else {
|
|
if (f->real_file_size > f->io_size)
|
|
pos = f->io_size;
|
|
else
|
|
pos = f->real_file_size;
|
|
|
|
pos += o->ddir_seq_add;
|
|
}
|
|
}
|
|
}
|
|
|
|
*offset = pos;
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int get_next_block(struct thread_data *td, struct io_u *io_u,
|
|
enum fio_ddir ddir, int rw_seq,
|
|
unsigned int *is_random)
|
|
{
|
|
struct fio_file *f = io_u->file;
|
|
uint64_t b, offset;
|
|
int ret;
|
|
|
|
assert(ddir_rw(ddir));
|
|
|
|
b = offset = -1ULL;
|
|
|
|
if (rw_seq) {
|
|
if (td_random(td)) {
|
|
if (should_do_random(td, ddir)) {
|
|
ret = get_next_rand_block(td, f, ddir, &b);
|
|
*is_random = 1;
|
|
} else {
|
|
*is_random = 0;
|
|
io_u_set(td, io_u, IO_U_F_BUSY_OK);
|
|
ret = get_next_seq_offset(td, f, ddir, &offset);
|
|
if (ret)
|
|
ret = get_next_rand_block(td, f, ddir, &b);
|
|
}
|
|
} else {
|
|
*is_random = 0;
|
|
ret = get_next_seq_offset(td, f, ddir, &offset);
|
|
}
|
|
} else {
|
|
io_u_set(td, io_u, IO_U_F_BUSY_OK);
|
|
*is_random = 0;
|
|
|
|
if (td->o.rw_seq == RW_SEQ_SEQ) {
|
|
ret = get_next_seq_offset(td, f, ddir, &offset);
|
|
if (ret) {
|
|
ret = get_next_rand_block(td, f, ddir, &b);
|
|
*is_random = 0;
|
|
}
|
|
} else if (td->o.rw_seq == RW_SEQ_IDENT) {
|
|
if (f->last_start[ddir] != -1ULL)
|
|
offset = f->last_start[ddir] - f->file_offset;
|
|
else
|
|
offset = 0;
|
|
ret = 0;
|
|
} else {
|
|
log_err("fio: unknown rw_seq=%d\n", td->o.rw_seq);
|
|
ret = 1;
|
|
}
|
|
}
|
|
|
|
if (!ret) {
|
|
if (offset != -1ULL)
|
|
io_u->offset = offset;
|
|
else if (b != -1ULL)
|
|
io_u->offset = b * td->o.ba[ddir];
|
|
else {
|
|
log_err("fio: bug in offset generation: offset=%llu, b=%llu\n", (unsigned long long) offset, (unsigned long long) b);
|
|
ret = 1;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* For random io, generate a random new block and see if it's used. Repeat
|
|
* until we find a free one. For sequential io, just return the end of
|
|
* the last io issued.
|
|
*/
|
|
static int __get_next_offset(struct thread_data *td, struct io_u *io_u,
|
|
unsigned int *is_random)
|
|
{
|
|
struct fio_file *f = io_u->file;
|
|
enum fio_ddir ddir = io_u->ddir;
|
|
int rw_seq_hit = 0;
|
|
|
|
assert(ddir_rw(ddir));
|
|
|
|
if (td->o.ddir_seq_nr && !--td->ddir_seq_nr) {
|
|
rw_seq_hit = 1;
|
|
td->ddir_seq_nr = td->o.ddir_seq_nr;
|
|
}
|
|
|
|
if (get_next_block(td, io_u, ddir, rw_seq_hit, is_random))
|
|
return 1;
|
|
|
|
if (io_u->offset >= f->io_size) {
|
|
dprint(FD_IO, "get_next_offset: offset %llu >= io_size %llu\n",
|
|
(unsigned long long) io_u->offset,
|
|
(unsigned long long) f->io_size);
|
|
return 1;
|
|
}
|
|
|
|
io_u->offset += f->file_offset;
|
|
if (io_u->offset >= f->real_file_size) {
|
|
dprint(FD_IO, "get_next_offset: offset %llu >= size %llu\n",
|
|
(unsigned long long) io_u->offset,
|
|
(unsigned long long) f->real_file_size);
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int get_next_offset(struct thread_data *td, struct io_u *io_u,
|
|
unsigned int *is_random)
|
|
{
|
|
if (td->flags & TD_F_PROFILE_OPS) {
|
|
struct prof_io_ops *ops = &td->prof_io_ops;
|
|
|
|
if (ops->fill_io_u_off)
|
|
return ops->fill_io_u_off(td, io_u, is_random);
|
|
}
|
|
|
|
return __get_next_offset(td, io_u, is_random);
|
|
}
|
|
|
|
static inline bool io_u_fits(struct thread_data *td, struct io_u *io_u,
|
|
unsigned int buflen)
|
|
{
|
|
struct fio_file *f = io_u->file;
|
|
|
|
return io_u->offset + buflen <= f->io_size + get_start_offset(td, f);
|
|
}
|
|
|
|
static unsigned int __get_next_buflen(struct thread_data *td, struct io_u *io_u,
|
|
unsigned int is_random)
|
|
{
|
|
int ddir = io_u->ddir;
|
|
unsigned int buflen = 0;
|
|
unsigned int minbs, maxbs;
|
|
uint64_t frand_max, r;
|
|
bool power_2;
|
|
|
|
assert(ddir_rw(ddir));
|
|
|
|
if (td->o.bs_is_seq_rand)
|
|
ddir = is_random ? DDIR_WRITE: DDIR_READ;
|
|
|
|
minbs = td->o.min_bs[ddir];
|
|
maxbs = td->o.max_bs[ddir];
|
|
|
|
if (minbs == maxbs)
|
|
return minbs;
|
|
|
|
/*
|
|
* If we can't satisfy the min block size from here, then fail
|
|
*/
|
|
if (!io_u_fits(td, io_u, minbs))
|
|
return 0;
|
|
|
|
frand_max = rand_max(&td->bsrange_state);
|
|
do {
|
|
r = __rand(&td->bsrange_state);
|
|
|
|
if (!td->o.bssplit_nr[ddir]) {
|
|
buflen = 1 + (unsigned int) ((double) maxbs *
|
|
(r / (frand_max + 1.0)));
|
|
if (buflen < minbs)
|
|
buflen = minbs;
|
|
} else {
|
|
long long perc = 0;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < td->o.bssplit_nr[ddir]; i++) {
|
|
struct bssplit *bsp = &td->o.bssplit[ddir][i];
|
|
|
|
buflen = bsp->bs;
|
|
perc += bsp->perc;
|
|
if (!perc)
|
|
break;
|
|
if ((r / perc <= frand_max / 100ULL) &&
|
|
io_u_fits(td, io_u, buflen))
|
|
break;
|
|
}
|
|
}
|
|
|
|
power_2 = is_power_of_2(minbs);
|
|
if (!td->o.bs_unaligned && power_2)
|
|
buflen &= ~(minbs - 1);
|
|
else if (!td->o.bs_unaligned && !power_2)
|
|
buflen -= buflen % minbs;
|
|
} while (!io_u_fits(td, io_u, buflen));
|
|
|
|
return buflen;
|
|
}
|
|
|
|
static unsigned int get_next_buflen(struct thread_data *td, struct io_u *io_u,
|
|
unsigned int is_random)
|
|
{
|
|
if (td->flags & TD_F_PROFILE_OPS) {
|
|
struct prof_io_ops *ops = &td->prof_io_ops;
|
|
|
|
if (ops->fill_io_u_size)
|
|
return ops->fill_io_u_size(td, io_u, is_random);
|
|
}
|
|
|
|
return __get_next_buflen(td, io_u, is_random);
|
|
}
|
|
|
|
static void set_rwmix_bytes(struct thread_data *td)
|
|
{
|
|
unsigned int diff;
|
|
|
|
/*
|
|
* we do time or byte based switch. this is needed because
|
|
* buffered writes may issue a lot quicker than they complete,
|
|
* whereas reads do not.
|
|
*/
|
|
diff = td->o.rwmix[td->rwmix_ddir ^ 1];
|
|
td->rwmix_issues = (td->io_issues[td->rwmix_ddir] * diff) / 100;
|
|
}
|
|
|
|
static inline enum fio_ddir get_rand_ddir(struct thread_data *td)
|
|
{
|
|
unsigned int v;
|
|
|
|
v = rand32_between(&td->rwmix_state, 1, 100);
|
|
|
|
if (v <= td->o.rwmix[DDIR_READ])
|
|
return DDIR_READ;
|
|
|
|
return DDIR_WRITE;
|
|
}
|
|
|
|
int io_u_quiesce(struct thread_data *td)
|
|
{
|
|
int completed = 0;
|
|
|
|
/*
|
|
* We are going to sleep, ensure that we flush anything pending as
|
|
* not to skew our latency numbers.
|
|
*
|
|
* Changed to only monitor 'in flight' requests here instead of the
|
|
* td->cur_depth, b/c td->cur_depth does not accurately represent
|
|
* io's that have been actually submitted to an async engine,
|
|
* and cur_depth is meaningless for sync engines.
|
|
*/
|
|
if (td->io_u_queued || td->cur_depth) {
|
|
int fio_unused ret;
|
|
|
|
ret = td_io_commit(td);
|
|
}
|
|
|
|
while (td->io_u_in_flight) {
|
|
int ret;
|
|
|
|
ret = io_u_queued_complete(td, 1);
|
|
if (ret > 0)
|
|
completed += ret;
|
|
}
|
|
|
|
if (td->flags & TD_F_REGROW_LOGS)
|
|
regrow_logs(td);
|
|
|
|
return completed;
|
|
}
|
|
|
|
static enum fio_ddir rate_ddir(struct thread_data *td, enum fio_ddir ddir)
|
|
{
|
|
enum fio_ddir odir = ddir ^ 1;
|
|
long usec;
|
|
uint64_t now;
|
|
|
|
assert(ddir_rw(ddir));
|
|
now = utime_since_now(&td->start);
|
|
|
|
/*
|
|
* if rate_next_io_time is in the past, need to catch up to rate
|
|
*/
|
|
if (td->rate_next_io_time[ddir] <= now)
|
|
return ddir;
|
|
|
|
/*
|
|
* We are ahead of rate in this direction. See if we
|
|
* should switch.
|
|
*/
|
|
if (td_rw(td) && td->o.rwmix[odir]) {
|
|
/*
|
|
* Other direction is behind rate, switch
|
|
*/
|
|
if (td->rate_next_io_time[odir] <= now)
|
|
return odir;
|
|
|
|
/*
|
|
* Both directions are ahead of rate. sleep the min
|
|
* switch if necissary
|
|
*/
|
|
if (td->rate_next_io_time[ddir] <=
|
|
td->rate_next_io_time[odir]) {
|
|
usec = td->rate_next_io_time[ddir] - now;
|
|
} else {
|
|
usec = td->rate_next_io_time[odir] - now;
|
|
ddir = odir;
|
|
}
|
|
} else
|
|
usec = td->rate_next_io_time[ddir] - now;
|
|
|
|
if (td->o.io_submit_mode == IO_MODE_INLINE)
|
|
io_u_quiesce(td);
|
|
|
|
usec = usec_sleep(td, usec);
|
|
|
|
return ddir;
|
|
}
|
|
|
|
/*
|
|
* Return the data direction for the next io_u. If the job is a
|
|
* mixed read/write workload, check the rwmix cycle and switch if
|
|
* necessary.
|
|
*/
|
|
static enum fio_ddir get_rw_ddir(struct thread_data *td)
|
|
{
|
|
enum fio_ddir ddir;
|
|
|
|
/*
|
|
* See if it's time to fsync/fdatasync/sync_file_range first,
|
|
* and if not then move on to check regular I/Os.
|
|
*/
|
|
if (should_fsync(td)) {
|
|
if (td->o.fsync_blocks && td->io_issues[DDIR_WRITE] &&
|
|
!(td->io_issues[DDIR_WRITE] % td->o.fsync_blocks))
|
|
return DDIR_SYNC;
|
|
|
|
if (td->o.fdatasync_blocks && td->io_issues[DDIR_WRITE] &&
|
|
!(td->io_issues[DDIR_WRITE] % td->o.fdatasync_blocks))
|
|
return DDIR_DATASYNC;
|
|
|
|
if (td->sync_file_range_nr && td->io_issues[DDIR_WRITE] &&
|
|
!(td->io_issues[DDIR_WRITE] % td->sync_file_range_nr))
|
|
return DDIR_SYNC_FILE_RANGE;
|
|
}
|
|
|
|
if (td_rw(td)) {
|
|
/*
|
|
* Check if it's time to seed a new data direction.
|
|
*/
|
|
if (td->io_issues[td->rwmix_ddir] >= td->rwmix_issues) {
|
|
/*
|
|
* Put a top limit on how many bytes we do for
|
|
* one data direction, to avoid overflowing the
|
|
* ranges too much
|
|
*/
|
|
ddir = get_rand_ddir(td);
|
|
|
|
if (ddir != td->rwmix_ddir)
|
|
set_rwmix_bytes(td);
|
|
|
|
td->rwmix_ddir = ddir;
|
|
}
|
|
ddir = td->rwmix_ddir;
|
|
} else if (td_read(td))
|
|
ddir = DDIR_READ;
|
|
else if (td_write(td))
|
|
ddir = DDIR_WRITE;
|
|
else if (td_trim(td))
|
|
ddir = DDIR_TRIM;
|
|
else
|
|
ddir = DDIR_INVAL;
|
|
|
|
td->rwmix_ddir = rate_ddir(td, ddir);
|
|
return td->rwmix_ddir;
|
|
}
|
|
|
|
static void set_rw_ddir(struct thread_data *td, struct io_u *io_u)
|
|
{
|
|
enum fio_ddir ddir = get_rw_ddir(td);
|
|
|
|
if (td_trimwrite(td)) {
|
|
struct fio_file *f = io_u->file;
|
|
if (f->last_pos[DDIR_WRITE] == f->last_pos[DDIR_TRIM])
|
|
ddir = DDIR_TRIM;
|
|
else
|
|
ddir = DDIR_WRITE;
|
|
}
|
|
|
|
io_u->ddir = io_u->acct_ddir = ddir;
|
|
|
|
if (io_u->ddir == DDIR_WRITE && td_ioengine_flagged(td, FIO_BARRIER) &&
|
|
td->o.barrier_blocks &&
|
|
!(td->io_issues[DDIR_WRITE] % td->o.barrier_blocks) &&
|
|
td->io_issues[DDIR_WRITE])
|
|
io_u_set(td, io_u, IO_U_F_BARRIER);
|
|
}
|
|
|
|
void put_file_log(struct thread_data *td, struct fio_file *f)
|
|
{
|
|
unsigned int ret = put_file(td, f);
|
|
|
|
if (ret)
|
|
td_verror(td, ret, "file close");
|
|
}
|
|
|
|
void put_io_u(struct thread_data *td, struct io_u *io_u)
|
|
{
|
|
if (td->parent)
|
|
td = td->parent;
|
|
|
|
td_io_u_lock(td);
|
|
|
|
if (io_u->file && !(io_u->flags & IO_U_F_NO_FILE_PUT))
|
|
put_file_log(td, io_u->file);
|
|
|
|
io_u->file = NULL;
|
|
io_u_set(td, io_u, IO_U_F_FREE);
|
|
|
|
if (io_u->flags & IO_U_F_IN_CUR_DEPTH) {
|
|
td->cur_depth--;
|
|
assert(!(td->flags & TD_F_CHILD));
|
|
}
|
|
io_u_qpush(&td->io_u_freelist, io_u);
|
|
td_io_u_unlock(td);
|
|
td_io_u_free_notify(td);
|
|
}
|
|
|
|
void clear_io_u(struct thread_data *td, struct io_u *io_u)
|
|
{
|
|
io_u_clear(td, io_u, IO_U_F_FLIGHT);
|
|
put_io_u(td, io_u);
|
|
}
|
|
|
|
void requeue_io_u(struct thread_data *td, struct io_u **io_u)
|
|
{
|
|
struct io_u *__io_u = *io_u;
|
|
enum fio_ddir ddir = acct_ddir(__io_u);
|
|
|
|
dprint(FD_IO, "requeue %p\n", __io_u);
|
|
|
|
if (td->parent)
|
|
td = td->parent;
|
|
|
|
td_io_u_lock(td);
|
|
|
|
io_u_set(td, __io_u, IO_U_F_FREE);
|
|
if ((__io_u->flags & IO_U_F_FLIGHT) && ddir_rw(ddir))
|
|
td->io_issues[ddir]--;
|
|
|
|
io_u_clear(td, __io_u, IO_U_F_FLIGHT);
|
|
if (__io_u->flags & IO_U_F_IN_CUR_DEPTH) {
|
|
td->cur_depth--;
|
|
assert(!(td->flags & TD_F_CHILD));
|
|
}
|
|
|
|
io_u_rpush(&td->io_u_requeues, __io_u);
|
|
td_io_u_unlock(td);
|
|
td_io_u_free_notify(td);
|
|
*io_u = NULL;
|
|
}
|
|
|
|
static int fill_io_u(struct thread_data *td, struct io_u *io_u)
|
|
{
|
|
unsigned int is_random;
|
|
|
|
if (td_ioengine_flagged(td, FIO_NOIO))
|
|
goto out;
|
|
|
|
set_rw_ddir(td, io_u);
|
|
|
|
/*
|
|
* fsync() or fdatasync() or trim etc, we are done
|
|
*/
|
|
if (!ddir_rw(io_u->ddir))
|
|
goto out;
|
|
|
|
/*
|
|
* See if it's time to switch to a new zone
|
|
*/
|
|
if (td->zone_bytes >= td->o.zone_size && td->o.zone_skip) {
|
|
struct fio_file *f = io_u->file;
|
|
|
|
td->zone_bytes = 0;
|
|
f->file_offset += td->o.zone_range + td->o.zone_skip;
|
|
|
|
/*
|
|
* Wrap from the beginning, if we exceed the file size
|
|
*/
|
|
if (f->file_offset >= f->real_file_size)
|
|
f->file_offset = f->real_file_size - f->file_offset;
|
|
f->last_pos[io_u->ddir] = f->file_offset;
|
|
td->io_skip_bytes += td->o.zone_skip;
|
|
}
|
|
|
|
/*
|
|
* No log, let the seq/rand engine retrieve the next buflen and
|
|
* position.
|
|
*/
|
|
if (get_next_offset(td, io_u, &is_random)) {
|
|
dprint(FD_IO, "io_u %p, failed getting offset\n", io_u);
|
|
return 1;
|
|
}
|
|
|
|
io_u->buflen = get_next_buflen(td, io_u, is_random);
|
|
if (!io_u->buflen) {
|
|
dprint(FD_IO, "io_u %p, failed getting buflen\n", io_u);
|
|
return 1;
|
|
}
|
|
|
|
if (io_u->offset + io_u->buflen > io_u->file->real_file_size) {
|
|
dprint(FD_IO, "io_u %p, offset + buflen exceeds file size\n",
|
|
io_u);
|
|
dprint(FD_IO, " offset=%llu/buflen=%lu > %llu\n",
|
|
(unsigned long long) io_u->offset, io_u->buflen,
|
|
(unsigned long long) io_u->file->real_file_size);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* mark entry before potentially trimming io_u
|
|
*/
|
|
if (td_random(td) && file_randommap(td, io_u->file))
|
|
mark_random_map(td, io_u);
|
|
|
|
out:
|
|
dprint_io_u(io_u, "fill_io_u");
|
|
td->zone_bytes += io_u->buflen;
|
|
return 0;
|
|
}
|
|
|
|
static void __io_u_mark_map(unsigned int *map, unsigned int nr)
|
|
{
|
|
int idx = 0;
|
|
|
|
switch (nr) {
|
|
default:
|
|
idx = 6;
|
|
break;
|
|
case 33 ... 64:
|
|
idx = 5;
|
|
break;
|
|
case 17 ... 32:
|
|
idx = 4;
|
|
break;
|
|
case 9 ... 16:
|
|
idx = 3;
|
|
break;
|
|
case 5 ... 8:
|
|
idx = 2;
|
|
break;
|
|
case 1 ... 4:
|
|
idx = 1;
|
|
case 0:
|
|
break;
|
|
}
|
|
|
|
map[idx]++;
|
|
}
|
|
|
|
void io_u_mark_submit(struct thread_data *td, unsigned int nr)
|
|
{
|
|
__io_u_mark_map(td->ts.io_u_submit, nr);
|
|
td->ts.total_submit++;
|
|
}
|
|
|
|
void io_u_mark_complete(struct thread_data *td, unsigned int nr)
|
|
{
|
|
__io_u_mark_map(td->ts.io_u_complete, nr);
|
|
td->ts.total_complete++;
|
|
}
|
|
|
|
void io_u_mark_depth(struct thread_data *td, unsigned int nr)
|
|
{
|
|
int idx = 0;
|
|
|
|
switch (td->cur_depth) {
|
|
default:
|
|
idx = 6;
|
|
break;
|
|
case 32 ... 63:
|
|
idx = 5;
|
|
break;
|
|
case 16 ... 31:
|
|
idx = 4;
|
|
break;
|
|
case 8 ... 15:
|
|
idx = 3;
|
|
break;
|
|
case 4 ... 7:
|
|
idx = 2;
|
|
break;
|
|
case 2 ... 3:
|
|
idx = 1;
|
|
case 1:
|
|
break;
|
|
}
|
|
|
|
td->ts.io_u_map[idx] += nr;
|
|
}
|
|
|
|
static void io_u_mark_lat_usec(struct thread_data *td, unsigned long usec)
|
|
{
|
|
int idx = 0;
|
|
|
|
assert(usec < 1000);
|
|
|
|
switch (usec) {
|
|
case 750 ... 999:
|
|
idx = 9;
|
|
break;
|
|
case 500 ... 749:
|
|
idx = 8;
|
|
break;
|
|
case 250 ... 499:
|
|
idx = 7;
|
|
break;
|
|
case 100 ... 249:
|
|
idx = 6;
|
|
break;
|
|
case 50 ... 99:
|
|
idx = 5;
|
|
break;
|
|
case 20 ... 49:
|
|
idx = 4;
|
|
break;
|
|
case 10 ... 19:
|
|
idx = 3;
|
|
break;
|
|
case 4 ... 9:
|
|
idx = 2;
|
|
break;
|
|
case 2 ... 3:
|
|
idx = 1;
|
|
case 0 ... 1:
|
|
break;
|
|
}
|
|
|
|
assert(idx < FIO_IO_U_LAT_U_NR);
|
|
td->ts.io_u_lat_u[idx]++;
|
|
}
|
|
|
|
static void io_u_mark_lat_msec(struct thread_data *td, unsigned long msec)
|
|
{
|
|
int idx = 0;
|
|
|
|
switch (msec) {
|
|
default:
|
|
idx = 11;
|
|
break;
|
|
case 1000 ... 1999:
|
|
idx = 10;
|
|
break;
|
|
case 750 ... 999:
|
|
idx = 9;
|
|
break;
|
|
case 500 ... 749:
|
|
idx = 8;
|
|
break;
|
|
case 250 ... 499:
|
|
idx = 7;
|
|
break;
|
|
case 100 ... 249:
|
|
idx = 6;
|
|
break;
|
|
case 50 ... 99:
|
|
idx = 5;
|
|
break;
|
|
case 20 ... 49:
|
|
idx = 4;
|
|
break;
|
|
case 10 ... 19:
|
|
idx = 3;
|
|
break;
|
|
case 4 ... 9:
|
|
idx = 2;
|
|
break;
|
|
case 2 ... 3:
|
|
idx = 1;
|
|
case 0 ... 1:
|
|
break;
|
|
}
|
|
|
|
assert(idx < FIO_IO_U_LAT_M_NR);
|
|
td->ts.io_u_lat_m[idx]++;
|
|
}
|
|
|
|
static void io_u_mark_latency(struct thread_data *td, unsigned long usec)
|
|
{
|
|
if (usec < 1000)
|
|
io_u_mark_lat_usec(td, usec);
|
|
else
|
|
io_u_mark_lat_msec(td, usec / 1000);
|
|
}
|
|
|
|
static unsigned int __get_next_fileno_rand(struct thread_data *td)
|
|
{
|
|
unsigned long fileno;
|
|
|
|
if (td->o.file_service_type == FIO_FSERVICE_RANDOM) {
|
|
uint64_t frand_max = rand_max(&td->next_file_state);
|
|
unsigned long r;
|
|
|
|
r = __rand(&td->next_file_state);
|
|
return (unsigned int) ((double) td->o.nr_files
|
|
* (r / (frand_max + 1.0)));
|
|
}
|
|
|
|
if (td->o.file_service_type == FIO_FSERVICE_ZIPF)
|
|
fileno = zipf_next(&td->next_file_zipf);
|
|
else if (td->o.file_service_type == FIO_FSERVICE_PARETO)
|
|
fileno = pareto_next(&td->next_file_zipf);
|
|
else if (td->o.file_service_type == FIO_FSERVICE_GAUSS)
|
|
fileno = gauss_next(&td->next_file_gauss);
|
|
else {
|
|
log_err("fio: bad file service type: %d\n", td->o.file_service_type);
|
|
assert(0);
|
|
return 0;
|
|
}
|
|
|
|
return fileno >> FIO_FSERVICE_SHIFT;
|
|
}
|
|
|
|
/*
|
|
* Get next file to service by choosing one at random
|
|
*/
|
|
static struct fio_file *get_next_file_rand(struct thread_data *td,
|
|
enum fio_file_flags goodf,
|
|
enum fio_file_flags badf)
|
|
{
|
|
struct fio_file *f;
|
|
int fno;
|
|
|
|
do {
|
|
int opened = 0;
|
|
|
|
fno = __get_next_fileno_rand(td);
|
|
|
|
f = td->files[fno];
|
|
if (fio_file_done(f))
|
|
continue;
|
|
|
|
if (!fio_file_open(f)) {
|
|
int err;
|
|
|
|
if (td->nr_open_files >= td->o.open_files)
|
|
return ERR_PTR(-EBUSY);
|
|
|
|
err = td_io_open_file(td, f);
|
|
if (err)
|
|
continue;
|
|
opened = 1;
|
|
}
|
|
|
|
if ((!goodf || (f->flags & goodf)) && !(f->flags & badf)) {
|
|
dprint(FD_FILE, "get_next_file_rand: %p\n", f);
|
|
return f;
|
|
}
|
|
if (opened)
|
|
td_io_close_file(td, f);
|
|
} while (1);
|
|
}
|
|
|
|
/*
|
|
* Get next file to service by doing round robin between all available ones
|
|
*/
|
|
static struct fio_file *get_next_file_rr(struct thread_data *td, int goodf,
|
|
int badf)
|
|
{
|
|
unsigned int old_next_file = td->next_file;
|
|
struct fio_file *f;
|
|
|
|
do {
|
|
int opened = 0;
|
|
|
|
f = td->files[td->next_file];
|
|
|
|
td->next_file++;
|
|
if (td->next_file >= td->o.nr_files)
|
|
td->next_file = 0;
|
|
|
|
dprint(FD_FILE, "trying file %s %x\n", f->file_name, f->flags);
|
|
if (fio_file_done(f)) {
|
|
f = NULL;
|
|
continue;
|
|
}
|
|
|
|
if (!fio_file_open(f)) {
|
|
int err;
|
|
|
|
if (td->nr_open_files >= td->o.open_files)
|
|
return ERR_PTR(-EBUSY);
|
|
|
|
err = td_io_open_file(td, f);
|
|
if (err) {
|
|
dprint(FD_FILE, "error %d on open of %s\n",
|
|
err, f->file_name);
|
|
f = NULL;
|
|
continue;
|
|
}
|
|
opened = 1;
|
|
}
|
|
|
|
dprint(FD_FILE, "goodf=%x, badf=%x, ff=%x\n", goodf, badf,
|
|
f->flags);
|
|
if ((!goodf || (f->flags & goodf)) && !(f->flags & badf))
|
|
break;
|
|
|
|
if (opened)
|
|
td_io_close_file(td, f);
|
|
|
|
f = NULL;
|
|
} while (td->next_file != old_next_file);
|
|
|
|
dprint(FD_FILE, "get_next_file_rr: %p\n", f);
|
|
return f;
|
|
}
|
|
|
|
static struct fio_file *__get_next_file(struct thread_data *td)
|
|
{
|
|
struct fio_file *f;
|
|
|
|
assert(td->o.nr_files <= td->files_index);
|
|
|
|
if (td->nr_done_files >= td->o.nr_files) {
|
|
dprint(FD_FILE, "get_next_file: nr_open=%d, nr_done=%d,"
|
|
" nr_files=%d\n", td->nr_open_files,
|
|
td->nr_done_files,
|
|
td->o.nr_files);
|
|
return NULL;
|
|
}
|
|
|
|
f = td->file_service_file;
|
|
if (f && fio_file_open(f) && !fio_file_closing(f)) {
|
|
if (td->o.file_service_type == FIO_FSERVICE_SEQ)
|
|
goto out;
|
|
if (td->file_service_left--)
|
|
goto out;
|
|
}
|
|
|
|
if (td->o.file_service_type == FIO_FSERVICE_RR ||
|
|
td->o.file_service_type == FIO_FSERVICE_SEQ)
|
|
f = get_next_file_rr(td, FIO_FILE_open, FIO_FILE_closing);
|
|
else
|
|
f = get_next_file_rand(td, FIO_FILE_open, FIO_FILE_closing);
|
|
|
|
if (IS_ERR(f))
|
|
return f;
|
|
|
|
td->file_service_file = f;
|
|
td->file_service_left = td->file_service_nr - 1;
|
|
out:
|
|
if (f)
|
|
dprint(FD_FILE, "get_next_file: %p [%s]\n", f, f->file_name);
|
|
else
|
|
dprint(FD_FILE, "get_next_file: NULL\n");
|
|
return f;
|
|
}
|
|
|
|
static struct fio_file *get_next_file(struct thread_data *td)
|
|
{
|
|
if (td->flags & TD_F_PROFILE_OPS) {
|
|
struct prof_io_ops *ops = &td->prof_io_ops;
|
|
|
|
if (ops->get_next_file)
|
|
return ops->get_next_file(td);
|
|
}
|
|
|
|
return __get_next_file(td);
|
|
}
|
|
|
|
static long set_io_u_file(struct thread_data *td, struct io_u *io_u)
|
|
{
|
|
struct fio_file *f;
|
|
|
|
do {
|
|
f = get_next_file(td);
|
|
if (IS_ERR_OR_NULL(f))
|
|
return PTR_ERR(f);
|
|
|
|
io_u->file = f;
|
|
get_file(f);
|
|
|
|
if (!fill_io_u(td, io_u))
|
|
break;
|
|
|
|
put_file_log(td, f);
|
|
td_io_close_file(td, f);
|
|
io_u->file = NULL;
|
|
if (td->o.file_service_type & __FIO_FSERVICE_NONUNIFORM)
|
|
fio_file_reset(td, f);
|
|
else {
|
|
fio_file_set_done(f);
|
|
td->nr_done_files++;
|
|
dprint(FD_FILE, "%s: is done (%d of %d)\n", f->file_name,
|
|
td->nr_done_files, td->o.nr_files);
|
|
}
|
|
} while (1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void lat_fatal(struct thread_data *td, struct io_completion_data *icd,
|
|
unsigned long tusec, unsigned long max_usec)
|
|
{
|
|
if (!td->error)
|
|
log_err("fio: latency of %lu usec exceeds specified max (%lu usec)\n", tusec, max_usec);
|
|
td_verror(td, ETIMEDOUT, "max latency exceeded");
|
|
icd->error = ETIMEDOUT;
|
|
}
|
|
|
|
static void lat_new_cycle(struct thread_data *td)
|
|
{
|
|
fio_gettime(&td->latency_ts, NULL);
|
|
td->latency_ios = ddir_rw_sum(td->io_blocks);
|
|
td->latency_failed = 0;
|
|
}
|
|
|
|
/*
|
|
* We had an IO outside the latency target. Reduce the queue depth. If we
|
|
* are at QD=1, then it's time to give up.
|
|
*/
|
|
static bool __lat_target_failed(struct thread_data *td)
|
|
{
|
|
if (td->latency_qd == 1)
|
|
return true;
|
|
|
|
td->latency_qd_high = td->latency_qd;
|
|
|
|
if (td->latency_qd == td->latency_qd_low)
|
|
td->latency_qd_low--;
|
|
|
|
td->latency_qd = (td->latency_qd + td->latency_qd_low) / 2;
|
|
|
|
dprint(FD_RATE, "Ramped down: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
|
|
|
|
/*
|
|
* When we ramp QD down, quiesce existing IO to prevent
|
|
* a storm of ramp downs due to pending higher depth.
|
|
*/
|
|
io_u_quiesce(td);
|
|
lat_new_cycle(td);
|
|
return false;
|
|
}
|
|
|
|
static bool lat_target_failed(struct thread_data *td)
|
|
{
|
|
if (td->o.latency_percentile.u.f == 100.0)
|
|
return __lat_target_failed(td);
|
|
|
|
td->latency_failed++;
|
|
return false;
|
|
}
|
|
|
|
void lat_target_init(struct thread_data *td)
|
|
{
|
|
td->latency_end_run = 0;
|
|
|
|
if (td->o.latency_target) {
|
|
dprint(FD_RATE, "Latency target=%llu\n", td->o.latency_target);
|
|
fio_gettime(&td->latency_ts, NULL);
|
|
td->latency_qd = 1;
|
|
td->latency_qd_high = td->o.iodepth;
|
|
td->latency_qd_low = 1;
|
|
td->latency_ios = ddir_rw_sum(td->io_blocks);
|
|
} else
|
|
td->latency_qd = td->o.iodepth;
|
|
}
|
|
|
|
void lat_target_reset(struct thread_data *td)
|
|
{
|
|
if (!td->latency_end_run)
|
|
lat_target_init(td);
|
|
}
|
|
|
|
static void lat_target_success(struct thread_data *td)
|
|
{
|
|
const unsigned int qd = td->latency_qd;
|
|
struct thread_options *o = &td->o;
|
|
|
|
td->latency_qd_low = td->latency_qd;
|
|
|
|
/*
|
|
* If we haven't failed yet, we double up to a failing value instead
|
|
* of bisecting from highest possible queue depth. If we have set
|
|
* a limit other than td->o.iodepth, bisect between that.
|
|
*/
|
|
if (td->latency_qd_high != o->iodepth)
|
|
td->latency_qd = (td->latency_qd + td->latency_qd_high) / 2;
|
|
else
|
|
td->latency_qd *= 2;
|
|
|
|
if (td->latency_qd > o->iodepth)
|
|
td->latency_qd = o->iodepth;
|
|
|
|
dprint(FD_RATE, "Ramped up: %d %d %d\n", td->latency_qd_low, td->latency_qd, td->latency_qd_high);
|
|
|
|
/*
|
|
* Same as last one, we are done. Let it run a latency cycle, so
|
|
* we get only the results from the targeted depth.
|
|
*/
|
|
if (td->latency_qd == qd) {
|
|
if (td->latency_end_run) {
|
|
dprint(FD_RATE, "We are done\n");
|
|
td->done = 1;
|
|
} else {
|
|
dprint(FD_RATE, "Quiesce and final run\n");
|
|
io_u_quiesce(td);
|
|
td->latency_end_run = 1;
|
|
reset_all_stats(td);
|
|
reset_io_stats(td);
|
|
}
|
|
}
|
|
|
|
lat_new_cycle(td);
|
|
}
|
|
|
|
/*
|
|
* Check if we can bump the queue depth
|
|
*/
|
|
void lat_target_check(struct thread_data *td)
|
|
{
|
|
uint64_t usec_window;
|
|
uint64_t ios;
|
|
double success_ios;
|
|
|
|
usec_window = utime_since_now(&td->latency_ts);
|
|
if (usec_window < td->o.latency_window)
|
|
return;
|
|
|
|
ios = ddir_rw_sum(td->io_blocks) - td->latency_ios;
|
|
success_ios = (double) (ios - td->latency_failed) / (double) ios;
|
|
success_ios *= 100.0;
|
|
|
|
dprint(FD_RATE, "Success rate: %.2f%% (target %.2f%%)\n", success_ios, td->o.latency_percentile.u.f);
|
|
|
|
if (success_ios >= td->o.latency_percentile.u.f)
|
|
lat_target_success(td);
|
|
else
|
|
__lat_target_failed(td);
|
|
}
|
|
|
|
/*
|
|
* If latency target is enabled, we might be ramping up or down and not
|
|
* using the full queue depth available.
|
|
*/
|
|
bool queue_full(const struct thread_data *td)
|
|
{
|
|
const int qempty = io_u_qempty(&td->io_u_freelist);
|
|
|
|
if (qempty)
|
|
return true;
|
|
if (!td->o.latency_target)
|
|
return false;
|
|
|
|
return td->cur_depth >= td->latency_qd;
|
|
}
|
|
|
|
struct io_u *__get_io_u(struct thread_data *td)
|
|
{
|
|
struct io_u *io_u = NULL;
|
|
|
|
if (td->stop_io)
|
|
return NULL;
|
|
|
|
td_io_u_lock(td);
|
|
|
|
again:
|
|
if (!io_u_rempty(&td->io_u_requeues))
|
|
io_u = io_u_rpop(&td->io_u_requeues);
|
|
else if (!queue_full(td)) {
|
|
io_u = io_u_qpop(&td->io_u_freelist);
|
|
|
|
io_u->file = NULL;
|
|
io_u->buflen = 0;
|
|
io_u->resid = 0;
|
|
io_u->end_io = NULL;
|
|
}
|
|
|
|
if (io_u) {
|
|
assert(io_u->flags & IO_U_F_FREE);
|
|
io_u_clear(td, io_u, IO_U_F_FREE | IO_U_F_NO_FILE_PUT |
|
|
IO_U_F_TRIMMED | IO_U_F_BARRIER |
|
|
IO_U_F_VER_LIST);
|
|
|
|
io_u->error = 0;
|
|
io_u->acct_ddir = -1;
|
|
td->cur_depth++;
|
|
assert(!(td->flags & TD_F_CHILD));
|
|
io_u_set(td, io_u, IO_U_F_IN_CUR_DEPTH);
|
|
io_u->ipo = NULL;
|
|
} else if (td_async_processing(td)) {
|
|
/*
|
|
* We ran out, wait for async verify threads to finish and
|
|
* return one
|
|
*/
|
|
assert(!(td->flags & TD_F_CHILD));
|
|
assert(!pthread_cond_wait(&td->free_cond, &td->io_u_lock));
|
|
goto again;
|
|
}
|
|
|
|
td_io_u_unlock(td);
|
|
return io_u;
|
|
}
|
|
|
|
static bool check_get_trim(struct thread_data *td, struct io_u *io_u)
|
|
{
|
|
if (!(td->flags & TD_F_TRIM_BACKLOG))
|
|
return false;
|
|
|
|
if (td->trim_entries) {
|
|
int get_trim = 0;
|
|
|
|
if (td->trim_batch) {
|
|
td->trim_batch--;
|
|
get_trim = 1;
|
|
} else if (!(td->io_hist_len % td->o.trim_backlog) &&
|
|
td->last_ddir != DDIR_READ) {
|
|
td->trim_batch = td->o.trim_batch;
|
|
if (!td->trim_batch)
|
|
td->trim_batch = td->o.trim_backlog;
|
|
get_trim = 1;
|
|
}
|
|
|
|
if (get_trim && get_next_trim(td, io_u))
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
static bool check_get_verify(struct thread_data *td, struct io_u *io_u)
|
|
{
|
|
if (!(td->flags & TD_F_VER_BACKLOG))
|
|
return false;
|
|
|
|
if (td->io_hist_len) {
|
|
int get_verify = 0;
|
|
|
|
if (td->verify_batch)
|
|
get_verify = 1;
|
|
else if (!(td->io_hist_len % td->o.verify_backlog) &&
|
|
td->last_ddir != DDIR_READ) {
|
|
td->verify_batch = td->o.verify_batch;
|
|
if (!td->verify_batch)
|
|
td->verify_batch = td->o.verify_backlog;
|
|
get_verify = 1;
|
|
}
|
|
|
|
if (get_verify && !get_next_verify(td, io_u)) {
|
|
td->verify_batch--;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Fill offset and start time into the buffer content, to prevent too
|
|
* easy compressible data for simple de-dupe attempts. Do this for every
|
|
* 512b block in the range, since that should be the smallest block size
|
|
* we can expect from a device.
|
|
*/
|
|
static void small_content_scramble(struct io_u *io_u)
|
|
{
|
|
unsigned int i, nr_blocks = io_u->buflen / 512;
|
|
uint64_t boffset;
|
|
unsigned int offset;
|
|
void *p, *end;
|
|
|
|
if (!nr_blocks)
|
|
return;
|
|
|
|
p = io_u->xfer_buf;
|
|
boffset = io_u->offset;
|
|
io_u->buf_filled_len = 0;
|
|
|
|
for (i = 0; i < nr_blocks; i++) {
|
|
/*
|
|
* Fill the byte offset into a "random" start offset of
|
|
* the buffer, given by the product of the usec time
|
|
* and the actual offset.
|
|
*/
|
|
offset = (io_u->start_time.tv_usec ^ boffset) & 511;
|
|
offset &= ~(sizeof(uint64_t) - 1);
|
|
if (offset >= 512 - sizeof(uint64_t))
|
|
offset -= sizeof(uint64_t);
|
|
memcpy(p + offset, &boffset, sizeof(boffset));
|
|
|
|
end = p + 512 - sizeof(io_u->start_time);
|
|
memcpy(end, &io_u->start_time, sizeof(io_u->start_time));
|
|
p += 512;
|
|
boffset += 512;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Return an io_u to be processed. Gets a buflen and offset, sets direction,
|
|
* etc. The returned io_u is fully ready to be prepped and submitted.
|
|
*/
|
|
struct io_u *get_io_u(struct thread_data *td)
|
|
{
|
|
struct fio_file *f;
|
|
struct io_u *io_u;
|
|
int do_scramble = 0;
|
|
long ret = 0;
|
|
|
|
io_u = __get_io_u(td);
|
|
if (!io_u) {
|
|
dprint(FD_IO, "__get_io_u failed\n");
|
|
return NULL;
|
|
}
|
|
|
|
if (check_get_verify(td, io_u))
|
|
goto out;
|
|
if (check_get_trim(td, io_u))
|
|
goto out;
|
|
|
|
/*
|
|
* from a requeue, io_u already setup
|
|
*/
|
|
if (io_u->file)
|
|
goto out;
|
|
|
|
/*
|
|
* If using an iolog, grab next piece if any available.
|
|
*/
|
|
if (td->flags & TD_F_READ_IOLOG) {
|
|
if (read_iolog_get(td, io_u))
|
|
goto err_put;
|
|
} else if (set_io_u_file(td, io_u)) {
|
|
ret = -EBUSY;
|
|
dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
|
|
goto err_put;
|
|
}
|
|
|
|
f = io_u->file;
|
|
if (!f) {
|
|
dprint(FD_IO, "io_u %p, setting file failed\n", io_u);
|
|
goto err_put;
|
|
}
|
|
|
|
assert(fio_file_open(f));
|
|
|
|
if (ddir_rw(io_u->ddir)) {
|
|
if (!io_u->buflen && !td_ioengine_flagged(td, FIO_NOIO)) {
|
|
dprint(FD_IO, "get_io_u: zero buflen on %p\n", io_u);
|
|
goto err_put;
|
|
}
|
|
|
|
f->last_start[io_u->ddir] = io_u->offset;
|
|
f->last_pos[io_u->ddir] = io_u->offset + io_u->buflen;
|
|
|
|
if (io_u->ddir == DDIR_WRITE) {
|
|
if (td->flags & TD_F_REFILL_BUFFERS) {
|
|
io_u_fill_buffer(td, io_u,
|
|
td->o.min_bs[DDIR_WRITE],
|
|
io_u->buflen);
|
|
} else if ((td->flags & TD_F_SCRAMBLE_BUFFERS) &&
|
|
!(td->flags & TD_F_COMPRESS))
|
|
do_scramble = 1;
|
|
if (td->flags & TD_F_VER_NONE) {
|
|
populate_verify_io_u(td, io_u);
|
|
do_scramble = 0;
|
|
}
|
|
} else if (io_u->ddir == DDIR_READ) {
|
|
/*
|
|
* Reset the buf_filled parameters so next time if the
|
|
* buffer is used for writes it is refilled.
|
|
*/
|
|
io_u->buf_filled_len = 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Set io data pointers.
|
|
*/
|
|
io_u->xfer_buf = io_u->buf;
|
|
io_u->xfer_buflen = io_u->buflen;
|
|
|
|
out:
|
|
assert(io_u->file);
|
|
if (!td_io_prep(td, io_u)) {
|
|
if (!td->o.disable_lat)
|
|
fio_gettime(&io_u->start_time, NULL);
|
|
|
|
if (do_scramble)
|
|
small_content_scramble(io_u);
|
|
|
|
return io_u;
|
|
}
|
|
err_put:
|
|
dprint(FD_IO, "get_io_u failed\n");
|
|
put_io_u(td, io_u);
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
static void __io_u_log_error(struct thread_data *td, struct io_u *io_u)
|
|
{
|
|
enum error_type_bit eb = td_error_type(io_u->ddir, io_u->error);
|
|
|
|
if (td_non_fatal_error(td, eb, io_u->error) && !td->o.error_dump)
|
|
return;
|
|
|
|
log_err("fio: io_u error%s%s: %s: %s offset=%llu, buflen=%lu\n",
|
|
io_u->file ? " on file " : "",
|
|
io_u->file ? io_u->file->file_name : "",
|
|
strerror(io_u->error),
|
|
io_ddir_name(io_u->ddir),
|
|
io_u->offset, io_u->xfer_buflen);
|
|
|
|
if (td->io_ops->errdetails) {
|
|
char *err = td->io_ops->errdetails(io_u);
|
|
|
|
log_err("fio: %s\n", err);
|
|
free(err);
|
|
}
|
|
|
|
if (!td->error)
|
|
td_verror(td, io_u->error, "io_u error");
|
|
}
|
|
|
|
void io_u_log_error(struct thread_data *td, struct io_u *io_u)
|
|
{
|
|
__io_u_log_error(td, io_u);
|
|
if (td->parent)
|
|
__io_u_log_error(td->parent, io_u);
|
|
}
|
|
|
|
static inline bool gtod_reduce(struct thread_data *td)
|
|
{
|
|
return (td->o.disable_clat && td->o.disable_slat && td->o.disable_bw)
|
|
|| td->o.gtod_reduce;
|
|
}
|
|
|
|
static void account_io_completion(struct thread_data *td, struct io_u *io_u,
|
|
struct io_completion_data *icd,
|
|
const enum fio_ddir idx, unsigned int bytes)
|
|
{
|
|
const int no_reduce = !gtod_reduce(td);
|
|
unsigned long lusec = 0;
|
|
|
|
if (td->parent)
|
|
td = td->parent;
|
|
|
|
if (!td->o.stats)
|
|
return;
|
|
|
|
if (no_reduce)
|
|
lusec = utime_since(&io_u->issue_time, &icd->time);
|
|
|
|
if (!td->o.disable_lat) {
|
|
unsigned long tusec;
|
|
|
|
tusec = utime_since(&io_u->start_time, &icd->time);
|
|
add_lat_sample(td, idx, tusec, bytes, io_u->offset);
|
|
|
|
if (td->flags & TD_F_PROFILE_OPS) {
|
|
struct prof_io_ops *ops = &td->prof_io_ops;
|
|
|
|
if (ops->io_u_lat)
|
|
icd->error = ops->io_u_lat(td, tusec);
|
|
}
|
|
|
|
if (td->o.max_latency && tusec > td->o.max_latency)
|
|
lat_fatal(td, icd, tusec, td->o.max_latency);
|
|
if (td->o.latency_target && tusec > td->o.latency_target) {
|
|
if (lat_target_failed(td))
|
|
lat_fatal(td, icd, tusec, td->o.latency_target);
|
|
}
|
|
}
|
|
|
|
if (ddir_rw(idx)) {
|
|
if (!td->o.disable_clat) {
|
|
add_clat_sample(td, idx, lusec, bytes, io_u->offset);
|
|
io_u_mark_latency(td, lusec);
|
|
}
|
|
|
|
if (!td->o.disable_bw && per_unit_log(td->bw_log))
|
|
add_bw_sample(td, io_u, bytes, lusec);
|
|
|
|
if (no_reduce && per_unit_log(td->iops_log))
|
|
add_iops_sample(td, io_u, bytes);
|
|
}
|
|
|
|
if (td->ts.nr_block_infos && io_u->ddir == DDIR_TRIM) {
|
|
uint32_t *info = io_u_block_info(td, io_u);
|
|
if (BLOCK_INFO_STATE(*info) < BLOCK_STATE_TRIM_FAILURE) {
|
|
if (io_u->ddir == DDIR_TRIM) {
|
|
*info = BLOCK_INFO(BLOCK_STATE_TRIMMED,
|
|
BLOCK_INFO_TRIMS(*info) + 1);
|
|
} else if (io_u->ddir == DDIR_WRITE) {
|
|
*info = BLOCK_INFO_SET_STATE(BLOCK_STATE_WRITTEN,
|
|
*info);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void file_log_write_comp(const struct thread_data *td, struct fio_file *f,
|
|
uint64_t offset, unsigned int bytes)
|
|
{
|
|
int idx;
|
|
|
|
if (!f)
|
|
return;
|
|
|
|
if (f->first_write == -1ULL || offset < f->first_write)
|
|
f->first_write = offset;
|
|
if (f->last_write == -1ULL || ((offset + bytes) > f->last_write))
|
|
f->last_write = offset + bytes;
|
|
|
|
if (!f->last_write_comp)
|
|
return;
|
|
|
|
idx = f->last_write_idx++;
|
|
f->last_write_comp[idx] = offset;
|
|
if (f->last_write_idx == td->o.iodepth)
|
|
f->last_write_idx = 0;
|
|
}
|
|
|
|
static void io_completed(struct thread_data *td, struct io_u **io_u_ptr,
|
|
struct io_completion_data *icd)
|
|
{
|
|
struct io_u *io_u = *io_u_ptr;
|
|
enum fio_ddir ddir = io_u->ddir;
|
|
struct fio_file *f = io_u->file;
|
|
|
|
dprint_io_u(io_u, "io complete");
|
|
|
|
assert(io_u->flags & IO_U_F_FLIGHT);
|
|
io_u_clear(td, io_u, IO_U_F_FLIGHT | IO_U_F_BUSY_OK);
|
|
|
|
/*
|
|
* Mark IO ok to verify
|
|
*/
|
|
if (io_u->ipo) {
|
|
/*
|
|
* Remove errored entry from the verification list
|
|
*/
|
|
if (io_u->error)
|
|
unlog_io_piece(td, io_u);
|
|
else {
|
|
io_u->ipo->flags &= ~IP_F_IN_FLIGHT;
|
|
write_barrier();
|
|
}
|
|
}
|
|
|
|
if (ddir_sync(ddir)) {
|
|
td->last_was_sync = 1;
|
|
if (f) {
|
|
f->first_write = -1ULL;
|
|
f->last_write = -1ULL;
|
|
}
|
|
return;
|
|
}
|
|
|
|
td->last_was_sync = 0;
|
|
td->last_ddir = ddir;
|
|
|
|
if (!io_u->error && ddir_rw(ddir)) {
|
|
unsigned int bytes = io_u->buflen - io_u->resid;
|
|
int ret;
|
|
|
|
td->io_blocks[ddir]++;
|
|
td->this_io_blocks[ddir]++;
|
|
td->io_bytes[ddir] += bytes;
|
|
|
|
if (!(io_u->flags & IO_U_F_VER_LIST))
|
|
td->this_io_bytes[ddir] += bytes;
|
|
|
|
if (ddir == DDIR_WRITE)
|
|
file_log_write_comp(td, f, io_u->offset, bytes);
|
|
|
|
if (ramp_time_over(td) && (td->runstate == TD_RUNNING ||
|
|
td->runstate == TD_VERIFYING))
|
|
account_io_completion(td, io_u, icd, ddir, bytes);
|
|
|
|
icd->bytes_done[ddir] += bytes;
|
|
|
|
if (io_u->end_io) {
|
|
ret = io_u->end_io(td, io_u_ptr);
|
|
io_u = *io_u_ptr;
|
|
if (ret && !icd->error)
|
|
icd->error = ret;
|
|
}
|
|
} else if (io_u->error) {
|
|
icd->error = io_u->error;
|
|
io_u_log_error(td, io_u);
|
|
}
|
|
if (icd->error) {
|
|
enum error_type_bit eb = td_error_type(ddir, icd->error);
|
|
|
|
if (!td_non_fatal_error(td, eb, icd->error))
|
|
return;
|
|
|
|
/*
|
|
* If there is a non_fatal error, then add to the error count
|
|
* and clear all the errors.
|
|
*/
|
|
update_error_count(td, icd->error);
|
|
td_clear_error(td);
|
|
icd->error = 0;
|
|
if (io_u)
|
|
io_u->error = 0;
|
|
}
|
|
}
|
|
|
|
static void init_icd(struct thread_data *td, struct io_completion_data *icd,
|
|
int nr)
|
|
{
|
|
int ddir;
|
|
|
|
if (!gtod_reduce(td))
|
|
fio_gettime(&icd->time, NULL);
|
|
|
|
icd->nr = nr;
|
|
|
|
icd->error = 0;
|
|
for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
|
|
icd->bytes_done[ddir] = 0;
|
|
}
|
|
|
|
static void ios_completed(struct thread_data *td,
|
|
struct io_completion_data *icd)
|
|
{
|
|
struct io_u *io_u;
|
|
int i;
|
|
|
|
for (i = 0; i < icd->nr; i++) {
|
|
io_u = td->io_ops->event(td, i);
|
|
|
|
io_completed(td, &io_u, icd);
|
|
|
|
if (io_u)
|
|
put_io_u(td, io_u);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Complete a single io_u for the sync engines.
|
|
*/
|
|
int io_u_sync_complete(struct thread_data *td, struct io_u *io_u)
|
|
{
|
|
struct io_completion_data icd;
|
|
int ddir;
|
|
|
|
init_icd(td, &icd, 1);
|
|
io_completed(td, &io_u, &icd);
|
|
|
|
if (io_u)
|
|
put_io_u(td, io_u);
|
|
|
|
if (icd.error) {
|
|
td_verror(td, icd.error, "io_u_sync_complete");
|
|
return -1;
|
|
}
|
|
|
|
for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
|
|
td->bytes_done[ddir] += icd.bytes_done[ddir];
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Called to complete min_events number of io for the async engines.
|
|
*/
|
|
int io_u_queued_complete(struct thread_data *td, int min_evts)
|
|
{
|
|
struct io_completion_data icd;
|
|
struct timespec *tvp = NULL;
|
|
int ret, ddir;
|
|
struct timespec ts = { .tv_sec = 0, .tv_nsec = 0, };
|
|
|
|
dprint(FD_IO, "io_u_queued_complete: min=%d\n", min_evts);
|
|
|
|
if (!min_evts)
|
|
tvp = &ts;
|
|
else if (min_evts > td->cur_depth)
|
|
min_evts = td->cur_depth;
|
|
|
|
/* No worries, td_io_getevents fixes min and max if they are
|
|
* set incorrectly */
|
|
ret = td_io_getevents(td, min_evts, td->o.iodepth_batch_complete_max, tvp);
|
|
if (ret < 0) {
|
|
td_verror(td, -ret, "td_io_getevents");
|
|
return ret;
|
|
} else if (!ret)
|
|
return ret;
|
|
|
|
init_icd(td, &icd, ret);
|
|
ios_completed(td, &icd);
|
|
if (icd.error) {
|
|
td_verror(td, icd.error, "io_u_queued_complete");
|
|
return -1;
|
|
}
|
|
|
|
for (ddir = 0; ddir < DDIR_RWDIR_CNT; ddir++)
|
|
td->bytes_done[ddir] += icd.bytes_done[ddir];
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Call when io_u is really queued, to update the submission latency.
|
|
*/
|
|
void io_u_queued(struct thread_data *td, struct io_u *io_u)
|
|
{
|
|
if (!td->o.disable_slat && ramp_time_over(td) && td->o.stats) {
|
|
unsigned long slat_time;
|
|
|
|
slat_time = utime_since(&io_u->start_time, &io_u->issue_time);
|
|
|
|
if (td->parent)
|
|
td = td->parent;
|
|
|
|
add_slat_sample(td, io_u->ddir, slat_time, io_u->xfer_buflen,
|
|
io_u->offset);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* See if we should reuse the last seed, if dedupe is enabled
|
|
*/
|
|
static struct frand_state *get_buf_state(struct thread_data *td)
|
|
{
|
|
unsigned int v;
|
|
|
|
if (!td->o.dedupe_percentage)
|
|
return &td->buf_state;
|
|
else if (td->o.dedupe_percentage == 100) {
|
|
frand_copy(&td->buf_state_prev, &td->buf_state);
|
|
return &td->buf_state;
|
|
}
|
|
|
|
v = rand32_between(&td->dedupe_state, 1, 100);
|
|
|
|
if (v <= td->o.dedupe_percentage)
|
|
return &td->buf_state_prev;
|
|
|
|
return &td->buf_state;
|
|
}
|
|
|
|
static void save_buf_state(struct thread_data *td, struct frand_state *rs)
|
|
{
|
|
if (td->o.dedupe_percentage == 100)
|
|
frand_copy(rs, &td->buf_state_prev);
|
|
else if (rs == &td->buf_state)
|
|
frand_copy(&td->buf_state_prev, rs);
|
|
}
|
|
|
|
void fill_io_buffer(struct thread_data *td, void *buf, unsigned int min_write,
|
|
unsigned int max_bs)
|
|
{
|
|
struct thread_options *o = &td->o;
|
|
|
|
if (o->mem_type == MEM_CUDA_MALLOC)
|
|
return;
|
|
|
|
if (o->compress_percentage || o->dedupe_percentage) {
|
|
unsigned int perc = td->o.compress_percentage;
|
|
struct frand_state *rs;
|
|
unsigned int left = max_bs;
|
|
unsigned int this_write;
|
|
|
|
do {
|
|
rs = get_buf_state(td);
|
|
|
|
min_write = min(min_write, left);
|
|
|
|
if (perc) {
|
|
this_write = min_not_zero(min_write,
|
|
td->o.compress_chunk);
|
|
|
|
fill_random_buf_percentage(rs, buf, perc,
|
|
this_write, this_write,
|
|
o->buffer_pattern,
|
|
o->buffer_pattern_bytes);
|
|
} else {
|
|
fill_random_buf(rs, buf, min_write);
|
|
this_write = min_write;
|
|
}
|
|
|
|
buf += this_write;
|
|
left -= this_write;
|
|
save_buf_state(td, rs);
|
|
} while (left);
|
|
} else if (o->buffer_pattern_bytes)
|
|
fill_buffer_pattern(td, buf, max_bs);
|
|
else if (o->zero_buffers)
|
|
memset(buf, 0, max_bs);
|
|
else
|
|
fill_random_buf(get_buf_state(td), buf, max_bs);
|
|
}
|
|
|
|
/*
|
|
* "randomly" fill the buffer contents
|
|
*/
|
|
void io_u_fill_buffer(struct thread_data *td, struct io_u *io_u,
|
|
unsigned int min_write, unsigned int max_bs)
|
|
{
|
|
io_u->buf_filled_len = 0;
|
|
fill_io_buffer(td, io_u->buf, min_write, max_bs);
|
|
}
|
|
|
|
static int do_sync_file_range(const struct thread_data *td,
|
|
struct fio_file *f)
|
|
{
|
|
off64_t offset, nbytes;
|
|
|
|
offset = f->first_write;
|
|
nbytes = f->last_write - f->first_write;
|
|
|
|
if (!nbytes)
|
|
return 0;
|
|
|
|
return sync_file_range(f->fd, offset, nbytes, td->o.sync_file_range);
|
|
}
|
|
|
|
int do_io_u_sync(const struct thread_data *td, struct io_u *io_u)
|
|
{
|
|
int ret;
|
|
|
|
if (io_u->ddir == DDIR_SYNC) {
|
|
ret = fsync(io_u->file->fd);
|
|
} else if (io_u->ddir == DDIR_DATASYNC) {
|
|
#ifdef CONFIG_FDATASYNC
|
|
ret = fdatasync(io_u->file->fd);
|
|
#else
|
|
ret = io_u->xfer_buflen;
|
|
io_u->error = EINVAL;
|
|
#endif
|
|
} else if (io_u->ddir == DDIR_SYNC_FILE_RANGE)
|
|
ret = do_sync_file_range(td, io_u->file);
|
|
else {
|
|
ret = io_u->xfer_buflen;
|
|
io_u->error = EINVAL;
|
|
}
|
|
|
|
if (ret < 0)
|
|
io_u->error = errno;
|
|
|
|
return ret;
|
|
}
|
|
|
|
int do_io_u_trim(const struct thread_data *td, struct io_u *io_u)
|
|
{
|
|
#ifndef FIO_HAVE_TRIM
|
|
io_u->error = EINVAL;
|
|
return 0;
|
|
#else
|
|
struct fio_file *f = io_u->file;
|
|
int ret;
|
|
|
|
ret = os_trim(f->fd, io_u->offset, io_u->xfer_buflen);
|
|
if (!ret)
|
|
return io_u->xfer_buflen;
|
|
|
|
io_u->error = ret;
|
|
return 0;
|
|
#endif
|
|
}
|