8841 lines
341 KiB
C++
8841 lines
341 KiB
C++
/*
|
|
* Copyright (C) 2015 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "code_generator_mips.h"
|
|
|
|
#include "arch/mips/entrypoints_direct_mips.h"
|
|
#include "arch/mips/instruction_set_features_mips.h"
|
|
#include "art_method.h"
|
|
#include "code_generator_utils.h"
|
|
#include "compiled_method.h"
|
|
#include "entrypoints/quick/quick_entrypoints.h"
|
|
#include "entrypoints/quick/quick_entrypoints_enum.h"
|
|
#include "gc/accounting/card_table.h"
|
|
#include "intrinsics.h"
|
|
#include "intrinsics_mips.h"
|
|
#include "mirror/array-inl.h"
|
|
#include "mirror/class-inl.h"
|
|
#include "offsets.h"
|
|
#include "thread.h"
|
|
#include "utils/assembler.h"
|
|
#include "utils/mips/assembler_mips.h"
|
|
#include "utils/stack_checks.h"
|
|
|
|
namespace art {
|
|
namespace mips {
|
|
|
|
static constexpr int kCurrentMethodStackOffset = 0;
|
|
static constexpr Register kMethodRegisterArgument = A0;
|
|
|
|
Location MipsReturnLocation(Primitive::Type return_type) {
|
|
switch (return_type) {
|
|
case Primitive::kPrimBoolean:
|
|
case Primitive::kPrimByte:
|
|
case Primitive::kPrimChar:
|
|
case Primitive::kPrimShort:
|
|
case Primitive::kPrimInt:
|
|
case Primitive::kPrimNot:
|
|
return Location::RegisterLocation(V0);
|
|
|
|
case Primitive::kPrimLong:
|
|
return Location::RegisterPairLocation(V0, V1);
|
|
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimDouble:
|
|
return Location::FpuRegisterLocation(F0);
|
|
|
|
case Primitive::kPrimVoid:
|
|
return Location();
|
|
}
|
|
UNREACHABLE();
|
|
}
|
|
|
|
Location InvokeDexCallingConventionVisitorMIPS::GetReturnLocation(Primitive::Type type) const {
|
|
return MipsReturnLocation(type);
|
|
}
|
|
|
|
Location InvokeDexCallingConventionVisitorMIPS::GetMethodLocation() const {
|
|
return Location::RegisterLocation(kMethodRegisterArgument);
|
|
}
|
|
|
|
Location InvokeDexCallingConventionVisitorMIPS::GetNextLocation(Primitive::Type type) {
|
|
Location next_location;
|
|
|
|
switch (type) {
|
|
case Primitive::kPrimBoolean:
|
|
case Primitive::kPrimByte:
|
|
case Primitive::kPrimChar:
|
|
case Primitive::kPrimShort:
|
|
case Primitive::kPrimInt:
|
|
case Primitive::kPrimNot: {
|
|
uint32_t gp_index = gp_index_++;
|
|
if (gp_index < calling_convention.GetNumberOfRegisters()) {
|
|
next_location = Location::RegisterLocation(calling_convention.GetRegisterAt(gp_index));
|
|
} else {
|
|
size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_);
|
|
next_location = Location::StackSlot(stack_offset);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimLong: {
|
|
uint32_t gp_index = gp_index_;
|
|
gp_index_ += 2;
|
|
if (gp_index + 1 < calling_convention.GetNumberOfRegisters()) {
|
|
Register reg = calling_convention.GetRegisterAt(gp_index);
|
|
if (reg == A1 || reg == A3) {
|
|
gp_index_++; // Skip A1(A3), and use A2_A3(T0_T1) instead.
|
|
gp_index++;
|
|
}
|
|
Register low_even = calling_convention.GetRegisterAt(gp_index);
|
|
Register high_odd = calling_convention.GetRegisterAt(gp_index + 1);
|
|
DCHECK_EQ(low_even + 1, high_odd);
|
|
next_location = Location::RegisterPairLocation(low_even, high_odd);
|
|
} else {
|
|
size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_);
|
|
next_location = Location::DoubleStackSlot(stack_offset);
|
|
}
|
|
break;
|
|
}
|
|
|
|
// Note: both float and double types are stored in even FPU registers. On 32 bit FPU, double
|
|
// will take up the even/odd pair, while floats are stored in even regs only.
|
|
// On 64 bit FPU, both double and float are stored in even registers only.
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimDouble: {
|
|
uint32_t float_index = float_index_++;
|
|
if (float_index < calling_convention.GetNumberOfFpuRegisters()) {
|
|
next_location = Location::FpuRegisterLocation(
|
|
calling_convention.GetFpuRegisterAt(float_index));
|
|
} else {
|
|
size_t stack_offset = calling_convention.GetStackOffsetOf(stack_index_);
|
|
next_location = Primitive::Is64BitType(type) ? Location::DoubleStackSlot(stack_offset)
|
|
: Location::StackSlot(stack_offset);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimVoid:
|
|
LOG(FATAL) << "Unexpected parameter type " << type;
|
|
break;
|
|
}
|
|
|
|
// Space on the stack is reserved for all arguments.
|
|
stack_index_ += Primitive::Is64BitType(type) ? 2 : 1;
|
|
|
|
return next_location;
|
|
}
|
|
|
|
Location InvokeRuntimeCallingConvention::GetReturnLocation(Primitive::Type type) {
|
|
return MipsReturnLocation(type);
|
|
}
|
|
|
|
// NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy.
|
|
#define __ down_cast<CodeGeneratorMIPS*>(codegen)->GetAssembler()-> // NOLINT
|
|
#define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kMipsPointerSize, x).Int32Value()
|
|
|
|
class BoundsCheckSlowPathMIPS : public SlowPathCodeMIPS {
|
|
public:
|
|
explicit BoundsCheckSlowPathMIPS(HBoundsCheck* instruction) : SlowPathCodeMIPS(instruction) {}
|
|
|
|
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
|
|
LocationSummary* locations = instruction_->GetLocations();
|
|
CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
|
|
__ Bind(GetEntryLabel());
|
|
if (instruction_->CanThrowIntoCatchBlock()) {
|
|
// Live registers will be restored in the catch block if caught.
|
|
SaveLiveRegisters(codegen, instruction_->GetLocations());
|
|
}
|
|
// We're moving two locations to locations that could overlap, so we need a parallel
|
|
// move resolver.
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
codegen->EmitParallelMoves(locations->InAt(0),
|
|
Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
|
|
Primitive::kPrimInt,
|
|
locations->InAt(1),
|
|
Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
|
|
Primitive::kPrimInt);
|
|
QuickEntrypointEnum entrypoint = instruction_->AsBoundsCheck()->IsStringCharAt()
|
|
? kQuickThrowStringBounds
|
|
: kQuickThrowArrayBounds;
|
|
mips_codegen->InvokeRuntime(entrypoint, instruction_, instruction_->GetDexPc(), this);
|
|
CheckEntrypointTypes<kQuickThrowStringBounds, void, int32_t, int32_t>();
|
|
CheckEntrypointTypes<kQuickThrowArrayBounds, void, int32_t, int32_t>();
|
|
}
|
|
|
|
bool IsFatal() const OVERRIDE { return true; }
|
|
|
|
const char* GetDescription() const OVERRIDE { return "BoundsCheckSlowPathMIPS"; }
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(BoundsCheckSlowPathMIPS);
|
|
};
|
|
|
|
class DivZeroCheckSlowPathMIPS : public SlowPathCodeMIPS {
|
|
public:
|
|
explicit DivZeroCheckSlowPathMIPS(HDivZeroCheck* instruction) : SlowPathCodeMIPS(instruction) {}
|
|
|
|
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
|
|
CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
|
|
__ Bind(GetEntryLabel());
|
|
mips_codegen->InvokeRuntime(kQuickThrowDivZero, instruction_, instruction_->GetDexPc(), this);
|
|
CheckEntrypointTypes<kQuickThrowDivZero, void, void>();
|
|
}
|
|
|
|
bool IsFatal() const OVERRIDE { return true; }
|
|
|
|
const char* GetDescription() const OVERRIDE { return "DivZeroCheckSlowPathMIPS"; }
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(DivZeroCheckSlowPathMIPS);
|
|
};
|
|
|
|
class LoadClassSlowPathMIPS : public SlowPathCodeMIPS {
|
|
public:
|
|
LoadClassSlowPathMIPS(HLoadClass* cls,
|
|
HInstruction* at,
|
|
uint32_t dex_pc,
|
|
bool do_clinit,
|
|
const CodeGeneratorMIPS::PcRelativePatchInfo* bss_info_high = nullptr)
|
|
: SlowPathCodeMIPS(at),
|
|
cls_(cls),
|
|
dex_pc_(dex_pc),
|
|
do_clinit_(do_clinit),
|
|
bss_info_high_(bss_info_high) {
|
|
DCHECK(at->IsLoadClass() || at->IsClinitCheck());
|
|
}
|
|
|
|
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
|
|
LocationSummary* locations = instruction_->GetLocations();
|
|
Location out = locations->Out();
|
|
CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
|
|
const bool baker_or_no_read_barriers = (!kUseReadBarrier || kUseBakerReadBarrier);
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
DCHECK_EQ(instruction_->IsLoadClass(), cls_ == instruction_);
|
|
const bool is_load_class_bss_entry =
|
|
(cls_ == instruction_) && (cls_->GetLoadKind() == HLoadClass::LoadKind::kBssEntry);
|
|
__ Bind(GetEntryLabel());
|
|
SaveLiveRegisters(codegen, locations);
|
|
|
|
// For HLoadClass/kBssEntry/kSaveEverything, make sure we preserve the address of the entry.
|
|
Register entry_address = kNoRegister;
|
|
if (is_load_class_bss_entry && baker_or_no_read_barriers) {
|
|
Register temp = locations->GetTemp(0).AsRegister<Register>();
|
|
bool temp_is_a0 = (temp == calling_convention.GetRegisterAt(0));
|
|
// In the unlucky case that `temp` is A0, we preserve the address in `out` across the
|
|
// kSaveEverything call.
|
|
entry_address = temp_is_a0 ? out.AsRegister<Register>() : temp;
|
|
DCHECK_NE(entry_address, calling_convention.GetRegisterAt(0));
|
|
if (temp_is_a0) {
|
|
__ Move(entry_address, temp);
|
|
}
|
|
}
|
|
|
|
dex::TypeIndex type_index = cls_->GetTypeIndex();
|
|
__ LoadConst32(calling_convention.GetRegisterAt(0), type_index.index_);
|
|
QuickEntrypointEnum entrypoint = do_clinit_ ? kQuickInitializeStaticStorage
|
|
: kQuickInitializeType;
|
|
mips_codegen->InvokeRuntime(entrypoint, instruction_, dex_pc_, this);
|
|
if (do_clinit_) {
|
|
CheckEntrypointTypes<kQuickInitializeStaticStorage, void*, uint32_t>();
|
|
} else {
|
|
CheckEntrypointTypes<kQuickInitializeType, void*, uint32_t>();
|
|
}
|
|
|
|
// For HLoadClass/kBssEntry, store the resolved class to the BSS entry.
|
|
if (is_load_class_bss_entry && baker_or_no_read_barriers) {
|
|
// The class entry address was preserved in `entry_address` thanks to kSaveEverything.
|
|
DCHECK(bss_info_high_);
|
|
CodeGeneratorMIPS::PcRelativePatchInfo* info_low =
|
|
mips_codegen->NewTypeBssEntryPatch(cls_->GetDexFile(), type_index, bss_info_high_);
|
|
bool reordering = __ SetReorder(false);
|
|
__ Bind(&info_low->label);
|
|
__ StoreToOffset(kStoreWord,
|
|
calling_convention.GetRegisterAt(0),
|
|
entry_address,
|
|
/* placeholder */ 0x5678);
|
|
__ SetReorder(reordering);
|
|
}
|
|
|
|
// Move the class to the desired location.
|
|
if (out.IsValid()) {
|
|
DCHECK(out.IsRegister() && !locations->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
|
|
Primitive::Type type = instruction_->GetType();
|
|
mips_codegen->MoveLocation(out,
|
|
Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
|
|
type);
|
|
}
|
|
RestoreLiveRegisters(codegen, locations);
|
|
|
|
// For HLoadClass/kBssEntry, store the resolved class to the BSS entry.
|
|
if (is_load_class_bss_entry && !baker_or_no_read_barriers) {
|
|
// For non-Baker read barriers we need to re-calculate the address of
|
|
// the class entry.
|
|
const bool isR6 = mips_codegen->GetInstructionSetFeatures().IsR6();
|
|
Register base = isR6 ? ZERO : locations->InAt(0).AsRegister<Register>();
|
|
CodeGeneratorMIPS::PcRelativePatchInfo* info_high =
|
|
mips_codegen->NewTypeBssEntryPatch(cls_->GetDexFile(), type_index);
|
|
CodeGeneratorMIPS::PcRelativePatchInfo* info_low =
|
|
mips_codegen->NewTypeBssEntryPatch(cls_->GetDexFile(), type_index, info_high);
|
|
bool reordering = __ SetReorder(false);
|
|
mips_codegen->EmitPcRelativeAddressPlaceholderHigh(info_high, TMP, base, info_low);
|
|
__ StoreToOffset(kStoreWord, out.AsRegister<Register>(), TMP, /* placeholder */ 0x5678);
|
|
__ SetReorder(reordering);
|
|
}
|
|
__ B(GetExitLabel());
|
|
}
|
|
|
|
const char* GetDescription() const OVERRIDE { return "LoadClassSlowPathMIPS"; }
|
|
|
|
private:
|
|
// The class this slow path will load.
|
|
HLoadClass* const cls_;
|
|
|
|
// The dex PC of `at_`.
|
|
const uint32_t dex_pc_;
|
|
|
|
// Whether to initialize the class.
|
|
const bool do_clinit_;
|
|
|
|
// Pointer to the high half PC-relative patch info for HLoadClass/kBssEntry.
|
|
const CodeGeneratorMIPS::PcRelativePatchInfo* bss_info_high_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(LoadClassSlowPathMIPS);
|
|
};
|
|
|
|
class LoadStringSlowPathMIPS : public SlowPathCodeMIPS {
|
|
public:
|
|
explicit LoadStringSlowPathMIPS(HLoadString* instruction,
|
|
const CodeGeneratorMIPS::PcRelativePatchInfo* bss_info_high)
|
|
: SlowPathCodeMIPS(instruction), bss_info_high_(bss_info_high) {}
|
|
|
|
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
|
|
DCHECK(instruction_->IsLoadString());
|
|
DCHECK_EQ(instruction_->AsLoadString()->GetLoadKind(), HLoadString::LoadKind::kBssEntry);
|
|
LocationSummary* locations = instruction_->GetLocations();
|
|
DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
|
|
HLoadString* load = instruction_->AsLoadString();
|
|
const dex::StringIndex string_index = load->GetStringIndex();
|
|
Register out = locations->Out().AsRegister<Register>();
|
|
CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
|
|
const bool baker_or_no_read_barriers = (!kUseReadBarrier || kUseBakerReadBarrier);
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
__ Bind(GetEntryLabel());
|
|
SaveLiveRegisters(codegen, locations);
|
|
|
|
// For HLoadString/kBssEntry/kSaveEverything, make sure we preserve the address of the entry.
|
|
Register entry_address = kNoRegister;
|
|
if (baker_or_no_read_barriers) {
|
|
Register temp = locations->GetTemp(0).AsRegister<Register>();
|
|
bool temp_is_a0 = (temp == calling_convention.GetRegisterAt(0));
|
|
// In the unlucky case that `temp` is A0, we preserve the address in `out` across the
|
|
// kSaveEverything call.
|
|
entry_address = temp_is_a0 ? out : temp;
|
|
DCHECK_NE(entry_address, calling_convention.GetRegisterAt(0));
|
|
if (temp_is_a0) {
|
|
__ Move(entry_address, temp);
|
|
}
|
|
}
|
|
|
|
__ LoadConst32(calling_convention.GetRegisterAt(0), string_index.index_);
|
|
mips_codegen->InvokeRuntime(kQuickResolveString, instruction_, instruction_->GetDexPc(), this);
|
|
CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
|
|
|
|
// Store the resolved string to the BSS entry.
|
|
if (baker_or_no_read_barriers) {
|
|
// The string entry address was preserved in `entry_address` thanks to kSaveEverything.
|
|
DCHECK(bss_info_high_);
|
|
CodeGeneratorMIPS::PcRelativePatchInfo* info_low =
|
|
mips_codegen->NewPcRelativeStringPatch(load->GetDexFile(), string_index, bss_info_high_);
|
|
bool reordering = __ SetReorder(false);
|
|
__ Bind(&info_low->label);
|
|
__ StoreToOffset(kStoreWord,
|
|
calling_convention.GetRegisterAt(0),
|
|
entry_address,
|
|
/* placeholder */ 0x5678);
|
|
__ SetReorder(reordering);
|
|
}
|
|
|
|
Primitive::Type type = instruction_->GetType();
|
|
mips_codegen->MoveLocation(locations->Out(),
|
|
Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
|
|
type);
|
|
RestoreLiveRegisters(codegen, locations);
|
|
|
|
// Store the resolved string to the BSS entry.
|
|
if (!baker_or_no_read_barriers) {
|
|
// For non-Baker read barriers we need to re-calculate the address of
|
|
// the string entry.
|
|
const bool isR6 = mips_codegen->GetInstructionSetFeatures().IsR6();
|
|
Register base = isR6 ? ZERO : locations->InAt(0).AsRegister<Register>();
|
|
CodeGeneratorMIPS::PcRelativePatchInfo* info_high =
|
|
mips_codegen->NewPcRelativeStringPatch(load->GetDexFile(), string_index);
|
|
CodeGeneratorMIPS::PcRelativePatchInfo* info_low =
|
|
mips_codegen->NewPcRelativeStringPatch(load->GetDexFile(), string_index, info_high);
|
|
bool reordering = __ SetReorder(false);
|
|
mips_codegen->EmitPcRelativeAddressPlaceholderHigh(info_high, TMP, base, info_low);
|
|
__ StoreToOffset(kStoreWord, out, TMP, /* placeholder */ 0x5678);
|
|
__ SetReorder(reordering);
|
|
}
|
|
__ B(GetExitLabel());
|
|
}
|
|
|
|
const char* GetDescription() const OVERRIDE { return "LoadStringSlowPathMIPS"; }
|
|
|
|
private:
|
|
// Pointer to the high half PC-relative patch info.
|
|
const CodeGeneratorMIPS::PcRelativePatchInfo* bss_info_high_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(LoadStringSlowPathMIPS);
|
|
};
|
|
|
|
class NullCheckSlowPathMIPS : public SlowPathCodeMIPS {
|
|
public:
|
|
explicit NullCheckSlowPathMIPS(HNullCheck* instr) : SlowPathCodeMIPS(instr) {}
|
|
|
|
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
|
|
CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
|
|
__ Bind(GetEntryLabel());
|
|
if (instruction_->CanThrowIntoCatchBlock()) {
|
|
// Live registers will be restored in the catch block if caught.
|
|
SaveLiveRegisters(codegen, instruction_->GetLocations());
|
|
}
|
|
mips_codegen->InvokeRuntime(kQuickThrowNullPointer,
|
|
instruction_,
|
|
instruction_->GetDexPc(),
|
|
this);
|
|
CheckEntrypointTypes<kQuickThrowNullPointer, void, void>();
|
|
}
|
|
|
|
bool IsFatal() const OVERRIDE { return true; }
|
|
|
|
const char* GetDescription() const OVERRIDE { return "NullCheckSlowPathMIPS"; }
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(NullCheckSlowPathMIPS);
|
|
};
|
|
|
|
class SuspendCheckSlowPathMIPS : public SlowPathCodeMIPS {
|
|
public:
|
|
SuspendCheckSlowPathMIPS(HSuspendCheck* instruction, HBasicBlock* successor)
|
|
: SlowPathCodeMIPS(instruction), successor_(successor) {}
|
|
|
|
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
|
|
LocationSummary* locations = instruction_->GetLocations();
|
|
CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
|
|
__ Bind(GetEntryLabel());
|
|
SaveLiveRegisters(codegen, locations); // Only saves live vector registers for SIMD.
|
|
mips_codegen->InvokeRuntime(kQuickTestSuspend, instruction_, instruction_->GetDexPc(), this);
|
|
CheckEntrypointTypes<kQuickTestSuspend, void, void>();
|
|
RestoreLiveRegisters(codegen, locations); // Only restores live vector registers for SIMD.
|
|
if (successor_ == nullptr) {
|
|
__ B(GetReturnLabel());
|
|
} else {
|
|
__ B(mips_codegen->GetLabelOf(successor_));
|
|
}
|
|
}
|
|
|
|
MipsLabel* GetReturnLabel() {
|
|
DCHECK(successor_ == nullptr);
|
|
return &return_label_;
|
|
}
|
|
|
|
const char* GetDescription() const OVERRIDE { return "SuspendCheckSlowPathMIPS"; }
|
|
|
|
private:
|
|
// If not null, the block to branch to after the suspend check.
|
|
HBasicBlock* const successor_;
|
|
|
|
// If `successor_` is null, the label to branch to after the suspend check.
|
|
MipsLabel return_label_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(SuspendCheckSlowPathMIPS);
|
|
};
|
|
|
|
class TypeCheckSlowPathMIPS : public SlowPathCodeMIPS {
|
|
public:
|
|
explicit TypeCheckSlowPathMIPS(HInstruction* instruction, bool is_fatal)
|
|
: SlowPathCodeMIPS(instruction), is_fatal_(is_fatal) {}
|
|
|
|
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
|
|
LocationSummary* locations = instruction_->GetLocations();
|
|
uint32_t dex_pc = instruction_->GetDexPc();
|
|
DCHECK(instruction_->IsCheckCast()
|
|
|| !locations->GetLiveRegisters()->ContainsCoreRegister(locations->Out().reg()));
|
|
CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
|
|
|
|
__ Bind(GetEntryLabel());
|
|
if (!is_fatal_) {
|
|
SaveLiveRegisters(codegen, locations);
|
|
}
|
|
|
|
// We're moving two locations to locations that could overlap, so we need a parallel
|
|
// move resolver.
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
codegen->EmitParallelMoves(locations->InAt(0),
|
|
Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
|
|
Primitive::kPrimNot,
|
|
locations->InAt(1),
|
|
Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
|
|
Primitive::kPrimNot);
|
|
if (instruction_->IsInstanceOf()) {
|
|
mips_codegen->InvokeRuntime(kQuickInstanceofNonTrivial, instruction_, dex_pc, this);
|
|
CheckEntrypointTypes<kQuickInstanceofNonTrivial, size_t, mirror::Object*, mirror::Class*>();
|
|
Primitive::Type ret_type = instruction_->GetType();
|
|
Location ret_loc = calling_convention.GetReturnLocation(ret_type);
|
|
mips_codegen->MoveLocation(locations->Out(), ret_loc, ret_type);
|
|
} else {
|
|
DCHECK(instruction_->IsCheckCast());
|
|
mips_codegen->InvokeRuntime(kQuickCheckInstanceOf, instruction_, dex_pc, this);
|
|
CheckEntrypointTypes<kQuickCheckInstanceOf, void, mirror::Object*, mirror::Class*>();
|
|
}
|
|
|
|
if (!is_fatal_) {
|
|
RestoreLiveRegisters(codegen, locations);
|
|
__ B(GetExitLabel());
|
|
}
|
|
}
|
|
|
|
const char* GetDescription() const OVERRIDE { return "TypeCheckSlowPathMIPS"; }
|
|
|
|
bool IsFatal() const OVERRIDE { return is_fatal_; }
|
|
|
|
private:
|
|
const bool is_fatal_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(TypeCheckSlowPathMIPS);
|
|
};
|
|
|
|
class DeoptimizationSlowPathMIPS : public SlowPathCodeMIPS {
|
|
public:
|
|
explicit DeoptimizationSlowPathMIPS(HDeoptimize* instruction)
|
|
: SlowPathCodeMIPS(instruction) {}
|
|
|
|
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
|
|
CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
|
|
__ Bind(GetEntryLabel());
|
|
LocationSummary* locations = instruction_->GetLocations();
|
|
SaveLiveRegisters(codegen, locations);
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
__ LoadConst32(calling_convention.GetRegisterAt(0),
|
|
static_cast<uint32_t>(instruction_->AsDeoptimize()->GetDeoptimizationKind()));
|
|
mips_codegen->InvokeRuntime(kQuickDeoptimize, instruction_, instruction_->GetDexPc(), this);
|
|
CheckEntrypointTypes<kQuickDeoptimize, void, DeoptimizationKind>();
|
|
}
|
|
|
|
const char* GetDescription() const OVERRIDE { return "DeoptimizationSlowPathMIPS"; }
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(DeoptimizationSlowPathMIPS);
|
|
};
|
|
|
|
class ArraySetSlowPathMIPS : public SlowPathCodeMIPS {
|
|
public:
|
|
explicit ArraySetSlowPathMIPS(HInstruction* instruction) : SlowPathCodeMIPS(instruction) {}
|
|
|
|
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
|
|
LocationSummary* locations = instruction_->GetLocations();
|
|
__ Bind(GetEntryLabel());
|
|
SaveLiveRegisters(codegen, locations);
|
|
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
HParallelMove parallel_move(codegen->GetGraph()->GetArena());
|
|
parallel_move.AddMove(
|
|
locations->InAt(0),
|
|
Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
|
|
Primitive::kPrimNot,
|
|
nullptr);
|
|
parallel_move.AddMove(
|
|
locations->InAt(1),
|
|
Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
|
|
Primitive::kPrimInt,
|
|
nullptr);
|
|
parallel_move.AddMove(
|
|
locations->InAt(2),
|
|
Location::RegisterLocation(calling_convention.GetRegisterAt(2)),
|
|
Primitive::kPrimNot,
|
|
nullptr);
|
|
codegen->GetMoveResolver()->EmitNativeCode(¶llel_move);
|
|
|
|
CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
|
|
mips_codegen->InvokeRuntime(kQuickAputObject, instruction_, instruction_->GetDexPc(), this);
|
|
CheckEntrypointTypes<kQuickAputObject, void, mirror::Array*, int32_t, mirror::Object*>();
|
|
RestoreLiveRegisters(codegen, locations);
|
|
__ B(GetExitLabel());
|
|
}
|
|
|
|
const char* GetDescription() const OVERRIDE { return "ArraySetSlowPathMIPS"; }
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(ArraySetSlowPathMIPS);
|
|
};
|
|
|
|
// Slow path marking an object reference `ref` during a read
|
|
// barrier. The field `obj.field` in the object `obj` holding this
|
|
// reference does not get updated by this slow path after marking (see
|
|
// ReadBarrierMarkAndUpdateFieldSlowPathMIPS below for that).
|
|
//
|
|
// This means that after the execution of this slow path, `ref` will
|
|
// always be up-to-date, but `obj.field` may not; i.e., after the
|
|
// flip, `ref` will be a to-space reference, but `obj.field` will
|
|
// probably still be a from-space reference (unless it gets updated by
|
|
// another thread, or if another thread installed another object
|
|
// reference (different from `ref`) in `obj.field`).
|
|
//
|
|
// If `entrypoint` is a valid location it is assumed to already be
|
|
// holding the entrypoint. The case where the entrypoint is passed in
|
|
// is for the GcRoot read barrier.
|
|
class ReadBarrierMarkSlowPathMIPS : public SlowPathCodeMIPS {
|
|
public:
|
|
ReadBarrierMarkSlowPathMIPS(HInstruction* instruction,
|
|
Location ref,
|
|
Location entrypoint = Location::NoLocation())
|
|
: SlowPathCodeMIPS(instruction), ref_(ref), entrypoint_(entrypoint) {
|
|
DCHECK(kEmitCompilerReadBarrier);
|
|
}
|
|
|
|
const char* GetDescription() const OVERRIDE { return "ReadBarrierMarkSlowPathMIPS"; }
|
|
|
|
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
|
|
LocationSummary* locations = instruction_->GetLocations();
|
|
Register ref_reg = ref_.AsRegister<Register>();
|
|
DCHECK(locations->CanCall());
|
|
DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg)) << ref_reg;
|
|
DCHECK(instruction_->IsInstanceFieldGet() ||
|
|
instruction_->IsStaticFieldGet() ||
|
|
instruction_->IsArrayGet() ||
|
|
instruction_->IsArraySet() ||
|
|
instruction_->IsLoadClass() ||
|
|
instruction_->IsLoadString() ||
|
|
instruction_->IsInstanceOf() ||
|
|
instruction_->IsCheckCast() ||
|
|
(instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()) ||
|
|
(instruction_->IsInvokeStaticOrDirect() && instruction_->GetLocations()->Intrinsified()))
|
|
<< "Unexpected instruction in read barrier marking slow path: "
|
|
<< instruction_->DebugName();
|
|
|
|
__ Bind(GetEntryLabel());
|
|
// No need to save live registers; it's taken care of by the
|
|
// entrypoint. Also, there is no need to update the stack mask,
|
|
// as this runtime call will not trigger a garbage collection.
|
|
CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
|
|
DCHECK((V0 <= ref_reg && ref_reg <= T7) ||
|
|
(S2 <= ref_reg && ref_reg <= S7) ||
|
|
(ref_reg == FP)) << ref_reg;
|
|
// "Compact" slow path, saving two moves.
|
|
//
|
|
// Instead of using the standard runtime calling convention (input
|
|
// and output in A0 and V0 respectively):
|
|
//
|
|
// A0 <- ref
|
|
// V0 <- ReadBarrierMark(A0)
|
|
// ref <- V0
|
|
//
|
|
// we just use rX (the register containing `ref`) as input and output
|
|
// of a dedicated entrypoint:
|
|
//
|
|
// rX <- ReadBarrierMarkRegX(rX)
|
|
//
|
|
if (entrypoint_.IsValid()) {
|
|
mips_codegen->ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction_, this);
|
|
DCHECK_EQ(entrypoint_.AsRegister<Register>(), T9);
|
|
__ Jalr(entrypoint_.AsRegister<Register>());
|
|
__ NopIfNoReordering();
|
|
} else {
|
|
int32_t entry_point_offset =
|
|
Thread::ReadBarrierMarkEntryPointsOffset<kMipsPointerSize>(ref_reg - 1);
|
|
// This runtime call does not require a stack map.
|
|
mips_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset,
|
|
instruction_,
|
|
this,
|
|
/* direct */ false);
|
|
}
|
|
__ B(GetExitLabel());
|
|
}
|
|
|
|
private:
|
|
// The location (register) of the marked object reference.
|
|
const Location ref_;
|
|
|
|
// The location of the entrypoint if already loaded.
|
|
const Location entrypoint_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkSlowPathMIPS);
|
|
};
|
|
|
|
// Slow path marking an object reference `ref` during a read barrier,
|
|
// and if needed, atomically updating the field `obj.field` in the
|
|
// object `obj` holding this reference after marking (contrary to
|
|
// ReadBarrierMarkSlowPathMIPS above, which never tries to update
|
|
// `obj.field`).
|
|
//
|
|
// This means that after the execution of this slow path, both `ref`
|
|
// and `obj.field` will be up-to-date; i.e., after the flip, both will
|
|
// hold the same to-space reference (unless another thread installed
|
|
// another object reference (different from `ref`) in `obj.field`).
|
|
class ReadBarrierMarkAndUpdateFieldSlowPathMIPS : public SlowPathCodeMIPS {
|
|
public:
|
|
ReadBarrierMarkAndUpdateFieldSlowPathMIPS(HInstruction* instruction,
|
|
Location ref,
|
|
Register obj,
|
|
Location field_offset,
|
|
Register temp1)
|
|
: SlowPathCodeMIPS(instruction),
|
|
ref_(ref),
|
|
obj_(obj),
|
|
field_offset_(field_offset),
|
|
temp1_(temp1) {
|
|
DCHECK(kEmitCompilerReadBarrier);
|
|
}
|
|
|
|
const char* GetDescription() const OVERRIDE {
|
|
return "ReadBarrierMarkAndUpdateFieldSlowPathMIPS";
|
|
}
|
|
|
|
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
|
|
LocationSummary* locations = instruction_->GetLocations();
|
|
Register ref_reg = ref_.AsRegister<Register>();
|
|
DCHECK(locations->CanCall());
|
|
DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(ref_reg)) << ref_reg;
|
|
// This slow path is only used by the UnsafeCASObject intrinsic.
|
|
DCHECK((instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()))
|
|
<< "Unexpected instruction in read barrier marking and field updating slow path: "
|
|
<< instruction_->DebugName();
|
|
DCHECK(instruction_->GetLocations()->Intrinsified());
|
|
DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kUnsafeCASObject);
|
|
DCHECK(field_offset_.IsRegisterPair()) << field_offset_;
|
|
|
|
__ Bind(GetEntryLabel());
|
|
|
|
// Save the old reference.
|
|
// Note that we cannot use AT or TMP to save the old reference, as those
|
|
// are used by the code that follows, but we need the old reference after
|
|
// the call to the ReadBarrierMarkRegX entry point.
|
|
DCHECK_NE(temp1_, AT);
|
|
DCHECK_NE(temp1_, TMP);
|
|
__ Move(temp1_, ref_reg);
|
|
|
|
// No need to save live registers; it's taken care of by the
|
|
// entrypoint. Also, there is no need to update the stack mask,
|
|
// as this runtime call will not trigger a garbage collection.
|
|
CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
|
|
DCHECK((V0 <= ref_reg && ref_reg <= T7) ||
|
|
(S2 <= ref_reg && ref_reg <= S7) ||
|
|
(ref_reg == FP)) << ref_reg;
|
|
// "Compact" slow path, saving two moves.
|
|
//
|
|
// Instead of using the standard runtime calling convention (input
|
|
// and output in A0 and V0 respectively):
|
|
//
|
|
// A0 <- ref
|
|
// V0 <- ReadBarrierMark(A0)
|
|
// ref <- V0
|
|
//
|
|
// we just use rX (the register containing `ref`) as input and output
|
|
// of a dedicated entrypoint:
|
|
//
|
|
// rX <- ReadBarrierMarkRegX(rX)
|
|
//
|
|
int32_t entry_point_offset =
|
|
Thread::ReadBarrierMarkEntryPointsOffset<kMipsPointerSize>(ref_reg - 1);
|
|
// This runtime call does not require a stack map.
|
|
mips_codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset,
|
|
instruction_,
|
|
this,
|
|
/* direct */ false);
|
|
|
|
// If the new reference is different from the old reference,
|
|
// update the field in the holder (`*(obj_ + field_offset_)`).
|
|
//
|
|
// Note that this field could also hold a different object, if
|
|
// another thread had concurrently changed it. In that case, the
|
|
// the compare-and-set (CAS) loop below would abort, leaving the
|
|
// field as-is.
|
|
MipsLabel done;
|
|
__ Beq(temp1_, ref_reg, &done);
|
|
|
|
// Update the the holder's field atomically. This may fail if
|
|
// mutator updates before us, but it's OK. This is achieved
|
|
// using a strong compare-and-set (CAS) operation with relaxed
|
|
// memory synchronization ordering, where the expected value is
|
|
// the old reference and the desired value is the new reference.
|
|
|
|
// Convenience aliases.
|
|
Register base = obj_;
|
|
// The UnsafeCASObject intrinsic uses a register pair as field
|
|
// offset ("long offset"), of which only the low part contains
|
|
// data.
|
|
Register offset = field_offset_.AsRegisterPairLow<Register>();
|
|
Register expected = temp1_;
|
|
Register value = ref_reg;
|
|
Register tmp_ptr = TMP; // Pointer to actual memory.
|
|
Register tmp = AT; // Value in memory.
|
|
|
|
__ Addu(tmp_ptr, base, offset);
|
|
|
|
if (kPoisonHeapReferences) {
|
|
__ PoisonHeapReference(expected);
|
|
// Do not poison `value` if it is the same register as
|
|
// `expected`, which has just been poisoned.
|
|
if (value != expected) {
|
|
__ PoisonHeapReference(value);
|
|
}
|
|
}
|
|
|
|
// do {
|
|
// tmp = [r_ptr] - expected;
|
|
// } while (tmp == 0 && failure([r_ptr] <- r_new_value));
|
|
|
|
bool is_r6 = mips_codegen->GetInstructionSetFeatures().IsR6();
|
|
MipsLabel loop_head, exit_loop;
|
|
__ Bind(&loop_head);
|
|
if (is_r6) {
|
|
__ LlR6(tmp, tmp_ptr);
|
|
} else {
|
|
__ LlR2(tmp, tmp_ptr);
|
|
}
|
|
__ Bne(tmp, expected, &exit_loop);
|
|
__ Move(tmp, value);
|
|
if (is_r6) {
|
|
__ ScR6(tmp, tmp_ptr);
|
|
} else {
|
|
__ ScR2(tmp, tmp_ptr);
|
|
}
|
|
__ Beqz(tmp, &loop_head);
|
|
__ Bind(&exit_loop);
|
|
|
|
if (kPoisonHeapReferences) {
|
|
__ UnpoisonHeapReference(expected);
|
|
// Do not unpoison `value` if it is the same register as
|
|
// `expected`, which has just been unpoisoned.
|
|
if (value != expected) {
|
|
__ UnpoisonHeapReference(value);
|
|
}
|
|
}
|
|
|
|
__ Bind(&done);
|
|
__ B(GetExitLabel());
|
|
}
|
|
|
|
private:
|
|
// The location (register) of the marked object reference.
|
|
const Location ref_;
|
|
// The register containing the object holding the marked object reference field.
|
|
const Register obj_;
|
|
// The location of the offset of the marked reference field within `obj_`.
|
|
Location field_offset_;
|
|
|
|
const Register temp1_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(ReadBarrierMarkAndUpdateFieldSlowPathMIPS);
|
|
};
|
|
|
|
// Slow path generating a read barrier for a heap reference.
|
|
class ReadBarrierForHeapReferenceSlowPathMIPS : public SlowPathCodeMIPS {
|
|
public:
|
|
ReadBarrierForHeapReferenceSlowPathMIPS(HInstruction* instruction,
|
|
Location out,
|
|
Location ref,
|
|
Location obj,
|
|
uint32_t offset,
|
|
Location index)
|
|
: SlowPathCodeMIPS(instruction),
|
|
out_(out),
|
|
ref_(ref),
|
|
obj_(obj),
|
|
offset_(offset),
|
|
index_(index) {
|
|
DCHECK(kEmitCompilerReadBarrier);
|
|
// If `obj` is equal to `out` or `ref`, it means the initial object
|
|
// has been overwritten by (or after) the heap object reference load
|
|
// to be instrumented, e.g.:
|
|
//
|
|
// __ LoadFromOffset(kLoadWord, out, out, offset);
|
|
// codegen_->GenerateReadBarrierSlow(instruction, out_loc, out_loc, out_loc, offset);
|
|
//
|
|
// In that case, we have lost the information about the original
|
|
// object, and the emitted read barrier cannot work properly.
|
|
DCHECK(!obj.Equals(out)) << "obj=" << obj << " out=" << out;
|
|
DCHECK(!obj.Equals(ref)) << "obj=" << obj << " ref=" << ref;
|
|
}
|
|
|
|
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
|
|
CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
|
|
LocationSummary* locations = instruction_->GetLocations();
|
|
Register reg_out = out_.AsRegister<Register>();
|
|
DCHECK(locations->CanCall());
|
|
DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out));
|
|
DCHECK(instruction_->IsInstanceFieldGet() ||
|
|
instruction_->IsStaticFieldGet() ||
|
|
instruction_->IsArrayGet() ||
|
|
instruction_->IsInstanceOf() ||
|
|
instruction_->IsCheckCast() ||
|
|
(instruction_->IsInvokeVirtual() && instruction_->GetLocations()->Intrinsified()))
|
|
<< "Unexpected instruction in read barrier for heap reference slow path: "
|
|
<< instruction_->DebugName();
|
|
|
|
__ Bind(GetEntryLabel());
|
|
SaveLiveRegisters(codegen, locations);
|
|
|
|
// We may have to change the index's value, but as `index_` is a
|
|
// constant member (like other "inputs" of this slow path),
|
|
// introduce a copy of it, `index`.
|
|
Location index = index_;
|
|
if (index_.IsValid()) {
|
|
// Handle `index_` for HArrayGet and UnsafeGetObject/UnsafeGetObjectVolatile intrinsics.
|
|
if (instruction_->IsArrayGet()) {
|
|
// Compute the actual memory offset and store it in `index`.
|
|
Register index_reg = index_.AsRegister<Register>();
|
|
DCHECK(locations->GetLiveRegisters()->ContainsCoreRegister(index_reg));
|
|
if (codegen->IsCoreCalleeSaveRegister(index_reg)) {
|
|
// We are about to change the value of `index_reg` (see the
|
|
// calls to art::mips::MipsAssembler::Sll and
|
|
// art::mips::MipsAssembler::Addiu32 below), but it has
|
|
// not been saved by the previous call to
|
|
// art::SlowPathCode::SaveLiveRegisters, as it is a
|
|
// callee-save register --
|
|
// art::SlowPathCode::SaveLiveRegisters does not consider
|
|
// callee-save registers, as it has been designed with the
|
|
// assumption that callee-save registers are supposed to be
|
|
// handled by the called function. So, as a callee-save
|
|
// register, `index_reg` _would_ eventually be saved onto
|
|
// the stack, but it would be too late: we would have
|
|
// changed its value earlier. Therefore, we manually save
|
|
// it here into another freely available register,
|
|
// `free_reg`, chosen of course among the caller-save
|
|
// registers (as a callee-save `free_reg` register would
|
|
// exhibit the same problem).
|
|
//
|
|
// Note we could have requested a temporary register from
|
|
// the register allocator instead; but we prefer not to, as
|
|
// this is a slow path, and we know we can find a
|
|
// caller-save register that is available.
|
|
Register free_reg = FindAvailableCallerSaveRegister(codegen);
|
|
__ Move(free_reg, index_reg);
|
|
index_reg = free_reg;
|
|
index = Location::RegisterLocation(index_reg);
|
|
} else {
|
|
// The initial register stored in `index_` has already been
|
|
// saved in the call to art::SlowPathCode::SaveLiveRegisters
|
|
// (as it is not a callee-save register), so we can freely
|
|
// use it.
|
|
}
|
|
// Shifting the index value contained in `index_reg` by the scale
|
|
// factor (2) cannot overflow in practice, as the runtime is
|
|
// unable to allocate object arrays with a size larger than
|
|
// 2^26 - 1 (that is, 2^28 - 4 bytes).
|
|
__ Sll(index_reg, index_reg, TIMES_4);
|
|
static_assert(
|
|
sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
|
|
"art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
|
|
__ Addiu32(index_reg, index_reg, offset_);
|
|
} else {
|
|
// In the case of the UnsafeGetObject/UnsafeGetObjectVolatile
|
|
// intrinsics, `index_` is not shifted by a scale factor of 2
|
|
// (as in the case of ArrayGet), as it is actually an offset
|
|
// to an object field within an object.
|
|
DCHECK(instruction_->IsInvoke()) << instruction_->DebugName();
|
|
DCHECK(instruction_->GetLocations()->Intrinsified());
|
|
DCHECK((instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObject) ||
|
|
(instruction_->AsInvoke()->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile))
|
|
<< instruction_->AsInvoke()->GetIntrinsic();
|
|
DCHECK_EQ(offset_, 0U);
|
|
DCHECK(index_.IsRegisterPair());
|
|
// UnsafeGet's offset location is a register pair, the low
|
|
// part contains the correct offset.
|
|
index = index_.ToLow();
|
|
}
|
|
}
|
|
|
|
// We're moving two or three locations to locations that could
|
|
// overlap, so we need a parallel move resolver.
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
HParallelMove parallel_move(codegen->GetGraph()->GetArena());
|
|
parallel_move.AddMove(ref_,
|
|
Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
|
|
Primitive::kPrimNot,
|
|
nullptr);
|
|
parallel_move.AddMove(obj_,
|
|
Location::RegisterLocation(calling_convention.GetRegisterAt(1)),
|
|
Primitive::kPrimNot,
|
|
nullptr);
|
|
if (index.IsValid()) {
|
|
parallel_move.AddMove(index,
|
|
Location::RegisterLocation(calling_convention.GetRegisterAt(2)),
|
|
Primitive::kPrimInt,
|
|
nullptr);
|
|
codegen->GetMoveResolver()->EmitNativeCode(¶llel_move);
|
|
} else {
|
|
codegen->GetMoveResolver()->EmitNativeCode(¶llel_move);
|
|
__ LoadConst32(calling_convention.GetRegisterAt(2), offset_);
|
|
}
|
|
mips_codegen->InvokeRuntime(kQuickReadBarrierSlow,
|
|
instruction_,
|
|
instruction_->GetDexPc(),
|
|
this);
|
|
CheckEntrypointTypes<
|
|
kQuickReadBarrierSlow, mirror::Object*, mirror::Object*, mirror::Object*, uint32_t>();
|
|
mips_codegen->MoveLocation(out_,
|
|
calling_convention.GetReturnLocation(Primitive::kPrimNot),
|
|
Primitive::kPrimNot);
|
|
|
|
RestoreLiveRegisters(codegen, locations);
|
|
__ B(GetExitLabel());
|
|
}
|
|
|
|
const char* GetDescription() const OVERRIDE { return "ReadBarrierForHeapReferenceSlowPathMIPS"; }
|
|
|
|
private:
|
|
Register FindAvailableCallerSaveRegister(CodeGenerator* codegen) {
|
|
size_t ref = static_cast<int>(ref_.AsRegister<Register>());
|
|
size_t obj = static_cast<int>(obj_.AsRegister<Register>());
|
|
for (size_t i = 0, e = codegen->GetNumberOfCoreRegisters(); i < e; ++i) {
|
|
if (i != ref &&
|
|
i != obj &&
|
|
!codegen->IsCoreCalleeSaveRegister(i) &&
|
|
!codegen->IsBlockedCoreRegister(i)) {
|
|
return static_cast<Register>(i);
|
|
}
|
|
}
|
|
// We shall never fail to find a free caller-save register, as
|
|
// there are more than two core caller-save registers on MIPS
|
|
// (meaning it is possible to find one which is different from
|
|
// `ref` and `obj`).
|
|
DCHECK_GT(codegen->GetNumberOfCoreCallerSaveRegisters(), 2u);
|
|
LOG(FATAL) << "Could not find a free caller-save register";
|
|
UNREACHABLE();
|
|
}
|
|
|
|
const Location out_;
|
|
const Location ref_;
|
|
const Location obj_;
|
|
const uint32_t offset_;
|
|
// An additional location containing an index to an array.
|
|
// Only used for HArrayGet and the UnsafeGetObject &
|
|
// UnsafeGetObjectVolatile intrinsics.
|
|
const Location index_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(ReadBarrierForHeapReferenceSlowPathMIPS);
|
|
};
|
|
|
|
// Slow path generating a read barrier for a GC root.
|
|
class ReadBarrierForRootSlowPathMIPS : public SlowPathCodeMIPS {
|
|
public:
|
|
ReadBarrierForRootSlowPathMIPS(HInstruction* instruction, Location out, Location root)
|
|
: SlowPathCodeMIPS(instruction), out_(out), root_(root) {
|
|
DCHECK(kEmitCompilerReadBarrier);
|
|
}
|
|
|
|
void EmitNativeCode(CodeGenerator* codegen) OVERRIDE {
|
|
LocationSummary* locations = instruction_->GetLocations();
|
|
Register reg_out = out_.AsRegister<Register>();
|
|
DCHECK(locations->CanCall());
|
|
DCHECK(!locations->GetLiveRegisters()->ContainsCoreRegister(reg_out));
|
|
DCHECK(instruction_->IsLoadClass() || instruction_->IsLoadString())
|
|
<< "Unexpected instruction in read barrier for GC root slow path: "
|
|
<< instruction_->DebugName();
|
|
|
|
__ Bind(GetEntryLabel());
|
|
SaveLiveRegisters(codegen, locations);
|
|
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
CodeGeneratorMIPS* mips_codegen = down_cast<CodeGeneratorMIPS*>(codegen);
|
|
mips_codegen->MoveLocation(Location::RegisterLocation(calling_convention.GetRegisterAt(0)),
|
|
root_,
|
|
Primitive::kPrimNot);
|
|
mips_codegen->InvokeRuntime(kQuickReadBarrierForRootSlow,
|
|
instruction_,
|
|
instruction_->GetDexPc(),
|
|
this);
|
|
CheckEntrypointTypes<kQuickReadBarrierForRootSlow, mirror::Object*, GcRoot<mirror::Object>*>();
|
|
mips_codegen->MoveLocation(out_,
|
|
calling_convention.GetReturnLocation(Primitive::kPrimNot),
|
|
Primitive::kPrimNot);
|
|
|
|
RestoreLiveRegisters(codegen, locations);
|
|
__ B(GetExitLabel());
|
|
}
|
|
|
|
const char* GetDescription() const OVERRIDE { return "ReadBarrierForRootSlowPathMIPS"; }
|
|
|
|
private:
|
|
const Location out_;
|
|
const Location root_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(ReadBarrierForRootSlowPathMIPS);
|
|
};
|
|
|
|
CodeGeneratorMIPS::CodeGeneratorMIPS(HGraph* graph,
|
|
const MipsInstructionSetFeatures& isa_features,
|
|
const CompilerOptions& compiler_options,
|
|
OptimizingCompilerStats* stats)
|
|
: CodeGenerator(graph,
|
|
kNumberOfCoreRegisters,
|
|
kNumberOfFRegisters,
|
|
kNumberOfRegisterPairs,
|
|
ComputeRegisterMask(reinterpret_cast<const int*>(kCoreCalleeSaves),
|
|
arraysize(kCoreCalleeSaves)),
|
|
ComputeRegisterMask(reinterpret_cast<const int*>(kFpuCalleeSaves),
|
|
arraysize(kFpuCalleeSaves)),
|
|
compiler_options,
|
|
stats),
|
|
block_labels_(nullptr),
|
|
location_builder_(graph, this),
|
|
instruction_visitor_(graph, this),
|
|
move_resolver_(graph->GetArena(), this),
|
|
assembler_(graph->GetArena(), &isa_features),
|
|
isa_features_(isa_features),
|
|
uint32_literals_(std::less<uint32_t>(),
|
|
graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
|
|
pc_relative_method_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
|
|
method_bss_entry_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
|
|
pc_relative_type_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
|
|
type_bss_entry_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
|
|
pc_relative_string_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
|
|
jit_string_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
|
|
jit_class_patches_(graph->GetArena()->Adapter(kArenaAllocCodeGenerator)),
|
|
clobbered_ra_(false) {
|
|
// Save RA (containing the return address) to mimic Quick.
|
|
AddAllocatedRegister(Location::RegisterLocation(RA));
|
|
}
|
|
|
|
#undef __
|
|
// NOLINT on __ macro to suppress wrong warning/fix (misc-macro-parentheses) from clang-tidy.
|
|
#define __ down_cast<MipsAssembler*>(GetAssembler())-> // NOLINT
|
|
#define QUICK_ENTRY_POINT(x) QUICK_ENTRYPOINT_OFFSET(kMipsPointerSize, x).Int32Value()
|
|
|
|
void CodeGeneratorMIPS::Finalize(CodeAllocator* allocator) {
|
|
// Ensure that we fix up branches.
|
|
__ FinalizeCode();
|
|
|
|
// Adjust native pc offsets in stack maps.
|
|
for (size_t i = 0, num = stack_map_stream_.GetNumberOfStackMaps(); i != num; ++i) {
|
|
uint32_t old_position =
|
|
stack_map_stream_.GetStackMap(i).native_pc_code_offset.Uint32Value(kMips);
|
|
uint32_t new_position = __ GetAdjustedPosition(old_position);
|
|
DCHECK_GE(new_position, old_position);
|
|
stack_map_stream_.SetStackMapNativePcOffset(i, new_position);
|
|
}
|
|
|
|
// Adjust pc offsets for the disassembly information.
|
|
if (disasm_info_ != nullptr) {
|
|
GeneratedCodeInterval* frame_entry_interval = disasm_info_->GetFrameEntryInterval();
|
|
frame_entry_interval->start = __ GetAdjustedPosition(frame_entry_interval->start);
|
|
frame_entry_interval->end = __ GetAdjustedPosition(frame_entry_interval->end);
|
|
for (auto& it : *disasm_info_->GetInstructionIntervals()) {
|
|
it.second.start = __ GetAdjustedPosition(it.second.start);
|
|
it.second.end = __ GetAdjustedPosition(it.second.end);
|
|
}
|
|
for (auto& it : *disasm_info_->GetSlowPathIntervals()) {
|
|
it.code_interval.start = __ GetAdjustedPosition(it.code_interval.start);
|
|
it.code_interval.end = __ GetAdjustedPosition(it.code_interval.end);
|
|
}
|
|
}
|
|
|
|
CodeGenerator::Finalize(allocator);
|
|
}
|
|
|
|
MipsAssembler* ParallelMoveResolverMIPS::GetAssembler() const {
|
|
return codegen_->GetAssembler();
|
|
}
|
|
|
|
void ParallelMoveResolverMIPS::EmitMove(size_t index) {
|
|
DCHECK_LT(index, moves_.size());
|
|
MoveOperands* move = moves_[index];
|
|
codegen_->MoveLocation(move->GetDestination(), move->GetSource(), move->GetType());
|
|
}
|
|
|
|
void ParallelMoveResolverMIPS::EmitSwap(size_t index) {
|
|
DCHECK_LT(index, moves_.size());
|
|
MoveOperands* move = moves_[index];
|
|
Primitive::Type type = move->GetType();
|
|
Location loc1 = move->GetDestination();
|
|
Location loc2 = move->GetSource();
|
|
|
|
DCHECK(!loc1.IsConstant());
|
|
DCHECK(!loc2.IsConstant());
|
|
|
|
if (loc1.Equals(loc2)) {
|
|
return;
|
|
}
|
|
|
|
if (loc1.IsRegister() && loc2.IsRegister()) {
|
|
// Swap 2 GPRs.
|
|
Register r1 = loc1.AsRegister<Register>();
|
|
Register r2 = loc2.AsRegister<Register>();
|
|
__ Move(TMP, r2);
|
|
__ Move(r2, r1);
|
|
__ Move(r1, TMP);
|
|
} else if (loc1.IsFpuRegister() && loc2.IsFpuRegister()) {
|
|
FRegister f1 = loc1.AsFpuRegister<FRegister>();
|
|
FRegister f2 = loc2.AsFpuRegister<FRegister>();
|
|
if (type == Primitive::kPrimFloat) {
|
|
__ MovS(FTMP, f2);
|
|
__ MovS(f2, f1);
|
|
__ MovS(f1, FTMP);
|
|
} else {
|
|
DCHECK_EQ(type, Primitive::kPrimDouble);
|
|
__ MovD(FTMP, f2);
|
|
__ MovD(f2, f1);
|
|
__ MovD(f1, FTMP);
|
|
}
|
|
} else if ((loc1.IsRegister() && loc2.IsFpuRegister()) ||
|
|
(loc1.IsFpuRegister() && loc2.IsRegister())) {
|
|
// Swap FPR and GPR.
|
|
DCHECK_EQ(type, Primitive::kPrimFloat); // Can only swap a float.
|
|
FRegister f1 = loc1.IsFpuRegister() ? loc1.AsFpuRegister<FRegister>()
|
|
: loc2.AsFpuRegister<FRegister>();
|
|
Register r2 = loc1.IsRegister() ? loc1.AsRegister<Register>() : loc2.AsRegister<Register>();
|
|
__ Move(TMP, r2);
|
|
__ Mfc1(r2, f1);
|
|
__ Mtc1(TMP, f1);
|
|
} else if (loc1.IsRegisterPair() && loc2.IsRegisterPair()) {
|
|
// Swap 2 GPR register pairs.
|
|
Register r1 = loc1.AsRegisterPairLow<Register>();
|
|
Register r2 = loc2.AsRegisterPairLow<Register>();
|
|
__ Move(TMP, r2);
|
|
__ Move(r2, r1);
|
|
__ Move(r1, TMP);
|
|
r1 = loc1.AsRegisterPairHigh<Register>();
|
|
r2 = loc2.AsRegisterPairHigh<Register>();
|
|
__ Move(TMP, r2);
|
|
__ Move(r2, r1);
|
|
__ Move(r1, TMP);
|
|
} else if ((loc1.IsRegisterPair() && loc2.IsFpuRegister()) ||
|
|
(loc1.IsFpuRegister() && loc2.IsRegisterPair())) {
|
|
// Swap FPR and GPR register pair.
|
|
DCHECK_EQ(type, Primitive::kPrimDouble);
|
|
FRegister f1 = loc1.IsFpuRegister() ? loc1.AsFpuRegister<FRegister>()
|
|
: loc2.AsFpuRegister<FRegister>();
|
|
Register r2_l = loc1.IsRegisterPair() ? loc1.AsRegisterPairLow<Register>()
|
|
: loc2.AsRegisterPairLow<Register>();
|
|
Register r2_h = loc1.IsRegisterPair() ? loc1.AsRegisterPairHigh<Register>()
|
|
: loc2.AsRegisterPairHigh<Register>();
|
|
// Use 2 temporary registers because we can't first swap the low 32 bits of an FPR and
|
|
// then swap the high 32 bits of the same FPR. mtc1 makes the high 32 bits of an FPR
|
|
// unpredictable and the following mfch1 will fail.
|
|
__ Mfc1(TMP, f1);
|
|
__ MoveFromFpuHigh(AT, f1);
|
|
__ Mtc1(r2_l, f1);
|
|
__ MoveToFpuHigh(r2_h, f1);
|
|
__ Move(r2_l, TMP);
|
|
__ Move(r2_h, AT);
|
|
} else if (loc1.IsStackSlot() && loc2.IsStackSlot()) {
|
|
Exchange(loc1.GetStackIndex(), loc2.GetStackIndex(), /* double_slot */ false);
|
|
} else if (loc1.IsDoubleStackSlot() && loc2.IsDoubleStackSlot()) {
|
|
Exchange(loc1.GetStackIndex(), loc2.GetStackIndex(), /* double_slot */ true);
|
|
} else if ((loc1.IsRegister() && loc2.IsStackSlot()) ||
|
|
(loc1.IsStackSlot() && loc2.IsRegister())) {
|
|
Register reg = loc1.IsRegister() ? loc1.AsRegister<Register>() : loc2.AsRegister<Register>();
|
|
intptr_t offset = loc1.IsStackSlot() ? loc1.GetStackIndex() : loc2.GetStackIndex();
|
|
__ Move(TMP, reg);
|
|
__ LoadFromOffset(kLoadWord, reg, SP, offset);
|
|
__ StoreToOffset(kStoreWord, TMP, SP, offset);
|
|
} else if ((loc1.IsRegisterPair() && loc2.IsDoubleStackSlot()) ||
|
|
(loc1.IsDoubleStackSlot() && loc2.IsRegisterPair())) {
|
|
Register reg_l = loc1.IsRegisterPair() ? loc1.AsRegisterPairLow<Register>()
|
|
: loc2.AsRegisterPairLow<Register>();
|
|
Register reg_h = loc1.IsRegisterPair() ? loc1.AsRegisterPairHigh<Register>()
|
|
: loc2.AsRegisterPairHigh<Register>();
|
|
intptr_t offset_l = loc1.IsDoubleStackSlot() ? loc1.GetStackIndex() : loc2.GetStackIndex();
|
|
intptr_t offset_h = loc1.IsDoubleStackSlot() ? loc1.GetHighStackIndex(kMipsWordSize)
|
|
: loc2.GetHighStackIndex(kMipsWordSize);
|
|
__ Move(TMP, reg_l);
|
|
__ LoadFromOffset(kLoadWord, reg_l, SP, offset_l);
|
|
__ StoreToOffset(kStoreWord, TMP, SP, offset_l);
|
|
__ Move(TMP, reg_h);
|
|
__ LoadFromOffset(kLoadWord, reg_h, SP, offset_h);
|
|
__ StoreToOffset(kStoreWord, TMP, SP, offset_h);
|
|
} else if (loc1.IsFpuRegister() || loc2.IsFpuRegister()) {
|
|
FRegister reg = loc1.IsFpuRegister() ? loc1.AsFpuRegister<FRegister>()
|
|
: loc2.AsFpuRegister<FRegister>();
|
|
intptr_t offset = loc1.IsFpuRegister() ? loc2.GetStackIndex() : loc1.GetStackIndex();
|
|
if (type == Primitive::kPrimFloat) {
|
|
__ MovS(FTMP, reg);
|
|
__ LoadSFromOffset(reg, SP, offset);
|
|
__ StoreSToOffset(FTMP, SP, offset);
|
|
} else {
|
|
DCHECK_EQ(type, Primitive::kPrimDouble);
|
|
__ MovD(FTMP, reg);
|
|
__ LoadDFromOffset(reg, SP, offset);
|
|
__ StoreDToOffset(FTMP, SP, offset);
|
|
}
|
|
} else {
|
|
LOG(FATAL) << "Swap between " << loc1 << " and " << loc2 << " is unsupported";
|
|
}
|
|
}
|
|
|
|
void ParallelMoveResolverMIPS::RestoreScratch(int reg) {
|
|
__ Pop(static_cast<Register>(reg));
|
|
}
|
|
|
|
void ParallelMoveResolverMIPS::SpillScratch(int reg) {
|
|
__ Push(static_cast<Register>(reg));
|
|
}
|
|
|
|
void ParallelMoveResolverMIPS::Exchange(int index1, int index2, bool double_slot) {
|
|
// Allocate a scratch register other than TMP, if available.
|
|
// Else, spill V0 (arbitrary choice) and use it as a scratch register (it will be
|
|
// automatically unspilled when the scratch scope object is destroyed).
|
|
ScratchRegisterScope ensure_scratch(this, TMP, V0, codegen_->GetNumberOfCoreRegisters());
|
|
// If V0 spills onto the stack, SP-relative offsets need to be adjusted.
|
|
int stack_offset = ensure_scratch.IsSpilled() ? kMipsWordSize : 0;
|
|
for (int i = 0; i <= (double_slot ? 1 : 0); i++, stack_offset += kMipsWordSize) {
|
|
__ LoadFromOffset(kLoadWord,
|
|
Register(ensure_scratch.GetRegister()),
|
|
SP,
|
|
index1 + stack_offset);
|
|
__ LoadFromOffset(kLoadWord,
|
|
TMP,
|
|
SP,
|
|
index2 + stack_offset);
|
|
__ StoreToOffset(kStoreWord,
|
|
Register(ensure_scratch.GetRegister()),
|
|
SP,
|
|
index2 + stack_offset);
|
|
__ StoreToOffset(kStoreWord, TMP, SP, index1 + stack_offset);
|
|
}
|
|
}
|
|
|
|
void CodeGeneratorMIPS::ComputeSpillMask() {
|
|
core_spill_mask_ = allocated_registers_.GetCoreRegisters() & core_callee_save_mask_;
|
|
fpu_spill_mask_ = allocated_registers_.GetFloatingPointRegisters() & fpu_callee_save_mask_;
|
|
DCHECK_NE(core_spill_mask_, 0u) << "At least the return address register must be saved";
|
|
// If there're FPU callee-saved registers and there's an odd number of GPR callee-saved
|
|
// registers, include the ZERO register to force alignment of FPU callee-saved registers
|
|
// within the stack frame.
|
|
if ((fpu_spill_mask_ != 0) && (POPCOUNT(core_spill_mask_) % 2 != 0)) {
|
|
core_spill_mask_ |= (1 << ZERO);
|
|
}
|
|
}
|
|
|
|
bool CodeGeneratorMIPS::HasAllocatedCalleeSaveRegisters() const {
|
|
// If RA is clobbered by PC-relative operations on R2 and it's the only spilled register
|
|
// (this can happen in leaf methods), force CodeGenerator::InitializeCodeGeneration()
|
|
// into the path that creates a stack frame so that RA can be explicitly saved and restored.
|
|
// RA can't otherwise be saved/restored when it's the only spilled register.
|
|
return CodeGenerator::HasAllocatedCalleeSaveRegisters() || clobbered_ra_;
|
|
}
|
|
|
|
static dwarf::Reg DWARFReg(Register reg) {
|
|
return dwarf::Reg::MipsCore(static_cast<int>(reg));
|
|
}
|
|
|
|
// TODO: mapping of floating-point registers to DWARF.
|
|
|
|
void CodeGeneratorMIPS::GenerateFrameEntry() {
|
|
__ Bind(&frame_entry_label_);
|
|
|
|
bool do_overflow_check = FrameNeedsStackCheck(GetFrameSize(), kMips) || !IsLeafMethod();
|
|
|
|
if (do_overflow_check) {
|
|
__ LoadFromOffset(kLoadWord,
|
|
ZERO,
|
|
SP,
|
|
-static_cast<int32_t>(GetStackOverflowReservedBytes(kMips)));
|
|
RecordPcInfo(nullptr, 0);
|
|
}
|
|
|
|
if (HasEmptyFrame()) {
|
|
CHECK_EQ(fpu_spill_mask_, 0u);
|
|
CHECK_EQ(core_spill_mask_, 1u << RA);
|
|
CHECK(!clobbered_ra_);
|
|
return;
|
|
}
|
|
|
|
// Make sure the frame size isn't unreasonably large.
|
|
if (GetFrameSize() > GetStackOverflowReservedBytes(kMips)) {
|
|
LOG(FATAL) << "Stack frame larger than " << GetStackOverflowReservedBytes(kMips) << " bytes";
|
|
}
|
|
|
|
// Spill callee-saved registers.
|
|
|
|
uint32_t ofs = GetFrameSize();
|
|
__ IncreaseFrameSize(ofs);
|
|
|
|
for (uint32_t mask = core_spill_mask_; mask != 0; ) {
|
|
Register reg = static_cast<Register>(MostSignificantBit(mask));
|
|
mask ^= 1u << reg;
|
|
ofs -= kMipsWordSize;
|
|
// The ZERO register is only included for alignment.
|
|
if (reg != ZERO) {
|
|
__ StoreToOffset(kStoreWord, reg, SP, ofs);
|
|
__ cfi().RelOffset(DWARFReg(reg), ofs);
|
|
}
|
|
}
|
|
|
|
for (uint32_t mask = fpu_spill_mask_; mask != 0; ) {
|
|
FRegister reg = static_cast<FRegister>(MostSignificantBit(mask));
|
|
mask ^= 1u << reg;
|
|
ofs -= kMipsDoublewordSize;
|
|
__ StoreDToOffset(reg, SP, ofs);
|
|
// TODO: __ cfi().RelOffset(DWARFReg(reg), ofs);
|
|
}
|
|
|
|
// Save the current method if we need it. Note that we do not
|
|
// do this in HCurrentMethod, as the instruction might have been removed
|
|
// in the SSA graph.
|
|
if (RequiresCurrentMethod()) {
|
|
__ StoreToOffset(kStoreWord, kMethodRegisterArgument, SP, kCurrentMethodStackOffset);
|
|
}
|
|
|
|
if (GetGraph()->HasShouldDeoptimizeFlag()) {
|
|
// Initialize should deoptimize flag to 0.
|
|
__ StoreToOffset(kStoreWord, ZERO, SP, GetStackOffsetOfShouldDeoptimizeFlag());
|
|
}
|
|
}
|
|
|
|
void CodeGeneratorMIPS::GenerateFrameExit() {
|
|
__ cfi().RememberState();
|
|
|
|
if (!HasEmptyFrame()) {
|
|
// Restore callee-saved registers.
|
|
|
|
// For better instruction scheduling restore RA before other registers.
|
|
uint32_t ofs = GetFrameSize();
|
|
for (uint32_t mask = core_spill_mask_; mask != 0; ) {
|
|
Register reg = static_cast<Register>(MostSignificantBit(mask));
|
|
mask ^= 1u << reg;
|
|
ofs -= kMipsWordSize;
|
|
// The ZERO register is only included for alignment.
|
|
if (reg != ZERO) {
|
|
__ LoadFromOffset(kLoadWord, reg, SP, ofs);
|
|
__ cfi().Restore(DWARFReg(reg));
|
|
}
|
|
}
|
|
|
|
for (uint32_t mask = fpu_spill_mask_; mask != 0; ) {
|
|
FRegister reg = static_cast<FRegister>(MostSignificantBit(mask));
|
|
mask ^= 1u << reg;
|
|
ofs -= kMipsDoublewordSize;
|
|
__ LoadDFromOffset(reg, SP, ofs);
|
|
// TODO: __ cfi().Restore(DWARFReg(reg));
|
|
}
|
|
|
|
size_t frame_size = GetFrameSize();
|
|
// Adjust the stack pointer in the delay slot if doing so doesn't break CFI.
|
|
bool exchange = IsInt<16>(static_cast<int32_t>(frame_size));
|
|
bool reordering = __ SetReorder(false);
|
|
if (exchange) {
|
|
__ Jr(RA);
|
|
__ DecreaseFrameSize(frame_size); // Single instruction in delay slot.
|
|
} else {
|
|
__ DecreaseFrameSize(frame_size);
|
|
__ Jr(RA);
|
|
__ Nop(); // In delay slot.
|
|
}
|
|
__ SetReorder(reordering);
|
|
} else {
|
|
__ Jr(RA);
|
|
__ NopIfNoReordering();
|
|
}
|
|
|
|
__ cfi().RestoreState();
|
|
__ cfi().DefCFAOffset(GetFrameSize());
|
|
}
|
|
|
|
void CodeGeneratorMIPS::Bind(HBasicBlock* block) {
|
|
__ Bind(GetLabelOf(block));
|
|
}
|
|
|
|
VectorRegister VectorRegisterFrom(Location location) {
|
|
DCHECK(location.IsFpuRegister());
|
|
return static_cast<VectorRegister>(location.AsFpuRegister<FRegister>());
|
|
}
|
|
|
|
void CodeGeneratorMIPS::MoveLocation(Location destination,
|
|
Location source,
|
|
Primitive::Type dst_type) {
|
|
if (source.Equals(destination)) {
|
|
return;
|
|
}
|
|
|
|
if (source.IsConstant()) {
|
|
MoveConstant(destination, source.GetConstant());
|
|
} else {
|
|
if (destination.IsRegister()) {
|
|
if (source.IsRegister()) {
|
|
__ Move(destination.AsRegister<Register>(), source.AsRegister<Register>());
|
|
} else if (source.IsFpuRegister()) {
|
|
__ Mfc1(destination.AsRegister<Register>(), source.AsFpuRegister<FRegister>());
|
|
} else {
|
|
DCHECK(source.IsStackSlot()) << "Cannot move from " << source << " to " << destination;
|
|
__ LoadFromOffset(kLoadWord, destination.AsRegister<Register>(), SP, source.GetStackIndex());
|
|
}
|
|
} else if (destination.IsRegisterPair()) {
|
|
if (source.IsRegisterPair()) {
|
|
__ Move(destination.AsRegisterPairHigh<Register>(), source.AsRegisterPairHigh<Register>());
|
|
__ Move(destination.AsRegisterPairLow<Register>(), source.AsRegisterPairLow<Register>());
|
|
} else if (source.IsFpuRegister()) {
|
|
Register dst_high = destination.AsRegisterPairHigh<Register>();
|
|
Register dst_low = destination.AsRegisterPairLow<Register>();
|
|
FRegister src = source.AsFpuRegister<FRegister>();
|
|
__ Mfc1(dst_low, src);
|
|
__ MoveFromFpuHigh(dst_high, src);
|
|
} else {
|
|
DCHECK(source.IsDoubleStackSlot()) << "Cannot move from " << source << " to " << destination;
|
|
int32_t off = source.GetStackIndex();
|
|
Register r = destination.AsRegisterPairLow<Register>();
|
|
__ LoadFromOffset(kLoadDoubleword, r, SP, off);
|
|
}
|
|
} else if (destination.IsFpuRegister()) {
|
|
if (source.IsRegister()) {
|
|
DCHECK(!Primitive::Is64BitType(dst_type));
|
|
__ Mtc1(source.AsRegister<Register>(), destination.AsFpuRegister<FRegister>());
|
|
} else if (source.IsRegisterPair()) {
|
|
DCHECK(Primitive::Is64BitType(dst_type));
|
|
FRegister dst = destination.AsFpuRegister<FRegister>();
|
|
Register src_high = source.AsRegisterPairHigh<Register>();
|
|
Register src_low = source.AsRegisterPairLow<Register>();
|
|
__ Mtc1(src_low, dst);
|
|
__ MoveToFpuHigh(src_high, dst);
|
|
} else if (source.IsFpuRegister()) {
|
|
if (GetGraph()->HasSIMD()) {
|
|
__ MoveV(VectorRegisterFrom(destination),
|
|
VectorRegisterFrom(source));
|
|
} else {
|
|
if (Primitive::Is64BitType(dst_type)) {
|
|
__ MovD(destination.AsFpuRegister<FRegister>(), source.AsFpuRegister<FRegister>());
|
|
} else {
|
|
DCHECK_EQ(dst_type, Primitive::kPrimFloat);
|
|
__ MovS(destination.AsFpuRegister<FRegister>(), source.AsFpuRegister<FRegister>());
|
|
}
|
|
}
|
|
} else if (source.IsSIMDStackSlot()) {
|
|
__ LoadQFromOffset(destination.AsFpuRegister<FRegister>(), SP, source.GetStackIndex());
|
|
} else if (source.IsDoubleStackSlot()) {
|
|
DCHECK(Primitive::Is64BitType(dst_type));
|
|
__ LoadDFromOffset(destination.AsFpuRegister<FRegister>(), SP, source.GetStackIndex());
|
|
} else {
|
|
DCHECK(!Primitive::Is64BitType(dst_type));
|
|
DCHECK(source.IsStackSlot()) << "Cannot move from " << source << " to " << destination;
|
|
__ LoadSFromOffset(destination.AsFpuRegister<FRegister>(), SP, source.GetStackIndex());
|
|
}
|
|
} else if (destination.IsSIMDStackSlot()) {
|
|
if (source.IsFpuRegister()) {
|
|
__ StoreQToOffset(source.AsFpuRegister<FRegister>(), SP, destination.GetStackIndex());
|
|
} else {
|
|
DCHECK(source.IsSIMDStackSlot());
|
|
__ LoadQFromOffset(FTMP, SP, source.GetStackIndex());
|
|
__ StoreQToOffset(FTMP, SP, destination.GetStackIndex());
|
|
}
|
|
} else if (destination.IsDoubleStackSlot()) {
|
|
int32_t dst_offset = destination.GetStackIndex();
|
|
if (source.IsRegisterPair()) {
|
|
__ StoreToOffset(kStoreDoubleword, source.AsRegisterPairLow<Register>(), SP, dst_offset);
|
|
} else if (source.IsFpuRegister()) {
|
|
__ StoreDToOffset(source.AsFpuRegister<FRegister>(), SP, dst_offset);
|
|
} else {
|
|
DCHECK(source.IsDoubleStackSlot()) << "Cannot move from " << source << " to " << destination;
|
|
__ LoadFromOffset(kLoadWord, TMP, SP, source.GetStackIndex());
|
|
__ StoreToOffset(kStoreWord, TMP, SP, dst_offset);
|
|
__ LoadFromOffset(kLoadWord, TMP, SP, source.GetStackIndex() + 4);
|
|
__ StoreToOffset(kStoreWord, TMP, SP, dst_offset + 4);
|
|
}
|
|
} else {
|
|
DCHECK(destination.IsStackSlot()) << destination;
|
|
int32_t dst_offset = destination.GetStackIndex();
|
|
if (source.IsRegister()) {
|
|
__ StoreToOffset(kStoreWord, source.AsRegister<Register>(), SP, dst_offset);
|
|
} else if (source.IsFpuRegister()) {
|
|
__ StoreSToOffset(source.AsFpuRegister<FRegister>(), SP, dst_offset);
|
|
} else {
|
|
DCHECK(source.IsStackSlot()) << "Cannot move from " << source << " to " << destination;
|
|
__ LoadFromOffset(kLoadWord, TMP, SP, source.GetStackIndex());
|
|
__ StoreToOffset(kStoreWord, TMP, SP, dst_offset);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void CodeGeneratorMIPS::MoveConstant(Location destination, HConstant* c) {
|
|
if (c->IsIntConstant() || c->IsNullConstant()) {
|
|
// Move 32 bit constant.
|
|
int32_t value = GetInt32ValueOf(c);
|
|
if (destination.IsRegister()) {
|
|
Register dst = destination.AsRegister<Register>();
|
|
__ LoadConst32(dst, value);
|
|
} else {
|
|
DCHECK(destination.IsStackSlot())
|
|
<< "Cannot move " << c->DebugName() << " to " << destination;
|
|
__ StoreConstToOffset(kStoreWord, value, SP, destination.GetStackIndex(), TMP);
|
|
}
|
|
} else if (c->IsLongConstant()) {
|
|
// Move 64 bit constant.
|
|
int64_t value = GetInt64ValueOf(c);
|
|
if (destination.IsRegisterPair()) {
|
|
Register r_h = destination.AsRegisterPairHigh<Register>();
|
|
Register r_l = destination.AsRegisterPairLow<Register>();
|
|
__ LoadConst64(r_h, r_l, value);
|
|
} else {
|
|
DCHECK(destination.IsDoubleStackSlot())
|
|
<< "Cannot move " << c->DebugName() << " to " << destination;
|
|
__ StoreConstToOffset(kStoreDoubleword, value, SP, destination.GetStackIndex(), TMP);
|
|
}
|
|
} else if (c->IsFloatConstant()) {
|
|
// Move 32 bit float constant.
|
|
int32_t value = GetInt32ValueOf(c);
|
|
if (destination.IsFpuRegister()) {
|
|
__ LoadSConst32(destination.AsFpuRegister<FRegister>(), value, TMP);
|
|
} else {
|
|
DCHECK(destination.IsStackSlot())
|
|
<< "Cannot move " << c->DebugName() << " to " << destination;
|
|
__ StoreConstToOffset(kStoreWord, value, SP, destination.GetStackIndex(), TMP);
|
|
}
|
|
} else {
|
|
// Move 64 bit double constant.
|
|
DCHECK(c->IsDoubleConstant()) << c->DebugName();
|
|
int64_t value = GetInt64ValueOf(c);
|
|
if (destination.IsFpuRegister()) {
|
|
FRegister fd = destination.AsFpuRegister<FRegister>();
|
|
__ LoadDConst64(fd, value, TMP);
|
|
} else {
|
|
DCHECK(destination.IsDoubleStackSlot())
|
|
<< "Cannot move " << c->DebugName() << " to " << destination;
|
|
__ StoreConstToOffset(kStoreDoubleword, value, SP, destination.GetStackIndex(), TMP);
|
|
}
|
|
}
|
|
}
|
|
|
|
void CodeGeneratorMIPS::MoveConstant(Location destination, int32_t value) {
|
|
DCHECK(destination.IsRegister());
|
|
Register dst = destination.AsRegister<Register>();
|
|
__ LoadConst32(dst, value);
|
|
}
|
|
|
|
void CodeGeneratorMIPS::AddLocationAsTemp(Location location, LocationSummary* locations) {
|
|
if (location.IsRegister()) {
|
|
locations->AddTemp(location);
|
|
} else if (location.IsRegisterPair()) {
|
|
locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairLow<Register>()));
|
|
locations->AddTemp(Location::RegisterLocation(location.AsRegisterPairHigh<Register>()));
|
|
} else {
|
|
UNIMPLEMENTED(FATAL) << "AddLocationAsTemp not implemented for location " << location;
|
|
}
|
|
}
|
|
|
|
template <LinkerPatch (*Factory)(size_t, const DexFile*, uint32_t, uint32_t)>
|
|
inline void CodeGeneratorMIPS::EmitPcRelativeLinkerPatches(
|
|
const ArenaDeque<PcRelativePatchInfo>& infos,
|
|
ArenaVector<LinkerPatch>* linker_patches) {
|
|
for (const PcRelativePatchInfo& info : infos) {
|
|
const DexFile& dex_file = info.target_dex_file;
|
|
size_t offset_or_index = info.offset_or_index;
|
|
DCHECK(info.label.IsBound());
|
|
uint32_t literal_offset = __ GetLabelLocation(&info.label);
|
|
// On R2 we use HMipsComputeBaseMethodAddress and patch relative to
|
|
// the assembler's base label used for PC-relative addressing.
|
|
const PcRelativePatchInfo& info_high = info.patch_info_high ? *info.patch_info_high : info;
|
|
uint32_t pc_rel_offset = info_high.pc_rel_label.IsBound()
|
|
? __ GetLabelLocation(&info_high.pc_rel_label)
|
|
: __ GetPcRelBaseLabelLocation();
|
|
linker_patches->push_back(Factory(literal_offset, &dex_file, pc_rel_offset, offset_or_index));
|
|
}
|
|
}
|
|
|
|
void CodeGeneratorMIPS::EmitLinkerPatches(ArenaVector<LinkerPatch>* linker_patches) {
|
|
DCHECK(linker_patches->empty());
|
|
size_t size =
|
|
pc_relative_method_patches_.size() +
|
|
method_bss_entry_patches_.size() +
|
|
pc_relative_type_patches_.size() +
|
|
type_bss_entry_patches_.size() +
|
|
pc_relative_string_patches_.size();
|
|
linker_patches->reserve(size);
|
|
if (GetCompilerOptions().IsBootImage()) {
|
|
EmitPcRelativeLinkerPatches<LinkerPatch::RelativeMethodPatch>(pc_relative_method_patches_,
|
|
linker_patches);
|
|
EmitPcRelativeLinkerPatches<LinkerPatch::RelativeTypePatch>(pc_relative_type_patches_,
|
|
linker_patches);
|
|
EmitPcRelativeLinkerPatches<LinkerPatch::RelativeStringPatch>(pc_relative_string_patches_,
|
|
linker_patches);
|
|
} else {
|
|
DCHECK(pc_relative_method_patches_.empty());
|
|
DCHECK(pc_relative_type_patches_.empty());
|
|
EmitPcRelativeLinkerPatches<LinkerPatch::StringBssEntryPatch>(pc_relative_string_patches_,
|
|
linker_patches);
|
|
}
|
|
EmitPcRelativeLinkerPatches<LinkerPatch::MethodBssEntryPatch>(method_bss_entry_patches_,
|
|
linker_patches);
|
|
EmitPcRelativeLinkerPatches<LinkerPatch::TypeBssEntryPatch>(type_bss_entry_patches_,
|
|
linker_patches);
|
|
DCHECK_EQ(size, linker_patches->size());
|
|
}
|
|
|
|
CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewPcRelativeMethodPatch(
|
|
MethodReference target_method,
|
|
const PcRelativePatchInfo* info_high) {
|
|
return NewPcRelativePatch(*target_method.dex_file,
|
|
target_method.dex_method_index,
|
|
info_high,
|
|
&pc_relative_method_patches_);
|
|
}
|
|
|
|
CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewMethodBssEntryPatch(
|
|
MethodReference target_method,
|
|
const PcRelativePatchInfo* info_high) {
|
|
return NewPcRelativePatch(*target_method.dex_file,
|
|
target_method.dex_method_index,
|
|
info_high,
|
|
&method_bss_entry_patches_);
|
|
}
|
|
|
|
CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewPcRelativeTypePatch(
|
|
const DexFile& dex_file,
|
|
dex::TypeIndex type_index,
|
|
const PcRelativePatchInfo* info_high) {
|
|
return NewPcRelativePatch(dex_file, type_index.index_, info_high, &pc_relative_type_patches_);
|
|
}
|
|
|
|
CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewTypeBssEntryPatch(
|
|
const DexFile& dex_file,
|
|
dex::TypeIndex type_index,
|
|
const PcRelativePatchInfo* info_high) {
|
|
return NewPcRelativePatch(dex_file, type_index.index_, info_high, &type_bss_entry_patches_);
|
|
}
|
|
|
|
CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewPcRelativeStringPatch(
|
|
const DexFile& dex_file,
|
|
dex::StringIndex string_index,
|
|
const PcRelativePatchInfo* info_high) {
|
|
return NewPcRelativePatch(dex_file, string_index.index_, info_high, &pc_relative_string_patches_);
|
|
}
|
|
|
|
CodeGeneratorMIPS::PcRelativePatchInfo* CodeGeneratorMIPS::NewPcRelativePatch(
|
|
const DexFile& dex_file,
|
|
uint32_t offset_or_index,
|
|
const PcRelativePatchInfo* info_high,
|
|
ArenaDeque<PcRelativePatchInfo>* patches) {
|
|
patches->emplace_back(dex_file, offset_or_index, info_high);
|
|
return &patches->back();
|
|
}
|
|
|
|
Literal* CodeGeneratorMIPS::DeduplicateUint32Literal(uint32_t value, Uint32ToLiteralMap* map) {
|
|
return map->GetOrCreate(
|
|
value,
|
|
[this, value]() { return __ NewLiteral<uint32_t>(value); });
|
|
}
|
|
|
|
Literal* CodeGeneratorMIPS::DeduplicateBootImageAddressLiteral(uint32_t address) {
|
|
return DeduplicateUint32Literal(dchecked_integral_cast<uint32_t>(address), &uint32_literals_);
|
|
}
|
|
|
|
void CodeGeneratorMIPS::EmitPcRelativeAddressPlaceholderHigh(PcRelativePatchInfo* info_high,
|
|
Register out,
|
|
Register base,
|
|
PcRelativePatchInfo* info_low) {
|
|
DCHECK(!info_high->patch_info_high);
|
|
DCHECK_NE(out, base);
|
|
if (GetInstructionSetFeatures().IsR6()) {
|
|
DCHECK_EQ(base, ZERO);
|
|
__ Bind(&info_high->label);
|
|
__ Bind(&info_high->pc_rel_label);
|
|
// Add the high half of a 32-bit offset to PC.
|
|
__ Auipc(out, /* placeholder */ 0x1234);
|
|
} else {
|
|
// If base is ZERO, emit NAL to obtain the actual base.
|
|
if (base == ZERO) {
|
|
// Generate a dummy PC-relative call to obtain PC.
|
|
__ Nal();
|
|
}
|
|
__ Bind(&info_high->label);
|
|
__ Lui(out, /* placeholder */ 0x1234);
|
|
// If we emitted the NAL, bind the pc_rel_label, otherwise base is a register holding
|
|
// the HMipsComputeBaseMethodAddress which has its own label stored in MipsAssembler.
|
|
if (base == ZERO) {
|
|
__ Bind(&info_high->pc_rel_label);
|
|
}
|
|
// Add the high half of a 32-bit offset to PC.
|
|
__ Addu(out, out, (base == ZERO) ? RA : base);
|
|
}
|
|
// A following instruction will add the sign-extended low half of the 32-bit
|
|
// offset to `out` (e.g. lw, jialc, addiu).
|
|
DCHECK_EQ(info_low->patch_info_high, info_high);
|
|
__ Bind(&info_low->label);
|
|
}
|
|
|
|
CodeGeneratorMIPS::JitPatchInfo* CodeGeneratorMIPS::NewJitRootStringPatch(
|
|
const DexFile& dex_file,
|
|
dex::StringIndex dex_index,
|
|
Handle<mirror::String> handle) {
|
|
jit_string_roots_.Overwrite(StringReference(&dex_file, dex_index),
|
|
reinterpret_cast64<uint64_t>(handle.GetReference()));
|
|
jit_string_patches_.emplace_back(dex_file, dex_index.index_);
|
|
return &jit_string_patches_.back();
|
|
}
|
|
|
|
CodeGeneratorMIPS::JitPatchInfo* CodeGeneratorMIPS::NewJitRootClassPatch(
|
|
const DexFile& dex_file,
|
|
dex::TypeIndex dex_index,
|
|
Handle<mirror::Class> handle) {
|
|
jit_class_roots_.Overwrite(TypeReference(&dex_file, dex_index),
|
|
reinterpret_cast64<uint64_t>(handle.GetReference()));
|
|
jit_class_patches_.emplace_back(dex_file, dex_index.index_);
|
|
return &jit_class_patches_.back();
|
|
}
|
|
|
|
void CodeGeneratorMIPS::PatchJitRootUse(uint8_t* code,
|
|
const uint8_t* roots_data,
|
|
const CodeGeneratorMIPS::JitPatchInfo& info,
|
|
uint64_t index_in_table) const {
|
|
uint32_t literal_offset = GetAssembler().GetLabelLocation(&info.high_label);
|
|
uintptr_t address =
|
|
reinterpret_cast<uintptr_t>(roots_data) + index_in_table * sizeof(GcRoot<mirror::Object>);
|
|
uint32_t addr32 = dchecked_integral_cast<uint32_t>(address);
|
|
// lui reg, addr32_high
|
|
DCHECK_EQ(code[literal_offset + 0], 0x34);
|
|
DCHECK_EQ(code[literal_offset + 1], 0x12);
|
|
DCHECK_EQ((code[literal_offset + 2] & 0xE0), 0x00);
|
|
DCHECK_EQ(code[literal_offset + 3], 0x3C);
|
|
// instr reg, reg, addr32_low
|
|
DCHECK_EQ(code[literal_offset + 4], 0x78);
|
|
DCHECK_EQ(code[literal_offset + 5], 0x56);
|
|
addr32 += (addr32 & 0x8000) << 1; // Account for sign extension in "instr reg, reg, addr32_low".
|
|
// lui reg, addr32_high
|
|
code[literal_offset + 0] = static_cast<uint8_t>(addr32 >> 16);
|
|
code[literal_offset + 1] = static_cast<uint8_t>(addr32 >> 24);
|
|
// instr reg, reg, addr32_low
|
|
code[literal_offset + 4] = static_cast<uint8_t>(addr32 >> 0);
|
|
code[literal_offset + 5] = static_cast<uint8_t>(addr32 >> 8);
|
|
}
|
|
|
|
void CodeGeneratorMIPS::EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data) {
|
|
for (const JitPatchInfo& info : jit_string_patches_) {
|
|
const auto it = jit_string_roots_.find(StringReference(&info.target_dex_file,
|
|
dex::StringIndex(info.index)));
|
|
DCHECK(it != jit_string_roots_.end());
|
|
uint64_t index_in_table = it->second;
|
|
PatchJitRootUse(code, roots_data, info, index_in_table);
|
|
}
|
|
for (const JitPatchInfo& info : jit_class_patches_) {
|
|
const auto it = jit_class_roots_.find(TypeReference(&info.target_dex_file,
|
|
dex::TypeIndex(info.index)));
|
|
DCHECK(it != jit_class_roots_.end());
|
|
uint64_t index_in_table = it->second;
|
|
PatchJitRootUse(code, roots_data, info, index_in_table);
|
|
}
|
|
}
|
|
|
|
void CodeGeneratorMIPS::MarkGCCard(Register object,
|
|
Register value,
|
|
bool value_can_be_null) {
|
|
MipsLabel done;
|
|
Register card = AT;
|
|
Register temp = TMP;
|
|
if (value_can_be_null) {
|
|
__ Beqz(value, &done);
|
|
}
|
|
__ LoadFromOffset(kLoadWord,
|
|
card,
|
|
TR,
|
|
Thread::CardTableOffset<kMipsPointerSize>().Int32Value());
|
|
__ Srl(temp, object, gc::accounting::CardTable::kCardShift);
|
|
__ Addu(temp, card, temp);
|
|
__ Sb(card, temp, 0);
|
|
if (value_can_be_null) {
|
|
__ Bind(&done);
|
|
}
|
|
}
|
|
|
|
void CodeGeneratorMIPS::SetupBlockedRegisters() const {
|
|
// ZERO, K0, K1, GP, SP, RA are always reserved and can't be allocated.
|
|
blocked_core_registers_[ZERO] = true;
|
|
blocked_core_registers_[K0] = true;
|
|
blocked_core_registers_[K1] = true;
|
|
blocked_core_registers_[GP] = true;
|
|
blocked_core_registers_[SP] = true;
|
|
blocked_core_registers_[RA] = true;
|
|
|
|
// AT and TMP(T8) are used as temporary/scratch registers
|
|
// (similar to how AT is used by MIPS assemblers).
|
|
blocked_core_registers_[AT] = true;
|
|
blocked_core_registers_[TMP] = true;
|
|
blocked_fpu_registers_[FTMP] = true;
|
|
|
|
// Reserve suspend and thread registers.
|
|
blocked_core_registers_[S0] = true;
|
|
blocked_core_registers_[TR] = true;
|
|
|
|
// Reserve T9 for function calls
|
|
blocked_core_registers_[T9] = true;
|
|
|
|
// Reserve odd-numbered FPU registers.
|
|
for (size_t i = 1; i < kNumberOfFRegisters; i += 2) {
|
|
blocked_fpu_registers_[i] = true;
|
|
}
|
|
|
|
if (GetGraph()->IsDebuggable()) {
|
|
// Stubs do not save callee-save floating point registers. If the graph
|
|
// is debuggable, we need to deal with these registers differently. For
|
|
// now, just block them.
|
|
for (size_t i = 0; i < arraysize(kFpuCalleeSaves); ++i) {
|
|
blocked_fpu_registers_[kFpuCalleeSaves[i]] = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
size_t CodeGeneratorMIPS::SaveCoreRegister(size_t stack_index, uint32_t reg_id) {
|
|
__ StoreToOffset(kStoreWord, Register(reg_id), SP, stack_index);
|
|
return kMipsWordSize;
|
|
}
|
|
|
|
size_t CodeGeneratorMIPS::RestoreCoreRegister(size_t stack_index, uint32_t reg_id) {
|
|
__ LoadFromOffset(kLoadWord, Register(reg_id), SP, stack_index);
|
|
return kMipsWordSize;
|
|
}
|
|
|
|
size_t CodeGeneratorMIPS::SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
|
|
if (GetGraph()->HasSIMD()) {
|
|
__ StoreQToOffset(FRegister(reg_id), SP, stack_index);
|
|
} else {
|
|
__ StoreDToOffset(FRegister(reg_id), SP, stack_index);
|
|
}
|
|
return GetFloatingPointSpillSlotSize();
|
|
}
|
|
|
|
size_t CodeGeneratorMIPS::RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) {
|
|
if (GetGraph()->HasSIMD()) {
|
|
__ LoadQFromOffset(FRegister(reg_id), SP, stack_index);
|
|
} else {
|
|
__ LoadDFromOffset(FRegister(reg_id), SP, stack_index);
|
|
}
|
|
return GetFloatingPointSpillSlotSize();
|
|
}
|
|
|
|
void CodeGeneratorMIPS::DumpCoreRegister(std::ostream& stream, int reg) const {
|
|
stream << Register(reg);
|
|
}
|
|
|
|
void CodeGeneratorMIPS::DumpFloatingPointRegister(std::ostream& stream, int reg) const {
|
|
stream << FRegister(reg);
|
|
}
|
|
|
|
constexpr size_t kMipsDirectEntrypointRuntimeOffset = 16;
|
|
|
|
void CodeGeneratorMIPS::InvokeRuntime(QuickEntrypointEnum entrypoint,
|
|
HInstruction* instruction,
|
|
uint32_t dex_pc,
|
|
SlowPathCode* slow_path) {
|
|
ValidateInvokeRuntime(entrypoint, instruction, slow_path);
|
|
GenerateInvokeRuntime(GetThreadOffset<kMipsPointerSize>(entrypoint).Int32Value(),
|
|
IsDirectEntrypoint(entrypoint));
|
|
if (EntrypointRequiresStackMap(entrypoint)) {
|
|
RecordPcInfo(instruction, dex_pc, slow_path);
|
|
}
|
|
}
|
|
|
|
void CodeGeneratorMIPS::InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset,
|
|
HInstruction* instruction,
|
|
SlowPathCode* slow_path,
|
|
bool direct) {
|
|
ValidateInvokeRuntimeWithoutRecordingPcInfo(instruction, slow_path);
|
|
GenerateInvokeRuntime(entry_point_offset, direct);
|
|
}
|
|
|
|
void CodeGeneratorMIPS::GenerateInvokeRuntime(int32_t entry_point_offset, bool direct) {
|
|
bool reordering = __ SetReorder(false);
|
|
__ LoadFromOffset(kLoadWord, T9, TR, entry_point_offset);
|
|
__ Jalr(T9);
|
|
if (direct) {
|
|
// Reserve argument space on stack (for $a0-$a3) for
|
|
// entrypoints that directly reference native implementations.
|
|
// Called function may use this space to store $a0-$a3 regs.
|
|
__ IncreaseFrameSize(kMipsDirectEntrypointRuntimeOffset); // Single instruction in delay slot.
|
|
__ DecreaseFrameSize(kMipsDirectEntrypointRuntimeOffset);
|
|
} else {
|
|
__ Nop(); // In delay slot.
|
|
}
|
|
__ SetReorder(reordering);
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::GenerateClassInitializationCheck(SlowPathCodeMIPS* slow_path,
|
|
Register class_reg) {
|
|
__ LoadFromOffset(kLoadWord, TMP, class_reg, mirror::Class::StatusOffset().Int32Value());
|
|
__ LoadConst32(AT, mirror::Class::kStatusInitialized);
|
|
__ Blt(TMP, AT, slow_path->GetEntryLabel());
|
|
// Even if the initialized flag is set, we need to ensure consistent memory ordering.
|
|
__ Sync(0);
|
|
__ Bind(slow_path->GetExitLabel());
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::GenerateMemoryBarrier(MemBarrierKind kind ATTRIBUTE_UNUSED) {
|
|
__ Sync(0); // Only stype 0 is supported.
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::GenerateSuspendCheck(HSuspendCheck* instruction,
|
|
HBasicBlock* successor) {
|
|
SuspendCheckSlowPathMIPS* slow_path =
|
|
new (GetGraph()->GetArena()) SuspendCheckSlowPathMIPS(instruction, successor);
|
|
codegen_->AddSlowPath(slow_path);
|
|
|
|
__ LoadFromOffset(kLoadUnsignedHalfword,
|
|
TMP,
|
|
TR,
|
|
Thread::ThreadFlagsOffset<kMipsPointerSize>().Int32Value());
|
|
if (successor == nullptr) {
|
|
__ Bnez(TMP, slow_path->GetEntryLabel());
|
|
__ Bind(slow_path->GetReturnLabel());
|
|
} else {
|
|
__ Beqz(TMP, codegen_->GetLabelOf(successor));
|
|
__ B(slow_path->GetEntryLabel());
|
|
// slow_path will return to GetLabelOf(successor).
|
|
}
|
|
}
|
|
|
|
InstructionCodeGeneratorMIPS::InstructionCodeGeneratorMIPS(HGraph* graph,
|
|
CodeGeneratorMIPS* codegen)
|
|
: InstructionCodeGenerator(graph, codegen),
|
|
assembler_(codegen->GetAssembler()),
|
|
codegen_(codegen) {}
|
|
|
|
void LocationsBuilderMIPS::HandleBinaryOp(HBinaryOperation* instruction) {
|
|
DCHECK_EQ(instruction->InputCount(), 2U);
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
|
|
Primitive::Type type = instruction->GetResultType();
|
|
switch (type) {
|
|
case Primitive::kPrimInt: {
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
HInstruction* right = instruction->InputAt(1);
|
|
bool can_use_imm = false;
|
|
if (right->IsConstant()) {
|
|
int32_t imm = CodeGenerator::GetInt32ValueOf(right->AsConstant());
|
|
if (instruction->IsAnd() || instruction->IsOr() || instruction->IsXor()) {
|
|
can_use_imm = IsUint<16>(imm);
|
|
} else if (instruction->IsAdd()) {
|
|
can_use_imm = IsInt<16>(imm);
|
|
} else {
|
|
DCHECK(instruction->IsSub());
|
|
can_use_imm = IsInt<16>(-imm);
|
|
}
|
|
}
|
|
if (can_use_imm)
|
|
locations->SetInAt(1, Location::ConstantLocation(right->AsConstant()));
|
|
else
|
|
locations->SetInAt(1, Location::RequiresRegister());
|
|
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimLong: {
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
|
|
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimDouble:
|
|
DCHECK(instruction->IsAdd() || instruction->IsSub());
|
|
locations->SetInAt(0, Location::RequiresFpuRegister());
|
|
locations->SetInAt(1, Location::RequiresFpuRegister());
|
|
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
|
|
break;
|
|
|
|
default:
|
|
LOG(FATAL) << "Unexpected " << instruction->DebugName() << " type " << type;
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::HandleBinaryOp(HBinaryOperation* instruction) {
|
|
Primitive::Type type = instruction->GetType();
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
|
|
switch (type) {
|
|
case Primitive::kPrimInt: {
|
|
Register dst = locations->Out().AsRegister<Register>();
|
|
Register lhs = locations->InAt(0).AsRegister<Register>();
|
|
Location rhs_location = locations->InAt(1);
|
|
|
|
Register rhs_reg = ZERO;
|
|
int32_t rhs_imm = 0;
|
|
bool use_imm = rhs_location.IsConstant();
|
|
if (use_imm) {
|
|
rhs_imm = CodeGenerator::GetInt32ValueOf(rhs_location.GetConstant());
|
|
} else {
|
|
rhs_reg = rhs_location.AsRegister<Register>();
|
|
}
|
|
|
|
if (instruction->IsAnd()) {
|
|
if (use_imm)
|
|
__ Andi(dst, lhs, rhs_imm);
|
|
else
|
|
__ And(dst, lhs, rhs_reg);
|
|
} else if (instruction->IsOr()) {
|
|
if (use_imm)
|
|
__ Ori(dst, lhs, rhs_imm);
|
|
else
|
|
__ Or(dst, lhs, rhs_reg);
|
|
} else if (instruction->IsXor()) {
|
|
if (use_imm)
|
|
__ Xori(dst, lhs, rhs_imm);
|
|
else
|
|
__ Xor(dst, lhs, rhs_reg);
|
|
} else if (instruction->IsAdd()) {
|
|
if (use_imm)
|
|
__ Addiu(dst, lhs, rhs_imm);
|
|
else
|
|
__ Addu(dst, lhs, rhs_reg);
|
|
} else {
|
|
DCHECK(instruction->IsSub());
|
|
if (use_imm)
|
|
__ Addiu(dst, lhs, -rhs_imm);
|
|
else
|
|
__ Subu(dst, lhs, rhs_reg);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimLong: {
|
|
Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
|
|
Register dst_low = locations->Out().AsRegisterPairLow<Register>();
|
|
Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>();
|
|
Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>();
|
|
Location rhs_location = locations->InAt(1);
|
|
bool use_imm = rhs_location.IsConstant();
|
|
if (!use_imm) {
|
|
Register rhs_high = rhs_location.AsRegisterPairHigh<Register>();
|
|
Register rhs_low = rhs_location.AsRegisterPairLow<Register>();
|
|
if (instruction->IsAnd()) {
|
|
__ And(dst_low, lhs_low, rhs_low);
|
|
__ And(dst_high, lhs_high, rhs_high);
|
|
} else if (instruction->IsOr()) {
|
|
__ Or(dst_low, lhs_low, rhs_low);
|
|
__ Or(dst_high, lhs_high, rhs_high);
|
|
} else if (instruction->IsXor()) {
|
|
__ Xor(dst_low, lhs_low, rhs_low);
|
|
__ Xor(dst_high, lhs_high, rhs_high);
|
|
} else if (instruction->IsAdd()) {
|
|
if (lhs_low == rhs_low) {
|
|
// Special case for lhs = rhs and the sum potentially overwriting both lhs and rhs.
|
|
__ Slt(TMP, lhs_low, ZERO);
|
|
__ Addu(dst_low, lhs_low, rhs_low);
|
|
} else {
|
|
__ Addu(dst_low, lhs_low, rhs_low);
|
|
// If the sum overwrites rhs, lhs remains unchanged, otherwise rhs remains unchanged.
|
|
__ Sltu(TMP, dst_low, (dst_low == rhs_low) ? lhs_low : rhs_low);
|
|
}
|
|
__ Addu(dst_high, lhs_high, rhs_high);
|
|
__ Addu(dst_high, dst_high, TMP);
|
|
} else {
|
|
DCHECK(instruction->IsSub());
|
|
__ Sltu(TMP, lhs_low, rhs_low);
|
|
__ Subu(dst_low, lhs_low, rhs_low);
|
|
__ Subu(dst_high, lhs_high, rhs_high);
|
|
__ Subu(dst_high, dst_high, TMP);
|
|
}
|
|
} else {
|
|
int64_t value = CodeGenerator::GetInt64ValueOf(rhs_location.GetConstant()->AsConstant());
|
|
if (instruction->IsOr()) {
|
|
uint32_t low = Low32Bits(value);
|
|
uint32_t high = High32Bits(value);
|
|
if (IsUint<16>(low)) {
|
|
if (dst_low != lhs_low || low != 0) {
|
|
__ Ori(dst_low, lhs_low, low);
|
|
}
|
|
} else {
|
|
__ LoadConst32(TMP, low);
|
|
__ Or(dst_low, lhs_low, TMP);
|
|
}
|
|
if (IsUint<16>(high)) {
|
|
if (dst_high != lhs_high || high != 0) {
|
|
__ Ori(dst_high, lhs_high, high);
|
|
}
|
|
} else {
|
|
if (high != low) {
|
|
__ LoadConst32(TMP, high);
|
|
}
|
|
__ Or(dst_high, lhs_high, TMP);
|
|
}
|
|
} else if (instruction->IsXor()) {
|
|
uint32_t low = Low32Bits(value);
|
|
uint32_t high = High32Bits(value);
|
|
if (IsUint<16>(low)) {
|
|
if (dst_low != lhs_low || low != 0) {
|
|
__ Xori(dst_low, lhs_low, low);
|
|
}
|
|
} else {
|
|
__ LoadConst32(TMP, low);
|
|
__ Xor(dst_low, lhs_low, TMP);
|
|
}
|
|
if (IsUint<16>(high)) {
|
|
if (dst_high != lhs_high || high != 0) {
|
|
__ Xori(dst_high, lhs_high, high);
|
|
}
|
|
} else {
|
|
if (high != low) {
|
|
__ LoadConst32(TMP, high);
|
|
}
|
|
__ Xor(dst_high, lhs_high, TMP);
|
|
}
|
|
} else if (instruction->IsAnd()) {
|
|
uint32_t low = Low32Bits(value);
|
|
uint32_t high = High32Bits(value);
|
|
if (IsUint<16>(low)) {
|
|
__ Andi(dst_low, lhs_low, low);
|
|
} else if (low != 0xFFFFFFFF) {
|
|
__ LoadConst32(TMP, low);
|
|
__ And(dst_low, lhs_low, TMP);
|
|
} else if (dst_low != lhs_low) {
|
|
__ Move(dst_low, lhs_low);
|
|
}
|
|
if (IsUint<16>(high)) {
|
|
__ Andi(dst_high, lhs_high, high);
|
|
} else if (high != 0xFFFFFFFF) {
|
|
if (high != low) {
|
|
__ LoadConst32(TMP, high);
|
|
}
|
|
__ And(dst_high, lhs_high, TMP);
|
|
} else if (dst_high != lhs_high) {
|
|
__ Move(dst_high, lhs_high);
|
|
}
|
|
} else {
|
|
if (instruction->IsSub()) {
|
|
value = -value;
|
|
} else {
|
|
DCHECK(instruction->IsAdd());
|
|
}
|
|
int32_t low = Low32Bits(value);
|
|
int32_t high = High32Bits(value);
|
|
if (IsInt<16>(low)) {
|
|
if (dst_low != lhs_low || low != 0) {
|
|
__ Addiu(dst_low, lhs_low, low);
|
|
}
|
|
if (low != 0) {
|
|
__ Sltiu(AT, dst_low, low);
|
|
}
|
|
} else {
|
|
__ LoadConst32(TMP, low);
|
|
__ Addu(dst_low, lhs_low, TMP);
|
|
__ Sltu(AT, dst_low, TMP);
|
|
}
|
|
if (IsInt<16>(high)) {
|
|
if (dst_high != lhs_high || high != 0) {
|
|
__ Addiu(dst_high, lhs_high, high);
|
|
}
|
|
} else {
|
|
if (high != low) {
|
|
__ LoadConst32(TMP, high);
|
|
}
|
|
__ Addu(dst_high, lhs_high, TMP);
|
|
}
|
|
if (low != 0) {
|
|
__ Addu(dst_high, dst_high, AT);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimDouble: {
|
|
FRegister dst = locations->Out().AsFpuRegister<FRegister>();
|
|
FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>();
|
|
FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>();
|
|
if (instruction->IsAdd()) {
|
|
if (type == Primitive::kPrimFloat) {
|
|
__ AddS(dst, lhs, rhs);
|
|
} else {
|
|
__ AddD(dst, lhs, rhs);
|
|
}
|
|
} else {
|
|
DCHECK(instruction->IsSub());
|
|
if (type == Primitive::kPrimFloat) {
|
|
__ SubS(dst, lhs, rhs);
|
|
} else {
|
|
__ SubD(dst, lhs, rhs);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
LOG(FATAL) << "Unexpected binary operation type " << type;
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderMIPS::HandleShift(HBinaryOperation* instr) {
|
|
DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr() || instr->IsRor());
|
|
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instr);
|
|
Primitive::Type type = instr->GetResultType();
|
|
switch (type) {
|
|
case Primitive::kPrimInt:
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::RegisterOrConstant(instr->InputAt(1)));
|
|
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
|
|
break;
|
|
case Primitive::kPrimLong:
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::RegisterOrConstant(instr->InputAt(1)));
|
|
locations->SetOut(Location::RequiresRegister());
|
|
break;
|
|
default:
|
|
LOG(FATAL) << "Unexpected shift type " << type;
|
|
}
|
|
}
|
|
|
|
static constexpr size_t kMipsBitsPerWord = kMipsWordSize * kBitsPerByte;
|
|
|
|
void InstructionCodeGeneratorMIPS::HandleShift(HBinaryOperation* instr) {
|
|
DCHECK(instr->IsShl() || instr->IsShr() || instr->IsUShr() || instr->IsRor());
|
|
LocationSummary* locations = instr->GetLocations();
|
|
Primitive::Type type = instr->GetType();
|
|
|
|
Location rhs_location = locations->InAt(1);
|
|
bool use_imm = rhs_location.IsConstant();
|
|
Register rhs_reg = use_imm ? ZERO : rhs_location.AsRegister<Register>();
|
|
int64_t rhs_imm = use_imm ? CodeGenerator::GetInt64ValueOf(rhs_location.GetConstant()) : 0;
|
|
const uint32_t shift_mask =
|
|
(type == Primitive::kPrimInt) ? kMaxIntShiftDistance : kMaxLongShiftDistance;
|
|
const uint32_t shift_value = rhs_imm & shift_mask;
|
|
// Are the INS (Insert Bit Field) and ROTR instructions supported?
|
|
bool has_ins_rotr = codegen_->GetInstructionSetFeatures().IsMipsIsaRevGreaterThanEqual2();
|
|
|
|
switch (type) {
|
|
case Primitive::kPrimInt: {
|
|
Register dst = locations->Out().AsRegister<Register>();
|
|
Register lhs = locations->InAt(0).AsRegister<Register>();
|
|
if (use_imm) {
|
|
if (shift_value == 0) {
|
|
if (dst != lhs) {
|
|
__ Move(dst, lhs);
|
|
}
|
|
} else if (instr->IsShl()) {
|
|
__ Sll(dst, lhs, shift_value);
|
|
} else if (instr->IsShr()) {
|
|
__ Sra(dst, lhs, shift_value);
|
|
} else if (instr->IsUShr()) {
|
|
__ Srl(dst, lhs, shift_value);
|
|
} else {
|
|
if (has_ins_rotr) {
|
|
__ Rotr(dst, lhs, shift_value);
|
|
} else {
|
|
__ Sll(TMP, lhs, (kMipsBitsPerWord - shift_value) & shift_mask);
|
|
__ Srl(dst, lhs, shift_value);
|
|
__ Or(dst, dst, TMP);
|
|
}
|
|
}
|
|
} else {
|
|
if (instr->IsShl()) {
|
|
__ Sllv(dst, lhs, rhs_reg);
|
|
} else if (instr->IsShr()) {
|
|
__ Srav(dst, lhs, rhs_reg);
|
|
} else if (instr->IsUShr()) {
|
|
__ Srlv(dst, lhs, rhs_reg);
|
|
} else {
|
|
if (has_ins_rotr) {
|
|
__ Rotrv(dst, lhs, rhs_reg);
|
|
} else {
|
|
__ Subu(TMP, ZERO, rhs_reg);
|
|
// 32-bit shift instructions use the 5 least significant bits of the shift count, so
|
|
// shifting by `-rhs_reg` is equivalent to shifting by `(32 - rhs_reg) & 31`. The case
|
|
// when `rhs_reg & 31 == 0` is OK even though we don't shift `lhs` left all the way out
|
|
// by 32, because the result in this case is computed as `(lhs >> 0) | (lhs << 0)`,
|
|
// IOW, the OR'd values are equal.
|
|
__ Sllv(TMP, lhs, TMP);
|
|
__ Srlv(dst, lhs, rhs_reg);
|
|
__ Or(dst, dst, TMP);
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimLong: {
|
|
Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
|
|
Register dst_low = locations->Out().AsRegisterPairLow<Register>();
|
|
Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>();
|
|
Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>();
|
|
if (use_imm) {
|
|
if (shift_value == 0) {
|
|
codegen_->MoveLocation(locations->Out(), locations->InAt(0), type);
|
|
} else if (shift_value < kMipsBitsPerWord) {
|
|
if (has_ins_rotr) {
|
|
if (instr->IsShl()) {
|
|
__ Srl(dst_high, lhs_low, kMipsBitsPerWord - shift_value);
|
|
__ Ins(dst_high, lhs_high, shift_value, kMipsBitsPerWord - shift_value);
|
|
__ Sll(dst_low, lhs_low, shift_value);
|
|
} else if (instr->IsShr()) {
|
|
__ Srl(dst_low, lhs_low, shift_value);
|
|
__ Ins(dst_low, lhs_high, kMipsBitsPerWord - shift_value, shift_value);
|
|
__ Sra(dst_high, lhs_high, shift_value);
|
|
} else if (instr->IsUShr()) {
|
|
__ Srl(dst_low, lhs_low, shift_value);
|
|
__ Ins(dst_low, lhs_high, kMipsBitsPerWord - shift_value, shift_value);
|
|
__ Srl(dst_high, lhs_high, shift_value);
|
|
} else {
|
|
__ Srl(dst_low, lhs_low, shift_value);
|
|
__ Ins(dst_low, lhs_high, kMipsBitsPerWord - shift_value, shift_value);
|
|
__ Srl(dst_high, lhs_high, shift_value);
|
|
__ Ins(dst_high, lhs_low, kMipsBitsPerWord - shift_value, shift_value);
|
|
}
|
|
} else {
|
|
if (instr->IsShl()) {
|
|
__ Sll(dst_low, lhs_low, shift_value);
|
|
__ Srl(TMP, lhs_low, kMipsBitsPerWord - shift_value);
|
|
__ Sll(dst_high, lhs_high, shift_value);
|
|
__ Or(dst_high, dst_high, TMP);
|
|
} else if (instr->IsShr()) {
|
|
__ Sra(dst_high, lhs_high, shift_value);
|
|
__ Sll(TMP, lhs_high, kMipsBitsPerWord - shift_value);
|
|
__ Srl(dst_low, lhs_low, shift_value);
|
|
__ Or(dst_low, dst_low, TMP);
|
|
} else if (instr->IsUShr()) {
|
|
__ Srl(dst_high, lhs_high, shift_value);
|
|
__ Sll(TMP, lhs_high, kMipsBitsPerWord - shift_value);
|
|
__ Srl(dst_low, lhs_low, shift_value);
|
|
__ Or(dst_low, dst_low, TMP);
|
|
} else {
|
|
__ Srl(TMP, lhs_low, shift_value);
|
|
__ Sll(dst_low, lhs_high, kMipsBitsPerWord - shift_value);
|
|
__ Or(dst_low, dst_low, TMP);
|
|
__ Srl(TMP, lhs_high, shift_value);
|
|
__ Sll(dst_high, lhs_low, kMipsBitsPerWord - shift_value);
|
|
__ Or(dst_high, dst_high, TMP);
|
|
}
|
|
}
|
|
} else {
|
|
const uint32_t shift_value_high = shift_value - kMipsBitsPerWord;
|
|
if (instr->IsShl()) {
|
|
__ Sll(dst_high, lhs_low, shift_value_high);
|
|
__ Move(dst_low, ZERO);
|
|
} else if (instr->IsShr()) {
|
|
__ Sra(dst_low, lhs_high, shift_value_high);
|
|
__ Sra(dst_high, dst_low, kMipsBitsPerWord - 1);
|
|
} else if (instr->IsUShr()) {
|
|
__ Srl(dst_low, lhs_high, shift_value_high);
|
|
__ Move(dst_high, ZERO);
|
|
} else {
|
|
if (shift_value == kMipsBitsPerWord) {
|
|
// 64-bit rotation by 32 is just a swap.
|
|
__ Move(dst_low, lhs_high);
|
|
__ Move(dst_high, lhs_low);
|
|
} else {
|
|
if (has_ins_rotr) {
|
|
__ Srl(dst_low, lhs_high, shift_value_high);
|
|
__ Ins(dst_low, lhs_low, kMipsBitsPerWord - shift_value_high, shift_value_high);
|
|
__ Srl(dst_high, lhs_low, shift_value_high);
|
|
__ Ins(dst_high, lhs_high, kMipsBitsPerWord - shift_value_high, shift_value_high);
|
|
} else {
|
|
__ Sll(TMP, lhs_low, kMipsBitsPerWord - shift_value_high);
|
|
__ Srl(dst_low, lhs_high, shift_value_high);
|
|
__ Or(dst_low, dst_low, TMP);
|
|
__ Sll(TMP, lhs_high, kMipsBitsPerWord - shift_value_high);
|
|
__ Srl(dst_high, lhs_low, shift_value_high);
|
|
__ Or(dst_high, dst_high, TMP);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
MipsLabel done;
|
|
if (instr->IsShl()) {
|
|
__ Sllv(dst_low, lhs_low, rhs_reg);
|
|
__ Nor(AT, ZERO, rhs_reg);
|
|
__ Srl(TMP, lhs_low, 1);
|
|
__ Srlv(TMP, TMP, AT);
|
|
__ Sllv(dst_high, lhs_high, rhs_reg);
|
|
__ Or(dst_high, dst_high, TMP);
|
|
__ Andi(TMP, rhs_reg, kMipsBitsPerWord);
|
|
__ Beqz(TMP, &done);
|
|
__ Move(dst_high, dst_low);
|
|
__ Move(dst_low, ZERO);
|
|
} else if (instr->IsShr()) {
|
|
__ Srav(dst_high, lhs_high, rhs_reg);
|
|
__ Nor(AT, ZERO, rhs_reg);
|
|
__ Sll(TMP, lhs_high, 1);
|
|
__ Sllv(TMP, TMP, AT);
|
|
__ Srlv(dst_low, lhs_low, rhs_reg);
|
|
__ Or(dst_low, dst_low, TMP);
|
|
__ Andi(TMP, rhs_reg, kMipsBitsPerWord);
|
|
__ Beqz(TMP, &done);
|
|
__ Move(dst_low, dst_high);
|
|
__ Sra(dst_high, dst_high, 31);
|
|
} else if (instr->IsUShr()) {
|
|
__ Srlv(dst_high, lhs_high, rhs_reg);
|
|
__ Nor(AT, ZERO, rhs_reg);
|
|
__ Sll(TMP, lhs_high, 1);
|
|
__ Sllv(TMP, TMP, AT);
|
|
__ Srlv(dst_low, lhs_low, rhs_reg);
|
|
__ Or(dst_low, dst_low, TMP);
|
|
__ Andi(TMP, rhs_reg, kMipsBitsPerWord);
|
|
__ Beqz(TMP, &done);
|
|
__ Move(dst_low, dst_high);
|
|
__ Move(dst_high, ZERO);
|
|
} else {
|
|
__ Nor(AT, ZERO, rhs_reg);
|
|
__ Srlv(TMP, lhs_low, rhs_reg);
|
|
__ Sll(dst_low, lhs_high, 1);
|
|
__ Sllv(dst_low, dst_low, AT);
|
|
__ Or(dst_low, dst_low, TMP);
|
|
__ Srlv(TMP, lhs_high, rhs_reg);
|
|
__ Sll(dst_high, lhs_low, 1);
|
|
__ Sllv(dst_high, dst_high, AT);
|
|
__ Or(dst_high, dst_high, TMP);
|
|
__ Andi(TMP, rhs_reg, kMipsBitsPerWord);
|
|
__ Beqz(TMP, &done);
|
|
__ Move(TMP, dst_high);
|
|
__ Move(dst_high, dst_low);
|
|
__ Move(dst_low, TMP);
|
|
}
|
|
__ Bind(&done);
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
LOG(FATAL) << "Unexpected shift operation type " << type;
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitAdd(HAdd* instruction) {
|
|
HandleBinaryOp(instruction);
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitAdd(HAdd* instruction) {
|
|
HandleBinaryOp(instruction);
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitAnd(HAnd* instruction) {
|
|
HandleBinaryOp(instruction);
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitAnd(HAnd* instruction) {
|
|
HandleBinaryOp(instruction);
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitArrayGet(HArrayGet* instruction) {
|
|
Primitive::Type type = instruction->GetType();
|
|
bool object_array_get_with_read_barrier =
|
|
kEmitCompilerReadBarrier && (type == Primitive::kPrimNot);
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(instruction,
|
|
object_array_get_with_read_barrier
|
|
? LocationSummary::kCallOnSlowPath
|
|
: LocationSummary::kNoCall);
|
|
if (object_array_get_with_read_barrier && kUseBakerReadBarrier) {
|
|
locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
|
|
}
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
|
|
if (Primitive::IsFloatingPointType(type)) {
|
|
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
|
|
} else {
|
|
// The output overlaps in the case of an object array get with
|
|
// read barriers enabled: we do not want the move to overwrite the
|
|
// array's location, as we need it to emit the read barrier.
|
|
locations->SetOut(Location::RequiresRegister(),
|
|
object_array_get_with_read_barrier
|
|
? Location::kOutputOverlap
|
|
: Location::kNoOutputOverlap);
|
|
}
|
|
// We need a temporary register for the read barrier marking slow
|
|
// path in CodeGeneratorMIPS::GenerateArrayLoadWithBakerReadBarrier.
|
|
if (object_array_get_with_read_barrier && kUseBakerReadBarrier) {
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
}
|
|
}
|
|
|
|
static auto GetImplicitNullChecker(HInstruction* instruction, CodeGeneratorMIPS* codegen) {
|
|
auto null_checker = [codegen, instruction]() {
|
|
codegen->MaybeRecordImplicitNullCheck(instruction);
|
|
};
|
|
return null_checker;
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitArrayGet(HArrayGet* instruction) {
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
Location obj_loc = locations->InAt(0);
|
|
Register obj = obj_loc.AsRegister<Register>();
|
|
Location out_loc = locations->Out();
|
|
Location index = locations->InAt(1);
|
|
uint32_t data_offset = CodeGenerator::GetArrayDataOffset(instruction);
|
|
auto null_checker = GetImplicitNullChecker(instruction, codegen_);
|
|
|
|
Primitive::Type type = instruction->GetType();
|
|
const bool maybe_compressed_char_at = mirror::kUseStringCompression &&
|
|
instruction->IsStringCharAt();
|
|
switch (type) {
|
|
case Primitive::kPrimBoolean: {
|
|
Register out = out_loc.AsRegister<Register>();
|
|
if (index.IsConstant()) {
|
|
size_t offset =
|
|
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset;
|
|
__ LoadFromOffset(kLoadUnsignedByte, out, obj, offset, null_checker);
|
|
} else {
|
|
__ Addu(TMP, obj, index.AsRegister<Register>());
|
|
__ LoadFromOffset(kLoadUnsignedByte, out, TMP, data_offset, null_checker);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimByte: {
|
|
Register out = out_loc.AsRegister<Register>();
|
|
if (index.IsConstant()) {
|
|
size_t offset =
|
|
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1) + data_offset;
|
|
__ LoadFromOffset(kLoadSignedByte, out, obj, offset, null_checker);
|
|
} else {
|
|
__ Addu(TMP, obj, index.AsRegister<Register>());
|
|
__ LoadFromOffset(kLoadSignedByte, out, TMP, data_offset, null_checker);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimShort: {
|
|
Register out = out_loc.AsRegister<Register>();
|
|
if (index.IsConstant()) {
|
|
size_t offset =
|
|
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2) + data_offset;
|
|
__ LoadFromOffset(kLoadSignedHalfword, out, obj, offset, null_checker);
|
|
} else {
|
|
__ ShiftAndAdd(TMP, index.AsRegister<Register>(), obj, TIMES_2, TMP);
|
|
__ LoadFromOffset(kLoadSignedHalfword, out, TMP, data_offset, null_checker);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimChar: {
|
|
Register out = out_loc.AsRegister<Register>();
|
|
if (maybe_compressed_char_at) {
|
|
uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
|
|
__ LoadFromOffset(kLoadWord, TMP, obj, count_offset, null_checker);
|
|
__ Sll(TMP, TMP, 31); // Extract compression flag into the most significant bit of TMP.
|
|
static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
|
|
"Expecting 0=compressed, 1=uncompressed");
|
|
}
|
|
if (index.IsConstant()) {
|
|
int32_t const_index = index.GetConstant()->AsIntConstant()->GetValue();
|
|
if (maybe_compressed_char_at) {
|
|
MipsLabel uncompressed_load, done;
|
|
__ Bnez(TMP, &uncompressed_load);
|
|
__ LoadFromOffset(kLoadUnsignedByte,
|
|
out,
|
|
obj,
|
|
data_offset + (const_index << TIMES_1));
|
|
__ B(&done);
|
|
__ Bind(&uncompressed_load);
|
|
__ LoadFromOffset(kLoadUnsignedHalfword,
|
|
out,
|
|
obj,
|
|
data_offset + (const_index << TIMES_2));
|
|
__ Bind(&done);
|
|
} else {
|
|
__ LoadFromOffset(kLoadUnsignedHalfword,
|
|
out,
|
|
obj,
|
|
data_offset + (const_index << TIMES_2),
|
|
null_checker);
|
|
}
|
|
} else {
|
|
Register index_reg = index.AsRegister<Register>();
|
|
if (maybe_compressed_char_at) {
|
|
MipsLabel uncompressed_load, done;
|
|
__ Bnez(TMP, &uncompressed_load);
|
|
__ Addu(TMP, obj, index_reg);
|
|
__ LoadFromOffset(kLoadUnsignedByte, out, TMP, data_offset);
|
|
__ B(&done);
|
|
__ Bind(&uncompressed_load);
|
|
__ ShiftAndAdd(TMP, index_reg, obj, TIMES_2, TMP);
|
|
__ LoadFromOffset(kLoadUnsignedHalfword, out, TMP, data_offset);
|
|
__ Bind(&done);
|
|
} else {
|
|
__ ShiftAndAdd(TMP, index_reg, obj, TIMES_2, TMP);
|
|
__ LoadFromOffset(kLoadUnsignedHalfword, out, TMP, data_offset, null_checker);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimInt: {
|
|
DCHECK_EQ(sizeof(mirror::HeapReference<mirror::Object>), sizeof(int32_t));
|
|
Register out = out_loc.AsRegister<Register>();
|
|
if (index.IsConstant()) {
|
|
size_t offset =
|
|
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
|
|
__ LoadFromOffset(kLoadWord, out, obj, offset, null_checker);
|
|
} else {
|
|
__ ShiftAndAdd(TMP, index.AsRegister<Register>(), obj, TIMES_4, TMP);
|
|
__ LoadFromOffset(kLoadWord, out, TMP, data_offset, null_checker);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimNot: {
|
|
static_assert(
|
|
sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
|
|
"art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
|
|
// /* HeapReference<Object> */ out =
|
|
// *(obj + data_offset + index * sizeof(HeapReference<Object>))
|
|
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
|
|
Location temp = locations->GetTemp(0);
|
|
// Note that a potential implicit null check is handled in this
|
|
// CodeGeneratorMIPS::GenerateArrayLoadWithBakerReadBarrier call.
|
|
codegen_->GenerateArrayLoadWithBakerReadBarrier(instruction,
|
|
out_loc,
|
|
obj,
|
|
data_offset,
|
|
index,
|
|
temp,
|
|
/* needs_null_check */ true);
|
|
} else {
|
|
Register out = out_loc.AsRegister<Register>();
|
|
if (index.IsConstant()) {
|
|
size_t offset =
|
|
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
|
|
__ LoadFromOffset(kLoadWord, out, obj, offset, null_checker);
|
|
// If read barriers are enabled, emit read barriers other than
|
|
// Baker's using a slow path (and also unpoison the loaded
|
|
// reference, if heap poisoning is enabled).
|
|
codegen_->MaybeGenerateReadBarrierSlow(instruction, out_loc, out_loc, obj_loc, offset);
|
|
} else {
|
|
__ ShiftAndAdd(TMP, index.AsRegister<Register>(), obj, TIMES_4, TMP);
|
|
__ LoadFromOffset(kLoadWord, out, TMP, data_offset, null_checker);
|
|
// If read barriers are enabled, emit read barriers other than
|
|
// Baker's using a slow path (and also unpoison the loaded
|
|
// reference, if heap poisoning is enabled).
|
|
codegen_->MaybeGenerateReadBarrierSlow(instruction,
|
|
out_loc,
|
|
out_loc,
|
|
obj_loc,
|
|
data_offset,
|
|
index);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimLong: {
|
|
Register out = out_loc.AsRegisterPairLow<Register>();
|
|
if (index.IsConstant()) {
|
|
size_t offset =
|
|
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
|
|
__ LoadFromOffset(kLoadDoubleword, out, obj, offset, null_checker);
|
|
} else {
|
|
__ ShiftAndAdd(TMP, index.AsRegister<Register>(), obj, TIMES_8, TMP);
|
|
__ LoadFromOffset(kLoadDoubleword, out, TMP, data_offset, null_checker);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimFloat: {
|
|
FRegister out = out_loc.AsFpuRegister<FRegister>();
|
|
if (index.IsConstant()) {
|
|
size_t offset =
|
|
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4) + data_offset;
|
|
__ LoadSFromOffset(out, obj, offset, null_checker);
|
|
} else {
|
|
__ ShiftAndAdd(TMP, index.AsRegister<Register>(), obj, TIMES_4, TMP);
|
|
__ LoadSFromOffset(out, TMP, data_offset, null_checker);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimDouble: {
|
|
FRegister out = out_loc.AsFpuRegister<FRegister>();
|
|
if (index.IsConstant()) {
|
|
size_t offset =
|
|
(index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8) + data_offset;
|
|
__ LoadDFromOffset(out, obj, offset, null_checker);
|
|
} else {
|
|
__ ShiftAndAdd(TMP, index.AsRegister<Register>(), obj, TIMES_8, TMP);
|
|
__ LoadDFromOffset(out, TMP, data_offset, null_checker);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimVoid:
|
|
LOG(FATAL) << "Unreachable type " << instruction->GetType();
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitArrayLength(HArrayLength* instruction) {
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitArrayLength(HArrayLength* instruction) {
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
uint32_t offset = CodeGenerator::GetArrayLengthOffset(instruction);
|
|
Register obj = locations->InAt(0).AsRegister<Register>();
|
|
Register out = locations->Out().AsRegister<Register>();
|
|
__ LoadFromOffset(kLoadWord, out, obj, offset);
|
|
codegen_->MaybeRecordImplicitNullCheck(instruction);
|
|
// Mask out compression flag from String's array length.
|
|
if (mirror::kUseStringCompression && instruction->IsStringLength()) {
|
|
__ Srl(out, out, 1u);
|
|
}
|
|
}
|
|
|
|
Location LocationsBuilderMIPS::RegisterOrZeroConstant(HInstruction* instruction) {
|
|
return (instruction->IsConstant() && instruction->AsConstant()->IsZeroBitPattern())
|
|
? Location::ConstantLocation(instruction->AsConstant())
|
|
: Location::RequiresRegister();
|
|
}
|
|
|
|
Location LocationsBuilderMIPS::FpuRegisterOrConstantForStore(HInstruction* instruction) {
|
|
// We can store 0.0 directly (from the ZERO register) without loading it into an FPU register.
|
|
// We can store a non-zero float or double constant without first loading it into the FPU,
|
|
// but we should only prefer this if the constant has a single use.
|
|
if (instruction->IsConstant() &&
|
|
(instruction->AsConstant()->IsZeroBitPattern() ||
|
|
instruction->GetUses().HasExactlyOneElement())) {
|
|
return Location::ConstantLocation(instruction->AsConstant());
|
|
// Otherwise fall through and require an FPU register for the constant.
|
|
}
|
|
return Location::RequiresFpuRegister();
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitArraySet(HArraySet* instruction) {
|
|
Primitive::Type value_type = instruction->GetComponentType();
|
|
|
|
bool needs_write_barrier =
|
|
CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
|
|
bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck();
|
|
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(
|
|
instruction,
|
|
may_need_runtime_call_for_type_check ?
|
|
LocationSummary::kCallOnSlowPath :
|
|
LocationSummary::kNoCall);
|
|
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
|
|
if (Primitive::IsFloatingPointType(instruction->InputAt(2)->GetType())) {
|
|
locations->SetInAt(2, FpuRegisterOrConstantForStore(instruction->InputAt(2)));
|
|
} else {
|
|
locations->SetInAt(2, RegisterOrZeroConstant(instruction->InputAt(2)));
|
|
}
|
|
if (needs_write_barrier) {
|
|
// Temporary register for the write barrier.
|
|
locations->AddTemp(Location::RequiresRegister()); // Possibly used for ref. poisoning too.
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitArraySet(HArraySet* instruction) {
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
Register obj = locations->InAt(0).AsRegister<Register>();
|
|
Location index = locations->InAt(1);
|
|
Location value_location = locations->InAt(2);
|
|
Primitive::Type value_type = instruction->GetComponentType();
|
|
bool may_need_runtime_call_for_type_check = instruction->NeedsTypeCheck();
|
|
bool needs_write_barrier =
|
|
CodeGenerator::StoreNeedsWriteBarrier(value_type, instruction->GetValue());
|
|
auto null_checker = GetImplicitNullChecker(instruction, codegen_);
|
|
Register base_reg = index.IsConstant() ? obj : TMP;
|
|
|
|
switch (value_type) {
|
|
case Primitive::kPrimBoolean:
|
|
case Primitive::kPrimByte: {
|
|
uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint8_t)).Uint32Value();
|
|
if (index.IsConstant()) {
|
|
data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_1;
|
|
} else {
|
|
__ Addu(base_reg, obj, index.AsRegister<Register>());
|
|
}
|
|
if (value_location.IsConstant()) {
|
|
int32_t value = CodeGenerator::GetInt32ValueOf(value_location.GetConstant());
|
|
__ StoreConstToOffset(kStoreByte, value, base_reg, data_offset, TMP, null_checker);
|
|
} else {
|
|
Register value = value_location.AsRegister<Register>();
|
|
__ StoreToOffset(kStoreByte, value, base_reg, data_offset, null_checker);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimShort:
|
|
case Primitive::kPrimChar: {
|
|
uint32_t data_offset = mirror::Array::DataOffset(sizeof(uint16_t)).Uint32Value();
|
|
if (index.IsConstant()) {
|
|
data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_2;
|
|
} else {
|
|
__ ShiftAndAdd(base_reg, index.AsRegister<Register>(), obj, TIMES_2, base_reg);
|
|
}
|
|
if (value_location.IsConstant()) {
|
|
int32_t value = CodeGenerator::GetInt32ValueOf(value_location.GetConstant());
|
|
__ StoreConstToOffset(kStoreHalfword, value, base_reg, data_offset, TMP, null_checker);
|
|
} else {
|
|
Register value = value_location.AsRegister<Register>();
|
|
__ StoreToOffset(kStoreHalfword, value, base_reg, data_offset, null_checker);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimInt: {
|
|
uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
|
|
if (index.IsConstant()) {
|
|
data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4;
|
|
} else {
|
|
__ ShiftAndAdd(base_reg, index.AsRegister<Register>(), obj, TIMES_4, base_reg);
|
|
}
|
|
if (value_location.IsConstant()) {
|
|
int32_t value = CodeGenerator::GetInt32ValueOf(value_location.GetConstant());
|
|
__ StoreConstToOffset(kStoreWord, value, base_reg, data_offset, TMP, null_checker);
|
|
} else {
|
|
Register value = value_location.AsRegister<Register>();
|
|
__ StoreToOffset(kStoreWord, value, base_reg, data_offset, null_checker);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimNot: {
|
|
if (value_location.IsConstant()) {
|
|
// Just setting null.
|
|
uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
|
|
if (index.IsConstant()) {
|
|
data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4;
|
|
} else {
|
|
__ ShiftAndAdd(base_reg, index.AsRegister<Register>(), obj, TIMES_4, base_reg);
|
|
}
|
|
int32_t value = CodeGenerator::GetInt32ValueOf(value_location.GetConstant());
|
|
DCHECK_EQ(value, 0);
|
|
__ StoreConstToOffset(kStoreWord, value, base_reg, data_offset, TMP, null_checker);
|
|
DCHECK(!needs_write_barrier);
|
|
DCHECK(!may_need_runtime_call_for_type_check);
|
|
break;
|
|
}
|
|
|
|
DCHECK(needs_write_barrier);
|
|
Register value = value_location.AsRegister<Register>();
|
|
Register temp1 = locations->GetTemp(0).AsRegister<Register>();
|
|
Register temp2 = TMP; // Doesn't need to survive slow path.
|
|
uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
|
|
uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
|
|
uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
|
|
MipsLabel done;
|
|
SlowPathCodeMIPS* slow_path = nullptr;
|
|
|
|
if (may_need_runtime_call_for_type_check) {
|
|
slow_path = new (GetGraph()->GetArena()) ArraySetSlowPathMIPS(instruction);
|
|
codegen_->AddSlowPath(slow_path);
|
|
if (instruction->GetValueCanBeNull()) {
|
|
MipsLabel non_zero;
|
|
__ Bnez(value, &non_zero);
|
|
uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
|
|
if (index.IsConstant()) {
|
|
data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4;
|
|
} else {
|
|
__ ShiftAndAdd(base_reg, index.AsRegister<Register>(), obj, TIMES_4, base_reg);
|
|
}
|
|
__ StoreToOffset(kStoreWord, value, base_reg, data_offset, null_checker);
|
|
__ B(&done);
|
|
__ Bind(&non_zero);
|
|
}
|
|
|
|
// Note that when read barriers are enabled, the type checks
|
|
// are performed without read barriers. This is fine, even in
|
|
// the case where a class object is in the from-space after
|
|
// the flip, as a comparison involving such a type would not
|
|
// produce a false positive; it may of course produce a false
|
|
// negative, in which case we would take the ArraySet slow
|
|
// path.
|
|
|
|
// /* HeapReference<Class> */ temp1 = obj->klass_
|
|
__ LoadFromOffset(kLoadWord, temp1, obj, class_offset, null_checker);
|
|
__ MaybeUnpoisonHeapReference(temp1);
|
|
|
|
// /* HeapReference<Class> */ temp1 = temp1->component_type_
|
|
__ LoadFromOffset(kLoadWord, temp1, temp1, component_offset);
|
|
// /* HeapReference<Class> */ temp2 = value->klass_
|
|
__ LoadFromOffset(kLoadWord, temp2, value, class_offset);
|
|
// If heap poisoning is enabled, no need to unpoison `temp1`
|
|
// nor `temp2`, as we are comparing two poisoned references.
|
|
|
|
if (instruction->StaticTypeOfArrayIsObjectArray()) {
|
|
MipsLabel do_put;
|
|
__ Beq(temp1, temp2, &do_put);
|
|
// If heap poisoning is enabled, the `temp1` reference has
|
|
// not been unpoisoned yet; unpoison it now.
|
|
__ MaybeUnpoisonHeapReference(temp1);
|
|
|
|
// /* HeapReference<Class> */ temp1 = temp1->super_class_
|
|
__ LoadFromOffset(kLoadWord, temp1, temp1, super_offset);
|
|
// If heap poisoning is enabled, no need to unpoison
|
|
// `temp1`, as we are comparing against null below.
|
|
__ Bnez(temp1, slow_path->GetEntryLabel());
|
|
__ Bind(&do_put);
|
|
} else {
|
|
__ Bne(temp1, temp2, slow_path->GetEntryLabel());
|
|
}
|
|
}
|
|
|
|
Register source = value;
|
|
if (kPoisonHeapReferences) {
|
|
// Note that in the case where `value` is a null reference,
|
|
// we do not enter this block, as a null reference does not
|
|
// need poisoning.
|
|
__ Move(temp1, value);
|
|
__ PoisonHeapReference(temp1);
|
|
source = temp1;
|
|
}
|
|
|
|
uint32_t data_offset = mirror::Array::DataOffset(sizeof(int32_t)).Uint32Value();
|
|
if (index.IsConstant()) {
|
|
data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4;
|
|
} else {
|
|
__ ShiftAndAdd(base_reg, index.AsRegister<Register>(), obj, TIMES_4, base_reg);
|
|
}
|
|
__ StoreToOffset(kStoreWord, source, base_reg, data_offset);
|
|
|
|
if (!may_need_runtime_call_for_type_check) {
|
|
codegen_->MaybeRecordImplicitNullCheck(instruction);
|
|
}
|
|
|
|
codegen_->MarkGCCard(obj, value, instruction->GetValueCanBeNull());
|
|
|
|
if (done.IsLinked()) {
|
|
__ Bind(&done);
|
|
}
|
|
|
|
if (slow_path != nullptr) {
|
|
__ Bind(slow_path->GetExitLabel());
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimLong: {
|
|
uint32_t data_offset = mirror::Array::DataOffset(sizeof(int64_t)).Uint32Value();
|
|
if (index.IsConstant()) {
|
|
data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8;
|
|
} else {
|
|
__ ShiftAndAdd(base_reg, index.AsRegister<Register>(), obj, TIMES_8, base_reg);
|
|
}
|
|
if (value_location.IsConstant()) {
|
|
int64_t value = CodeGenerator::GetInt64ValueOf(value_location.GetConstant());
|
|
__ StoreConstToOffset(kStoreDoubleword, value, base_reg, data_offset, TMP, null_checker);
|
|
} else {
|
|
Register value = value_location.AsRegisterPairLow<Register>();
|
|
__ StoreToOffset(kStoreDoubleword, value, base_reg, data_offset, null_checker);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimFloat: {
|
|
uint32_t data_offset = mirror::Array::DataOffset(sizeof(float)).Uint32Value();
|
|
if (index.IsConstant()) {
|
|
data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_4;
|
|
} else {
|
|
__ ShiftAndAdd(base_reg, index.AsRegister<Register>(), obj, TIMES_4, base_reg);
|
|
}
|
|
if (value_location.IsConstant()) {
|
|
int32_t value = CodeGenerator::GetInt32ValueOf(value_location.GetConstant());
|
|
__ StoreConstToOffset(kStoreWord, value, base_reg, data_offset, TMP, null_checker);
|
|
} else {
|
|
FRegister value = value_location.AsFpuRegister<FRegister>();
|
|
__ StoreSToOffset(value, base_reg, data_offset, null_checker);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimDouble: {
|
|
uint32_t data_offset = mirror::Array::DataOffset(sizeof(double)).Uint32Value();
|
|
if (index.IsConstant()) {
|
|
data_offset += index.GetConstant()->AsIntConstant()->GetValue() << TIMES_8;
|
|
} else {
|
|
__ ShiftAndAdd(base_reg, index.AsRegister<Register>(), obj, TIMES_8, base_reg);
|
|
}
|
|
if (value_location.IsConstant()) {
|
|
int64_t value = CodeGenerator::GetInt64ValueOf(value_location.GetConstant());
|
|
__ StoreConstToOffset(kStoreDoubleword, value, base_reg, data_offset, TMP, null_checker);
|
|
} else {
|
|
FRegister value = value_location.AsFpuRegister<FRegister>();
|
|
__ StoreDToOffset(value, base_reg, data_offset, null_checker);
|
|
}
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimVoid:
|
|
LOG(FATAL) << "Unreachable type " << instruction->GetType();
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitBoundsCheck(HBoundsCheck* instruction) {
|
|
RegisterSet caller_saves = RegisterSet::Empty();
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
|
|
caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
|
|
LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction, caller_saves);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::RequiresRegister());
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitBoundsCheck(HBoundsCheck* instruction) {
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
BoundsCheckSlowPathMIPS* slow_path =
|
|
new (GetGraph()->GetArena()) BoundsCheckSlowPathMIPS(instruction);
|
|
codegen_->AddSlowPath(slow_path);
|
|
|
|
Register index = locations->InAt(0).AsRegister<Register>();
|
|
Register length = locations->InAt(1).AsRegister<Register>();
|
|
|
|
// length is limited by the maximum positive signed 32-bit integer.
|
|
// Unsigned comparison of length and index checks for index < 0
|
|
// and for length <= index simultaneously.
|
|
__ Bgeu(index, length, slow_path->GetEntryLabel());
|
|
}
|
|
|
|
// Temp is used for read barrier.
|
|
static size_t NumberOfInstanceOfTemps(TypeCheckKind type_check_kind) {
|
|
if (kEmitCompilerReadBarrier &&
|
|
(kUseBakerReadBarrier ||
|
|
type_check_kind == TypeCheckKind::kAbstractClassCheck ||
|
|
type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
|
|
type_check_kind == TypeCheckKind::kArrayObjectCheck)) {
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
// Extra temp is used for read barrier.
|
|
static size_t NumberOfCheckCastTemps(TypeCheckKind type_check_kind) {
|
|
return 1 + NumberOfInstanceOfTemps(type_check_kind);
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitCheckCast(HCheckCast* instruction) {
|
|
LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
|
|
bool throws_into_catch = instruction->CanThrowIntoCatchBlock();
|
|
|
|
TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
|
|
switch (type_check_kind) {
|
|
case TypeCheckKind::kExactCheck:
|
|
case TypeCheckKind::kAbstractClassCheck:
|
|
case TypeCheckKind::kClassHierarchyCheck:
|
|
case TypeCheckKind::kArrayObjectCheck:
|
|
call_kind = (throws_into_catch || kEmitCompilerReadBarrier)
|
|
? LocationSummary::kCallOnSlowPath
|
|
: LocationSummary::kNoCall; // In fact, call on a fatal (non-returning) slow path.
|
|
break;
|
|
case TypeCheckKind::kArrayCheck:
|
|
case TypeCheckKind::kUnresolvedCheck:
|
|
case TypeCheckKind::kInterfaceCheck:
|
|
call_kind = LocationSummary::kCallOnSlowPath;
|
|
break;
|
|
}
|
|
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::RequiresRegister());
|
|
locations->AddRegisterTemps(NumberOfCheckCastTemps(type_check_kind));
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitCheckCast(HCheckCast* instruction) {
|
|
TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
Location obj_loc = locations->InAt(0);
|
|
Register obj = obj_loc.AsRegister<Register>();
|
|
Register cls = locations->InAt(1).AsRegister<Register>();
|
|
Location temp_loc = locations->GetTemp(0);
|
|
Register temp = temp_loc.AsRegister<Register>();
|
|
const size_t num_temps = NumberOfCheckCastTemps(type_check_kind);
|
|
DCHECK_LE(num_temps, 2u);
|
|
Location maybe_temp2_loc = (num_temps >= 2) ? locations->GetTemp(1) : Location::NoLocation();
|
|
const uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
|
|
const uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
|
|
const uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
|
|
const uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
|
|
const uint32_t iftable_offset = mirror::Class::IfTableOffset().Uint32Value();
|
|
const uint32_t array_length_offset = mirror::Array::LengthOffset().Uint32Value();
|
|
const uint32_t object_array_data_offset =
|
|
mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value();
|
|
MipsLabel done;
|
|
|
|
// Always false for read barriers since we may need to go to the entrypoint for non-fatal cases
|
|
// from false negatives. The false negatives may come from avoiding read barriers below. Avoiding
|
|
// read barriers is done for performance and code size reasons.
|
|
bool is_type_check_slow_path_fatal = false;
|
|
if (!kEmitCompilerReadBarrier) {
|
|
is_type_check_slow_path_fatal =
|
|
(type_check_kind == TypeCheckKind::kExactCheck ||
|
|
type_check_kind == TypeCheckKind::kAbstractClassCheck ||
|
|
type_check_kind == TypeCheckKind::kClassHierarchyCheck ||
|
|
type_check_kind == TypeCheckKind::kArrayObjectCheck) &&
|
|
!instruction->CanThrowIntoCatchBlock();
|
|
}
|
|
SlowPathCodeMIPS* slow_path =
|
|
new (GetGraph()->GetArena()) TypeCheckSlowPathMIPS(instruction,
|
|
is_type_check_slow_path_fatal);
|
|
codegen_->AddSlowPath(slow_path);
|
|
|
|
// Avoid this check if we know `obj` is not null.
|
|
if (instruction->MustDoNullCheck()) {
|
|
__ Beqz(obj, &done);
|
|
}
|
|
|
|
switch (type_check_kind) {
|
|
case TypeCheckKind::kExactCheck:
|
|
case TypeCheckKind::kArrayCheck: {
|
|
// /* HeapReference<Class> */ temp = obj->klass_
|
|
GenerateReferenceLoadTwoRegisters(instruction,
|
|
temp_loc,
|
|
obj_loc,
|
|
class_offset,
|
|
maybe_temp2_loc,
|
|
kWithoutReadBarrier);
|
|
// Jump to slow path for throwing the exception or doing a
|
|
// more involved array check.
|
|
__ Bne(temp, cls, slow_path->GetEntryLabel());
|
|
break;
|
|
}
|
|
|
|
case TypeCheckKind::kAbstractClassCheck: {
|
|
// /* HeapReference<Class> */ temp = obj->klass_
|
|
GenerateReferenceLoadTwoRegisters(instruction,
|
|
temp_loc,
|
|
obj_loc,
|
|
class_offset,
|
|
maybe_temp2_loc,
|
|
kWithoutReadBarrier);
|
|
// If the class is abstract, we eagerly fetch the super class of the
|
|
// object to avoid doing a comparison we know will fail.
|
|
MipsLabel loop;
|
|
__ Bind(&loop);
|
|
// /* HeapReference<Class> */ temp = temp->super_class_
|
|
GenerateReferenceLoadOneRegister(instruction,
|
|
temp_loc,
|
|
super_offset,
|
|
maybe_temp2_loc,
|
|
kWithoutReadBarrier);
|
|
// If the class reference currently in `temp` is null, jump to the slow path to throw the
|
|
// exception.
|
|
__ Beqz(temp, slow_path->GetEntryLabel());
|
|
// Otherwise, compare the classes.
|
|
__ Bne(temp, cls, &loop);
|
|
break;
|
|
}
|
|
|
|
case TypeCheckKind::kClassHierarchyCheck: {
|
|
// /* HeapReference<Class> */ temp = obj->klass_
|
|
GenerateReferenceLoadTwoRegisters(instruction,
|
|
temp_loc,
|
|
obj_loc,
|
|
class_offset,
|
|
maybe_temp2_loc,
|
|
kWithoutReadBarrier);
|
|
// Walk over the class hierarchy to find a match.
|
|
MipsLabel loop;
|
|
__ Bind(&loop);
|
|
__ Beq(temp, cls, &done);
|
|
// /* HeapReference<Class> */ temp = temp->super_class_
|
|
GenerateReferenceLoadOneRegister(instruction,
|
|
temp_loc,
|
|
super_offset,
|
|
maybe_temp2_loc,
|
|
kWithoutReadBarrier);
|
|
// If the class reference currently in `temp` is null, jump to the slow path to throw the
|
|
// exception. Otherwise, jump to the beginning of the loop.
|
|
__ Bnez(temp, &loop);
|
|
__ B(slow_path->GetEntryLabel());
|
|
break;
|
|
}
|
|
|
|
case TypeCheckKind::kArrayObjectCheck: {
|
|
// /* HeapReference<Class> */ temp = obj->klass_
|
|
GenerateReferenceLoadTwoRegisters(instruction,
|
|
temp_loc,
|
|
obj_loc,
|
|
class_offset,
|
|
maybe_temp2_loc,
|
|
kWithoutReadBarrier);
|
|
// Do an exact check.
|
|
__ Beq(temp, cls, &done);
|
|
// Otherwise, we need to check that the object's class is a non-primitive array.
|
|
// /* HeapReference<Class> */ temp = temp->component_type_
|
|
GenerateReferenceLoadOneRegister(instruction,
|
|
temp_loc,
|
|
component_offset,
|
|
maybe_temp2_loc,
|
|
kWithoutReadBarrier);
|
|
// If the component type is null, jump to the slow path to throw the exception.
|
|
__ Beqz(temp, slow_path->GetEntryLabel());
|
|
// Otherwise, the object is indeed an array, further check that this component
|
|
// type is not a primitive type.
|
|
__ LoadFromOffset(kLoadUnsignedHalfword, temp, temp, primitive_offset);
|
|
static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
|
|
__ Bnez(temp, slow_path->GetEntryLabel());
|
|
break;
|
|
}
|
|
|
|
case TypeCheckKind::kUnresolvedCheck:
|
|
// We always go into the type check slow path for the unresolved check case.
|
|
// We cannot directly call the CheckCast runtime entry point
|
|
// without resorting to a type checking slow path here (i.e. by
|
|
// calling InvokeRuntime directly), as it would require to
|
|
// assign fixed registers for the inputs of this HInstanceOf
|
|
// instruction (following the runtime calling convention), which
|
|
// might be cluttered by the potential first read barrier
|
|
// emission at the beginning of this method.
|
|
__ B(slow_path->GetEntryLabel());
|
|
break;
|
|
|
|
case TypeCheckKind::kInterfaceCheck: {
|
|
// Avoid read barriers to improve performance of the fast path. We can not get false
|
|
// positives by doing this.
|
|
// /* HeapReference<Class> */ temp = obj->klass_
|
|
GenerateReferenceLoadTwoRegisters(instruction,
|
|
temp_loc,
|
|
obj_loc,
|
|
class_offset,
|
|
maybe_temp2_loc,
|
|
kWithoutReadBarrier);
|
|
// /* HeapReference<Class> */ temp = temp->iftable_
|
|
GenerateReferenceLoadTwoRegisters(instruction,
|
|
temp_loc,
|
|
temp_loc,
|
|
iftable_offset,
|
|
maybe_temp2_loc,
|
|
kWithoutReadBarrier);
|
|
// Iftable is never null.
|
|
__ Lw(TMP, temp, array_length_offset);
|
|
// Loop through the iftable and check if any class matches.
|
|
MipsLabel loop;
|
|
__ Bind(&loop);
|
|
__ Addiu(temp, temp, 2 * kHeapReferenceSize); // Possibly in delay slot on R2.
|
|
__ Beqz(TMP, slow_path->GetEntryLabel());
|
|
__ Lw(AT, temp, object_array_data_offset - 2 * kHeapReferenceSize);
|
|
__ MaybeUnpoisonHeapReference(AT);
|
|
// Go to next interface.
|
|
__ Addiu(TMP, TMP, -2);
|
|
// Compare the classes and continue the loop if they do not match.
|
|
__ Bne(AT, cls, &loop);
|
|
break;
|
|
}
|
|
}
|
|
|
|
__ Bind(&done);
|
|
__ Bind(slow_path->GetExitLabel());
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitClinitCheck(HClinitCheck* check) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(check, LocationSummary::kCallOnSlowPath);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
if (check->HasUses()) {
|
|
locations->SetOut(Location::SameAsFirstInput());
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitClinitCheck(HClinitCheck* check) {
|
|
// We assume the class is not null.
|
|
SlowPathCodeMIPS* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathMIPS(
|
|
check->GetLoadClass(),
|
|
check,
|
|
check->GetDexPc(),
|
|
true);
|
|
codegen_->AddSlowPath(slow_path);
|
|
GenerateClassInitializationCheck(slow_path,
|
|
check->GetLocations()->InAt(0).AsRegister<Register>());
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitCompare(HCompare* compare) {
|
|
Primitive::Type in_type = compare->InputAt(0)->GetType();
|
|
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(compare, LocationSummary::kNoCall);
|
|
|
|
switch (in_type) {
|
|
case Primitive::kPrimBoolean:
|
|
case Primitive::kPrimByte:
|
|
case Primitive::kPrimShort:
|
|
case Primitive::kPrimChar:
|
|
case Primitive::kPrimInt:
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::RequiresRegister());
|
|
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
|
|
break;
|
|
|
|
case Primitive::kPrimLong:
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::RequiresRegister());
|
|
// Output overlaps because it is written before doing the low comparison.
|
|
locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
|
|
break;
|
|
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimDouble:
|
|
locations->SetInAt(0, Location::RequiresFpuRegister());
|
|
locations->SetInAt(1, Location::RequiresFpuRegister());
|
|
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
|
|
break;
|
|
|
|
default:
|
|
LOG(FATAL) << "Unexpected type for compare operation " << in_type;
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitCompare(HCompare* instruction) {
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
Register res = locations->Out().AsRegister<Register>();
|
|
Primitive::Type in_type = instruction->InputAt(0)->GetType();
|
|
bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
|
|
|
|
// 0 if: left == right
|
|
// 1 if: left > right
|
|
// -1 if: left < right
|
|
switch (in_type) {
|
|
case Primitive::kPrimBoolean:
|
|
case Primitive::kPrimByte:
|
|
case Primitive::kPrimShort:
|
|
case Primitive::kPrimChar:
|
|
case Primitive::kPrimInt: {
|
|
Register lhs = locations->InAt(0).AsRegister<Register>();
|
|
Register rhs = locations->InAt(1).AsRegister<Register>();
|
|
__ Slt(TMP, lhs, rhs);
|
|
__ Slt(res, rhs, lhs);
|
|
__ Subu(res, res, TMP);
|
|
break;
|
|
}
|
|
case Primitive::kPrimLong: {
|
|
MipsLabel done;
|
|
Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>();
|
|
Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>();
|
|
Register rhs_high = locations->InAt(1).AsRegisterPairHigh<Register>();
|
|
Register rhs_low = locations->InAt(1).AsRegisterPairLow<Register>();
|
|
// TODO: more efficient (direct) comparison with a constant.
|
|
__ Slt(TMP, lhs_high, rhs_high);
|
|
__ Slt(AT, rhs_high, lhs_high); // Inverted: is actually gt.
|
|
__ Subu(res, AT, TMP); // Result -1:1:0 for [ <, >, == ].
|
|
__ Bnez(res, &done); // If we compared ==, check if lower bits are also equal.
|
|
__ Sltu(TMP, lhs_low, rhs_low);
|
|
__ Sltu(AT, rhs_low, lhs_low); // Inverted: is actually gt.
|
|
__ Subu(res, AT, TMP); // Result -1:1:0 for [ <, >, == ].
|
|
__ Bind(&done);
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimFloat: {
|
|
bool gt_bias = instruction->IsGtBias();
|
|
FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>();
|
|
FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>();
|
|
MipsLabel done;
|
|
if (isR6) {
|
|
__ CmpEqS(FTMP, lhs, rhs);
|
|
__ LoadConst32(res, 0);
|
|
__ Bc1nez(FTMP, &done);
|
|
if (gt_bias) {
|
|
__ CmpLtS(FTMP, lhs, rhs);
|
|
__ LoadConst32(res, -1);
|
|
__ Bc1nez(FTMP, &done);
|
|
__ LoadConst32(res, 1);
|
|
} else {
|
|
__ CmpLtS(FTMP, rhs, lhs);
|
|
__ LoadConst32(res, 1);
|
|
__ Bc1nez(FTMP, &done);
|
|
__ LoadConst32(res, -1);
|
|
}
|
|
} else {
|
|
if (gt_bias) {
|
|
__ ColtS(0, lhs, rhs);
|
|
__ LoadConst32(res, -1);
|
|
__ Bc1t(0, &done);
|
|
__ CeqS(0, lhs, rhs);
|
|
__ LoadConst32(res, 1);
|
|
__ Movt(res, ZERO, 0);
|
|
} else {
|
|
__ ColtS(0, rhs, lhs);
|
|
__ LoadConst32(res, 1);
|
|
__ Bc1t(0, &done);
|
|
__ CeqS(0, lhs, rhs);
|
|
__ LoadConst32(res, -1);
|
|
__ Movt(res, ZERO, 0);
|
|
}
|
|
}
|
|
__ Bind(&done);
|
|
break;
|
|
}
|
|
case Primitive::kPrimDouble: {
|
|
bool gt_bias = instruction->IsGtBias();
|
|
FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>();
|
|
FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>();
|
|
MipsLabel done;
|
|
if (isR6) {
|
|
__ CmpEqD(FTMP, lhs, rhs);
|
|
__ LoadConst32(res, 0);
|
|
__ Bc1nez(FTMP, &done);
|
|
if (gt_bias) {
|
|
__ CmpLtD(FTMP, lhs, rhs);
|
|
__ LoadConst32(res, -1);
|
|
__ Bc1nez(FTMP, &done);
|
|
__ LoadConst32(res, 1);
|
|
} else {
|
|
__ CmpLtD(FTMP, rhs, lhs);
|
|
__ LoadConst32(res, 1);
|
|
__ Bc1nez(FTMP, &done);
|
|
__ LoadConst32(res, -1);
|
|
}
|
|
} else {
|
|
if (gt_bias) {
|
|
__ ColtD(0, lhs, rhs);
|
|
__ LoadConst32(res, -1);
|
|
__ Bc1t(0, &done);
|
|
__ CeqD(0, lhs, rhs);
|
|
__ LoadConst32(res, 1);
|
|
__ Movt(res, ZERO, 0);
|
|
} else {
|
|
__ ColtD(0, rhs, lhs);
|
|
__ LoadConst32(res, 1);
|
|
__ Bc1t(0, &done);
|
|
__ CeqD(0, lhs, rhs);
|
|
__ LoadConst32(res, -1);
|
|
__ Movt(res, ZERO, 0);
|
|
}
|
|
}
|
|
__ Bind(&done);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
LOG(FATAL) << "Unimplemented compare type " << in_type;
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderMIPS::HandleCondition(HCondition* instruction) {
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
|
|
switch (instruction->InputAt(0)->GetType()) {
|
|
default:
|
|
case Primitive::kPrimLong:
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::RegisterOrConstant(instruction->InputAt(1)));
|
|
break;
|
|
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimDouble:
|
|
locations->SetInAt(0, Location::RequiresFpuRegister());
|
|
locations->SetInAt(1, Location::RequiresFpuRegister());
|
|
break;
|
|
}
|
|
if (!instruction->IsEmittedAtUseSite()) {
|
|
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::HandleCondition(HCondition* instruction) {
|
|
if (instruction->IsEmittedAtUseSite()) {
|
|
return;
|
|
}
|
|
|
|
Primitive::Type type = instruction->InputAt(0)->GetType();
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
|
|
switch (type) {
|
|
default:
|
|
// Integer case.
|
|
GenerateIntCompare(instruction->GetCondition(), locations);
|
|
return;
|
|
|
|
case Primitive::kPrimLong:
|
|
GenerateLongCompare(instruction->GetCondition(), locations);
|
|
return;
|
|
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimDouble:
|
|
GenerateFpCompare(instruction->GetCondition(), instruction->IsGtBias(), type, locations);
|
|
return;
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::DivRemOneOrMinusOne(HBinaryOperation* instruction) {
|
|
DCHECK(instruction->IsDiv() || instruction->IsRem());
|
|
DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimInt);
|
|
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
Location second = locations->InAt(1);
|
|
DCHECK(second.IsConstant());
|
|
|
|
Register out = locations->Out().AsRegister<Register>();
|
|
Register dividend = locations->InAt(0).AsRegister<Register>();
|
|
int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
|
|
DCHECK(imm == 1 || imm == -1);
|
|
|
|
if (instruction->IsRem()) {
|
|
__ Move(out, ZERO);
|
|
} else {
|
|
if (imm == -1) {
|
|
__ Subu(out, ZERO, dividend);
|
|
} else if (out != dividend) {
|
|
__ Move(out, dividend);
|
|
}
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::DivRemByPowerOfTwo(HBinaryOperation* instruction) {
|
|
DCHECK(instruction->IsDiv() || instruction->IsRem());
|
|
DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimInt);
|
|
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
Location second = locations->InAt(1);
|
|
DCHECK(second.IsConstant());
|
|
|
|
Register out = locations->Out().AsRegister<Register>();
|
|
Register dividend = locations->InAt(0).AsRegister<Register>();
|
|
int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
|
|
uint32_t abs_imm = static_cast<uint32_t>(AbsOrMin(imm));
|
|
int ctz_imm = CTZ(abs_imm);
|
|
|
|
if (instruction->IsDiv()) {
|
|
if (ctz_imm == 1) {
|
|
// Fast path for division by +/-2, which is very common.
|
|
__ Srl(TMP, dividend, 31);
|
|
} else {
|
|
__ Sra(TMP, dividend, 31);
|
|
__ Srl(TMP, TMP, 32 - ctz_imm);
|
|
}
|
|
__ Addu(out, dividend, TMP);
|
|
__ Sra(out, out, ctz_imm);
|
|
if (imm < 0) {
|
|
__ Subu(out, ZERO, out);
|
|
}
|
|
} else {
|
|
if (ctz_imm == 1) {
|
|
// Fast path for modulo +/-2, which is very common.
|
|
__ Sra(TMP, dividend, 31);
|
|
__ Subu(out, dividend, TMP);
|
|
__ Andi(out, out, 1);
|
|
__ Addu(out, out, TMP);
|
|
} else {
|
|
__ Sra(TMP, dividend, 31);
|
|
__ Srl(TMP, TMP, 32 - ctz_imm);
|
|
__ Addu(out, dividend, TMP);
|
|
if (IsUint<16>(abs_imm - 1)) {
|
|
__ Andi(out, out, abs_imm - 1);
|
|
} else {
|
|
__ Sll(out, out, 32 - ctz_imm);
|
|
__ Srl(out, out, 32 - ctz_imm);
|
|
}
|
|
__ Subu(out, out, TMP);
|
|
}
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::GenerateDivRemWithAnyConstant(HBinaryOperation* instruction) {
|
|
DCHECK(instruction->IsDiv() || instruction->IsRem());
|
|
DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimInt);
|
|
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
Location second = locations->InAt(1);
|
|
DCHECK(second.IsConstant());
|
|
|
|
Register out = locations->Out().AsRegister<Register>();
|
|
Register dividend = locations->InAt(0).AsRegister<Register>();
|
|
int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
|
|
|
|
int64_t magic;
|
|
int shift;
|
|
CalculateMagicAndShiftForDivRem(imm, false /* is_long */, &magic, &shift);
|
|
|
|
bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
|
|
|
|
__ LoadConst32(TMP, magic);
|
|
if (isR6) {
|
|
__ MuhR6(TMP, dividend, TMP);
|
|
} else {
|
|
__ MultR2(dividend, TMP);
|
|
__ Mfhi(TMP);
|
|
}
|
|
if (imm > 0 && magic < 0) {
|
|
__ Addu(TMP, TMP, dividend);
|
|
} else if (imm < 0 && magic > 0) {
|
|
__ Subu(TMP, TMP, dividend);
|
|
}
|
|
|
|
if (shift != 0) {
|
|
__ Sra(TMP, TMP, shift);
|
|
}
|
|
|
|
if (instruction->IsDiv()) {
|
|
__ Sra(out, TMP, 31);
|
|
__ Subu(out, TMP, out);
|
|
} else {
|
|
__ Sra(AT, TMP, 31);
|
|
__ Subu(AT, TMP, AT);
|
|
__ LoadConst32(TMP, imm);
|
|
if (isR6) {
|
|
__ MulR6(TMP, AT, TMP);
|
|
} else {
|
|
__ MulR2(TMP, AT, TMP);
|
|
}
|
|
__ Subu(out, dividend, TMP);
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::GenerateDivRemIntegral(HBinaryOperation* instruction) {
|
|
DCHECK(instruction->IsDiv() || instruction->IsRem());
|
|
DCHECK_EQ(instruction->GetResultType(), Primitive::kPrimInt);
|
|
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
Register out = locations->Out().AsRegister<Register>();
|
|
Location second = locations->InAt(1);
|
|
|
|
if (second.IsConstant()) {
|
|
int32_t imm = second.GetConstant()->AsIntConstant()->GetValue();
|
|
if (imm == 0) {
|
|
// Do not generate anything. DivZeroCheck would prevent any code to be executed.
|
|
} else if (imm == 1 || imm == -1) {
|
|
DivRemOneOrMinusOne(instruction);
|
|
} else if (IsPowerOfTwo(AbsOrMin(imm))) {
|
|
DivRemByPowerOfTwo(instruction);
|
|
} else {
|
|
DCHECK(imm <= -2 || imm >= 2);
|
|
GenerateDivRemWithAnyConstant(instruction);
|
|
}
|
|
} else {
|
|
Register dividend = locations->InAt(0).AsRegister<Register>();
|
|
Register divisor = second.AsRegister<Register>();
|
|
bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
|
|
if (instruction->IsDiv()) {
|
|
if (isR6) {
|
|
__ DivR6(out, dividend, divisor);
|
|
} else {
|
|
__ DivR2(out, dividend, divisor);
|
|
}
|
|
} else {
|
|
if (isR6) {
|
|
__ ModR6(out, dividend, divisor);
|
|
} else {
|
|
__ ModR2(out, dividend, divisor);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitDiv(HDiv* div) {
|
|
Primitive::Type type = div->GetResultType();
|
|
LocationSummary::CallKind call_kind = (type == Primitive::kPrimLong)
|
|
? LocationSummary::kCallOnMainOnly
|
|
: LocationSummary::kNoCall;
|
|
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(div, call_kind);
|
|
|
|
switch (type) {
|
|
case Primitive::kPrimInt:
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::RegisterOrConstant(div->InputAt(1)));
|
|
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
|
|
break;
|
|
|
|
case Primitive::kPrimLong: {
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
locations->SetInAt(0, Location::RegisterPairLocation(
|
|
calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
|
|
locations->SetInAt(1, Location::RegisterPairLocation(
|
|
calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
|
|
locations->SetOut(calling_convention.GetReturnLocation(type));
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimDouble:
|
|
locations->SetInAt(0, Location::RequiresFpuRegister());
|
|
locations->SetInAt(1, Location::RequiresFpuRegister());
|
|
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
|
|
break;
|
|
|
|
default:
|
|
LOG(FATAL) << "Unexpected div type " << type;
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitDiv(HDiv* instruction) {
|
|
Primitive::Type type = instruction->GetType();
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
|
|
switch (type) {
|
|
case Primitive::kPrimInt:
|
|
GenerateDivRemIntegral(instruction);
|
|
break;
|
|
case Primitive::kPrimLong: {
|
|
codegen_->InvokeRuntime(kQuickLdiv, instruction, instruction->GetDexPc());
|
|
CheckEntrypointTypes<kQuickLdiv, int64_t, int64_t, int64_t>();
|
|
break;
|
|
}
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimDouble: {
|
|
FRegister dst = locations->Out().AsFpuRegister<FRegister>();
|
|
FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>();
|
|
FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>();
|
|
if (type == Primitive::kPrimFloat) {
|
|
__ DivS(dst, lhs, rhs);
|
|
} else {
|
|
__ DivD(dst, lhs, rhs);
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
LOG(FATAL) << "Unexpected div type " << type;
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitDivZeroCheck(HDivZeroCheck* instruction) {
|
|
LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
|
|
locations->SetInAt(0, Location::RegisterOrConstant(instruction->InputAt(0)));
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitDivZeroCheck(HDivZeroCheck* instruction) {
|
|
SlowPathCodeMIPS* slow_path = new (GetGraph()->GetArena()) DivZeroCheckSlowPathMIPS(instruction);
|
|
codegen_->AddSlowPath(slow_path);
|
|
Location value = instruction->GetLocations()->InAt(0);
|
|
Primitive::Type type = instruction->GetType();
|
|
|
|
switch (type) {
|
|
case Primitive::kPrimBoolean:
|
|
case Primitive::kPrimByte:
|
|
case Primitive::kPrimChar:
|
|
case Primitive::kPrimShort:
|
|
case Primitive::kPrimInt: {
|
|
if (value.IsConstant()) {
|
|
if (value.GetConstant()->AsIntConstant()->GetValue() == 0) {
|
|
__ B(slow_path->GetEntryLabel());
|
|
} else {
|
|
// A division by a non-null constant is valid. We don't need to perform
|
|
// any check, so simply fall through.
|
|
}
|
|
} else {
|
|
DCHECK(value.IsRegister()) << value;
|
|
__ Beqz(value.AsRegister<Register>(), slow_path->GetEntryLabel());
|
|
}
|
|
break;
|
|
}
|
|
case Primitive::kPrimLong: {
|
|
if (value.IsConstant()) {
|
|
if (value.GetConstant()->AsLongConstant()->GetValue() == 0) {
|
|
__ B(slow_path->GetEntryLabel());
|
|
} else {
|
|
// A division by a non-null constant is valid. We don't need to perform
|
|
// any check, so simply fall through.
|
|
}
|
|
} else {
|
|
DCHECK(value.IsRegisterPair()) << value;
|
|
__ Or(TMP, value.AsRegisterPairHigh<Register>(), value.AsRegisterPairLow<Register>());
|
|
__ Beqz(TMP, slow_path->GetEntryLabel());
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
LOG(FATAL) << "Unexpected type " << type << " for DivZeroCheck.";
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitDoubleConstant(HDoubleConstant* constant) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
|
|
locations->SetOut(Location::ConstantLocation(constant));
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitDoubleConstant(HDoubleConstant* cst ATTRIBUTE_UNUSED) {
|
|
// Will be generated at use site.
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitExit(HExit* exit) {
|
|
exit->SetLocations(nullptr);
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitExit(HExit* exit ATTRIBUTE_UNUSED) {
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitFloatConstant(HFloatConstant* constant) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(constant, LocationSummary::kNoCall);
|
|
locations->SetOut(Location::ConstantLocation(constant));
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitFloatConstant(HFloatConstant* constant ATTRIBUTE_UNUSED) {
|
|
// Will be generated at use site.
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitGoto(HGoto* got) {
|
|
got->SetLocations(nullptr);
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::HandleGoto(HInstruction* got, HBasicBlock* successor) {
|
|
DCHECK(!successor->IsExitBlock());
|
|
HBasicBlock* block = got->GetBlock();
|
|
HInstruction* previous = got->GetPrevious();
|
|
HLoopInformation* info = block->GetLoopInformation();
|
|
|
|
if (info != nullptr && info->IsBackEdge(*block) && info->HasSuspendCheck()) {
|
|
codegen_->ClearSpillSlotsFromLoopPhisInStackMap(info->GetSuspendCheck());
|
|
GenerateSuspendCheck(info->GetSuspendCheck(), successor);
|
|
return;
|
|
}
|
|
if (block->IsEntryBlock() && (previous != nullptr) && previous->IsSuspendCheck()) {
|
|
GenerateSuspendCheck(previous->AsSuspendCheck(), nullptr);
|
|
}
|
|
if (!codegen_->GoesToNextBlock(block, successor)) {
|
|
__ B(codegen_->GetLabelOf(successor));
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitGoto(HGoto* got) {
|
|
HandleGoto(got, got->GetSuccessor());
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitTryBoundary(HTryBoundary* try_boundary) {
|
|
try_boundary->SetLocations(nullptr);
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitTryBoundary(HTryBoundary* try_boundary) {
|
|
HBasicBlock* successor = try_boundary->GetNormalFlowSuccessor();
|
|
if (!successor->IsExitBlock()) {
|
|
HandleGoto(try_boundary, successor);
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::GenerateIntCompare(IfCondition cond,
|
|
LocationSummary* locations) {
|
|
Register dst = locations->Out().AsRegister<Register>();
|
|
Register lhs = locations->InAt(0).AsRegister<Register>();
|
|
Location rhs_location = locations->InAt(1);
|
|
Register rhs_reg = ZERO;
|
|
int64_t rhs_imm = 0;
|
|
bool use_imm = rhs_location.IsConstant();
|
|
if (use_imm) {
|
|
rhs_imm = CodeGenerator::GetInt32ValueOf(rhs_location.GetConstant());
|
|
} else {
|
|
rhs_reg = rhs_location.AsRegister<Register>();
|
|
}
|
|
|
|
switch (cond) {
|
|
case kCondEQ:
|
|
case kCondNE:
|
|
if (use_imm && IsInt<16>(-rhs_imm)) {
|
|
if (rhs_imm == 0) {
|
|
if (cond == kCondEQ) {
|
|
__ Sltiu(dst, lhs, 1);
|
|
} else {
|
|
__ Sltu(dst, ZERO, lhs);
|
|
}
|
|
} else {
|
|
__ Addiu(dst, lhs, -rhs_imm);
|
|
if (cond == kCondEQ) {
|
|
__ Sltiu(dst, dst, 1);
|
|
} else {
|
|
__ Sltu(dst, ZERO, dst);
|
|
}
|
|
}
|
|
} else {
|
|
if (use_imm && IsUint<16>(rhs_imm)) {
|
|
__ Xori(dst, lhs, rhs_imm);
|
|
} else {
|
|
if (use_imm) {
|
|
rhs_reg = TMP;
|
|
__ LoadConst32(rhs_reg, rhs_imm);
|
|
}
|
|
__ Xor(dst, lhs, rhs_reg);
|
|
}
|
|
if (cond == kCondEQ) {
|
|
__ Sltiu(dst, dst, 1);
|
|
} else {
|
|
__ Sltu(dst, ZERO, dst);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case kCondLT:
|
|
case kCondGE:
|
|
if (use_imm && IsInt<16>(rhs_imm)) {
|
|
__ Slti(dst, lhs, rhs_imm);
|
|
} else {
|
|
if (use_imm) {
|
|
rhs_reg = TMP;
|
|
__ LoadConst32(rhs_reg, rhs_imm);
|
|
}
|
|
__ Slt(dst, lhs, rhs_reg);
|
|
}
|
|
if (cond == kCondGE) {
|
|
// Simulate lhs >= rhs via !(lhs < rhs) since there's
|
|
// only the slt instruction but no sge.
|
|
__ Xori(dst, dst, 1);
|
|
}
|
|
break;
|
|
|
|
case kCondLE:
|
|
case kCondGT:
|
|
if (use_imm && IsInt<16>(rhs_imm + 1)) {
|
|
// Simulate lhs <= rhs via lhs < rhs + 1.
|
|
__ Slti(dst, lhs, rhs_imm + 1);
|
|
if (cond == kCondGT) {
|
|
// Simulate lhs > rhs via !(lhs <= rhs) since there's
|
|
// only the slti instruction but no sgti.
|
|
__ Xori(dst, dst, 1);
|
|
}
|
|
} else {
|
|
if (use_imm) {
|
|
rhs_reg = TMP;
|
|
__ LoadConst32(rhs_reg, rhs_imm);
|
|
}
|
|
__ Slt(dst, rhs_reg, lhs);
|
|
if (cond == kCondLE) {
|
|
// Simulate lhs <= rhs via !(rhs < lhs) since there's
|
|
// only the slt instruction but no sle.
|
|
__ Xori(dst, dst, 1);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case kCondB:
|
|
case kCondAE:
|
|
if (use_imm && IsInt<16>(rhs_imm)) {
|
|
// Sltiu sign-extends its 16-bit immediate operand before
|
|
// the comparison and thus lets us compare directly with
|
|
// unsigned values in the ranges [0, 0x7fff] and
|
|
// [0xffff8000, 0xffffffff].
|
|
__ Sltiu(dst, lhs, rhs_imm);
|
|
} else {
|
|
if (use_imm) {
|
|
rhs_reg = TMP;
|
|
__ LoadConst32(rhs_reg, rhs_imm);
|
|
}
|
|
__ Sltu(dst, lhs, rhs_reg);
|
|
}
|
|
if (cond == kCondAE) {
|
|
// Simulate lhs >= rhs via !(lhs < rhs) since there's
|
|
// only the sltu instruction but no sgeu.
|
|
__ Xori(dst, dst, 1);
|
|
}
|
|
break;
|
|
|
|
case kCondBE:
|
|
case kCondA:
|
|
if (use_imm && (rhs_imm != -1) && IsInt<16>(rhs_imm + 1)) {
|
|
// Simulate lhs <= rhs via lhs < rhs + 1.
|
|
// Note that this only works if rhs + 1 does not overflow
|
|
// to 0, hence the check above.
|
|
// Sltiu sign-extends its 16-bit immediate operand before
|
|
// the comparison and thus lets us compare directly with
|
|
// unsigned values in the ranges [0, 0x7fff] and
|
|
// [0xffff8000, 0xffffffff].
|
|
__ Sltiu(dst, lhs, rhs_imm + 1);
|
|
if (cond == kCondA) {
|
|
// Simulate lhs > rhs via !(lhs <= rhs) since there's
|
|
// only the sltiu instruction but no sgtiu.
|
|
__ Xori(dst, dst, 1);
|
|
}
|
|
} else {
|
|
if (use_imm) {
|
|
rhs_reg = TMP;
|
|
__ LoadConst32(rhs_reg, rhs_imm);
|
|
}
|
|
__ Sltu(dst, rhs_reg, lhs);
|
|
if (cond == kCondBE) {
|
|
// Simulate lhs <= rhs via !(rhs < lhs) since there's
|
|
// only the sltu instruction but no sleu.
|
|
__ Xori(dst, dst, 1);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
bool InstructionCodeGeneratorMIPS::MaterializeIntCompare(IfCondition cond,
|
|
LocationSummary* input_locations,
|
|
Register dst) {
|
|
Register lhs = input_locations->InAt(0).AsRegister<Register>();
|
|
Location rhs_location = input_locations->InAt(1);
|
|
Register rhs_reg = ZERO;
|
|
int64_t rhs_imm = 0;
|
|
bool use_imm = rhs_location.IsConstant();
|
|
if (use_imm) {
|
|
rhs_imm = CodeGenerator::GetInt32ValueOf(rhs_location.GetConstant());
|
|
} else {
|
|
rhs_reg = rhs_location.AsRegister<Register>();
|
|
}
|
|
|
|
switch (cond) {
|
|
case kCondEQ:
|
|
case kCondNE:
|
|
if (use_imm && IsInt<16>(-rhs_imm)) {
|
|
__ Addiu(dst, lhs, -rhs_imm);
|
|
} else if (use_imm && IsUint<16>(rhs_imm)) {
|
|
__ Xori(dst, lhs, rhs_imm);
|
|
} else {
|
|
if (use_imm) {
|
|
rhs_reg = TMP;
|
|
__ LoadConst32(rhs_reg, rhs_imm);
|
|
}
|
|
__ Xor(dst, lhs, rhs_reg);
|
|
}
|
|
return (cond == kCondEQ);
|
|
|
|
case kCondLT:
|
|
case kCondGE:
|
|
if (use_imm && IsInt<16>(rhs_imm)) {
|
|
__ Slti(dst, lhs, rhs_imm);
|
|
} else {
|
|
if (use_imm) {
|
|
rhs_reg = TMP;
|
|
__ LoadConst32(rhs_reg, rhs_imm);
|
|
}
|
|
__ Slt(dst, lhs, rhs_reg);
|
|
}
|
|
return (cond == kCondGE);
|
|
|
|
case kCondLE:
|
|
case kCondGT:
|
|
if (use_imm && IsInt<16>(rhs_imm + 1)) {
|
|
// Simulate lhs <= rhs via lhs < rhs + 1.
|
|
__ Slti(dst, lhs, rhs_imm + 1);
|
|
return (cond == kCondGT);
|
|
} else {
|
|
if (use_imm) {
|
|
rhs_reg = TMP;
|
|
__ LoadConst32(rhs_reg, rhs_imm);
|
|
}
|
|
__ Slt(dst, rhs_reg, lhs);
|
|
return (cond == kCondLE);
|
|
}
|
|
|
|
case kCondB:
|
|
case kCondAE:
|
|
if (use_imm && IsInt<16>(rhs_imm)) {
|
|
// Sltiu sign-extends its 16-bit immediate operand before
|
|
// the comparison and thus lets us compare directly with
|
|
// unsigned values in the ranges [0, 0x7fff] and
|
|
// [0xffff8000, 0xffffffff].
|
|
__ Sltiu(dst, lhs, rhs_imm);
|
|
} else {
|
|
if (use_imm) {
|
|
rhs_reg = TMP;
|
|
__ LoadConst32(rhs_reg, rhs_imm);
|
|
}
|
|
__ Sltu(dst, lhs, rhs_reg);
|
|
}
|
|
return (cond == kCondAE);
|
|
|
|
case kCondBE:
|
|
case kCondA:
|
|
if (use_imm && (rhs_imm != -1) && IsInt<16>(rhs_imm + 1)) {
|
|
// Simulate lhs <= rhs via lhs < rhs + 1.
|
|
// Note that this only works if rhs + 1 does not overflow
|
|
// to 0, hence the check above.
|
|
// Sltiu sign-extends its 16-bit immediate operand before
|
|
// the comparison and thus lets us compare directly with
|
|
// unsigned values in the ranges [0, 0x7fff] and
|
|
// [0xffff8000, 0xffffffff].
|
|
__ Sltiu(dst, lhs, rhs_imm + 1);
|
|
return (cond == kCondA);
|
|
} else {
|
|
if (use_imm) {
|
|
rhs_reg = TMP;
|
|
__ LoadConst32(rhs_reg, rhs_imm);
|
|
}
|
|
__ Sltu(dst, rhs_reg, lhs);
|
|
return (cond == kCondBE);
|
|
}
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::GenerateIntCompareAndBranch(IfCondition cond,
|
|
LocationSummary* locations,
|
|
MipsLabel* label) {
|
|
Register lhs = locations->InAt(0).AsRegister<Register>();
|
|
Location rhs_location = locations->InAt(1);
|
|
Register rhs_reg = ZERO;
|
|
int64_t rhs_imm = 0;
|
|
bool use_imm = rhs_location.IsConstant();
|
|
if (use_imm) {
|
|
rhs_imm = CodeGenerator::GetInt32ValueOf(rhs_location.GetConstant());
|
|
} else {
|
|
rhs_reg = rhs_location.AsRegister<Register>();
|
|
}
|
|
|
|
if (use_imm && rhs_imm == 0) {
|
|
switch (cond) {
|
|
case kCondEQ:
|
|
case kCondBE: // <= 0 if zero
|
|
__ Beqz(lhs, label);
|
|
break;
|
|
case kCondNE:
|
|
case kCondA: // > 0 if non-zero
|
|
__ Bnez(lhs, label);
|
|
break;
|
|
case kCondLT:
|
|
__ Bltz(lhs, label);
|
|
break;
|
|
case kCondGE:
|
|
__ Bgez(lhs, label);
|
|
break;
|
|
case kCondLE:
|
|
__ Blez(lhs, label);
|
|
break;
|
|
case kCondGT:
|
|
__ Bgtz(lhs, label);
|
|
break;
|
|
case kCondB: // always false
|
|
break;
|
|
case kCondAE: // always true
|
|
__ B(label);
|
|
break;
|
|
}
|
|
} else {
|
|
bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
|
|
if (isR6 || !use_imm) {
|
|
if (use_imm) {
|
|
rhs_reg = TMP;
|
|
__ LoadConst32(rhs_reg, rhs_imm);
|
|
}
|
|
switch (cond) {
|
|
case kCondEQ:
|
|
__ Beq(lhs, rhs_reg, label);
|
|
break;
|
|
case kCondNE:
|
|
__ Bne(lhs, rhs_reg, label);
|
|
break;
|
|
case kCondLT:
|
|
__ Blt(lhs, rhs_reg, label);
|
|
break;
|
|
case kCondGE:
|
|
__ Bge(lhs, rhs_reg, label);
|
|
break;
|
|
case kCondLE:
|
|
__ Bge(rhs_reg, lhs, label);
|
|
break;
|
|
case kCondGT:
|
|
__ Blt(rhs_reg, lhs, label);
|
|
break;
|
|
case kCondB:
|
|
__ Bltu(lhs, rhs_reg, label);
|
|
break;
|
|
case kCondAE:
|
|
__ Bgeu(lhs, rhs_reg, label);
|
|
break;
|
|
case kCondBE:
|
|
__ Bgeu(rhs_reg, lhs, label);
|
|
break;
|
|
case kCondA:
|
|
__ Bltu(rhs_reg, lhs, label);
|
|
break;
|
|
}
|
|
} else {
|
|
// Special cases for more efficient comparison with constants on R2.
|
|
switch (cond) {
|
|
case kCondEQ:
|
|
__ LoadConst32(TMP, rhs_imm);
|
|
__ Beq(lhs, TMP, label);
|
|
break;
|
|
case kCondNE:
|
|
__ LoadConst32(TMP, rhs_imm);
|
|
__ Bne(lhs, TMP, label);
|
|
break;
|
|
case kCondLT:
|
|
if (IsInt<16>(rhs_imm)) {
|
|
__ Slti(TMP, lhs, rhs_imm);
|
|
__ Bnez(TMP, label);
|
|
} else {
|
|
__ LoadConst32(TMP, rhs_imm);
|
|
__ Blt(lhs, TMP, label);
|
|
}
|
|
break;
|
|
case kCondGE:
|
|
if (IsInt<16>(rhs_imm)) {
|
|
__ Slti(TMP, lhs, rhs_imm);
|
|
__ Beqz(TMP, label);
|
|
} else {
|
|
__ LoadConst32(TMP, rhs_imm);
|
|
__ Bge(lhs, TMP, label);
|
|
}
|
|
break;
|
|
case kCondLE:
|
|
if (IsInt<16>(rhs_imm + 1)) {
|
|
// Simulate lhs <= rhs via lhs < rhs + 1.
|
|
__ Slti(TMP, lhs, rhs_imm + 1);
|
|
__ Bnez(TMP, label);
|
|
} else {
|
|
__ LoadConst32(TMP, rhs_imm);
|
|
__ Bge(TMP, lhs, label);
|
|
}
|
|
break;
|
|
case kCondGT:
|
|
if (IsInt<16>(rhs_imm + 1)) {
|
|
// Simulate lhs > rhs via !(lhs < rhs + 1).
|
|
__ Slti(TMP, lhs, rhs_imm + 1);
|
|
__ Beqz(TMP, label);
|
|
} else {
|
|
__ LoadConst32(TMP, rhs_imm);
|
|
__ Blt(TMP, lhs, label);
|
|
}
|
|
break;
|
|
case kCondB:
|
|
if (IsInt<16>(rhs_imm)) {
|
|
__ Sltiu(TMP, lhs, rhs_imm);
|
|
__ Bnez(TMP, label);
|
|
} else {
|
|
__ LoadConst32(TMP, rhs_imm);
|
|
__ Bltu(lhs, TMP, label);
|
|
}
|
|
break;
|
|
case kCondAE:
|
|
if (IsInt<16>(rhs_imm)) {
|
|
__ Sltiu(TMP, lhs, rhs_imm);
|
|
__ Beqz(TMP, label);
|
|
} else {
|
|
__ LoadConst32(TMP, rhs_imm);
|
|
__ Bgeu(lhs, TMP, label);
|
|
}
|
|
break;
|
|
case kCondBE:
|
|
if ((rhs_imm != -1) && IsInt<16>(rhs_imm + 1)) {
|
|
// Simulate lhs <= rhs via lhs < rhs + 1.
|
|
// Note that this only works if rhs + 1 does not overflow
|
|
// to 0, hence the check above.
|
|
__ Sltiu(TMP, lhs, rhs_imm + 1);
|
|
__ Bnez(TMP, label);
|
|
} else {
|
|
__ LoadConst32(TMP, rhs_imm);
|
|
__ Bgeu(TMP, lhs, label);
|
|
}
|
|
break;
|
|
case kCondA:
|
|
if ((rhs_imm != -1) && IsInt<16>(rhs_imm + 1)) {
|
|
// Simulate lhs > rhs via !(lhs < rhs + 1).
|
|
// Note that this only works if rhs + 1 does not overflow
|
|
// to 0, hence the check above.
|
|
__ Sltiu(TMP, lhs, rhs_imm + 1);
|
|
__ Beqz(TMP, label);
|
|
} else {
|
|
__ LoadConst32(TMP, rhs_imm);
|
|
__ Bltu(TMP, lhs, label);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::GenerateLongCompare(IfCondition cond,
|
|
LocationSummary* locations) {
|
|
Register dst = locations->Out().AsRegister<Register>();
|
|
Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>();
|
|
Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>();
|
|
Location rhs_location = locations->InAt(1);
|
|
Register rhs_high = ZERO;
|
|
Register rhs_low = ZERO;
|
|
int64_t imm = 0;
|
|
uint32_t imm_high = 0;
|
|
uint32_t imm_low = 0;
|
|
bool use_imm = rhs_location.IsConstant();
|
|
if (use_imm) {
|
|
imm = rhs_location.GetConstant()->AsLongConstant()->GetValue();
|
|
imm_high = High32Bits(imm);
|
|
imm_low = Low32Bits(imm);
|
|
} else {
|
|
rhs_high = rhs_location.AsRegisterPairHigh<Register>();
|
|
rhs_low = rhs_location.AsRegisterPairLow<Register>();
|
|
}
|
|
if (use_imm && imm == 0) {
|
|
switch (cond) {
|
|
case kCondEQ:
|
|
case kCondBE: // <= 0 if zero
|
|
__ Or(dst, lhs_high, lhs_low);
|
|
__ Sltiu(dst, dst, 1);
|
|
break;
|
|
case kCondNE:
|
|
case kCondA: // > 0 if non-zero
|
|
__ Or(dst, lhs_high, lhs_low);
|
|
__ Sltu(dst, ZERO, dst);
|
|
break;
|
|
case kCondLT:
|
|
__ Slt(dst, lhs_high, ZERO);
|
|
break;
|
|
case kCondGE:
|
|
__ Slt(dst, lhs_high, ZERO);
|
|
__ Xori(dst, dst, 1);
|
|
break;
|
|
case kCondLE:
|
|
__ Or(TMP, lhs_high, lhs_low);
|
|
__ Sra(AT, lhs_high, 31);
|
|
__ Sltu(dst, AT, TMP);
|
|
__ Xori(dst, dst, 1);
|
|
break;
|
|
case kCondGT:
|
|
__ Or(TMP, lhs_high, lhs_low);
|
|
__ Sra(AT, lhs_high, 31);
|
|
__ Sltu(dst, AT, TMP);
|
|
break;
|
|
case kCondB: // always false
|
|
__ Andi(dst, dst, 0);
|
|
break;
|
|
case kCondAE: // always true
|
|
__ Ori(dst, ZERO, 1);
|
|
break;
|
|
}
|
|
} else if (use_imm) {
|
|
// TODO: more efficient comparison with constants without loading them into TMP/AT.
|
|
switch (cond) {
|
|
case kCondEQ:
|
|
__ LoadConst32(TMP, imm_high);
|
|
__ Xor(TMP, TMP, lhs_high);
|
|
__ LoadConst32(AT, imm_low);
|
|
__ Xor(AT, AT, lhs_low);
|
|
__ Or(dst, TMP, AT);
|
|
__ Sltiu(dst, dst, 1);
|
|
break;
|
|
case kCondNE:
|
|
__ LoadConst32(TMP, imm_high);
|
|
__ Xor(TMP, TMP, lhs_high);
|
|
__ LoadConst32(AT, imm_low);
|
|
__ Xor(AT, AT, lhs_low);
|
|
__ Or(dst, TMP, AT);
|
|
__ Sltu(dst, ZERO, dst);
|
|
break;
|
|
case kCondLT:
|
|
case kCondGE:
|
|
if (dst == lhs_low) {
|
|
__ LoadConst32(TMP, imm_low);
|
|
__ Sltu(dst, lhs_low, TMP);
|
|
}
|
|
__ LoadConst32(TMP, imm_high);
|
|
__ Slt(AT, lhs_high, TMP);
|
|
__ Slt(TMP, TMP, lhs_high);
|
|
if (dst != lhs_low) {
|
|
__ LoadConst32(dst, imm_low);
|
|
__ Sltu(dst, lhs_low, dst);
|
|
}
|
|
__ Slt(dst, TMP, dst);
|
|
__ Or(dst, dst, AT);
|
|
if (cond == kCondGE) {
|
|
__ Xori(dst, dst, 1);
|
|
}
|
|
break;
|
|
case kCondGT:
|
|
case kCondLE:
|
|
if (dst == lhs_low) {
|
|
__ LoadConst32(TMP, imm_low);
|
|
__ Sltu(dst, TMP, lhs_low);
|
|
}
|
|
__ LoadConst32(TMP, imm_high);
|
|
__ Slt(AT, TMP, lhs_high);
|
|
__ Slt(TMP, lhs_high, TMP);
|
|
if (dst != lhs_low) {
|
|
__ LoadConst32(dst, imm_low);
|
|
__ Sltu(dst, dst, lhs_low);
|
|
}
|
|
__ Slt(dst, TMP, dst);
|
|
__ Or(dst, dst, AT);
|
|
if (cond == kCondLE) {
|
|
__ Xori(dst, dst, 1);
|
|
}
|
|
break;
|
|
case kCondB:
|
|
case kCondAE:
|
|
if (dst == lhs_low) {
|
|
__ LoadConst32(TMP, imm_low);
|
|
__ Sltu(dst, lhs_low, TMP);
|
|
}
|
|
__ LoadConst32(TMP, imm_high);
|
|
__ Sltu(AT, lhs_high, TMP);
|
|
__ Sltu(TMP, TMP, lhs_high);
|
|
if (dst != lhs_low) {
|
|
__ LoadConst32(dst, imm_low);
|
|
__ Sltu(dst, lhs_low, dst);
|
|
}
|
|
__ Slt(dst, TMP, dst);
|
|
__ Or(dst, dst, AT);
|
|
if (cond == kCondAE) {
|
|
__ Xori(dst, dst, 1);
|
|
}
|
|
break;
|
|
case kCondA:
|
|
case kCondBE:
|
|
if (dst == lhs_low) {
|
|
__ LoadConst32(TMP, imm_low);
|
|
__ Sltu(dst, TMP, lhs_low);
|
|
}
|
|
__ LoadConst32(TMP, imm_high);
|
|
__ Sltu(AT, TMP, lhs_high);
|
|
__ Sltu(TMP, lhs_high, TMP);
|
|
if (dst != lhs_low) {
|
|
__ LoadConst32(dst, imm_low);
|
|
__ Sltu(dst, dst, lhs_low);
|
|
}
|
|
__ Slt(dst, TMP, dst);
|
|
__ Or(dst, dst, AT);
|
|
if (cond == kCondBE) {
|
|
__ Xori(dst, dst, 1);
|
|
}
|
|
break;
|
|
}
|
|
} else {
|
|
switch (cond) {
|
|
case kCondEQ:
|
|
__ Xor(TMP, lhs_high, rhs_high);
|
|
__ Xor(AT, lhs_low, rhs_low);
|
|
__ Or(dst, TMP, AT);
|
|
__ Sltiu(dst, dst, 1);
|
|
break;
|
|
case kCondNE:
|
|
__ Xor(TMP, lhs_high, rhs_high);
|
|
__ Xor(AT, lhs_low, rhs_low);
|
|
__ Or(dst, TMP, AT);
|
|
__ Sltu(dst, ZERO, dst);
|
|
break;
|
|
case kCondLT:
|
|
case kCondGE:
|
|
__ Slt(TMP, rhs_high, lhs_high);
|
|
__ Sltu(AT, lhs_low, rhs_low);
|
|
__ Slt(TMP, TMP, AT);
|
|
__ Slt(AT, lhs_high, rhs_high);
|
|
__ Or(dst, AT, TMP);
|
|
if (cond == kCondGE) {
|
|
__ Xori(dst, dst, 1);
|
|
}
|
|
break;
|
|
case kCondGT:
|
|
case kCondLE:
|
|
__ Slt(TMP, lhs_high, rhs_high);
|
|
__ Sltu(AT, rhs_low, lhs_low);
|
|
__ Slt(TMP, TMP, AT);
|
|
__ Slt(AT, rhs_high, lhs_high);
|
|
__ Or(dst, AT, TMP);
|
|
if (cond == kCondLE) {
|
|
__ Xori(dst, dst, 1);
|
|
}
|
|
break;
|
|
case kCondB:
|
|
case kCondAE:
|
|
__ Sltu(TMP, rhs_high, lhs_high);
|
|
__ Sltu(AT, lhs_low, rhs_low);
|
|
__ Slt(TMP, TMP, AT);
|
|
__ Sltu(AT, lhs_high, rhs_high);
|
|
__ Or(dst, AT, TMP);
|
|
if (cond == kCondAE) {
|
|
__ Xori(dst, dst, 1);
|
|
}
|
|
break;
|
|
case kCondA:
|
|
case kCondBE:
|
|
__ Sltu(TMP, lhs_high, rhs_high);
|
|
__ Sltu(AT, rhs_low, lhs_low);
|
|
__ Slt(TMP, TMP, AT);
|
|
__ Sltu(AT, rhs_high, lhs_high);
|
|
__ Or(dst, AT, TMP);
|
|
if (cond == kCondBE) {
|
|
__ Xori(dst, dst, 1);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::GenerateLongCompareAndBranch(IfCondition cond,
|
|
LocationSummary* locations,
|
|
MipsLabel* label) {
|
|
Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>();
|
|
Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>();
|
|
Location rhs_location = locations->InAt(1);
|
|
Register rhs_high = ZERO;
|
|
Register rhs_low = ZERO;
|
|
int64_t imm = 0;
|
|
uint32_t imm_high = 0;
|
|
uint32_t imm_low = 0;
|
|
bool use_imm = rhs_location.IsConstant();
|
|
if (use_imm) {
|
|
imm = rhs_location.GetConstant()->AsLongConstant()->GetValue();
|
|
imm_high = High32Bits(imm);
|
|
imm_low = Low32Bits(imm);
|
|
} else {
|
|
rhs_high = rhs_location.AsRegisterPairHigh<Register>();
|
|
rhs_low = rhs_location.AsRegisterPairLow<Register>();
|
|
}
|
|
|
|
if (use_imm && imm == 0) {
|
|
switch (cond) {
|
|
case kCondEQ:
|
|
case kCondBE: // <= 0 if zero
|
|
__ Or(TMP, lhs_high, lhs_low);
|
|
__ Beqz(TMP, label);
|
|
break;
|
|
case kCondNE:
|
|
case kCondA: // > 0 if non-zero
|
|
__ Or(TMP, lhs_high, lhs_low);
|
|
__ Bnez(TMP, label);
|
|
break;
|
|
case kCondLT:
|
|
__ Bltz(lhs_high, label);
|
|
break;
|
|
case kCondGE:
|
|
__ Bgez(lhs_high, label);
|
|
break;
|
|
case kCondLE:
|
|
__ Or(TMP, lhs_high, lhs_low);
|
|
__ Sra(AT, lhs_high, 31);
|
|
__ Bgeu(AT, TMP, label);
|
|
break;
|
|
case kCondGT:
|
|
__ Or(TMP, lhs_high, lhs_low);
|
|
__ Sra(AT, lhs_high, 31);
|
|
__ Bltu(AT, TMP, label);
|
|
break;
|
|
case kCondB: // always false
|
|
break;
|
|
case kCondAE: // always true
|
|
__ B(label);
|
|
break;
|
|
}
|
|
} else if (use_imm) {
|
|
// TODO: more efficient comparison with constants without loading them into TMP/AT.
|
|
switch (cond) {
|
|
case kCondEQ:
|
|
__ LoadConst32(TMP, imm_high);
|
|
__ Xor(TMP, TMP, lhs_high);
|
|
__ LoadConst32(AT, imm_low);
|
|
__ Xor(AT, AT, lhs_low);
|
|
__ Or(TMP, TMP, AT);
|
|
__ Beqz(TMP, label);
|
|
break;
|
|
case kCondNE:
|
|
__ LoadConst32(TMP, imm_high);
|
|
__ Xor(TMP, TMP, lhs_high);
|
|
__ LoadConst32(AT, imm_low);
|
|
__ Xor(AT, AT, lhs_low);
|
|
__ Or(TMP, TMP, AT);
|
|
__ Bnez(TMP, label);
|
|
break;
|
|
case kCondLT:
|
|
__ LoadConst32(TMP, imm_high);
|
|
__ Blt(lhs_high, TMP, label);
|
|
__ Slt(TMP, TMP, lhs_high);
|
|
__ LoadConst32(AT, imm_low);
|
|
__ Sltu(AT, lhs_low, AT);
|
|
__ Blt(TMP, AT, label);
|
|
break;
|
|
case kCondGE:
|
|
__ LoadConst32(TMP, imm_high);
|
|
__ Blt(TMP, lhs_high, label);
|
|
__ Slt(TMP, lhs_high, TMP);
|
|
__ LoadConst32(AT, imm_low);
|
|
__ Sltu(AT, lhs_low, AT);
|
|
__ Or(TMP, TMP, AT);
|
|
__ Beqz(TMP, label);
|
|
break;
|
|
case kCondLE:
|
|
__ LoadConst32(TMP, imm_high);
|
|
__ Blt(lhs_high, TMP, label);
|
|
__ Slt(TMP, TMP, lhs_high);
|
|
__ LoadConst32(AT, imm_low);
|
|
__ Sltu(AT, AT, lhs_low);
|
|
__ Or(TMP, TMP, AT);
|
|
__ Beqz(TMP, label);
|
|
break;
|
|
case kCondGT:
|
|
__ LoadConst32(TMP, imm_high);
|
|
__ Blt(TMP, lhs_high, label);
|
|
__ Slt(TMP, lhs_high, TMP);
|
|
__ LoadConst32(AT, imm_low);
|
|
__ Sltu(AT, AT, lhs_low);
|
|
__ Blt(TMP, AT, label);
|
|
break;
|
|
case kCondB:
|
|
__ LoadConst32(TMP, imm_high);
|
|
__ Bltu(lhs_high, TMP, label);
|
|
__ Sltu(TMP, TMP, lhs_high);
|
|
__ LoadConst32(AT, imm_low);
|
|
__ Sltu(AT, lhs_low, AT);
|
|
__ Blt(TMP, AT, label);
|
|
break;
|
|
case kCondAE:
|
|
__ LoadConst32(TMP, imm_high);
|
|
__ Bltu(TMP, lhs_high, label);
|
|
__ Sltu(TMP, lhs_high, TMP);
|
|
__ LoadConst32(AT, imm_low);
|
|
__ Sltu(AT, lhs_low, AT);
|
|
__ Or(TMP, TMP, AT);
|
|
__ Beqz(TMP, label);
|
|
break;
|
|
case kCondBE:
|
|
__ LoadConst32(TMP, imm_high);
|
|
__ Bltu(lhs_high, TMP, label);
|
|
__ Sltu(TMP, TMP, lhs_high);
|
|
__ LoadConst32(AT, imm_low);
|
|
__ Sltu(AT, AT, lhs_low);
|
|
__ Or(TMP, TMP, AT);
|
|
__ Beqz(TMP, label);
|
|
break;
|
|
case kCondA:
|
|
__ LoadConst32(TMP, imm_high);
|
|
__ Bltu(TMP, lhs_high, label);
|
|
__ Sltu(TMP, lhs_high, TMP);
|
|
__ LoadConst32(AT, imm_low);
|
|
__ Sltu(AT, AT, lhs_low);
|
|
__ Blt(TMP, AT, label);
|
|
break;
|
|
}
|
|
} else {
|
|
switch (cond) {
|
|
case kCondEQ:
|
|
__ Xor(TMP, lhs_high, rhs_high);
|
|
__ Xor(AT, lhs_low, rhs_low);
|
|
__ Or(TMP, TMP, AT);
|
|
__ Beqz(TMP, label);
|
|
break;
|
|
case kCondNE:
|
|
__ Xor(TMP, lhs_high, rhs_high);
|
|
__ Xor(AT, lhs_low, rhs_low);
|
|
__ Or(TMP, TMP, AT);
|
|
__ Bnez(TMP, label);
|
|
break;
|
|
case kCondLT:
|
|
__ Blt(lhs_high, rhs_high, label);
|
|
__ Slt(TMP, rhs_high, lhs_high);
|
|
__ Sltu(AT, lhs_low, rhs_low);
|
|
__ Blt(TMP, AT, label);
|
|
break;
|
|
case kCondGE:
|
|
__ Blt(rhs_high, lhs_high, label);
|
|
__ Slt(TMP, lhs_high, rhs_high);
|
|
__ Sltu(AT, lhs_low, rhs_low);
|
|
__ Or(TMP, TMP, AT);
|
|
__ Beqz(TMP, label);
|
|
break;
|
|
case kCondLE:
|
|
__ Blt(lhs_high, rhs_high, label);
|
|
__ Slt(TMP, rhs_high, lhs_high);
|
|
__ Sltu(AT, rhs_low, lhs_low);
|
|
__ Or(TMP, TMP, AT);
|
|
__ Beqz(TMP, label);
|
|
break;
|
|
case kCondGT:
|
|
__ Blt(rhs_high, lhs_high, label);
|
|
__ Slt(TMP, lhs_high, rhs_high);
|
|
__ Sltu(AT, rhs_low, lhs_low);
|
|
__ Blt(TMP, AT, label);
|
|
break;
|
|
case kCondB:
|
|
__ Bltu(lhs_high, rhs_high, label);
|
|
__ Sltu(TMP, rhs_high, lhs_high);
|
|
__ Sltu(AT, lhs_low, rhs_low);
|
|
__ Blt(TMP, AT, label);
|
|
break;
|
|
case kCondAE:
|
|
__ Bltu(rhs_high, lhs_high, label);
|
|
__ Sltu(TMP, lhs_high, rhs_high);
|
|
__ Sltu(AT, lhs_low, rhs_low);
|
|
__ Or(TMP, TMP, AT);
|
|
__ Beqz(TMP, label);
|
|
break;
|
|
case kCondBE:
|
|
__ Bltu(lhs_high, rhs_high, label);
|
|
__ Sltu(TMP, rhs_high, lhs_high);
|
|
__ Sltu(AT, rhs_low, lhs_low);
|
|
__ Or(TMP, TMP, AT);
|
|
__ Beqz(TMP, label);
|
|
break;
|
|
case kCondA:
|
|
__ Bltu(rhs_high, lhs_high, label);
|
|
__ Sltu(TMP, lhs_high, rhs_high);
|
|
__ Sltu(AT, rhs_low, lhs_low);
|
|
__ Blt(TMP, AT, label);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::GenerateFpCompare(IfCondition cond,
|
|
bool gt_bias,
|
|
Primitive::Type type,
|
|
LocationSummary* locations) {
|
|
Register dst = locations->Out().AsRegister<Register>();
|
|
FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>();
|
|
FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>();
|
|
bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
|
|
if (type == Primitive::kPrimFloat) {
|
|
if (isR6) {
|
|
switch (cond) {
|
|
case kCondEQ:
|
|
__ CmpEqS(FTMP, lhs, rhs);
|
|
__ Mfc1(dst, FTMP);
|
|
__ Andi(dst, dst, 1);
|
|
break;
|
|
case kCondNE:
|
|
__ CmpEqS(FTMP, lhs, rhs);
|
|
__ Mfc1(dst, FTMP);
|
|
__ Addiu(dst, dst, 1);
|
|
break;
|
|
case kCondLT:
|
|
if (gt_bias) {
|
|
__ CmpLtS(FTMP, lhs, rhs);
|
|
} else {
|
|
__ CmpUltS(FTMP, lhs, rhs);
|
|
}
|
|
__ Mfc1(dst, FTMP);
|
|
__ Andi(dst, dst, 1);
|
|
break;
|
|
case kCondLE:
|
|
if (gt_bias) {
|
|
__ CmpLeS(FTMP, lhs, rhs);
|
|
} else {
|
|
__ CmpUleS(FTMP, lhs, rhs);
|
|
}
|
|
__ Mfc1(dst, FTMP);
|
|
__ Andi(dst, dst, 1);
|
|
break;
|
|
case kCondGT:
|
|
if (gt_bias) {
|
|
__ CmpUltS(FTMP, rhs, lhs);
|
|
} else {
|
|
__ CmpLtS(FTMP, rhs, lhs);
|
|
}
|
|
__ Mfc1(dst, FTMP);
|
|
__ Andi(dst, dst, 1);
|
|
break;
|
|
case kCondGE:
|
|
if (gt_bias) {
|
|
__ CmpUleS(FTMP, rhs, lhs);
|
|
} else {
|
|
__ CmpLeS(FTMP, rhs, lhs);
|
|
}
|
|
__ Mfc1(dst, FTMP);
|
|
__ Andi(dst, dst, 1);
|
|
break;
|
|
default:
|
|
LOG(FATAL) << "Unexpected non-floating-point condition " << cond;
|
|
UNREACHABLE();
|
|
}
|
|
} else {
|
|
switch (cond) {
|
|
case kCondEQ:
|
|
__ CeqS(0, lhs, rhs);
|
|
__ LoadConst32(dst, 1);
|
|
__ Movf(dst, ZERO, 0);
|
|
break;
|
|
case kCondNE:
|
|
__ CeqS(0, lhs, rhs);
|
|
__ LoadConst32(dst, 1);
|
|
__ Movt(dst, ZERO, 0);
|
|
break;
|
|
case kCondLT:
|
|
if (gt_bias) {
|
|
__ ColtS(0, lhs, rhs);
|
|
} else {
|
|
__ CultS(0, lhs, rhs);
|
|
}
|
|
__ LoadConst32(dst, 1);
|
|
__ Movf(dst, ZERO, 0);
|
|
break;
|
|
case kCondLE:
|
|
if (gt_bias) {
|
|
__ ColeS(0, lhs, rhs);
|
|
} else {
|
|
__ CuleS(0, lhs, rhs);
|
|
}
|
|
__ LoadConst32(dst, 1);
|
|
__ Movf(dst, ZERO, 0);
|
|
break;
|
|
case kCondGT:
|
|
if (gt_bias) {
|
|
__ CultS(0, rhs, lhs);
|
|
} else {
|
|
__ ColtS(0, rhs, lhs);
|
|
}
|
|
__ LoadConst32(dst, 1);
|
|
__ Movf(dst, ZERO, 0);
|
|
break;
|
|
case kCondGE:
|
|
if (gt_bias) {
|
|
__ CuleS(0, rhs, lhs);
|
|
} else {
|
|
__ ColeS(0, rhs, lhs);
|
|
}
|
|
__ LoadConst32(dst, 1);
|
|
__ Movf(dst, ZERO, 0);
|
|
break;
|
|
default:
|
|
LOG(FATAL) << "Unexpected non-floating-point condition " << cond;
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
} else {
|
|
DCHECK_EQ(type, Primitive::kPrimDouble);
|
|
if (isR6) {
|
|
switch (cond) {
|
|
case kCondEQ:
|
|
__ CmpEqD(FTMP, lhs, rhs);
|
|
__ Mfc1(dst, FTMP);
|
|
__ Andi(dst, dst, 1);
|
|
break;
|
|
case kCondNE:
|
|
__ CmpEqD(FTMP, lhs, rhs);
|
|
__ Mfc1(dst, FTMP);
|
|
__ Addiu(dst, dst, 1);
|
|
break;
|
|
case kCondLT:
|
|
if (gt_bias) {
|
|
__ CmpLtD(FTMP, lhs, rhs);
|
|
} else {
|
|
__ CmpUltD(FTMP, lhs, rhs);
|
|
}
|
|
__ Mfc1(dst, FTMP);
|
|
__ Andi(dst, dst, 1);
|
|
break;
|
|
case kCondLE:
|
|
if (gt_bias) {
|
|
__ CmpLeD(FTMP, lhs, rhs);
|
|
} else {
|
|
__ CmpUleD(FTMP, lhs, rhs);
|
|
}
|
|
__ Mfc1(dst, FTMP);
|
|
__ Andi(dst, dst, 1);
|
|
break;
|
|
case kCondGT:
|
|
if (gt_bias) {
|
|
__ CmpUltD(FTMP, rhs, lhs);
|
|
} else {
|
|
__ CmpLtD(FTMP, rhs, lhs);
|
|
}
|
|
__ Mfc1(dst, FTMP);
|
|
__ Andi(dst, dst, 1);
|
|
break;
|
|
case kCondGE:
|
|
if (gt_bias) {
|
|
__ CmpUleD(FTMP, rhs, lhs);
|
|
} else {
|
|
__ CmpLeD(FTMP, rhs, lhs);
|
|
}
|
|
__ Mfc1(dst, FTMP);
|
|
__ Andi(dst, dst, 1);
|
|
break;
|
|
default:
|
|
LOG(FATAL) << "Unexpected non-floating-point condition " << cond;
|
|
UNREACHABLE();
|
|
}
|
|
} else {
|
|
switch (cond) {
|
|
case kCondEQ:
|
|
__ CeqD(0, lhs, rhs);
|
|
__ LoadConst32(dst, 1);
|
|
__ Movf(dst, ZERO, 0);
|
|
break;
|
|
case kCondNE:
|
|
__ CeqD(0, lhs, rhs);
|
|
__ LoadConst32(dst, 1);
|
|
__ Movt(dst, ZERO, 0);
|
|
break;
|
|
case kCondLT:
|
|
if (gt_bias) {
|
|
__ ColtD(0, lhs, rhs);
|
|
} else {
|
|
__ CultD(0, lhs, rhs);
|
|
}
|
|
__ LoadConst32(dst, 1);
|
|
__ Movf(dst, ZERO, 0);
|
|
break;
|
|
case kCondLE:
|
|
if (gt_bias) {
|
|
__ ColeD(0, lhs, rhs);
|
|
} else {
|
|
__ CuleD(0, lhs, rhs);
|
|
}
|
|
__ LoadConst32(dst, 1);
|
|
__ Movf(dst, ZERO, 0);
|
|
break;
|
|
case kCondGT:
|
|
if (gt_bias) {
|
|
__ CultD(0, rhs, lhs);
|
|
} else {
|
|
__ ColtD(0, rhs, lhs);
|
|
}
|
|
__ LoadConst32(dst, 1);
|
|
__ Movf(dst, ZERO, 0);
|
|
break;
|
|
case kCondGE:
|
|
if (gt_bias) {
|
|
__ CuleD(0, rhs, lhs);
|
|
} else {
|
|
__ ColeD(0, rhs, lhs);
|
|
}
|
|
__ LoadConst32(dst, 1);
|
|
__ Movf(dst, ZERO, 0);
|
|
break;
|
|
default:
|
|
LOG(FATAL) << "Unexpected non-floating-point condition " << cond;
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool InstructionCodeGeneratorMIPS::MaterializeFpCompareR2(IfCondition cond,
|
|
bool gt_bias,
|
|
Primitive::Type type,
|
|
LocationSummary* input_locations,
|
|
int cc) {
|
|
FRegister lhs = input_locations->InAt(0).AsFpuRegister<FRegister>();
|
|
FRegister rhs = input_locations->InAt(1).AsFpuRegister<FRegister>();
|
|
CHECK(!codegen_->GetInstructionSetFeatures().IsR6());
|
|
if (type == Primitive::kPrimFloat) {
|
|
switch (cond) {
|
|
case kCondEQ:
|
|
__ CeqS(cc, lhs, rhs);
|
|
return false;
|
|
case kCondNE:
|
|
__ CeqS(cc, lhs, rhs);
|
|
return true;
|
|
case kCondLT:
|
|
if (gt_bias) {
|
|
__ ColtS(cc, lhs, rhs);
|
|
} else {
|
|
__ CultS(cc, lhs, rhs);
|
|
}
|
|
return false;
|
|
case kCondLE:
|
|
if (gt_bias) {
|
|
__ ColeS(cc, lhs, rhs);
|
|
} else {
|
|
__ CuleS(cc, lhs, rhs);
|
|
}
|
|
return false;
|
|
case kCondGT:
|
|
if (gt_bias) {
|
|
__ CultS(cc, rhs, lhs);
|
|
} else {
|
|
__ ColtS(cc, rhs, lhs);
|
|
}
|
|
return false;
|
|
case kCondGE:
|
|
if (gt_bias) {
|
|
__ CuleS(cc, rhs, lhs);
|
|
} else {
|
|
__ ColeS(cc, rhs, lhs);
|
|
}
|
|
return false;
|
|
default:
|
|
LOG(FATAL) << "Unexpected non-floating-point condition";
|
|
UNREACHABLE();
|
|
}
|
|
} else {
|
|
DCHECK_EQ(type, Primitive::kPrimDouble);
|
|
switch (cond) {
|
|
case kCondEQ:
|
|
__ CeqD(cc, lhs, rhs);
|
|
return false;
|
|
case kCondNE:
|
|
__ CeqD(cc, lhs, rhs);
|
|
return true;
|
|
case kCondLT:
|
|
if (gt_bias) {
|
|
__ ColtD(cc, lhs, rhs);
|
|
} else {
|
|
__ CultD(cc, lhs, rhs);
|
|
}
|
|
return false;
|
|
case kCondLE:
|
|
if (gt_bias) {
|
|
__ ColeD(cc, lhs, rhs);
|
|
} else {
|
|
__ CuleD(cc, lhs, rhs);
|
|
}
|
|
return false;
|
|
case kCondGT:
|
|
if (gt_bias) {
|
|
__ CultD(cc, rhs, lhs);
|
|
} else {
|
|
__ ColtD(cc, rhs, lhs);
|
|
}
|
|
return false;
|
|
case kCondGE:
|
|
if (gt_bias) {
|
|
__ CuleD(cc, rhs, lhs);
|
|
} else {
|
|
__ ColeD(cc, rhs, lhs);
|
|
}
|
|
return false;
|
|
default:
|
|
LOG(FATAL) << "Unexpected non-floating-point condition";
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
}
|
|
|
|
bool InstructionCodeGeneratorMIPS::MaterializeFpCompareR6(IfCondition cond,
|
|
bool gt_bias,
|
|
Primitive::Type type,
|
|
LocationSummary* input_locations,
|
|
FRegister dst) {
|
|
FRegister lhs = input_locations->InAt(0).AsFpuRegister<FRegister>();
|
|
FRegister rhs = input_locations->InAt(1).AsFpuRegister<FRegister>();
|
|
CHECK(codegen_->GetInstructionSetFeatures().IsR6());
|
|
if (type == Primitive::kPrimFloat) {
|
|
switch (cond) {
|
|
case kCondEQ:
|
|
__ CmpEqS(dst, lhs, rhs);
|
|
return false;
|
|
case kCondNE:
|
|
__ CmpEqS(dst, lhs, rhs);
|
|
return true;
|
|
case kCondLT:
|
|
if (gt_bias) {
|
|
__ CmpLtS(dst, lhs, rhs);
|
|
} else {
|
|
__ CmpUltS(dst, lhs, rhs);
|
|
}
|
|
return false;
|
|
case kCondLE:
|
|
if (gt_bias) {
|
|
__ CmpLeS(dst, lhs, rhs);
|
|
} else {
|
|
__ CmpUleS(dst, lhs, rhs);
|
|
}
|
|
return false;
|
|
case kCondGT:
|
|
if (gt_bias) {
|
|
__ CmpUltS(dst, rhs, lhs);
|
|
} else {
|
|
__ CmpLtS(dst, rhs, lhs);
|
|
}
|
|
return false;
|
|
case kCondGE:
|
|
if (gt_bias) {
|
|
__ CmpUleS(dst, rhs, lhs);
|
|
} else {
|
|
__ CmpLeS(dst, rhs, lhs);
|
|
}
|
|
return false;
|
|
default:
|
|
LOG(FATAL) << "Unexpected non-floating-point condition";
|
|
UNREACHABLE();
|
|
}
|
|
} else {
|
|
DCHECK_EQ(type, Primitive::kPrimDouble);
|
|
switch (cond) {
|
|
case kCondEQ:
|
|
__ CmpEqD(dst, lhs, rhs);
|
|
return false;
|
|
case kCondNE:
|
|
__ CmpEqD(dst, lhs, rhs);
|
|
return true;
|
|
case kCondLT:
|
|
if (gt_bias) {
|
|
__ CmpLtD(dst, lhs, rhs);
|
|
} else {
|
|
__ CmpUltD(dst, lhs, rhs);
|
|
}
|
|
return false;
|
|
case kCondLE:
|
|
if (gt_bias) {
|
|
__ CmpLeD(dst, lhs, rhs);
|
|
} else {
|
|
__ CmpUleD(dst, lhs, rhs);
|
|
}
|
|
return false;
|
|
case kCondGT:
|
|
if (gt_bias) {
|
|
__ CmpUltD(dst, rhs, lhs);
|
|
} else {
|
|
__ CmpLtD(dst, rhs, lhs);
|
|
}
|
|
return false;
|
|
case kCondGE:
|
|
if (gt_bias) {
|
|
__ CmpUleD(dst, rhs, lhs);
|
|
} else {
|
|
__ CmpLeD(dst, rhs, lhs);
|
|
}
|
|
return false;
|
|
default:
|
|
LOG(FATAL) << "Unexpected non-floating-point condition";
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::GenerateFpCompareAndBranch(IfCondition cond,
|
|
bool gt_bias,
|
|
Primitive::Type type,
|
|
LocationSummary* locations,
|
|
MipsLabel* label) {
|
|
FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>();
|
|
FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>();
|
|
bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
|
|
if (type == Primitive::kPrimFloat) {
|
|
if (isR6) {
|
|
switch (cond) {
|
|
case kCondEQ:
|
|
__ CmpEqS(FTMP, lhs, rhs);
|
|
__ Bc1nez(FTMP, label);
|
|
break;
|
|
case kCondNE:
|
|
__ CmpEqS(FTMP, lhs, rhs);
|
|
__ Bc1eqz(FTMP, label);
|
|
break;
|
|
case kCondLT:
|
|
if (gt_bias) {
|
|
__ CmpLtS(FTMP, lhs, rhs);
|
|
} else {
|
|
__ CmpUltS(FTMP, lhs, rhs);
|
|
}
|
|
__ Bc1nez(FTMP, label);
|
|
break;
|
|
case kCondLE:
|
|
if (gt_bias) {
|
|
__ CmpLeS(FTMP, lhs, rhs);
|
|
} else {
|
|
__ CmpUleS(FTMP, lhs, rhs);
|
|
}
|
|
__ Bc1nez(FTMP, label);
|
|
break;
|
|
case kCondGT:
|
|
if (gt_bias) {
|
|
__ CmpUltS(FTMP, rhs, lhs);
|
|
} else {
|
|
__ CmpLtS(FTMP, rhs, lhs);
|
|
}
|
|
__ Bc1nez(FTMP, label);
|
|
break;
|
|
case kCondGE:
|
|
if (gt_bias) {
|
|
__ CmpUleS(FTMP, rhs, lhs);
|
|
} else {
|
|
__ CmpLeS(FTMP, rhs, lhs);
|
|
}
|
|
__ Bc1nez(FTMP, label);
|
|
break;
|
|
default:
|
|
LOG(FATAL) << "Unexpected non-floating-point condition";
|
|
UNREACHABLE();
|
|
}
|
|
} else {
|
|
switch (cond) {
|
|
case kCondEQ:
|
|
__ CeqS(0, lhs, rhs);
|
|
__ Bc1t(0, label);
|
|
break;
|
|
case kCondNE:
|
|
__ CeqS(0, lhs, rhs);
|
|
__ Bc1f(0, label);
|
|
break;
|
|
case kCondLT:
|
|
if (gt_bias) {
|
|
__ ColtS(0, lhs, rhs);
|
|
} else {
|
|
__ CultS(0, lhs, rhs);
|
|
}
|
|
__ Bc1t(0, label);
|
|
break;
|
|
case kCondLE:
|
|
if (gt_bias) {
|
|
__ ColeS(0, lhs, rhs);
|
|
} else {
|
|
__ CuleS(0, lhs, rhs);
|
|
}
|
|
__ Bc1t(0, label);
|
|
break;
|
|
case kCondGT:
|
|
if (gt_bias) {
|
|
__ CultS(0, rhs, lhs);
|
|
} else {
|
|
__ ColtS(0, rhs, lhs);
|
|
}
|
|
__ Bc1t(0, label);
|
|
break;
|
|
case kCondGE:
|
|
if (gt_bias) {
|
|
__ CuleS(0, rhs, lhs);
|
|
} else {
|
|
__ ColeS(0, rhs, lhs);
|
|
}
|
|
__ Bc1t(0, label);
|
|
break;
|
|
default:
|
|
LOG(FATAL) << "Unexpected non-floating-point condition";
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
} else {
|
|
DCHECK_EQ(type, Primitive::kPrimDouble);
|
|
if (isR6) {
|
|
switch (cond) {
|
|
case kCondEQ:
|
|
__ CmpEqD(FTMP, lhs, rhs);
|
|
__ Bc1nez(FTMP, label);
|
|
break;
|
|
case kCondNE:
|
|
__ CmpEqD(FTMP, lhs, rhs);
|
|
__ Bc1eqz(FTMP, label);
|
|
break;
|
|
case kCondLT:
|
|
if (gt_bias) {
|
|
__ CmpLtD(FTMP, lhs, rhs);
|
|
} else {
|
|
__ CmpUltD(FTMP, lhs, rhs);
|
|
}
|
|
__ Bc1nez(FTMP, label);
|
|
break;
|
|
case kCondLE:
|
|
if (gt_bias) {
|
|
__ CmpLeD(FTMP, lhs, rhs);
|
|
} else {
|
|
__ CmpUleD(FTMP, lhs, rhs);
|
|
}
|
|
__ Bc1nez(FTMP, label);
|
|
break;
|
|
case kCondGT:
|
|
if (gt_bias) {
|
|
__ CmpUltD(FTMP, rhs, lhs);
|
|
} else {
|
|
__ CmpLtD(FTMP, rhs, lhs);
|
|
}
|
|
__ Bc1nez(FTMP, label);
|
|
break;
|
|
case kCondGE:
|
|
if (gt_bias) {
|
|
__ CmpUleD(FTMP, rhs, lhs);
|
|
} else {
|
|
__ CmpLeD(FTMP, rhs, lhs);
|
|
}
|
|
__ Bc1nez(FTMP, label);
|
|
break;
|
|
default:
|
|
LOG(FATAL) << "Unexpected non-floating-point condition";
|
|
UNREACHABLE();
|
|
}
|
|
} else {
|
|
switch (cond) {
|
|
case kCondEQ:
|
|
__ CeqD(0, lhs, rhs);
|
|
__ Bc1t(0, label);
|
|
break;
|
|
case kCondNE:
|
|
__ CeqD(0, lhs, rhs);
|
|
__ Bc1f(0, label);
|
|
break;
|
|
case kCondLT:
|
|
if (gt_bias) {
|
|
__ ColtD(0, lhs, rhs);
|
|
} else {
|
|
__ CultD(0, lhs, rhs);
|
|
}
|
|
__ Bc1t(0, label);
|
|
break;
|
|
case kCondLE:
|
|
if (gt_bias) {
|
|
__ ColeD(0, lhs, rhs);
|
|
} else {
|
|
__ CuleD(0, lhs, rhs);
|
|
}
|
|
__ Bc1t(0, label);
|
|
break;
|
|
case kCondGT:
|
|
if (gt_bias) {
|
|
__ CultD(0, rhs, lhs);
|
|
} else {
|
|
__ ColtD(0, rhs, lhs);
|
|
}
|
|
__ Bc1t(0, label);
|
|
break;
|
|
case kCondGE:
|
|
if (gt_bias) {
|
|
__ CuleD(0, rhs, lhs);
|
|
} else {
|
|
__ ColeD(0, rhs, lhs);
|
|
}
|
|
__ Bc1t(0, label);
|
|
break;
|
|
default:
|
|
LOG(FATAL) << "Unexpected non-floating-point condition";
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::GenerateTestAndBranch(HInstruction* instruction,
|
|
size_t condition_input_index,
|
|
MipsLabel* true_target,
|
|
MipsLabel* false_target) {
|
|
HInstruction* cond = instruction->InputAt(condition_input_index);
|
|
|
|
if (true_target == nullptr && false_target == nullptr) {
|
|
// Nothing to do. The code always falls through.
|
|
return;
|
|
} else if (cond->IsIntConstant()) {
|
|
// Constant condition, statically compared against "true" (integer value 1).
|
|
if (cond->AsIntConstant()->IsTrue()) {
|
|
if (true_target != nullptr) {
|
|
__ B(true_target);
|
|
}
|
|
} else {
|
|
DCHECK(cond->AsIntConstant()->IsFalse()) << cond->AsIntConstant()->GetValue();
|
|
if (false_target != nullptr) {
|
|
__ B(false_target);
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
// The following code generates these patterns:
|
|
// (1) true_target == nullptr && false_target != nullptr
|
|
// - opposite condition true => branch to false_target
|
|
// (2) true_target != nullptr && false_target == nullptr
|
|
// - condition true => branch to true_target
|
|
// (3) true_target != nullptr && false_target != nullptr
|
|
// - condition true => branch to true_target
|
|
// - branch to false_target
|
|
if (IsBooleanValueOrMaterializedCondition(cond)) {
|
|
// The condition instruction has been materialized, compare the output to 0.
|
|
Location cond_val = instruction->GetLocations()->InAt(condition_input_index);
|
|
DCHECK(cond_val.IsRegister());
|
|
if (true_target == nullptr) {
|
|
__ Beqz(cond_val.AsRegister<Register>(), false_target);
|
|
} else {
|
|
__ Bnez(cond_val.AsRegister<Register>(), true_target);
|
|
}
|
|
} else {
|
|
// The condition instruction has not been materialized, use its inputs as
|
|
// the comparison and its condition as the branch condition.
|
|
HCondition* condition = cond->AsCondition();
|
|
Primitive::Type type = condition->InputAt(0)->GetType();
|
|
LocationSummary* locations = cond->GetLocations();
|
|
IfCondition if_cond = condition->GetCondition();
|
|
MipsLabel* branch_target = true_target;
|
|
|
|
if (true_target == nullptr) {
|
|
if_cond = condition->GetOppositeCondition();
|
|
branch_target = false_target;
|
|
}
|
|
|
|
switch (type) {
|
|
default:
|
|
GenerateIntCompareAndBranch(if_cond, locations, branch_target);
|
|
break;
|
|
case Primitive::kPrimLong:
|
|
GenerateLongCompareAndBranch(if_cond, locations, branch_target);
|
|
break;
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimDouble:
|
|
GenerateFpCompareAndBranch(if_cond, condition->IsGtBias(), type, locations, branch_target);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// If neither branch falls through (case 3), the conditional branch to `true_target`
|
|
// was already emitted (case 2) and we need to emit a jump to `false_target`.
|
|
if (true_target != nullptr && false_target != nullptr) {
|
|
__ B(false_target);
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitIf(HIf* if_instr) {
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(if_instr);
|
|
if (IsBooleanValueOrMaterializedCondition(if_instr->InputAt(0))) {
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitIf(HIf* if_instr) {
|
|
HBasicBlock* true_successor = if_instr->IfTrueSuccessor();
|
|
HBasicBlock* false_successor = if_instr->IfFalseSuccessor();
|
|
MipsLabel* true_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), true_successor) ?
|
|
nullptr : codegen_->GetLabelOf(true_successor);
|
|
MipsLabel* false_target = codegen_->GoesToNextBlock(if_instr->GetBlock(), false_successor) ?
|
|
nullptr : codegen_->GetLabelOf(false_successor);
|
|
GenerateTestAndBranch(if_instr, /* condition_input_index */ 0, true_target, false_target);
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitDeoptimize(HDeoptimize* deoptimize) {
|
|
LocationSummary* locations = new (GetGraph()->GetArena())
|
|
LocationSummary(deoptimize, LocationSummary::kCallOnSlowPath);
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
RegisterSet caller_saves = RegisterSet::Empty();
|
|
caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
|
|
locations->SetCustomSlowPathCallerSaves(caller_saves);
|
|
if (IsBooleanValueOrMaterializedCondition(deoptimize->InputAt(0))) {
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitDeoptimize(HDeoptimize* deoptimize) {
|
|
SlowPathCodeMIPS* slow_path =
|
|
deopt_slow_paths_.NewSlowPath<DeoptimizationSlowPathMIPS>(deoptimize);
|
|
GenerateTestAndBranch(deoptimize,
|
|
/* condition_input_index */ 0,
|
|
slow_path->GetEntryLabel(),
|
|
/* false_target */ nullptr);
|
|
}
|
|
|
|
// This function returns true if a conditional move can be generated for HSelect.
|
|
// Otherwise it returns false and HSelect must be implemented in terms of conditonal
|
|
// branches and regular moves.
|
|
//
|
|
// If `locations_to_set` isn't nullptr, its inputs and outputs are set for HSelect.
|
|
//
|
|
// While determining feasibility of a conditional move and setting inputs/outputs
|
|
// are two distinct tasks, this function does both because they share quite a bit
|
|
// of common logic.
|
|
static bool CanMoveConditionally(HSelect* select, bool is_r6, LocationSummary* locations_to_set) {
|
|
bool materialized = IsBooleanValueOrMaterializedCondition(select->GetCondition());
|
|
HInstruction* cond = select->InputAt(/* condition_input_index */ 2);
|
|
HCondition* condition = cond->AsCondition();
|
|
|
|
Primitive::Type cond_type = materialized ? Primitive::kPrimInt : condition->InputAt(0)->GetType();
|
|
Primitive::Type dst_type = select->GetType();
|
|
|
|
HConstant* cst_true_value = select->GetTrueValue()->AsConstant();
|
|
HConstant* cst_false_value = select->GetFalseValue()->AsConstant();
|
|
bool is_true_value_zero_constant =
|
|
(cst_true_value != nullptr && cst_true_value->IsZeroBitPattern());
|
|
bool is_false_value_zero_constant =
|
|
(cst_false_value != nullptr && cst_false_value->IsZeroBitPattern());
|
|
|
|
bool can_move_conditionally = false;
|
|
bool use_const_for_false_in = false;
|
|
bool use_const_for_true_in = false;
|
|
|
|
if (!cond->IsConstant()) {
|
|
switch (cond_type) {
|
|
default:
|
|
switch (dst_type) {
|
|
default:
|
|
// Moving int on int condition.
|
|
if (is_r6) {
|
|
if (is_true_value_zero_constant) {
|
|
// seleqz out_reg, false_reg, cond_reg
|
|
can_move_conditionally = true;
|
|
use_const_for_true_in = true;
|
|
} else if (is_false_value_zero_constant) {
|
|
// selnez out_reg, true_reg, cond_reg
|
|
can_move_conditionally = true;
|
|
use_const_for_false_in = true;
|
|
} else if (materialized) {
|
|
// Not materializing unmaterialized int conditions
|
|
// to keep the instruction count low.
|
|
// selnez AT, true_reg, cond_reg
|
|
// seleqz TMP, false_reg, cond_reg
|
|
// or out_reg, AT, TMP
|
|
can_move_conditionally = true;
|
|
}
|
|
} else {
|
|
// movn out_reg, true_reg/ZERO, cond_reg
|
|
can_move_conditionally = true;
|
|
use_const_for_true_in = is_true_value_zero_constant;
|
|
}
|
|
break;
|
|
case Primitive::kPrimLong:
|
|
// Moving long on int condition.
|
|
if (is_r6) {
|
|
if (is_true_value_zero_constant) {
|
|
// seleqz out_reg_lo, false_reg_lo, cond_reg
|
|
// seleqz out_reg_hi, false_reg_hi, cond_reg
|
|
can_move_conditionally = true;
|
|
use_const_for_true_in = true;
|
|
} else if (is_false_value_zero_constant) {
|
|
// selnez out_reg_lo, true_reg_lo, cond_reg
|
|
// selnez out_reg_hi, true_reg_hi, cond_reg
|
|
can_move_conditionally = true;
|
|
use_const_for_false_in = true;
|
|
}
|
|
// Other long conditional moves would generate 6+ instructions,
|
|
// which is too many.
|
|
} else {
|
|
// movn out_reg_lo, true_reg_lo/ZERO, cond_reg
|
|
// movn out_reg_hi, true_reg_hi/ZERO, cond_reg
|
|
can_move_conditionally = true;
|
|
use_const_for_true_in = is_true_value_zero_constant;
|
|
}
|
|
break;
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimDouble:
|
|
// Moving float/double on int condition.
|
|
if (is_r6) {
|
|
if (materialized) {
|
|
// Not materializing unmaterialized int conditions
|
|
// to keep the instruction count low.
|
|
can_move_conditionally = true;
|
|
if (is_true_value_zero_constant) {
|
|
// sltu TMP, ZERO, cond_reg
|
|
// mtc1 TMP, temp_cond_reg
|
|
// seleqz.fmt out_reg, false_reg, temp_cond_reg
|
|
use_const_for_true_in = true;
|
|
} else if (is_false_value_zero_constant) {
|
|
// sltu TMP, ZERO, cond_reg
|
|
// mtc1 TMP, temp_cond_reg
|
|
// selnez.fmt out_reg, true_reg, temp_cond_reg
|
|
use_const_for_false_in = true;
|
|
} else {
|
|
// sltu TMP, ZERO, cond_reg
|
|
// mtc1 TMP, temp_cond_reg
|
|
// sel.fmt temp_cond_reg, false_reg, true_reg
|
|
// mov.fmt out_reg, temp_cond_reg
|
|
}
|
|
}
|
|
} else {
|
|
// movn.fmt out_reg, true_reg, cond_reg
|
|
can_move_conditionally = true;
|
|
}
|
|
break;
|
|
}
|
|
break;
|
|
case Primitive::kPrimLong:
|
|
// We don't materialize long comparison now
|
|
// and use conditional branches instead.
|
|
break;
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimDouble:
|
|
switch (dst_type) {
|
|
default:
|
|
// Moving int on float/double condition.
|
|
if (is_r6) {
|
|
if (is_true_value_zero_constant) {
|
|
// mfc1 TMP, temp_cond_reg
|
|
// seleqz out_reg, false_reg, TMP
|
|
can_move_conditionally = true;
|
|
use_const_for_true_in = true;
|
|
} else if (is_false_value_zero_constant) {
|
|
// mfc1 TMP, temp_cond_reg
|
|
// selnez out_reg, true_reg, TMP
|
|
can_move_conditionally = true;
|
|
use_const_for_false_in = true;
|
|
} else {
|
|
// mfc1 TMP, temp_cond_reg
|
|
// selnez AT, true_reg, TMP
|
|
// seleqz TMP, false_reg, TMP
|
|
// or out_reg, AT, TMP
|
|
can_move_conditionally = true;
|
|
}
|
|
} else {
|
|
// movt out_reg, true_reg/ZERO, cc
|
|
can_move_conditionally = true;
|
|
use_const_for_true_in = is_true_value_zero_constant;
|
|
}
|
|
break;
|
|
case Primitive::kPrimLong:
|
|
// Moving long on float/double condition.
|
|
if (is_r6) {
|
|
if (is_true_value_zero_constant) {
|
|
// mfc1 TMP, temp_cond_reg
|
|
// seleqz out_reg_lo, false_reg_lo, TMP
|
|
// seleqz out_reg_hi, false_reg_hi, TMP
|
|
can_move_conditionally = true;
|
|
use_const_for_true_in = true;
|
|
} else if (is_false_value_zero_constant) {
|
|
// mfc1 TMP, temp_cond_reg
|
|
// selnez out_reg_lo, true_reg_lo, TMP
|
|
// selnez out_reg_hi, true_reg_hi, TMP
|
|
can_move_conditionally = true;
|
|
use_const_for_false_in = true;
|
|
}
|
|
// Other long conditional moves would generate 6+ instructions,
|
|
// which is too many.
|
|
} else {
|
|
// movt out_reg_lo, true_reg_lo/ZERO, cc
|
|
// movt out_reg_hi, true_reg_hi/ZERO, cc
|
|
can_move_conditionally = true;
|
|
use_const_for_true_in = is_true_value_zero_constant;
|
|
}
|
|
break;
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimDouble:
|
|
// Moving float/double on float/double condition.
|
|
if (is_r6) {
|
|
can_move_conditionally = true;
|
|
if (is_true_value_zero_constant) {
|
|
// seleqz.fmt out_reg, false_reg, temp_cond_reg
|
|
use_const_for_true_in = true;
|
|
} else if (is_false_value_zero_constant) {
|
|
// selnez.fmt out_reg, true_reg, temp_cond_reg
|
|
use_const_for_false_in = true;
|
|
} else {
|
|
// sel.fmt temp_cond_reg, false_reg, true_reg
|
|
// mov.fmt out_reg, temp_cond_reg
|
|
}
|
|
} else {
|
|
// movt.fmt out_reg, true_reg, cc
|
|
can_move_conditionally = true;
|
|
}
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (can_move_conditionally) {
|
|
DCHECK(!use_const_for_false_in || !use_const_for_true_in);
|
|
} else {
|
|
DCHECK(!use_const_for_false_in);
|
|
DCHECK(!use_const_for_true_in);
|
|
}
|
|
|
|
if (locations_to_set != nullptr) {
|
|
if (use_const_for_false_in) {
|
|
locations_to_set->SetInAt(0, Location::ConstantLocation(cst_false_value));
|
|
} else {
|
|
locations_to_set->SetInAt(0,
|
|
Primitive::IsFloatingPointType(dst_type)
|
|
? Location::RequiresFpuRegister()
|
|
: Location::RequiresRegister());
|
|
}
|
|
if (use_const_for_true_in) {
|
|
locations_to_set->SetInAt(1, Location::ConstantLocation(cst_true_value));
|
|
} else {
|
|
locations_to_set->SetInAt(1,
|
|
Primitive::IsFloatingPointType(dst_type)
|
|
? Location::RequiresFpuRegister()
|
|
: Location::RequiresRegister());
|
|
}
|
|
if (materialized) {
|
|
locations_to_set->SetInAt(2, Location::RequiresRegister());
|
|
}
|
|
// On R6 we don't require the output to be the same as the
|
|
// first input for conditional moves unlike on R2.
|
|
bool is_out_same_as_first_in = !can_move_conditionally || !is_r6;
|
|
if (is_out_same_as_first_in) {
|
|
locations_to_set->SetOut(Location::SameAsFirstInput());
|
|
} else {
|
|
locations_to_set->SetOut(Primitive::IsFloatingPointType(dst_type)
|
|
? Location::RequiresFpuRegister()
|
|
: Location::RequiresRegister());
|
|
}
|
|
}
|
|
|
|
return can_move_conditionally;
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::GenConditionalMoveR2(HSelect* select) {
|
|
LocationSummary* locations = select->GetLocations();
|
|
Location dst = locations->Out();
|
|
Location src = locations->InAt(1);
|
|
Register src_reg = ZERO;
|
|
Register src_reg_high = ZERO;
|
|
HInstruction* cond = select->InputAt(/* condition_input_index */ 2);
|
|
Register cond_reg = TMP;
|
|
int cond_cc = 0;
|
|
Primitive::Type cond_type = Primitive::kPrimInt;
|
|
bool cond_inverted = false;
|
|
Primitive::Type dst_type = select->GetType();
|
|
|
|
if (IsBooleanValueOrMaterializedCondition(cond)) {
|
|
cond_reg = locations->InAt(/* condition_input_index */ 2).AsRegister<Register>();
|
|
} else {
|
|
HCondition* condition = cond->AsCondition();
|
|
LocationSummary* cond_locations = cond->GetLocations();
|
|
IfCondition if_cond = condition->GetCondition();
|
|
cond_type = condition->InputAt(0)->GetType();
|
|
switch (cond_type) {
|
|
default:
|
|
DCHECK_NE(cond_type, Primitive::kPrimLong);
|
|
cond_inverted = MaterializeIntCompare(if_cond, cond_locations, cond_reg);
|
|
break;
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimDouble:
|
|
cond_inverted = MaterializeFpCompareR2(if_cond,
|
|
condition->IsGtBias(),
|
|
cond_type,
|
|
cond_locations,
|
|
cond_cc);
|
|
break;
|
|
}
|
|
}
|
|
|
|
DCHECK(dst.Equals(locations->InAt(0)));
|
|
if (src.IsRegister()) {
|
|
src_reg = src.AsRegister<Register>();
|
|
} else if (src.IsRegisterPair()) {
|
|
src_reg = src.AsRegisterPairLow<Register>();
|
|
src_reg_high = src.AsRegisterPairHigh<Register>();
|
|
} else if (src.IsConstant()) {
|
|
DCHECK(src.GetConstant()->IsZeroBitPattern());
|
|
}
|
|
|
|
switch (cond_type) {
|
|
default:
|
|
switch (dst_type) {
|
|
default:
|
|
if (cond_inverted) {
|
|
__ Movz(dst.AsRegister<Register>(), src_reg, cond_reg);
|
|
} else {
|
|
__ Movn(dst.AsRegister<Register>(), src_reg, cond_reg);
|
|
}
|
|
break;
|
|
case Primitive::kPrimLong:
|
|
if (cond_inverted) {
|
|
__ Movz(dst.AsRegisterPairLow<Register>(), src_reg, cond_reg);
|
|
__ Movz(dst.AsRegisterPairHigh<Register>(), src_reg_high, cond_reg);
|
|
} else {
|
|
__ Movn(dst.AsRegisterPairLow<Register>(), src_reg, cond_reg);
|
|
__ Movn(dst.AsRegisterPairHigh<Register>(), src_reg_high, cond_reg);
|
|
}
|
|
break;
|
|
case Primitive::kPrimFloat:
|
|
if (cond_inverted) {
|
|
__ MovzS(dst.AsFpuRegister<FRegister>(), src.AsFpuRegister<FRegister>(), cond_reg);
|
|
} else {
|
|
__ MovnS(dst.AsFpuRegister<FRegister>(), src.AsFpuRegister<FRegister>(), cond_reg);
|
|
}
|
|
break;
|
|
case Primitive::kPrimDouble:
|
|
if (cond_inverted) {
|
|
__ MovzD(dst.AsFpuRegister<FRegister>(), src.AsFpuRegister<FRegister>(), cond_reg);
|
|
} else {
|
|
__ MovnD(dst.AsFpuRegister<FRegister>(), src.AsFpuRegister<FRegister>(), cond_reg);
|
|
}
|
|
break;
|
|
}
|
|
break;
|
|
case Primitive::kPrimLong:
|
|
LOG(FATAL) << "Unreachable";
|
|
UNREACHABLE();
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimDouble:
|
|
switch (dst_type) {
|
|
default:
|
|
if (cond_inverted) {
|
|
__ Movf(dst.AsRegister<Register>(), src_reg, cond_cc);
|
|
} else {
|
|
__ Movt(dst.AsRegister<Register>(), src_reg, cond_cc);
|
|
}
|
|
break;
|
|
case Primitive::kPrimLong:
|
|
if (cond_inverted) {
|
|
__ Movf(dst.AsRegisterPairLow<Register>(), src_reg, cond_cc);
|
|
__ Movf(dst.AsRegisterPairHigh<Register>(), src_reg_high, cond_cc);
|
|
} else {
|
|
__ Movt(dst.AsRegisterPairLow<Register>(), src_reg, cond_cc);
|
|
__ Movt(dst.AsRegisterPairHigh<Register>(), src_reg_high, cond_cc);
|
|
}
|
|
break;
|
|
case Primitive::kPrimFloat:
|
|
if (cond_inverted) {
|
|
__ MovfS(dst.AsFpuRegister<FRegister>(), src.AsFpuRegister<FRegister>(), cond_cc);
|
|
} else {
|
|
__ MovtS(dst.AsFpuRegister<FRegister>(), src.AsFpuRegister<FRegister>(), cond_cc);
|
|
}
|
|
break;
|
|
case Primitive::kPrimDouble:
|
|
if (cond_inverted) {
|
|
__ MovfD(dst.AsFpuRegister<FRegister>(), src.AsFpuRegister<FRegister>(), cond_cc);
|
|
} else {
|
|
__ MovtD(dst.AsFpuRegister<FRegister>(), src.AsFpuRegister<FRegister>(), cond_cc);
|
|
}
|
|
break;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::GenConditionalMoveR6(HSelect* select) {
|
|
LocationSummary* locations = select->GetLocations();
|
|
Location dst = locations->Out();
|
|
Location false_src = locations->InAt(0);
|
|
Location true_src = locations->InAt(1);
|
|
HInstruction* cond = select->InputAt(/* condition_input_index */ 2);
|
|
Register cond_reg = TMP;
|
|
FRegister fcond_reg = FTMP;
|
|
Primitive::Type cond_type = Primitive::kPrimInt;
|
|
bool cond_inverted = false;
|
|
Primitive::Type dst_type = select->GetType();
|
|
|
|
if (IsBooleanValueOrMaterializedCondition(cond)) {
|
|
cond_reg = locations->InAt(/* condition_input_index */ 2).AsRegister<Register>();
|
|
} else {
|
|
HCondition* condition = cond->AsCondition();
|
|
LocationSummary* cond_locations = cond->GetLocations();
|
|
IfCondition if_cond = condition->GetCondition();
|
|
cond_type = condition->InputAt(0)->GetType();
|
|
switch (cond_type) {
|
|
default:
|
|
DCHECK_NE(cond_type, Primitive::kPrimLong);
|
|
cond_inverted = MaterializeIntCompare(if_cond, cond_locations, cond_reg);
|
|
break;
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimDouble:
|
|
cond_inverted = MaterializeFpCompareR6(if_cond,
|
|
condition->IsGtBias(),
|
|
cond_type,
|
|
cond_locations,
|
|
fcond_reg);
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (true_src.IsConstant()) {
|
|
DCHECK(true_src.GetConstant()->IsZeroBitPattern());
|
|
}
|
|
if (false_src.IsConstant()) {
|
|
DCHECK(false_src.GetConstant()->IsZeroBitPattern());
|
|
}
|
|
|
|
switch (dst_type) {
|
|
default:
|
|
if (Primitive::IsFloatingPointType(cond_type)) {
|
|
__ Mfc1(cond_reg, fcond_reg);
|
|
}
|
|
if (true_src.IsConstant()) {
|
|
if (cond_inverted) {
|
|
__ Selnez(dst.AsRegister<Register>(), false_src.AsRegister<Register>(), cond_reg);
|
|
} else {
|
|
__ Seleqz(dst.AsRegister<Register>(), false_src.AsRegister<Register>(), cond_reg);
|
|
}
|
|
} else if (false_src.IsConstant()) {
|
|
if (cond_inverted) {
|
|
__ Seleqz(dst.AsRegister<Register>(), true_src.AsRegister<Register>(), cond_reg);
|
|
} else {
|
|
__ Selnez(dst.AsRegister<Register>(), true_src.AsRegister<Register>(), cond_reg);
|
|
}
|
|
} else {
|
|
DCHECK_NE(cond_reg, AT);
|
|
if (cond_inverted) {
|
|
__ Seleqz(AT, true_src.AsRegister<Register>(), cond_reg);
|
|
__ Selnez(TMP, false_src.AsRegister<Register>(), cond_reg);
|
|
} else {
|
|
__ Selnez(AT, true_src.AsRegister<Register>(), cond_reg);
|
|
__ Seleqz(TMP, false_src.AsRegister<Register>(), cond_reg);
|
|
}
|
|
__ Or(dst.AsRegister<Register>(), AT, TMP);
|
|
}
|
|
break;
|
|
case Primitive::kPrimLong: {
|
|
if (Primitive::IsFloatingPointType(cond_type)) {
|
|
__ Mfc1(cond_reg, fcond_reg);
|
|
}
|
|
Register dst_lo = dst.AsRegisterPairLow<Register>();
|
|
Register dst_hi = dst.AsRegisterPairHigh<Register>();
|
|
if (true_src.IsConstant()) {
|
|
Register src_lo = false_src.AsRegisterPairLow<Register>();
|
|
Register src_hi = false_src.AsRegisterPairHigh<Register>();
|
|
if (cond_inverted) {
|
|
__ Selnez(dst_lo, src_lo, cond_reg);
|
|
__ Selnez(dst_hi, src_hi, cond_reg);
|
|
} else {
|
|
__ Seleqz(dst_lo, src_lo, cond_reg);
|
|
__ Seleqz(dst_hi, src_hi, cond_reg);
|
|
}
|
|
} else {
|
|
DCHECK(false_src.IsConstant());
|
|
Register src_lo = true_src.AsRegisterPairLow<Register>();
|
|
Register src_hi = true_src.AsRegisterPairHigh<Register>();
|
|
if (cond_inverted) {
|
|
__ Seleqz(dst_lo, src_lo, cond_reg);
|
|
__ Seleqz(dst_hi, src_hi, cond_reg);
|
|
} else {
|
|
__ Selnez(dst_lo, src_lo, cond_reg);
|
|
__ Selnez(dst_hi, src_hi, cond_reg);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case Primitive::kPrimFloat: {
|
|
if (!Primitive::IsFloatingPointType(cond_type)) {
|
|
// sel*.fmt tests bit 0 of the condition register, account for that.
|
|
__ Sltu(TMP, ZERO, cond_reg);
|
|
__ Mtc1(TMP, fcond_reg);
|
|
}
|
|
FRegister dst_reg = dst.AsFpuRegister<FRegister>();
|
|
if (true_src.IsConstant()) {
|
|
FRegister src_reg = false_src.AsFpuRegister<FRegister>();
|
|
if (cond_inverted) {
|
|
__ SelnezS(dst_reg, src_reg, fcond_reg);
|
|
} else {
|
|
__ SeleqzS(dst_reg, src_reg, fcond_reg);
|
|
}
|
|
} else if (false_src.IsConstant()) {
|
|
FRegister src_reg = true_src.AsFpuRegister<FRegister>();
|
|
if (cond_inverted) {
|
|
__ SeleqzS(dst_reg, src_reg, fcond_reg);
|
|
} else {
|
|
__ SelnezS(dst_reg, src_reg, fcond_reg);
|
|
}
|
|
} else {
|
|
if (cond_inverted) {
|
|
__ SelS(fcond_reg,
|
|
true_src.AsFpuRegister<FRegister>(),
|
|
false_src.AsFpuRegister<FRegister>());
|
|
} else {
|
|
__ SelS(fcond_reg,
|
|
false_src.AsFpuRegister<FRegister>(),
|
|
true_src.AsFpuRegister<FRegister>());
|
|
}
|
|
__ MovS(dst_reg, fcond_reg);
|
|
}
|
|
break;
|
|
}
|
|
case Primitive::kPrimDouble: {
|
|
if (!Primitive::IsFloatingPointType(cond_type)) {
|
|
// sel*.fmt tests bit 0 of the condition register, account for that.
|
|
__ Sltu(TMP, ZERO, cond_reg);
|
|
__ Mtc1(TMP, fcond_reg);
|
|
}
|
|
FRegister dst_reg = dst.AsFpuRegister<FRegister>();
|
|
if (true_src.IsConstant()) {
|
|
FRegister src_reg = false_src.AsFpuRegister<FRegister>();
|
|
if (cond_inverted) {
|
|
__ SelnezD(dst_reg, src_reg, fcond_reg);
|
|
} else {
|
|
__ SeleqzD(dst_reg, src_reg, fcond_reg);
|
|
}
|
|
} else if (false_src.IsConstant()) {
|
|
FRegister src_reg = true_src.AsFpuRegister<FRegister>();
|
|
if (cond_inverted) {
|
|
__ SeleqzD(dst_reg, src_reg, fcond_reg);
|
|
} else {
|
|
__ SelnezD(dst_reg, src_reg, fcond_reg);
|
|
}
|
|
} else {
|
|
if (cond_inverted) {
|
|
__ SelD(fcond_reg,
|
|
true_src.AsFpuRegister<FRegister>(),
|
|
false_src.AsFpuRegister<FRegister>());
|
|
} else {
|
|
__ SelD(fcond_reg,
|
|
false_src.AsFpuRegister<FRegister>(),
|
|
true_src.AsFpuRegister<FRegister>());
|
|
}
|
|
__ MovD(dst_reg, fcond_reg);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) {
|
|
LocationSummary* locations = new (GetGraph()->GetArena())
|
|
LocationSummary(flag, LocationSummary::kNoCall);
|
|
locations->SetOut(Location::RequiresRegister());
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitShouldDeoptimizeFlag(HShouldDeoptimizeFlag* flag) {
|
|
__ LoadFromOffset(kLoadWord,
|
|
flag->GetLocations()->Out().AsRegister<Register>(),
|
|
SP,
|
|
codegen_->GetStackOffsetOfShouldDeoptimizeFlag());
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitSelect(HSelect* select) {
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(select);
|
|
CanMoveConditionally(select, codegen_->GetInstructionSetFeatures().IsR6(), locations);
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitSelect(HSelect* select) {
|
|
bool is_r6 = codegen_->GetInstructionSetFeatures().IsR6();
|
|
if (CanMoveConditionally(select, is_r6, /* locations_to_set */ nullptr)) {
|
|
if (is_r6) {
|
|
GenConditionalMoveR6(select);
|
|
} else {
|
|
GenConditionalMoveR2(select);
|
|
}
|
|
} else {
|
|
LocationSummary* locations = select->GetLocations();
|
|
MipsLabel false_target;
|
|
GenerateTestAndBranch(select,
|
|
/* condition_input_index */ 2,
|
|
/* true_target */ nullptr,
|
|
&false_target);
|
|
codegen_->MoveLocation(locations->Out(), locations->InAt(1), select->GetType());
|
|
__ Bind(&false_target);
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitNativeDebugInfo(HNativeDebugInfo* info) {
|
|
new (GetGraph()->GetArena()) LocationSummary(info);
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitNativeDebugInfo(HNativeDebugInfo*) {
|
|
// MaybeRecordNativeDebugInfo is already called implicitly in CodeGenerator::Compile.
|
|
}
|
|
|
|
void CodeGeneratorMIPS::GenerateNop() {
|
|
__ Nop();
|
|
}
|
|
|
|
void LocationsBuilderMIPS::HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info) {
|
|
Primitive::Type field_type = field_info.GetFieldType();
|
|
bool is_wide = (field_type == Primitive::kPrimLong) || (field_type == Primitive::kPrimDouble);
|
|
bool generate_volatile = field_info.IsVolatile() && is_wide;
|
|
bool object_field_get_with_read_barrier =
|
|
kEmitCompilerReadBarrier && (field_type == Primitive::kPrimNot);
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(
|
|
instruction,
|
|
generate_volatile
|
|
? LocationSummary::kCallOnMainOnly
|
|
: (object_field_get_with_read_barrier
|
|
? LocationSummary::kCallOnSlowPath
|
|
: LocationSummary::kNoCall));
|
|
|
|
if (object_field_get_with_read_barrier && kUseBakerReadBarrier) {
|
|
locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
|
|
}
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
if (generate_volatile) {
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
// need A0 to hold base + offset
|
|
locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
|
|
if (field_type == Primitive::kPrimLong) {
|
|
locations->SetOut(calling_convention.GetReturnLocation(Primitive::kPrimLong));
|
|
} else {
|
|
// Use Location::Any() to prevent situations when running out of available fp registers.
|
|
locations->SetOut(Location::Any());
|
|
// Need some temp core regs since FP results are returned in core registers
|
|
Location reg = calling_convention.GetReturnLocation(Primitive::kPrimLong);
|
|
locations->AddTemp(Location::RegisterLocation(reg.AsRegisterPairLow<Register>()));
|
|
locations->AddTemp(Location::RegisterLocation(reg.AsRegisterPairHigh<Register>()));
|
|
}
|
|
} else {
|
|
if (Primitive::IsFloatingPointType(instruction->GetType())) {
|
|
locations->SetOut(Location::RequiresFpuRegister());
|
|
} else {
|
|
// The output overlaps in the case of an object field get with
|
|
// read barriers enabled: we do not want the move to overwrite the
|
|
// object's location, as we need it to emit the read barrier.
|
|
locations->SetOut(Location::RequiresRegister(),
|
|
object_field_get_with_read_barrier
|
|
? Location::kOutputOverlap
|
|
: Location::kNoOutputOverlap);
|
|
}
|
|
if (object_field_get_with_read_barrier && kUseBakerReadBarrier) {
|
|
// We need a temporary register for the read barrier marking slow
|
|
// path in CodeGeneratorMIPS::GenerateFieldLoadWithBakerReadBarrier.
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
}
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::HandleFieldGet(HInstruction* instruction,
|
|
const FieldInfo& field_info,
|
|
uint32_t dex_pc) {
|
|
Primitive::Type type = field_info.GetFieldType();
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
Location obj_loc = locations->InAt(0);
|
|
Register obj = obj_loc.AsRegister<Register>();
|
|
Location dst_loc = locations->Out();
|
|
LoadOperandType load_type = kLoadUnsignedByte;
|
|
bool is_volatile = field_info.IsVolatile();
|
|
uint32_t offset = field_info.GetFieldOffset().Uint32Value();
|
|
auto null_checker = GetImplicitNullChecker(instruction, codegen_);
|
|
|
|
switch (type) {
|
|
case Primitive::kPrimBoolean:
|
|
load_type = kLoadUnsignedByte;
|
|
break;
|
|
case Primitive::kPrimByte:
|
|
load_type = kLoadSignedByte;
|
|
break;
|
|
case Primitive::kPrimShort:
|
|
load_type = kLoadSignedHalfword;
|
|
break;
|
|
case Primitive::kPrimChar:
|
|
load_type = kLoadUnsignedHalfword;
|
|
break;
|
|
case Primitive::kPrimInt:
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimNot:
|
|
load_type = kLoadWord;
|
|
break;
|
|
case Primitive::kPrimLong:
|
|
case Primitive::kPrimDouble:
|
|
load_type = kLoadDoubleword;
|
|
break;
|
|
case Primitive::kPrimVoid:
|
|
LOG(FATAL) << "Unreachable type " << type;
|
|
UNREACHABLE();
|
|
}
|
|
|
|
if (is_volatile && load_type == kLoadDoubleword) {
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
__ Addiu32(locations->GetTemp(0).AsRegister<Register>(), obj, offset);
|
|
// Do implicit Null check
|
|
__ Lw(ZERO, locations->GetTemp(0).AsRegister<Register>(), 0);
|
|
codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
|
|
codegen_->InvokeRuntime(kQuickA64Load, instruction, dex_pc);
|
|
CheckEntrypointTypes<kQuickA64Load, int64_t, volatile const int64_t*>();
|
|
if (type == Primitive::kPrimDouble) {
|
|
// FP results are returned in core registers. Need to move them.
|
|
if (dst_loc.IsFpuRegister()) {
|
|
__ Mtc1(locations->GetTemp(1).AsRegister<Register>(), dst_loc.AsFpuRegister<FRegister>());
|
|
__ MoveToFpuHigh(locations->GetTemp(2).AsRegister<Register>(),
|
|
dst_loc.AsFpuRegister<FRegister>());
|
|
} else {
|
|
DCHECK(dst_loc.IsDoubleStackSlot());
|
|
__ StoreToOffset(kStoreWord,
|
|
locations->GetTemp(1).AsRegister<Register>(),
|
|
SP,
|
|
dst_loc.GetStackIndex());
|
|
__ StoreToOffset(kStoreWord,
|
|
locations->GetTemp(2).AsRegister<Register>(),
|
|
SP,
|
|
dst_loc.GetStackIndex() + 4);
|
|
}
|
|
}
|
|
} else {
|
|
if (type == Primitive::kPrimNot) {
|
|
// /* HeapReference<Object> */ dst = *(obj + offset)
|
|
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
|
|
Location temp_loc = locations->GetTemp(0);
|
|
// Note that a potential implicit null check is handled in this
|
|
// CodeGeneratorMIPS::GenerateFieldLoadWithBakerReadBarrier call.
|
|
codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
|
|
dst_loc,
|
|
obj,
|
|
offset,
|
|
temp_loc,
|
|
/* needs_null_check */ true);
|
|
if (is_volatile) {
|
|
GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
|
|
}
|
|
} else {
|
|
__ LoadFromOffset(kLoadWord, dst_loc.AsRegister<Register>(), obj, offset, null_checker);
|
|
if (is_volatile) {
|
|
GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
|
|
}
|
|
// If read barriers are enabled, emit read barriers other than
|
|
// Baker's using a slow path (and also unpoison the loaded
|
|
// reference, if heap poisoning is enabled).
|
|
codegen_->MaybeGenerateReadBarrierSlow(instruction, dst_loc, dst_loc, obj_loc, offset);
|
|
}
|
|
} else if (!Primitive::IsFloatingPointType(type)) {
|
|
Register dst;
|
|
if (type == Primitive::kPrimLong) {
|
|
DCHECK(dst_loc.IsRegisterPair());
|
|
dst = dst_loc.AsRegisterPairLow<Register>();
|
|
} else {
|
|
DCHECK(dst_loc.IsRegister());
|
|
dst = dst_loc.AsRegister<Register>();
|
|
}
|
|
__ LoadFromOffset(load_type, dst, obj, offset, null_checker);
|
|
} else {
|
|
DCHECK(dst_loc.IsFpuRegister());
|
|
FRegister dst = dst_loc.AsFpuRegister<FRegister>();
|
|
if (type == Primitive::kPrimFloat) {
|
|
__ LoadSFromOffset(dst, obj, offset, null_checker);
|
|
} else {
|
|
__ LoadDFromOffset(dst, obj, offset, null_checker);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Memory barriers, in the case of references, are handled in the
|
|
// previous switch statement.
|
|
if (is_volatile && (type != Primitive::kPrimNot)) {
|
|
GenerateMemoryBarrier(MemBarrierKind::kLoadAny);
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderMIPS::HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info) {
|
|
Primitive::Type field_type = field_info.GetFieldType();
|
|
bool is_wide = (field_type == Primitive::kPrimLong) || (field_type == Primitive::kPrimDouble);
|
|
bool generate_volatile = field_info.IsVolatile() && is_wide;
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(
|
|
instruction, generate_volatile ? LocationSummary::kCallOnMainOnly : LocationSummary::kNoCall);
|
|
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
if (generate_volatile) {
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
// need A0 to hold base + offset
|
|
locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
|
|
if (field_type == Primitive::kPrimLong) {
|
|
locations->SetInAt(1, Location::RegisterPairLocation(
|
|
calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
|
|
} else {
|
|
// Use Location::Any() to prevent situations when running out of available fp registers.
|
|
locations->SetInAt(1, Location::Any());
|
|
// Pass FP parameters in core registers.
|
|
locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(2)));
|
|
locations->AddTemp(Location::RegisterLocation(calling_convention.GetRegisterAt(3)));
|
|
}
|
|
} else {
|
|
if (Primitive::IsFloatingPointType(field_type)) {
|
|
locations->SetInAt(1, FpuRegisterOrConstantForStore(instruction->InputAt(1)));
|
|
} else {
|
|
locations->SetInAt(1, RegisterOrZeroConstant(instruction->InputAt(1)));
|
|
}
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::HandleFieldSet(HInstruction* instruction,
|
|
const FieldInfo& field_info,
|
|
uint32_t dex_pc,
|
|
bool value_can_be_null) {
|
|
Primitive::Type type = field_info.GetFieldType();
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
Register obj = locations->InAt(0).AsRegister<Register>();
|
|
Location value_location = locations->InAt(1);
|
|
StoreOperandType store_type = kStoreByte;
|
|
bool is_volatile = field_info.IsVolatile();
|
|
uint32_t offset = field_info.GetFieldOffset().Uint32Value();
|
|
bool needs_write_barrier = CodeGenerator::StoreNeedsWriteBarrier(type, instruction->InputAt(1));
|
|
auto null_checker = GetImplicitNullChecker(instruction, codegen_);
|
|
|
|
switch (type) {
|
|
case Primitive::kPrimBoolean:
|
|
case Primitive::kPrimByte:
|
|
store_type = kStoreByte;
|
|
break;
|
|
case Primitive::kPrimShort:
|
|
case Primitive::kPrimChar:
|
|
store_type = kStoreHalfword;
|
|
break;
|
|
case Primitive::kPrimInt:
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimNot:
|
|
store_type = kStoreWord;
|
|
break;
|
|
case Primitive::kPrimLong:
|
|
case Primitive::kPrimDouble:
|
|
store_type = kStoreDoubleword;
|
|
break;
|
|
case Primitive::kPrimVoid:
|
|
LOG(FATAL) << "Unreachable type " << type;
|
|
UNREACHABLE();
|
|
}
|
|
|
|
if (is_volatile) {
|
|
GenerateMemoryBarrier(MemBarrierKind::kAnyStore);
|
|
}
|
|
|
|
if (is_volatile && store_type == kStoreDoubleword) {
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
__ Addiu32(locations->GetTemp(0).AsRegister<Register>(), obj, offset);
|
|
// Do implicit Null check.
|
|
__ Lw(ZERO, locations->GetTemp(0).AsRegister<Register>(), 0);
|
|
codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
|
|
if (type == Primitive::kPrimDouble) {
|
|
// Pass FP parameters in core registers.
|
|
if (value_location.IsFpuRegister()) {
|
|
__ Mfc1(locations->GetTemp(1).AsRegister<Register>(),
|
|
value_location.AsFpuRegister<FRegister>());
|
|
__ MoveFromFpuHigh(locations->GetTemp(2).AsRegister<Register>(),
|
|
value_location.AsFpuRegister<FRegister>());
|
|
} else if (value_location.IsDoubleStackSlot()) {
|
|
__ LoadFromOffset(kLoadWord,
|
|
locations->GetTemp(1).AsRegister<Register>(),
|
|
SP,
|
|
value_location.GetStackIndex());
|
|
__ LoadFromOffset(kLoadWord,
|
|
locations->GetTemp(2).AsRegister<Register>(),
|
|
SP,
|
|
value_location.GetStackIndex() + 4);
|
|
} else {
|
|
DCHECK(value_location.IsConstant());
|
|
DCHECK(value_location.GetConstant()->IsDoubleConstant());
|
|
int64_t value = CodeGenerator::GetInt64ValueOf(value_location.GetConstant());
|
|
__ LoadConst64(locations->GetTemp(2).AsRegister<Register>(),
|
|
locations->GetTemp(1).AsRegister<Register>(),
|
|
value);
|
|
}
|
|
}
|
|
codegen_->InvokeRuntime(kQuickA64Store, instruction, dex_pc);
|
|
CheckEntrypointTypes<kQuickA64Store, void, volatile int64_t *, int64_t>();
|
|
} else {
|
|
if (value_location.IsConstant()) {
|
|
int64_t value = CodeGenerator::GetInt64ValueOf(value_location.GetConstant());
|
|
__ StoreConstToOffset(store_type, value, obj, offset, TMP, null_checker);
|
|
} else if (!Primitive::IsFloatingPointType(type)) {
|
|
Register src;
|
|
if (type == Primitive::kPrimLong) {
|
|
src = value_location.AsRegisterPairLow<Register>();
|
|
} else {
|
|
src = value_location.AsRegister<Register>();
|
|
}
|
|
if (kPoisonHeapReferences && needs_write_barrier) {
|
|
// Note that in the case where `value` is a null reference,
|
|
// we do not enter this block, as a null reference does not
|
|
// need poisoning.
|
|
DCHECK_EQ(type, Primitive::kPrimNot);
|
|
__ PoisonHeapReference(TMP, src);
|
|
__ StoreToOffset(store_type, TMP, obj, offset, null_checker);
|
|
} else {
|
|
__ StoreToOffset(store_type, src, obj, offset, null_checker);
|
|
}
|
|
} else {
|
|
FRegister src = value_location.AsFpuRegister<FRegister>();
|
|
if (type == Primitive::kPrimFloat) {
|
|
__ StoreSToOffset(src, obj, offset, null_checker);
|
|
} else {
|
|
__ StoreDToOffset(src, obj, offset, null_checker);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (needs_write_barrier) {
|
|
Register src = value_location.AsRegister<Register>();
|
|
codegen_->MarkGCCard(obj, src, value_can_be_null);
|
|
}
|
|
|
|
if (is_volatile) {
|
|
GenerateMemoryBarrier(MemBarrierKind::kAnyAny);
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
|
|
HandleFieldGet(instruction, instruction->GetFieldInfo());
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitInstanceFieldGet(HInstanceFieldGet* instruction) {
|
|
HandleFieldGet(instruction, instruction->GetFieldInfo(), instruction->GetDexPc());
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
|
|
HandleFieldSet(instruction, instruction->GetFieldInfo());
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitInstanceFieldSet(HInstanceFieldSet* instruction) {
|
|
HandleFieldSet(instruction,
|
|
instruction->GetFieldInfo(),
|
|
instruction->GetDexPc(),
|
|
instruction->GetValueCanBeNull());
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::GenerateReferenceLoadOneRegister(
|
|
HInstruction* instruction,
|
|
Location out,
|
|
uint32_t offset,
|
|
Location maybe_temp,
|
|
ReadBarrierOption read_barrier_option) {
|
|
Register out_reg = out.AsRegister<Register>();
|
|
if (read_barrier_option == kWithReadBarrier) {
|
|
CHECK(kEmitCompilerReadBarrier);
|
|
DCHECK(maybe_temp.IsRegister()) << maybe_temp;
|
|
if (kUseBakerReadBarrier) {
|
|
// Load with fast path based Baker's read barrier.
|
|
// /* HeapReference<Object> */ out = *(out + offset)
|
|
codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
|
|
out,
|
|
out_reg,
|
|
offset,
|
|
maybe_temp,
|
|
/* needs_null_check */ false);
|
|
} else {
|
|
// Load with slow path based read barrier.
|
|
// Save the value of `out` into `maybe_temp` before overwriting it
|
|
// in the following move operation, as we will need it for the
|
|
// read barrier below.
|
|
__ Move(maybe_temp.AsRegister<Register>(), out_reg);
|
|
// /* HeapReference<Object> */ out = *(out + offset)
|
|
__ LoadFromOffset(kLoadWord, out_reg, out_reg, offset);
|
|
codegen_->GenerateReadBarrierSlow(instruction, out, out, maybe_temp, offset);
|
|
}
|
|
} else {
|
|
// Plain load with no read barrier.
|
|
// /* HeapReference<Object> */ out = *(out + offset)
|
|
__ LoadFromOffset(kLoadWord, out_reg, out_reg, offset);
|
|
__ MaybeUnpoisonHeapReference(out_reg);
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::GenerateReferenceLoadTwoRegisters(
|
|
HInstruction* instruction,
|
|
Location out,
|
|
Location obj,
|
|
uint32_t offset,
|
|
Location maybe_temp,
|
|
ReadBarrierOption read_barrier_option) {
|
|
Register out_reg = out.AsRegister<Register>();
|
|
Register obj_reg = obj.AsRegister<Register>();
|
|
if (read_barrier_option == kWithReadBarrier) {
|
|
CHECK(kEmitCompilerReadBarrier);
|
|
if (kUseBakerReadBarrier) {
|
|
DCHECK(maybe_temp.IsRegister()) << maybe_temp;
|
|
// Load with fast path based Baker's read barrier.
|
|
// /* HeapReference<Object> */ out = *(obj + offset)
|
|
codegen_->GenerateFieldLoadWithBakerReadBarrier(instruction,
|
|
out,
|
|
obj_reg,
|
|
offset,
|
|
maybe_temp,
|
|
/* needs_null_check */ false);
|
|
} else {
|
|
// Load with slow path based read barrier.
|
|
// /* HeapReference<Object> */ out = *(obj + offset)
|
|
__ LoadFromOffset(kLoadWord, out_reg, obj_reg, offset);
|
|
codegen_->GenerateReadBarrierSlow(instruction, out, out, obj, offset);
|
|
}
|
|
} else {
|
|
// Plain load with no read barrier.
|
|
// /* HeapReference<Object> */ out = *(obj + offset)
|
|
__ LoadFromOffset(kLoadWord, out_reg, obj_reg, offset);
|
|
__ MaybeUnpoisonHeapReference(out_reg);
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::GenerateGcRootFieldLoad(HInstruction* instruction,
|
|
Location root,
|
|
Register obj,
|
|
uint32_t offset,
|
|
ReadBarrierOption read_barrier_option) {
|
|
Register root_reg = root.AsRegister<Register>();
|
|
if (read_barrier_option == kWithReadBarrier) {
|
|
DCHECK(kEmitCompilerReadBarrier);
|
|
if (kUseBakerReadBarrier) {
|
|
// Fast path implementation of art::ReadBarrier::BarrierForRoot when
|
|
// Baker's read barrier are used:
|
|
//
|
|
// root = obj.field;
|
|
// temp = Thread::Current()->pReadBarrierMarkReg ## root.reg()
|
|
// if (temp != null) {
|
|
// root = temp(root)
|
|
// }
|
|
|
|
// /* GcRoot<mirror::Object> */ root = *(obj + offset)
|
|
__ LoadFromOffset(kLoadWord, root_reg, obj, offset);
|
|
static_assert(
|
|
sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(GcRoot<mirror::Object>),
|
|
"art::mirror::CompressedReference<mirror::Object> and art::GcRoot<mirror::Object> "
|
|
"have different sizes.");
|
|
static_assert(sizeof(mirror::CompressedReference<mirror::Object>) == sizeof(int32_t),
|
|
"art::mirror::CompressedReference<mirror::Object> and int32_t "
|
|
"have different sizes.");
|
|
|
|
// Slow path marking the GC root `root`.
|
|
Location temp = Location::RegisterLocation(T9);
|
|
SlowPathCodeMIPS* slow_path =
|
|
new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathMIPS(
|
|
instruction,
|
|
root,
|
|
/*entrypoint*/ temp);
|
|
codegen_->AddSlowPath(slow_path);
|
|
|
|
// temp = Thread::Current()->pReadBarrierMarkReg ## root.reg()
|
|
const int32_t entry_point_offset =
|
|
Thread::ReadBarrierMarkEntryPointsOffset<kMipsPointerSize>(root.reg() - 1);
|
|
// Loading the entrypoint does not require a load acquire since it is only changed when
|
|
// threads are suspended or running a checkpoint.
|
|
__ LoadFromOffset(kLoadWord, temp.AsRegister<Register>(), TR, entry_point_offset);
|
|
// The entrypoint is null when the GC is not marking, this prevents one load compared to
|
|
// checking GetIsGcMarking.
|
|
__ Bnez(temp.AsRegister<Register>(), slow_path->GetEntryLabel());
|
|
__ Bind(slow_path->GetExitLabel());
|
|
} else {
|
|
// GC root loaded through a slow path for read barriers other
|
|
// than Baker's.
|
|
// /* GcRoot<mirror::Object>* */ root = obj + offset
|
|
__ Addiu32(root_reg, obj, offset);
|
|
// /* mirror::Object* */ root = root->Read()
|
|
codegen_->GenerateReadBarrierForRootSlow(instruction, root, root);
|
|
}
|
|
} else {
|
|
// Plain GC root load with no read barrier.
|
|
// /* GcRoot<mirror::Object> */ root = *(obj + offset)
|
|
__ LoadFromOffset(kLoadWord, root_reg, obj, offset);
|
|
// Note that GC roots are not affected by heap poisoning, thus we
|
|
// do not have to unpoison `root_reg` here.
|
|
}
|
|
}
|
|
|
|
void CodeGeneratorMIPS::GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction,
|
|
Location ref,
|
|
Register obj,
|
|
uint32_t offset,
|
|
Location temp,
|
|
bool needs_null_check) {
|
|
DCHECK(kEmitCompilerReadBarrier);
|
|
DCHECK(kUseBakerReadBarrier);
|
|
|
|
// /* HeapReference<Object> */ ref = *(obj + offset)
|
|
Location no_index = Location::NoLocation();
|
|
ScaleFactor no_scale_factor = TIMES_1;
|
|
GenerateReferenceLoadWithBakerReadBarrier(instruction,
|
|
ref,
|
|
obj,
|
|
offset,
|
|
no_index,
|
|
no_scale_factor,
|
|
temp,
|
|
needs_null_check);
|
|
}
|
|
|
|
void CodeGeneratorMIPS::GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction,
|
|
Location ref,
|
|
Register obj,
|
|
uint32_t data_offset,
|
|
Location index,
|
|
Location temp,
|
|
bool needs_null_check) {
|
|
DCHECK(kEmitCompilerReadBarrier);
|
|
DCHECK(kUseBakerReadBarrier);
|
|
|
|
static_assert(
|
|
sizeof(mirror::HeapReference<mirror::Object>) == sizeof(int32_t),
|
|
"art::mirror::HeapReference<art::mirror::Object> and int32_t have different sizes.");
|
|
// /* HeapReference<Object> */ ref =
|
|
// *(obj + data_offset + index * sizeof(HeapReference<Object>))
|
|
ScaleFactor scale_factor = TIMES_4;
|
|
GenerateReferenceLoadWithBakerReadBarrier(instruction,
|
|
ref,
|
|
obj,
|
|
data_offset,
|
|
index,
|
|
scale_factor,
|
|
temp,
|
|
needs_null_check);
|
|
}
|
|
|
|
void CodeGeneratorMIPS::GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction,
|
|
Location ref,
|
|
Register obj,
|
|
uint32_t offset,
|
|
Location index,
|
|
ScaleFactor scale_factor,
|
|
Location temp,
|
|
bool needs_null_check,
|
|
bool always_update_field) {
|
|
DCHECK(kEmitCompilerReadBarrier);
|
|
DCHECK(kUseBakerReadBarrier);
|
|
|
|
// In slow path based read barriers, the read barrier call is
|
|
// inserted after the original load. However, in fast path based
|
|
// Baker's read barriers, we need to perform the load of
|
|
// mirror::Object::monitor_ *before* the original reference load.
|
|
// This load-load ordering is required by the read barrier.
|
|
// The fast path/slow path (for Baker's algorithm) should look like:
|
|
//
|
|
// uint32_t rb_state = Lockword(obj->monitor_).ReadBarrierState();
|
|
// lfence; // Load fence or artificial data dependency to prevent load-load reordering
|
|
// HeapReference<Object> ref = *src; // Original reference load.
|
|
// bool is_gray = (rb_state == ReadBarrier::GrayState());
|
|
// if (is_gray) {
|
|
// ref = ReadBarrier::Mark(ref); // Performed by runtime entrypoint slow path.
|
|
// }
|
|
//
|
|
// Note: the original implementation in ReadBarrier::Barrier is
|
|
// slightly more complex as it performs additional checks that we do
|
|
// not do here for performance reasons.
|
|
|
|
Register ref_reg = ref.AsRegister<Register>();
|
|
Register temp_reg = temp.AsRegister<Register>();
|
|
uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value();
|
|
|
|
// /* int32_t */ monitor = obj->monitor_
|
|
__ LoadFromOffset(kLoadWord, temp_reg, obj, monitor_offset);
|
|
if (needs_null_check) {
|
|
MaybeRecordImplicitNullCheck(instruction);
|
|
}
|
|
// /* LockWord */ lock_word = LockWord(monitor)
|
|
static_assert(sizeof(LockWord) == sizeof(int32_t),
|
|
"art::LockWord and int32_t have different sizes.");
|
|
|
|
__ Sync(0); // Barrier to prevent load-load reordering.
|
|
|
|
// The actual reference load.
|
|
if (index.IsValid()) {
|
|
// Load types involving an "index": ArrayGet,
|
|
// UnsafeGetObject/UnsafeGetObjectVolatile and UnsafeCASObject
|
|
// intrinsics.
|
|
// /* HeapReference<Object> */ ref = *(obj + offset + (index << scale_factor))
|
|
if (index.IsConstant()) {
|
|
size_t computed_offset =
|
|
(index.GetConstant()->AsIntConstant()->GetValue() << scale_factor) + offset;
|
|
__ LoadFromOffset(kLoadWord, ref_reg, obj, computed_offset);
|
|
} else {
|
|
// Handle the special case of the
|
|
// UnsafeGetObject/UnsafeGetObjectVolatile and UnsafeCASObject
|
|
// intrinsics, which use a register pair as index ("long
|
|
// offset"), of which only the low part contains data.
|
|
Register index_reg = index.IsRegisterPair()
|
|
? index.AsRegisterPairLow<Register>()
|
|
: index.AsRegister<Register>();
|
|
__ ShiftAndAdd(TMP, index_reg, obj, scale_factor, TMP);
|
|
__ LoadFromOffset(kLoadWord, ref_reg, TMP, offset);
|
|
}
|
|
} else {
|
|
// /* HeapReference<Object> */ ref = *(obj + offset)
|
|
__ LoadFromOffset(kLoadWord, ref_reg, obj, offset);
|
|
}
|
|
|
|
// Object* ref = ref_addr->AsMirrorPtr()
|
|
__ MaybeUnpoisonHeapReference(ref_reg);
|
|
|
|
// Slow path marking the object `ref` when it is gray.
|
|
SlowPathCodeMIPS* slow_path;
|
|
if (always_update_field) {
|
|
// ReadBarrierMarkAndUpdateFieldSlowPathMIPS only supports address
|
|
// of the form `obj + field_offset`, where `obj` is a register and
|
|
// `field_offset` is a register pair (of which only the lower half
|
|
// is used). Thus `offset` and `scale_factor` above are expected
|
|
// to be null in this code path.
|
|
DCHECK_EQ(offset, 0u);
|
|
DCHECK_EQ(scale_factor, ScaleFactor::TIMES_1);
|
|
slow_path = new (GetGraph()->GetArena())
|
|
ReadBarrierMarkAndUpdateFieldSlowPathMIPS(instruction,
|
|
ref,
|
|
obj,
|
|
/* field_offset */ index,
|
|
temp_reg);
|
|
} else {
|
|
slow_path = new (GetGraph()->GetArena()) ReadBarrierMarkSlowPathMIPS(instruction, ref);
|
|
}
|
|
AddSlowPath(slow_path);
|
|
|
|
// if (rb_state == ReadBarrier::GrayState())
|
|
// ref = ReadBarrier::Mark(ref);
|
|
// Given the numeric representation, it's enough to check the low bit of the
|
|
// rb_state. We do that by shifting the bit into the sign bit (31) and
|
|
// performing a branch on less than zero.
|
|
static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0");
|
|
static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
|
|
static_assert(LockWord::kReadBarrierStateSize == 1, "Expecting 1-bit read barrier state size");
|
|
__ Sll(temp_reg, temp_reg, 31 - LockWord::kReadBarrierStateShift);
|
|
__ Bltz(temp_reg, slow_path->GetEntryLabel());
|
|
__ Bind(slow_path->GetExitLabel());
|
|
}
|
|
|
|
void CodeGeneratorMIPS::GenerateReadBarrierSlow(HInstruction* instruction,
|
|
Location out,
|
|
Location ref,
|
|
Location obj,
|
|
uint32_t offset,
|
|
Location index) {
|
|
DCHECK(kEmitCompilerReadBarrier);
|
|
|
|
// Insert a slow path based read barrier *after* the reference load.
|
|
//
|
|
// If heap poisoning is enabled, the unpoisoning of the loaded
|
|
// reference will be carried out by the runtime within the slow
|
|
// path.
|
|
//
|
|
// Note that `ref` currently does not get unpoisoned (when heap
|
|
// poisoning is enabled), which is alright as the `ref` argument is
|
|
// not used by the artReadBarrierSlow entry point.
|
|
//
|
|
// TODO: Unpoison `ref` when it is used by artReadBarrierSlow.
|
|
SlowPathCodeMIPS* slow_path = new (GetGraph()->GetArena())
|
|
ReadBarrierForHeapReferenceSlowPathMIPS(instruction, out, ref, obj, offset, index);
|
|
AddSlowPath(slow_path);
|
|
|
|
__ B(slow_path->GetEntryLabel());
|
|
__ Bind(slow_path->GetExitLabel());
|
|
}
|
|
|
|
void CodeGeneratorMIPS::MaybeGenerateReadBarrierSlow(HInstruction* instruction,
|
|
Location out,
|
|
Location ref,
|
|
Location obj,
|
|
uint32_t offset,
|
|
Location index) {
|
|
if (kEmitCompilerReadBarrier) {
|
|
// Baker's read barriers shall be handled by the fast path
|
|
// (CodeGeneratorMIPS::GenerateReferenceLoadWithBakerReadBarrier).
|
|
DCHECK(!kUseBakerReadBarrier);
|
|
// If heap poisoning is enabled, unpoisoning will be taken care of
|
|
// by the runtime within the slow path.
|
|
GenerateReadBarrierSlow(instruction, out, ref, obj, offset, index);
|
|
} else if (kPoisonHeapReferences) {
|
|
__ UnpoisonHeapReference(out.AsRegister<Register>());
|
|
}
|
|
}
|
|
|
|
void CodeGeneratorMIPS::GenerateReadBarrierForRootSlow(HInstruction* instruction,
|
|
Location out,
|
|
Location root) {
|
|
DCHECK(kEmitCompilerReadBarrier);
|
|
|
|
// Insert a slow path based read barrier *after* the GC root load.
|
|
//
|
|
// Note that GC roots are not affected by heap poisoning, so we do
|
|
// not need to do anything special for this here.
|
|
SlowPathCodeMIPS* slow_path =
|
|
new (GetGraph()->GetArena()) ReadBarrierForRootSlowPathMIPS(instruction, out, root);
|
|
AddSlowPath(slow_path);
|
|
|
|
__ B(slow_path->GetEntryLabel());
|
|
__ Bind(slow_path->GetExitLabel());
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitInstanceOf(HInstanceOf* instruction) {
|
|
LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
|
|
TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
|
|
bool baker_read_barrier_slow_path = false;
|
|
switch (type_check_kind) {
|
|
case TypeCheckKind::kExactCheck:
|
|
case TypeCheckKind::kAbstractClassCheck:
|
|
case TypeCheckKind::kClassHierarchyCheck:
|
|
case TypeCheckKind::kArrayObjectCheck:
|
|
call_kind =
|
|
kEmitCompilerReadBarrier ? LocationSummary::kCallOnSlowPath : LocationSummary::kNoCall;
|
|
baker_read_barrier_slow_path = kUseBakerReadBarrier;
|
|
break;
|
|
case TypeCheckKind::kArrayCheck:
|
|
case TypeCheckKind::kUnresolvedCheck:
|
|
case TypeCheckKind::kInterfaceCheck:
|
|
call_kind = LocationSummary::kCallOnSlowPath;
|
|
break;
|
|
}
|
|
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction, call_kind);
|
|
if (baker_read_barrier_slow_path) {
|
|
locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
|
|
}
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::RequiresRegister());
|
|
// The output does overlap inputs.
|
|
// Note that TypeCheckSlowPathMIPS uses this register too.
|
|
locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
|
|
locations->AddRegisterTemps(NumberOfInstanceOfTemps(type_check_kind));
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitInstanceOf(HInstanceOf* instruction) {
|
|
TypeCheckKind type_check_kind = instruction->GetTypeCheckKind();
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
Location obj_loc = locations->InAt(0);
|
|
Register obj = obj_loc.AsRegister<Register>();
|
|
Register cls = locations->InAt(1).AsRegister<Register>();
|
|
Location out_loc = locations->Out();
|
|
Register out = out_loc.AsRegister<Register>();
|
|
const size_t num_temps = NumberOfInstanceOfTemps(type_check_kind);
|
|
DCHECK_LE(num_temps, 1u);
|
|
Location maybe_temp_loc = (num_temps >= 1) ? locations->GetTemp(0) : Location::NoLocation();
|
|
uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
|
|
uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
|
|
uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
|
|
uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
|
|
MipsLabel done;
|
|
SlowPathCodeMIPS* slow_path = nullptr;
|
|
|
|
// Return 0 if `obj` is null.
|
|
// Avoid this check if we know `obj` is not null.
|
|
if (instruction->MustDoNullCheck()) {
|
|
__ Move(out, ZERO);
|
|
__ Beqz(obj, &done);
|
|
}
|
|
|
|
switch (type_check_kind) {
|
|
case TypeCheckKind::kExactCheck: {
|
|
// /* HeapReference<Class> */ out = obj->klass_
|
|
GenerateReferenceLoadTwoRegisters(instruction,
|
|
out_loc,
|
|
obj_loc,
|
|
class_offset,
|
|
maybe_temp_loc,
|
|
kCompilerReadBarrierOption);
|
|
// Classes must be equal for the instanceof to succeed.
|
|
__ Xor(out, out, cls);
|
|
__ Sltiu(out, out, 1);
|
|
break;
|
|
}
|
|
|
|
case TypeCheckKind::kAbstractClassCheck: {
|
|
// /* HeapReference<Class> */ out = obj->klass_
|
|
GenerateReferenceLoadTwoRegisters(instruction,
|
|
out_loc,
|
|
obj_loc,
|
|
class_offset,
|
|
maybe_temp_loc,
|
|
kCompilerReadBarrierOption);
|
|
// If the class is abstract, we eagerly fetch the super class of the
|
|
// object to avoid doing a comparison we know will fail.
|
|
MipsLabel loop;
|
|
__ Bind(&loop);
|
|
// /* HeapReference<Class> */ out = out->super_class_
|
|
GenerateReferenceLoadOneRegister(instruction,
|
|
out_loc,
|
|
super_offset,
|
|
maybe_temp_loc,
|
|
kCompilerReadBarrierOption);
|
|
// If `out` is null, we use it for the result, and jump to `done`.
|
|
__ Beqz(out, &done);
|
|
__ Bne(out, cls, &loop);
|
|
__ LoadConst32(out, 1);
|
|
break;
|
|
}
|
|
|
|
case TypeCheckKind::kClassHierarchyCheck: {
|
|
// /* HeapReference<Class> */ out = obj->klass_
|
|
GenerateReferenceLoadTwoRegisters(instruction,
|
|
out_loc,
|
|
obj_loc,
|
|
class_offset,
|
|
maybe_temp_loc,
|
|
kCompilerReadBarrierOption);
|
|
// Walk over the class hierarchy to find a match.
|
|
MipsLabel loop, success;
|
|
__ Bind(&loop);
|
|
__ Beq(out, cls, &success);
|
|
// /* HeapReference<Class> */ out = out->super_class_
|
|
GenerateReferenceLoadOneRegister(instruction,
|
|
out_loc,
|
|
super_offset,
|
|
maybe_temp_loc,
|
|
kCompilerReadBarrierOption);
|
|
__ Bnez(out, &loop);
|
|
// If `out` is null, we use it for the result, and jump to `done`.
|
|
__ B(&done);
|
|
__ Bind(&success);
|
|
__ LoadConst32(out, 1);
|
|
break;
|
|
}
|
|
|
|
case TypeCheckKind::kArrayObjectCheck: {
|
|
// /* HeapReference<Class> */ out = obj->klass_
|
|
GenerateReferenceLoadTwoRegisters(instruction,
|
|
out_loc,
|
|
obj_loc,
|
|
class_offset,
|
|
maybe_temp_loc,
|
|
kCompilerReadBarrierOption);
|
|
// Do an exact check.
|
|
MipsLabel success;
|
|
__ Beq(out, cls, &success);
|
|
// Otherwise, we need to check that the object's class is a non-primitive array.
|
|
// /* HeapReference<Class> */ out = out->component_type_
|
|
GenerateReferenceLoadOneRegister(instruction,
|
|
out_loc,
|
|
component_offset,
|
|
maybe_temp_loc,
|
|
kCompilerReadBarrierOption);
|
|
// If `out` is null, we use it for the result, and jump to `done`.
|
|
__ Beqz(out, &done);
|
|
__ LoadFromOffset(kLoadUnsignedHalfword, out, out, primitive_offset);
|
|
static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
|
|
__ Sltiu(out, out, 1);
|
|
__ B(&done);
|
|
__ Bind(&success);
|
|
__ LoadConst32(out, 1);
|
|
break;
|
|
}
|
|
|
|
case TypeCheckKind::kArrayCheck: {
|
|
// No read barrier since the slow path will retry upon failure.
|
|
// /* HeapReference<Class> */ out = obj->klass_
|
|
GenerateReferenceLoadTwoRegisters(instruction,
|
|
out_loc,
|
|
obj_loc,
|
|
class_offset,
|
|
maybe_temp_loc,
|
|
kWithoutReadBarrier);
|
|
DCHECK(locations->OnlyCallsOnSlowPath());
|
|
slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathMIPS(instruction,
|
|
/* is_fatal */ false);
|
|
codegen_->AddSlowPath(slow_path);
|
|
__ Bne(out, cls, slow_path->GetEntryLabel());
|
|
__ LoadConst32(out, 1);
|
|
break;
|
|
}
|
|
|
|
case TypeCheckKind::kUnresolvedCheck:
|
|
case TypeCheckKind::kInterfaceCheck: {
|
|
// Note that we indeed only call on slow path, but we always go
|
|
// into the slow path for the unresolved and interface check
|
|
// cases.
|
|
//
|
|
// We cannot directly call the InstanceofNonTrivial runtime
|
|
// entry point without resorting to a type checking slow path
|
|
// here (i.e. by calling InvokeRuntime directly), as it would
|
|
// require to assign fixed registers for the inputs of this
|
|
// HInstanceOf instruction (following the runtime calling
|
|
// convention), which might be cluttered by the potential first
|
|
// read barrier emission at the beginning of this method.
|
|
//
|
|
// TODO: Introduce a new runtime entry point taking the object
|
|
// to test (instead of its class) as argument, and let it deal
|
|
// with the read barrier issues. This will let us refactor this
|
|
// case of the `switch` code as it was previously (with a direct
|
|
// call to the runtime not using a type checking slow path).
|
|
// This should also be beneficial for the other cases above.
|
|
DCHECK(locations->OnlyCallsOnSlowPath());
|
|
slow_path = new (GetGraph()->GetArena()) TypeCheckSlowPathMIPS(instruction,
|
|
/* is_fatal */ false);
|
|
codegen_->AddSlowPath(slow_path);
|
|
__ B(slow_path->GetEntryLabel());
|
|
break;
|
|
}
|
|
}
|
|
|
|
__ Bind(&done);
|
|
|
|
if (slow_path != nullptr) {
|
|
__ Bind(slow_path->GetExitLabel());
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitIntConstant(HIntConstant* constant) {
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant);
|
|
locations->SetOut(Location::ConstantLocation(constant));
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitIntConstant(HIntConstant* constant ATTRIBUTE_UNUSED) {
|
|
// Will be generated at use site.
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitNullConstant(HNullConstant* constant) {
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant);
|
|
locations->SetOut(Location::ConstantLocation(constant));
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitNullConstant(HNullConstant* constant ATTRIBUTE_UNUSED) {
|
|
// Will be generated at use site.
|
|
}
|
|
|
|
void LocationsBuilderMIPS::HandleInvoke(HInvoke* invoke) {
|
|
InvokeDexCallingConventionVisitorMIPS calling_convention_visitor;
|
|
CodeGenerator::CreateCommonInvokeLocationSummary(invoke, &calling_convention_visitor);
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitInvokeInterface(HInvokeInterface* invoke) {
|
|
HandleInvoke(invoke);
|
|
// The register T7 is required to be used for the hidden argument in
|
|
// art_quick_imt_conflict_trampoline, so add the hidden argument.
|
|
invoke->GetLocations()->AddTemp(Location::RegisterLocation(T7));
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitInvokeInterface(HInvokeInterface* invoke) {
|
|
// TODO: b/18116999, our IMTs can miss an IncompatibleClassChangeError.
|
|
Register temp = invoke->GetLocations()->GetTemp(0).AsRegister<Register>();
|
|
Location receiver = invoke->GetLocations()->InAt(0);
|
|
uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
|
|
Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kMipsPointerSize);
|
|
|
|
// Set the hidden argument.
|
|
__ LoadConst32(invoke->GetLocations()->GetTemp(1).AsRegister<Register>(),
|
|
invoke->GetDexMethodIndex());
|
|
|
|
// temp = object->GetClass();
|
|
if (receiver.IsStackSlot()) {
|
|
__ LoadFromOffset(kLoadWord, temp, SP, receiver.GetStackIndex());
|
|
__ LoadFromOffset(kLoadWord, temp, temp, class_offset);
|
|
} else {
|
|
__ LoadFromOffset(kLoadWord, temp, receiver.AsRegister<Register>(), class_offset);
|
|
}
|
|
codegen_->MaybeRecordImplicitNullCheck(invoke);
|
|
// Instead of simply (possibly) unpoisoning `temp` here, we should
|
|
// emit a read barrier for the previous class reference load.
|
|
// However this is not required in practice, as this is an
|
|
// intermediate/temporary reference and because the current
|
|
// concurrent copying collector keeps the from-space memory
|
|
// intact/accessible until the end of the marking phase (the
|
|
// concurrent copying collector may not in the future).
|
|
__ MaybeUnpoisonHeapReference(temp);
|
|
__ LoadFromOffset(kLoadWord, temp, temp,
|
|
mirror::Class::ImtPtrOffset(kMipsPointerSize).Uint32Value());
|
|
uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
|
|
invoke->GetImtIndex(), kMipsPointerSize));
|
|
// temp = temp->GetImtEntryAt(method_offset);
|
|
__ LoadFromOffset(kLoadWord, temp, temp, method_offset);
|
|
// T9 = temp->GetEntryPoint();
|
|
__ LoadFromOffset(kLoadWord, T9, temp, entry_point.Int32Value());
|
|
// T9();
|
|
__ Jalr(T9);
|
|
__ NopIfNoReordering();
|
|
DCHECK(!codegen_->IsLeafMethod());
|
|
codegen_->RecordPcInfo(invoke, invoke->GetDexPc());
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitInvokeVirtual(HInvokeVirtual* invoke) {
|
|
IntrinsicLocationsBuilderMIPS intrinsic(codegen_);
|
|
if (intrinsic.TryDispatch(invoke)) {
|
|
return;
|
|
}
|
|
|
|
HandleInvoke(invoke);
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
|
|
// Explicit clinit checks triggered by static invokes must have been pruned by
|
|
// art::PrepareForRegisterAllocation.
|
|
DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
|
|
|
|
bool is_r6 = codegen_->GetInstructionSetFeatures().IsR6();
|
|
bool has_extra_input = invoke->HasPcRelativeMethodLoadKind() && !is_r6;
|
|
|
|
IntrinsicLocationsBuilderMIPS intrinsic(codegen_);
|
|
if (intrinsic.TryDispatch(invoke)) {
|
|
if (invoke->GetLocations()->CanCall() && has_extra_input) {
|
|
invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::Any());
|
|
}
|
|
return;
|
|
}
|
|
|
|
HandleInvoke(invoke);
|
|
|
|
// Add the extra input register if either the dex cache array base register
|
|
// or the PC-relative base register for accessing literals is needed.
|
|
if (has_extra_input) {
|
|
invoke->GetLocations()->SetInAt(invoke->GetSpecialInputIndex(), Location::RequiresRegister());
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitInvokePolymorphic(HInvokePolymorphic* invoke) {
|
|
HandleInvoke(invoke);
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitInvokePolymorphic(HInvokePolymorphic* invoke) {
|
|
codegen_->GenerateInvokePolymorphicCall(invoke);
|
|
}
|
|
|
|
static bool TryGenerateIntrinsicCode(HInvoke* invoke, CodeGeneratorMIPS* codegen) {
|
|
if (invoke->GetLocations()->Intrinsified()) {
|
|
IntrinsicCodeGeneratorMIPS intrinsic(codegen);
|
|
intrinsic.Dispatch(invoke);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
HLoadString::LoadKind CodeGeneratorMIPS::GetSupportedLoadStringKind(
|
|
HLoadString::LoadKind desired_string_load_kind) {
|
|
// We disable PC-relative load on pre-R6 when there is an irreducible loop, as the optimization
|
|
// is incompatible with it.
|
|
// TODO: Create as many HMipsComputeBaseMethodAddress instructions as needed for methods
|
|
// with irreducible loops.
|
|
bool has_irreducible_loops = GetGraph()->HasIrreducibleLoops();
|
|
bool is_r6 = GetInstructionSetFeatures().IsR6();
|
|
bool fallback_load = has_irreducible_loops && !is_r6;
|
|
switch (desired_string_load_kind) {
|
|
case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
|
|
case HLoadString::LoadKind::kBssEntry:
|
|
DCHECK(!Runtime::Current()->UseJitCompilation());
|
|
break;
|
|
case HLoadString::LoadKind::kBootImageAddress:
|
|
break;
|
|
case HLoadString::LoadKind::kJitTableAddress:
|
|
DCHECK(Runtime::Current()->UseJitCompilation());
|
|
fallback_load = false;
|
|
break;
|
|
case HLoadString::LoadKind::kRuntimeCall:
|
|
fallback_load = false;
|
|
break;
|
|
}
|
|
if (fallback_load) {
|
|
desired_string_load_kind = HLoadString::LoadKind::kRuntimeCall;
|
|
}
|
|
return desired_string_load_kind;
|
|
}
|
|
|
|
HLoadClass::LoadKind CodeGeneratorMIPS::GetSupportedLoadClassKind(
|
|
HLoadClass::LoadKind desired_class_load_kind) {
|
|
// We disable PC-relative load on pre-R6 when there is an irreducible loop, as the optimization
|
|
// is incompatible with it.
|
|
// TODO: Create as many HMipsComputeBaseMethodAddress instructions as needed for methods
|
|
// with irreducible loops.
|
|
bool has_irreducible_loops = GetGraph()->HasIrreducibleLoops();
|
|
bool is_r6 = GetInstructionSetFeatures().IsR6();
|
|
bool fallback_load = has_irreducible_loops && !is_r6;
|
|
switch (desired_class_load_kind) {
|
|
case HLoadClass::LoadKind::kInvalid:
|
|
LOG(FATAL) << "UNREACHABLE";
|
|
UNREACHABLE();
|
|
case HLoadClass::LoadKind::kReferrersClass:
|
|
fallback_load = false;
|
|
break;
|
|
case HLoadClass::LoadKind::kBootImageLinkTimePcRelative:
|
|
case HLoadClass::LoadKind::kBssEntry:
|
|
DCHECK(!Runtime::Current()->UseJitCompilation());
|
|
break;
|
|
case HLoadClass::LoadKind::kBootImageAddress:
|
|
break;
|
|
case HLoadClass::LoadKind::kJitTableAddress:
|
|
DCHECK(Runtime::Current()->UseJitCompilation());
|
|
fallback_load = false;
|
|
break;
|
|
case HLoadClass::LoadKind::kRuntimeCall:
|
|
fallback_load = false;
|
|
break;
|
|
}
|
|
if (fallback_load) {
|
|
desired_class_load_kind = HLoadClass::LoadKind::kRuntimeCall;
|
|
}
|
|
return desired_class_load_kind;
|
|
}
|
|
|
|
Register CodeGeneratorMIPS::GetInvokeStaticOrDirectExtraParameter(HInvokeStaticOrDirect* invoke,
|
|
Register temp) {
|
|
CHECK(!GetInstructionSetFeatures().IsR6());
|
|
CHECK_EQ(invoke->InputCount(), invoke->GetNumberOfArguments() + 1u);
|
|
Location location = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
|
|
if (!invoke->GetLocations()->Intrinsified()) {
|
|
return location.AsRegister<Register>();
|
|
}
|
|
// For intrinsics we allow any location, so it may be on the stack.
|
|
if (!location.IsRegister()) {
|
|
__ LoadFromOffset(kLoadWord, temp, SP, location.GetStackIndex());
|
|
return temp;
|
|
}
|
|
// For register locations, check if the register was saved. If so, get it from the stack.
|
|
// Note: There is a chance that the register was saved but not overwritten, so we could
|
|
// save one load. However, since this is just an intrinsic slow path we prefer this
|
|
// simple and more robust approach rather that trying to determine if that's the case.
|
|
SlowPathCode* slow_path = GetCurrentSlowPath();
|
|
DCHECK(slow_path != nullptr); // For intrinsified invokes the call is emitted on the slow path.
|
|
if (slow_path->IsCoreRegisterSaved(location.AsRegister<Register>())) {
|
|
int stack_offset = slow_path->GetStackOffsetOfCoreRegister(location.AsRegister<Register>());
|
|
__ LoadFromOffset(kLoadWord, temp, SP, stack_offset);
|
|
return temp;
|
|
}
|
|
return location.AsRegister<Register>();
|
|
}
|
|
|
|
HInvokeStaticOrDirect::DispatchInfo CodeGeneratorMIPS::GetSupportedInvokeStaticOrDirectDispatch(
|
|
const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info,
|
|
HInvokeStaticOrDirect* invoke ATTRIBUTE_UNUSED) {
|
|
HInvokeStaticOrDirect::DispatchInfo dispatch_info = desired_dispatch_info;
|
|
// We disable PC-relative load on pre-R6 when there is an irreducible loop, as the optimization
|
|
// is incompatible with it.
|
|
// TODO: Create as many HMipsComputeBaseMethodAddress instructions as needed for methods
|
|
// with irreducible loops.
|
|
bool has_irreducible_loops = GetGraph()->HasIrreducibleLoops();
|
|
bool is_r6 = GetInstructionSetFeatures().IsR6();
|
|
bool fallback_load = has_irreducible_loops && !is_r6;
|
|
switch (dispatch_info.method_load_kind) {
|
|
case HInvokeStaticOrDirect::MethodLoadKind::kBootImageLinkTimePcRelative:
|
|
case HInvokeStaticOrDirect::MethodLoadKind::kBssEntry:
|
|
break;
|
|
default:
|
|
fallback_load = false;
|
|
break;
|
|
}
|
|
if (fallback_load) {
|
|
dispatch_info.method_load_kind = HInvokeStaticOrDirect::MethodLoadKind::kRuntimeCall;
|
|
dispatch_info.method_load_data = 0;
|
|
}
|
|
return dispatch_info;
|
|
}
|
|
|
|
void CodeGeneratorMIPS::GenerateStaticOrDirectCall(
|
|
HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path) {
|
|
// All registers are assumed to be correctly set up per the calling convention.
|
|
Location callee_method = temp; // For all kinds except kRecursive, callee will be in temp.
|
|
HInvokeStaticOrDirect::MethodLoadKind method_load_kind = invoke->GetMethodLoadKind();
|
|
HInvokeStaticOrDirect::CodePtrLocation code_ptr_location = invoke->GetCodePtrLocation();
|
|
bool is_r6 = GetInstructionSetFeatures().IsR6();
|
|
Register base_reg = (invoke->HasPcRelativeMethodLoadKind() && !is_r6)
|
|
? GetInvokeStaticOrDirectExtraParameter(invoke, temp.AsRegister<Register>())
|
|
: ZERO;
|
|
|
|
switch (method_load_kind) {
|
|
case HInvokeStaticOrDirect::MethodLoadKind::kStringInit: {
|
|
// temp = thread->string_init_entrypoint
|
|
uint32_t offset =
|
|
GetThreadOffset<kMipsPointerSize>(invoke->GetStringInitEntryPoint()).Int32Value();
|
|
__ LoadFromOffset(kLoadWord,
|
|
temp.AsRegister<Register>(),
|
|
TR,
|
|
offset);
|
|
break;
|
|
}
|
|
case HInvokeStaticOrDirect::MethodLoadKind::kRecursive:
|
|
callee_method = invoke->GetLocations()->InAt(invoke->GetSpecialInputIndex());
|
|
break;
|
|
case HInvokeStaticOrDirect::MethodLoadKind::kBootImageLinkTimePcRelative: {
|
|
DCHECK(GetCompilerOptions().IsBootImage());
|
|
PcRelativePatchInfo* info_high = NewPcRelativeMethodPatch(invoke->GetTargetMethod());
|
|
PcRelativePatchInfo* info_low =
|
|
NewPcRelativeMethodPatch(invoke->GetTargetMethod(), info_high);
|
|
bool reordering = __ SetReorder(false);
|
|
Register temp_reg = temp.AsRegister<Register>();
|
|
EmitPcRelativeAddressPlaceholderHigh(info_high, TMP, base_reg, info_low);
|
|
__ Addiu(temp_reg, TMP, /* placeholder */ 0x5678);
|
|
__ SetReorder(reordering);
|
|
break;
|
|
}
|
|
case HInvokeStaticOrDirect::MethodLoadKind::kDirectAddress:
|
|
__ LoadConst32(temp.AsRegister<Register>(), invoke->GetMethodAddress());
|
|
break;
|
|
case HInvokeStaticOrDirect::MethodLoadKind::kBssEntry: {
|
|
PcRelativePatchInfo* info_high = NewMethodBssEntryPatch(
|
|
MethodReference(&GetGraph()->GetDexFile(), invoke->GetDexMethodIndex()));
|
|
PcRelativePatchInfo* info_low = NewMethodBssEntryPatch(
|
|
MethodReference(&GetGraph()->GetDexFile(), invoke->GetDexMethodIndex()), info_high);
|
|
Register temp_reg = temp.AsRegister<Register>();
|
|
bool reordering = __ SetReorder(false);
|
|
EmitPcRelativeAddressPlaceholderHigh(info_high, TMP, base_reg, info_low);
|
|
__ Lw(temp_reg, TMP, /* placeholder */ 0x5678);
|
|
__ SetReorder(reordering);
|
|
break;
|
|
}
|
|
case HInvokeStaticOrDirect::MethodLoadKind::kRuntimeCall: {
|
|
GenerateInvokeStaticOrDirectRuntimeCall(invoke, temp, slow_path);
|
|
return; // No code pointer retrieval; the runtime performs the call directly.
|
|
}
|
|
}
|
|
|
|
switch (code_ptr_location) {
|
|
case HInvokeStaticOrDirect::CodePtrLocation::kCallSelf:
|
|
__ Bal(&frame_entry_label_);
|
|
break;
|
|
case HInvokeStaticOrDirect::CodePtrLocation::kCallArtMethod:
|
|
// T9 = callee_method->entry_point_from_quick_compiled_code_;
|
|
__ LoadFromOffset(kLoadWord,
|
|
T9,
|
|
callee_method.AsRegister<Register>(),
|
|
ArtMethod::EntryPointFromQuickCompiledCodeOffset(
|
|
kMipsPointerSize).Int32Value());
|
|
// T9()
|
|
__ Jalr(T9);
|
|
__ NopIfNoReordering();
|
|
break;
|
|
}
|
|
RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
|
|
|
|
DCHECK(!IsLeafMethod());
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitInvokeStaticOrDirect(HInvokeStaticOrDirect* invoke) {
|
|
// Explicit clinit checks triggered by static invokes must have been pruned by
|
|
// art::PrepareForRegisterAllocation.
|
|
DCHECK(!invoke->IsStaticWithExplicitClinitCheck());
|
|
|
|
if (TryGenerateIntrinsicCode(invoke, codegen_)) {
|
|
return;
|
|
}
|
|
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
codegen_->GenerateStaticOrDirectCall(invoke,
|
|
locations->HasTemps()
|
|
? locations->GetTemp(0)
|
|
: Location::NoLocation());
|
|
}
|
|
|
|
void CodeGeneratorMIPS::GenerateVirtualCall(
|
|
HInvokeVirtual* invoke, Location temp_location, SlowPathCode* slow_path) {
|
|
// Use the calling convention instead of the location of the receiver, as
|
|
// intrinsics may have put the receiver in a different register. In the intrinsics
|
|
// slow path, the arguments have been moved to the right place, so here we are
|
|
// guaranteed that the receiver is the first register of the calling convention.
|
|
InvokeDexCallingConvention calling_convention;
|
|
Register receiver = calling_convention.GetRegisterAt(0);
|
|
|
|
Register temp = temp_location.AsRegister<Register>();
|
|
size_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
|
|
invoke->GetVTableIndex(), kMipsPointerSize).SizeValue();
|
|
uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
|
|
Offset entry_point = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kMipsPointerSize);
|
|
|
|
// temp = object->GetClass();
|
|
__ LoadFromOffset(kLoadWord, temp, receiver, class_offset);
|
|
MaybeRecordImplicitNullCheck(invoke);
|
|
// Instead of simply (possibly) unpoisoning `temp` here, we should
|
|
// emit a read barrier for the previous class reference load.
|
|
// However this is not required in practice, as this is an
|
|
// intermediate/temporary reference and because the current
|
|
// concurrent copying collector keeps the from-space memory
|
|
// intact/accessible until the end of the marking phase (the
|
|
// concurrent copying collector may not in the future).
|
|
__ MaybeUnpoisonHeapReference(temp);
|
|
// temp = temp->GetMethodAt(method_offset);
|
|
__ LoadFromOffset(kLoadWord, temp, temp, method_offset);
|
|
// T9 = temp->GetEntryPoint();
|
|
__ LoadFromOffset(kLoadWord, T9, temp, entry_point.Int32Value());
|
|
// T9();
|
|
__ Jalr(T9);
|
|
__ NopIfNoReordering();
|
|
RecordPcInfo(invoke, invoke->GetDexPc(), slow_path);
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitInvokeVirtual(HInvokeVirtual* invoke) {
|
|
if (TryGenerateIntrinsicCode(invoke, codegen_)) {
|
|
return;
|
|
}
|
|
|
|
codegen_->GenerateVirtualCall(invoke, invoke->GetLocations()->GetTemp(0));
|
|
DCHECK(!codegen_->IsLeafMethod());
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitLoadClass(HLoadClass* cls) {
|
|
HLoadClass::LoadKind load_kind = cls->GetLoadKind();
|
|
if (load_kind == HLoadClass::LoadKind::kRuntimeCall) {
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
Location loc = Location::RegisterLocation(calling_convention.GetRegisterAt(0));
|
|
CodeGenerator::CreateLoadClassRuntimeCallLocationSummary(cls, loc, loc);
|
|
return;
|
|
}
|
|
DCHECK(!cls->NeedsAccessCheck());
|
|
const bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
|
|
const bool requires_read_barrier = kEmitCompilerReadBarrier && !cls->IsInBootImage();
|
|
LocationSummary::CallKind call_kind = (cls->NeedsEnvironment() || requires_read_barrier)
|
|
? LocationSummary::kCallOnSlowPath
|
|
: LocationSummary::kNoCall;
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(cls, call_kind);
|
|
if (kUseBakerReadBarrier && requires_read_barrier && !cls->NeedsEnvironment()) {
|
|
locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
|
|
}
|
|
switch (load_kind) {
|
|
// We need an extra register for PC-relative literals on R2.
|
|
case HLoadClass::LoadKind::kBootImageLinkTimePcRelative:
|
|
case HLoadClass::LoadKind::kBootImageAddress:
|
|
case HLoadClass::LoadKind::kBssEntry:
|
|
if (isR6) {
|
|
break;
|
|
}
|
|
FALLTHROUGH_INTENDED;
|
|
case HLoadClass::LoadKind::kReferrersClass:
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
locations->SetOut(Location::RequiresRegister());
|
|
if (load_kind == HLoadClass::LoadKind::kBssEntry) {
|
|
if (!kUseReadBarrier || kUseBakerReadBarrier) {
|
|
// Rely on the type resolution or initialization and marking to save everything we need.
|
|
// Request a temp to hold the BSS entry location for the slow path.
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
RegisterSet caller_saves = RegisterSet::Empty();
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
|
|
locations->SetCustomSlowPathCallerSaves(caller_saves);
|
|
} else {
|
|
// For non-Baker read barriers we have a temp-clobbering call.
|
|
}
|
|
}
|
|
}
|
|
|
|
// NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not
|
|
// move.
|
|
void InstructionCodeGeneratorMIPS::VisitLoadClass(HLoadClass* cls) NO_THREAD_SAFETY_ANALYSIS {
|
|
HLoadClass::LoadKind load_kind = cls->GetLoadKind();
|
|
if (load_kind == HLoadClass::LoadKind::kRuntimeCall) {
|
|
codegen_->GenerateLoadClassRuntimeCall(cls);
|
|
return;
|
|
}
|
|
DCHECK(!cls->NeedsAccessCheck());
|
|
|
|
LocationSummary* locations = cls->GetLocations();
|
|
Location out_loc = locations->Out();
|
|
Register out = out_loc.AsRegister<Register>();
|
|
Register base_or_current_method_reg;
|
|
bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
|
|
switch (load_kind) {
|
|
// We need an extra register for PC-relative literals on R2.
|
|
case HLoadClass::LoadKind::kBootImageLinkTimePcRelative:
|
|
case HLoadClass::LoadKind::kBootImageAddress:
|
|
case HLoadClass::LoadKind::kBssEntry:
|
|
base_or_current_method_reg = isR6 ? ZERO : locations->InAt(0).AsRegister<Register>();
|
|
break;
|
|
case HLoadClass::LoadKind::kReferrersClass:
|
|
case HLoadClass::LoadKind::kRuntimeCall:
|
|
base_or_current_method_reg = locations->InAt(0).AsRegister<Register>();
|
|
break;
|
|
default:
|
|
base_or_current_method_reg = ZERO;
|
|
break;
|
|
}
|
|
|
|
const ReadBarrierOption read_barrier_option = cls->IsInBootImage()
|
|
? kWithoutReadBarrier
|
|
: kCompilerReadBarrierOption;
|
|
bool generate_null_check = false;
|
|
CodeGeneratorMIPS::PcRelativePatchInfo* bss_info_high = nullptr;
|
|
switch (load_kind) {
|
|
case HLoadClass::LoadKind::kReferrersClass: {
|
|
DCHECK(!cls->CanCallRuntime());
|
|
DCHECK(!cls->MustGenerateClinitCheck());
|
|
// /* GcRoot<mirror::Class> */ out = current_method->declaring_class_
|
|
GenerateGcRootFieldLoad(cls,
|
|
out_loc,
|
|
base_or_current_method_reg,
|
|
ArtMethod::DeclaringClassOffset().Int32Value(),
|
|
read_barrier_option);
|
|
break;
|
|
}
|
|
case HLoadClass::LoadKind::kBootImageLinkTimePcRelative: {
|
|
DCHECK(codegen_->GetCompilerOptions().IsBootImage());
|
|
DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
|
|
CodeGeneratorMIPS::PcRelativePatchInfo* info_high =
|
|
codegen_->NewPcRelativeTypePatch(cls->GetDexFile(), cls->GetTypeIndex());
|
|
CodeGeneratorMIPS::PcRelativePatchInfo* info_low =
|
|
codegen_->NewPcRelativeTypePatch(cls->GetDexFile(), cls->GetTypeIndex(), info_high);
|
|
bool reordering = __ SetReorder(false);
|
|
codegen_->EmitPcRelativeAddressPlaceholderHigh(info_high,
|
|
out,
|
|
base_or_current_method_reg,
|
|
info_low);
|
|
__ Addiu(out, out, /* placeholder */ 0x5678);
|
|
__ SetReorder(reordering);
|
|
break;
|
|
}
|
|
case HLoadClass::LoadKind::kBootImageAddress: {
|
|
DCHECK_EQ(read_barrier_option, kWithoutReadBarrier);
|
|
uint32_t address = dchecked_integral_cast<uint32_t>(
|
|
reinterpret_cast<uintptr_t>(cls->GetClass().Get()));
|
|
DCHECK_NE(address, 0u);
|
|
__ LoadLiteral(out,
|
|
base_or_current_method_reg,
|
|
codegen_->DeduplicateBootImageAddressLiteral(address));
|
|
break;
|
|
}
|
|
case HLoadClass::LoadKind::kBssEntry: {
|
|
bss_info_high = codegen_->NewTypeBssEntryPatch(cls->GetDexFile(), cls->GetTypeIndex());
|
|
CodeGeneratorMIPS::PcRelativePatchInfo* info_low =
|
|
codegen_->NewTypeBssEntryPatch(cls->GetDexFile(), cls->GetTypeIndex(), bss_info_high);
|
|
constexpr bool non_baker_read_barrier = kUseReadBarrier && !kUseBakerReadBarrier;
|
|
Register temp = non_baker_read_barrier ? out : locations->GetTemp(0).AsRegister<Register>();
|
|
bool reordering = __ SetReorder(false);
|
|
codegen_->EmitPcRelativeAddressPlaceholderHigh(bss_info_high,
|
|
temp,
|
|
base_or_current_method_reg,
|
|
info_low);
|
|
GenerateGcRootFieldLoad(cls, out_loc, temp, /* placeholder */ 0x5678, read_barrier_option);
|
|
__ SetReorder(reordering);
|
|
generate_null_check = true;
|
|
break;
|
|
}
|
|
case HLoadClass::LoadKind::kJitTableAddress: {
|
|
CodeGeneratorMIPS::JitPatchInfo* info = codegen_->NewJitRootClassPatch(cls->GetDexFile(),
|
|
cls->GetTypeIndex(),
|
|
cls->GetClass());
|
|
bool reordering = __ SetReorder(false);
|
|
__ Bind(&info->high_label);
|
|
__ Lui(out, /* placeholder */ 0x1234);
|
|
GenerateGcRootFieldLoad(cls, out_loc, out, /* placeholder */ 0x5678, read_barrier_option);
|
|
__ SetReorder(reordering);
|
|
break;
|
|
}
|
|
case HLoadClass::LoadKind::kRuntimeCall:
|
|
case HLoadClass::LoadKind::kInvalid:
|
|
LOG(FATAL) << "UNREACHABLE";
|
|
UNREACHABLE();
|
|
}
|
|
|
|
if (generate_null_check || cls->MustGenerateClinitCheck()) {
|
|
DCHECK(cls->CanCallRuntime());
|
|
SlowPathCodeMIPS* slow_path = new (GetGraph()->GetArena()) LoadClassSlowPathMIPS(
|
|
cls, cls, cls->GetDexPc(), cls->MustGenerateClinitCheck(), bss_info_high);
|
|
codegen_->AddSlowPath(slow_path);
|
|
if (generate_null_check) {
|
|
__ Beqz(out, slow_path->GetEntryLabel());
|
|
}
|
|
if (cls->MustGenerateClinitCheck()) {
|
|
GenerateClassInitializationCheck(slow_path, out);
|
|
} else {
|
|
__ Bind(slow_path->GetExitLabel());
|
|
}
|
|
}
|
|
}
|
|
|
|
static int32_t GetExceptionTlsOffset() {
|
|
return Thread::ExceptionOffset<kMipsPointerSize>().Int32Value();
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitLoadException(HLoadException* load) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(load, LocationSummary::kNoCall);
|
|
locations->SetOut(Location::RequiresRegister());
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitLoadException(HLoadException* load) {
|
|
Register out = load->GetLocations()->Out().AsRegister<Register>();
|
|
__ LoadFromOffset(kLoadWord, out, TR, GetExceptionTlsOffset());
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitClearException(HClearException* clear) {
|
|
new (GetGraph()->GetArena()) LocationSummary(clear, LocationSummary::kNoCall);
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitClearException(HClearException* clear ATTRIBUTE_UNUSED) {
|
|
__ StoreToOffset(kStoreWord, ZERO, TR, GetExceptionTlsOffset());
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitLoadString(HLoadString* load) {
|
|
LocationSummary::CallKind call_kind = CodeGenerator::GetLoadStringCallKind(load);
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(load, call_kind);
|
|
HLoadString::LoadKind load_kind = load->GetLoadKind();
|
|
const bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
|
|
switch (load_kind) {
|
|
// We need an extra register for PC-relative literals on R2.
|
|
case HLoadString::LoadKind::kBootImageAddress:
|
|
case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
|
|
case HLoadString::LoadKind::kBssEntry:
|
|
if (isR6) {
|
|
break;
|
|
}
|
|
FALLTHROUGH_INTENDED;
|
|
// We need an extra register for PC-relative dex cache accesses.
|
|
case HLoadString::LoadKind::kRuntimeCall:
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
if (load_kind == HLoadString::LoadKind::kRuntimeCall) {
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
locations->SetOut(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
|
|
} else {
|
|
locations->SetOut(Location::RequiresRegister());
|
|
if (load_kind == HLoadString::LoadKind::kBssEntry) {
|
|
if (!kUseReadBarrier || kUseBakerReadBarrier) {
|
|
// Rely on the pResolveString and marking to save everything we need.
|
|
// Request a temp to hold the BSS entry location for the slow path.
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
RegisterSet caller_saves = RegisterSet::Empty();
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
caller_saves.Add(Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
|
|
locations->SetCustomSlowPathCallerSaves(caller_saves);
|
|
} else {
|
|
// For non-Baker read barriers we have a temp-clobbering call.
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// NO_THREAD_SAFETY_ANALYSIS as we manipulate handles whose internal object we know does not
|
|
// move.
|
|
void InstructionCodeGeneratorMIPS::VisitLoadString(HLoadString* load) NO_THREAD_SAFETY_ANALYSIS {
|
|
HLoadString::LoadKind load_kind = load->GetLoadKind();
|
|
LocationSummary* locations = load->GetLocations();
|
|
Location out_loc = locations->Out();
|
|
Register out = out_loc.AsRegister<Register>();
|
|
Register base_or_current_method_reg;
|
|
bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
|
|
switch (load_kind) {
|
|
// We need an extra register for PC-relative literals on R2.
|
|
case HLoadString::LoadKind::kBootImageAddress:
|
|
case HLoadString::LoadKind::kBootImageLinkTimePcRelative:
|
|
case HLoadString::LoadKind::kBssEntry:
|
|
base_or_current_method_reg = isR6 ? ZERO : locations->InAt(0).AsRegister<Register>();
|
|
break;
|
|
default:
|
|
base_or_current_method_reg = ZERO;
|
|
break;
|
|
}
|
|
|
|
switch (load_kind) {
|
|
case HLoadString::LoadKind::kBootImageLinkTimePcRelative: {
|
|
DCHECK(codegen_->GetCompilerOptions().IsBootImage());
|
|
CodeGeneratorMIPS::PcRelativePatchInfo* info_high =
|
|
codegen_->NewPcRelativeStringPatch(load->GetDexFile(), load->GetStringIndex());
|
|
CodeGeneratorMIPS::PcRelativePatchInfo* info_low =
|
|
codegen_->NewPcRelativeStringPatch(load->GetDexFile(), load->GetStringIndex(), info_high);
|
|
bool reordering = __ SetReorder(false);
|
|
codegen_->EmitPcRelativeAddressPlaceholderHigh(info_high,
|
|
out,
|
|
base_or_current_method_reg,
|
|
info_low);
|
|
__ Addiu(out, out, /* placeholder */ 0x5678);
|
|
__ SetReorder(reordering);
|
|
return; // No dex cache slow path.
|
|
}
|
|
case HLoadString::LoadKind::kBootImageAddress: {
|
|
uint32_t address = dchecked_integral_cast<uint32_t>(
|
|
reinterpret_cast<uintptr_t>(load->GetString().Get()));
|
|
DCHECK_NE(address, 0u);
|
|
__ LoadLiteral(out,
|
|
base_or_current_method_reg,
|
|
codegen_->DeduplicateBootImageAddressLiteral(address));
|
|
return; // No dex cache slow path.
|
|
}
|
|
case HLoadString::LoadKind::kBssEntry: {
|
|
DCHECK(!codegen_->GetCompilerOptions().IsBootImage());
|
|
CodeGeneratorMIPS::PcRelativePatchInfo* info_high =
|
|
codegen_->NewPcRelativeStringPatch(load->GetDexFile(), load->GetStringIndex());
|
|
CodeGeneratorMIPS::PcRelativePatchInfo* info_low =
|
|
codegen_->NewPcRelativeStringPatch(load->GetDexFile(), load->GetStringIndex(), info_high);
|
|
constexpr bool non_baker_read_barrier = kUseReadBarrier && !kUseBakerReadBarrier;
|
|
Register temp = non_baker_read_barrier ? out : locations->GetTemp(0).AsRegister<Register>();
|
|
bool reordering = __ SetReorder(false);
|
|
codegen_->EmitPcRelativeAddressPlaceholderHigh(info_high,
|
|
temp,
|
|
base_or_current_method_reg,
|
|
info_low);
|
|
GenerateGcRootFieldLoad(load,
|
|
out_loc,
|
|
temp,
|
|
/* placeholder */ 0x5678,
|
|
kCompilerReadBarrierOption);
|
|
__ SetReorder(reordering);
|
|
SlowPathCodeMIPS* slow_path =
|
|
new (GetGraph()->GetArena()) LoadStringSlowPathMIPS(load, info_high);
|
|
codegen_->AddSlowPath(slow_path);
|
|
__ Beqz(out, slow_path->GetEntryLabel());
|
|
__ Bind(slow_path->GetExitLabel());
|
|
return;
|
|
}
|
|
case HLoadString::LoadKind::kJitTableAddress: {
|
|
CodeGeneratorMIPS::JitPatchInfo* info =
|
|
codegen_->NewJitRootStringPatch(load->GetDexFile(),
|
|
load->GetStringIndex(),
|
|
load->GetString());
|
|
bool reordering = __ SetReorder(false);
|
|
__ Bind(&info->high_label);
|
|
__ Lui(out, /* placeholder */ 0x1234);
|
|
GenerateGcRootFieldLoad(load,
|
|
out_loc,
|
|
out,
|
|
/* placeholder */ 0x5678,
|
|
kCompilerReadBarrierOption);
|
|
__ SetReorder(reordering);
|
|
return;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// TODO: Re-add the compiler code to do string dex cache lookup again.
|
|
DCHECK(load_kind == HLoadString::LoadKind::kRuntimeCall);
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
DCHECK_EQ(calling_convention.GetRegisterAt(0), out);
|
|
__ LoadConst32(calling_convention.GetRegisterAt(0), load->GetStringIndex().index_);
|
|
codegen_->InvokeRuntime(kQuickResolveString, load, load->GetDexPc());
|
|
CheckEntrypointTypes<kQuickResolveString, void*, uint32_t>();
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitLongConstant(HLongConstant* constant) {
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(constant);
|
|
locations->SetOut(Location::ConstantLocation(constant));
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitLongConstant(HLongConstant* constant ATTRIBUTE_UNUSED) {
|
|
// Will be generated at use site.
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitMonitorOperation(HMonitorOperation* instruction) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitMonitorOperation(HMonitorOperation* instruction) {
|
|
if (instruction->IsEnter()) {
|
|
codegen_->InvokeRuntime(kQuickLockObject, instruction, instruction->GetDexPc());
|
|
CheckEntrypointTypes<kQuickLockObject, void, mirror::Object*>();
|
|
} else {
|
|
codegen_->InvokeRuntime(kQuickUnlockObject, instruction, instruction->GetDexPc());
|
|
}
|
|
CheckEntrypointTypes<kQuickUnlockObject, void, mirror::Object*>();
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitMul(HMul* mul) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(mul, LocationSummary::kNoCall);
|
|
switch (mul->GetResultType()) {
|
|
case Primitive::kPrimInt:
|
|
case Primitive::kPrimLong:
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::RequiresRegister());
|
|
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
|
|
break;
|
|
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimDouble:
|
|
locations->SetInAt(0, Location::RequiresFpuRegister());
|
|
locations->SetInAt(1, Location::RequiresFpuRegister());
|
|
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
|
|
break;
|
|
|
|
default:
|
|
LOG(FATAL) << "Unexpected mul type " << mul->GetResultType();
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitMul(HMul* instruction) {
|
|
Primitive::Type type = instruction->GetType();
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
|
|
|
|
switch (type) {
|
|
case Primitive::kPrimInt: {
|
|
Register dst = locations->Out().AsRegister<Register>();
|
|
Register lhs = locations->InAt(0).AsRegister<Register>();
|
|
Register rhs = locations->InAt(1).AsRegister<Register>();
|
|
|
|
if (isR6) {
|
|
__ MulR6(dst, lhs, rhs);
|
|
} else {
|
|
__ MulR2(dst, lhs, rhs);
|
|
}
|
|
break;
|
|
}
|
|
case Primitive::kPrimLong: {
|
|
Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
|
|
Register dst_low = locations->Out().AsRegisterPairLow<Register>();
|
|
Register lhs_high = locations->InAt(0).AsRegisterPairHigh<Register>();
|
|
Register lhs_low = locations->InAt(0).AsRegisterPairLow<Register>();
|
|
Register rhs_high = locations->InAt(1).AsRegisterPairHigh<Register>();
|
|
Register rhs_low = locations->InAt(1).AsRegisterPairLow<Register>();
|
|
|
|
// Extra checks to protect caused by the existance of A1_A2.
|
|
// The algorithm is wrong if dst_high is either lhs_lo or rhs_lo:
|
|
// (e.g. lhs=a0_a1, rhs=a2_a3 and dst=a1_a2).
|
|
DCHECK_NE(dst_high, lhs_low);
|
|
DCHECK_NE(dst_high, rhs_low);
|
|
|
|
// A_B * C_D
|
|
// dst_hi: [ low(A*D) + low(B*C) + hi(B*D) ]
|
|
// dst_lo: [ low(B*D) ]
|
|
// Note: R2 and R6 MUL produce the low 32 bit of the multiplication result.
|
|
|
|
if (isR6) {
|
|
__ MulR6(TMP, lhs_high, rhs_low);
|
|
__ MulR6(dst_high, lhs_low, rhs_high);
|
|
__ Addu(dst_high, dst_high, TMP);
|
|
__ MuhuR6(TMP, lhs_low, rhs_low);
|
|
__ Addu(dst_high, dst_high, TMP);
|
|
__ MulR6(dst_low, lhs_low, rhs_low);
|
|
} else {
|
|
__ MulR2(TMP, lhs_high, rhs_low);
|
|
__ MulR2(dst_high, lhs_low, rhs_high);
|
|
__ Addu(dst_high, dst_high, TMP);
|
|
__ MultuR2(lhs_low, rhs_low);
|
|
__ Mfhi(TMP);
|
|
__ Addu(dst_high, dst_high, TMP);
|
|
__ Mflo(dst_low);
|
|
}
|
|
break;
|
|
}
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimDouble: {
|
|
FRegister dst = locations->Out().AsFpuRegister<FRegister>();
|
|
FRegister lhs = locations->InAt(0).AsFpuRegister<FRegister>();
|
|
FRegister rhs = locations->InAt(1).AsFpuRegister<FRegister>();
|
|
if (type == Primitive::kPrimFloat) {
|
|
__ MulS(dst, lhs, rhs);
|
|
} else {
|
|
__ MulD(dst, lhs, rhs);
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
LOG(FATAL) << "Unexpected mul type " << type;
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitNeg(HNeg* neg) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(neg, LocationSummary::kNoCall);
|
|
switch (neg->GetResultType()) {
|
|
case Primitive::kPrimInt:
|
|
case Primitive::kPrimLong:
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
|
|
break;
|
|
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimDouble:
|
|
locations->SetInAt(0, Location::RequiresFpuRegister());
|
|
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
|
|
break;
|
|
|
|
default:
|
|
LOG(FATAL) << "Unexpected neg type " << neg->GetResultType();
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitNeg(HNeg* instruction) {
|
|
Primitive::Type type = instruction->GetType();
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
|
|
switch (type) {
|
|
case Primitive::kPrimInt: {
|
|
Register dst = locations->Out().AsRegister<Register>();
|
|
Register src = locations->InAt(0).AsRegister<Register>();
|
|
__ Subu(dst, ZERO, src);
|
|
break;
|
|
}
|
|
case Primitive::kPrimLong: {
|
|
Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
|
|
Register dst_low = locations->Out().AsRegisterPairLow<Register>();
|
|
Register src_high = locations->InAt(0).AsRegisterPairHigh<Register>();
|
|
Register src_low = locations->InAt(0).AsRegisterPairLow<Register>();
|
|
__ Subu(dst_low, ZERO, src_low);
|
|
__ Sltu(TMP, ZERO, dst_low);
|
|
__ Subu(dst_high, ZERO, src_high);
|
|
__ Subu(dst_high, dst_high, TMP);
|
|
break;
|
|
}
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimDouble: {
|
|
FRegister dst = locations->Out().AsFpuRegister<FRegister>();
|
|
FRegister src = locations->InAt(0).AsFpuRegister<FRegister>();
|
|
if (type == Primitive::kPrimFloat) {
|
|
__ NegS(dst, src);
|
|
} else {
|
|
__ NegD(dst, src);
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
LOG(FATAL) << "Unexpected neg type " << type;
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitNewArray(HNewArray* instruction) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
locations->SetOut(calling_convention.GetReturnLocation(Primitive::kPrimNot));
|
|
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
|
|
locations->SetInAt(1, Location::RegisterLocation(calling_convention.GetRegisterAt(1)));
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitNewArray(HNewArray* instruction) {
|
|
// Note: if heap poisoning is enabled, the entry point takes care
|
|
// of poisoning the reference.
|
|
QuickEntrypointEnum entrypoint =
|
|
CodeGenerator::GetArrayAllocationEntrypoint(instruction->GetLoadClass()->GetClass());
|
|
codegen_->InvokeRuntime(entrypoint, instruction, instruction->GetDexPc());
|
|
CheckEntrypointTypes<kQuickAllocArrayResolved, void*, mirror::Class*, int32_t>();
|
|
DCHECK(!codegen_->IsLeafMethod());
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitNewInstance(HNewInstance* instruction) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
if (instruction->IsStringAlloc()) {
|
|
locations->AddTemp(Location::RegisterLocation(kMethodRegisterArgument));
|
|
} else {
|
|
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
|
|
}
|
|
locations->SetOut(calling_convention.GetReturnLocation(Primitive::kPrimNot));
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitNewInstance(HNewInstance* instruction) {
|
|
// Note: if heap poisoning is enabled, the entry point takes care
|
|
// of poisoning the reference.
|
|
if (instruction->IsStringAlloc()) {
|
|
// String is allocated through StringFactory. Call NewEmptyString entry point.
|
|
Register temp = instruction->GetLocations()->GetTemp(0).AsRegister<Register>();
|
|
MemberOffset code_offset = ArtMethod::EntryPointFromQuickCompiledCodeOffset(kMipsPointerSize);
|
|
__ LoadFromOffset(kLoadWord, temp, TR, QUICK_ENTRY_POINT(pNewEmptyString));
|
|
__ LoadFromOffset(kLoadWord, T9, temp, code_offset.Int32Value());
|
|
__ Jalr(T9);
|
|
__ NopIfNoReordering();
|
|
codegen_->RecordPcInfo(instruction, instruction->GetDexPc());
|
|
} else {
|
|
codegen_->InvokeRuntime(instruction->GetEntrypoint(), instruction, instruction->GetDexPc());
|
|
CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>();
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitNot(HNot* instruction) {
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitNot(HNot* instruction) {
|
|
Primitive::Type type = instruction->GetType();
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
|
|
switch (type) {
|
|
case Primitive::kPrimInt: {
|
|
Register dst = locations->Out().AsRegister<Register>();
|
|
Register src = locations->InAt(0).AsRegister<Register>();
|
|
__ Nor(dst, src, ZERO);
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimLong: {
|
|
Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
|
|
Register dst_low = locations->Out().AsRegisterPairLow<Register>();
|
|
Register src_high = locations->InAt(0).AsRegisterPairHigh<Register>();
|
|
Register src_low = locations->InAt(0).AsRegisterPairLow<Register>();
|
|
__ Nor(dst_high, src_high, ZERO);
|
|
__ Nor(dst_low, src_low, ZERO);
|
|
break;
|
|
}
|
|
|
|
default:
|
|
LOG(FATAL) << "Unexpected type for not operation " << instruction->GetResultType();
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitBooleanNot(HBooleanNot* instruction) {
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitBooleanNot(HBooleanNot* instruction) {
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
__ Xori(locations->Out().AsRegister<Register>(),
|
|
locations->InAt(0).AsRegister<Register>(),
|
|
1);
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitNullCheck(HNullCheck* instruction) {
|
|
LocationSummary* locations = codegen_->CreateThrowingSlowPathLocations(instruction);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
}
|
|
|
|
void CodeGeneratorMIPS::GenerateImplicitNullCheck(HNullCheck* instruction) {
|
|
if (CanMoveNullCheckToUser(instruction)) {
|
|
return;
|
|
}
|
|
Location obj = instruction->GetLocations()->InAt(0);
|
|
|
|
__ Lw(ZERO, obj.AsRegister<Register>(), 0);
|
|
RecordPcInfo(instruction, instruction->GetDexPc());
|
|
}
|
|
|
|
void CodeGeneratorMIPS::GenerateExplicitNullCheck(HNullCheck* instruction) {
|
|
SlowPathCodeMIPS* slow_path = new (GetGraph()->GetArena()) NullCheckSlowPathMIPS(instruction);
|
|
AddSlowPath(slow_path);
|
|
|
|
Location obj = instruction->GetLocations()->InAt(0);
|
|
|
|
__ Beqz(obj.AsRegister<Register>(), slow_path->GetEntryLabel());
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitNullCheck(HNullCheck* instruction) {
|
|
codegen_->GenerateNullCheck(instruction);
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitOr(HOr* instruction) {
|
|
HandleBinaryOp(instruction);
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitOr(HOr* instruction) {
|
|
HandleBinaryOp(instruction);
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitParallelMove(HParallelMove* instruction ATTRIBUTE_UNUSED) {
|
|
LOG(FATAL) << "Unreachable";
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitParallelMove(HParallelMove* instruction) {
|
|
codegen_->GetMoveResolver()->EmitNativeCode(instruction);
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitParameterValue(HParameterValue* instruction) {
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
|
|
Location location = parameter_visitor_.GetNextLocation(instruction->GetType());
|
|
if (location.IsStackSlot()) {
|
|
location = Location::StackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
|
|
} else if (location.IsDoubleStackSlot()) {
|
|
location = Location::DoubleStackSlot(location.GetStackIndex() + codegen_->GetFrameSize());
|
|
}
|
|
locations->SetOut(location);
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitParameterValue(HParameterValue* instruction
|
|
ATTRIBUTE_UNUSED) {
|
|
// Nothing to do, the parameter is already at its location.
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitCurrentMethod(HCurrentMethod* instruction) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
|
|
locations->SetOut(Location::RegisterLocation(kMethodRegisterArgument));
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitCurrentMethod(HCurrentMethod* instruction
|
|
ATTRIBUTE_UNUSED) {
|
|
// Nothing to do, the method is already at its location.
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitPhi(HPhi* instruction) {
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(instruction);
|
|
for (size_t i = 0, e = locations->GetInputCount(); i < e; ++i) {
|
|
locations->SetInAt(i, Location::Any());
|
|
}
|
|
locations->SetOut(Location::Any());
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitPhi(HPhi* instruction ATTRIBUTE_UNUSED) {
|
|
LOG(FATAL) << "Unreachable";
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitRem(HRem* rem) {
|
|
Primitive::Type type = rem->GetResultType();
|
|
LocationSummary::CallKind call_kind =
|
|
(type == Primitive::kPrimInt) ? LocationSummary::kNoCall : LocationSummary::kCallOnMainOnly;
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(rem, call_kind);
|
|
|
|
switch (type) {
|
|
case Primitive::kPrimInt:
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::RegisterOrConstant(rem->InputAt(1)));
|
|
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
|
|
break;
|
|
|
|
case Primitive::kPrimLong: {
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
locations->SetInAt(0, Location::RegisterPairLocation(
|
|
calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
|
|
locations->SetInAt(1, Location::RegisterPairLocation(
|
|
calling_convention.GetRegisterAt(2), calling_convention.GetRegisterAt(3)));
|
|
locations->SetOut(calling_convention.GetReturnLocation(type));
|
|
break;
|
|
}
|
|
|
|
case Primitive::kPrimFloat:
|
|
case Primitive::kPrimDouble: {
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
|
|
locations->SetInAt(1, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(1)));
|
|
locations->SetOut(calling_convention.GetReturnLocation(type));
|
|
break;
|
|
}
|
|
|
|
default:
|
|
LOG(FATAL) << "Unexpected rem type " << type;
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitRem(HRem* instruction) {
|
|
Primitive::Type type = instruction->GetType();
|
|
|
|
switch (type) {
|
|
case Primitive::kPrimInt:
|
|
GenerateDivRemIntegral(instruction);
|
|
break;
|
|
case Primitive::kPrimLong: {
|
|
codegen_->InvokeRuntime(kQuickLmod, instruction, instruction->GetDexPc());
|
|
CheckEntrypointTypes<kQuickLmod, int64_t, int64_t, int64_t>();
|
|
break;
|
|
}
|
|
case Primitive::kPrimFloat: {
|
|
codegen_->InvokeRuntime(kQuickFmodf, instruction, instruction->GetDexPc());
|
|
CheckEntrypointTypes<kQuickFmodf, float, float, float>();
|
|
break;
|
|
}
|
|
case Primitive::kPrimDouble: {
|
|
codegen_->InvokeRuntime(kQuickFmod, instruction, instruction->GetDexPc());
|
|
CheckEntrypointTypes<kQuickFmod, double, double, double>();
|
|
break;
|
|
}
|
|
default:
|
|
LOG(FATAL) << "Unexpected rem type " << type;
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitConstructorFence(HConstructorFence* constructor_fence) {
|
|
constructor_fence->SetLocations(nullptr);
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitConstructorFence(
|
|
HConstructorFence* constructor_fence ATTRIBUTE_UNUSED) {
|
|
GenerateMemoryBarrier(MemBarrierKind::kStoreStore);
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
|
|
memory_barrier->SetLocations(nullptr);
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitMemoryBarrier(HMemoryBarrier* memory_barrier) {
|
|
GenerateMemoryBarrier(memory_barrier->GetBarrierKind());
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitReturn(HReturn* ret) {
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(ret);
|
|
Primitive::Type return_type = ret->InputAt(0)->GetType();
|
|
locations->SetInAt(0, MipsReturnLocation(return_type));
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitReturn(HReturn* ret ATTRIBUTE_UNUSED) {
|
|
codegen_->GenerateFrameExit();
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitReturnVoid(HReturnVoid* ret) {
|
|
ret->SetLocations(nullptr);
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitReturnVoid(HReturnVoid* ret ATTRIBUTE_UNUSED) {
|
|
codegen_->GenerateFrameExit();
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitRor(HRor* ror) {
|
|
HandleShift(ror);
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitRor(HRor* ror) {
|
|
HandleShift(ror);
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitShl(HShl* shl) {
|
|
HandleShift(shl);
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitShl(HShl* shl) {
|
|
HandleShift(shl);
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitShr(HShr* shr) {
|
|
HandleShift(shr);
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitShr(HShr* shr) {
|
|
HandleShift(shr);
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitSub(HSub* instruction) {
|
|
HandleBinaryOp(instruction);
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitSub(HSub* instruction) {
|
|
HandleBinaryOp(instruction);
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitStaticFieldGet(HStaticFieldGet* instruction) {
|
|
HandleFieldGet(instruction, instruction->GetFieldInfo());
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitStaticFieldGet(HStaticFieldGet* instruction) {
|
|
HandleFieldGet(instruction, instruction->GetFieldInfo(), instruction->GetDexPc());
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitStaticFieldSet(HStaticFieldSet* instruction) {
|
|
HandleFieldSet(instruction, instruction->GetFieldInfo());
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitStaticFieldSet(HStaticFieldSet* instruction) {
|
|
HandleFieldSet(instruction,
|
|
instruction->GetFieldInfo(),
|
|
instruction->GetDexPc(),
|
|
instruction->GetValueCanBeNull());
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitUnresolvedInstanceFieldGet(
|
|
HUnresolvedInstanceFieldGet* instruction) {
|
|
FieldAccessCallingConventionMIPS calling_convention;
|
|
codegen_->CreateUnresolvedFieldLocationSummary(instruction,
|
|
instruction->GetFieldType(),
|
|
calling_convention);
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitUnresolvedInstanceFieldGet(
|
|
HUnresolvedInstanceFieldGet* instruction) {
|
|
FieldAccessCallingConventionMIPS calling_convention;
|
|
codegen_->GenerateUnresolvedFieldAccess(instruction,
|
|
instruction->GetFieldType(),
|
|
instruction->GetFieldIndex(),
|
|
instruction->GetDexPc(),
|
|
calling_convention);
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitUnresolvedInstanceFieldSet(
|
|
HUnresolvedInstanceFieldSet* instruction) {
|
|
FieldAccessCallingConventionMIPS calling_convention;
|
|
codegen_->CreateUnresolvedFieldLocationSummary(instruction,
|
|
instruction->GetFieldType(),
|
|
calling_convention);
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitUnresolvedInstanceFieldSet(
|
|
HUnresolvedInstanceFieldSet* instruction) {
|
|
FieldAccessCallingConventionMIPS calling_convention;
|
|
codegen_->GenerateUnresolvedFieldAccess(instruction,
|
|
instruction->GetFieldType(),
|
|
instruction->GetFieldIndex(),
|
|
instruction->GetDexPc(),
|
|
calling_convention);
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitUnresolvedStaticFieldGet(
|
|
HUnresolvedStaticFieldGet* instruction) {
|
|
FieldAccessCallingConventionMIPS calling_convention;
|
|
codegen_->CreateUnresolvedFieldLocationSummary(instruction,
|
|
instruction->GetFieldType(),
|
|
calling_convention);
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitUnresolvedStaticFieldGet(
|
|
HUnresolvedStaticFieldGet* instruction) {
|
|
FieldAccessCallingConventionMIPS calling_convention;
|
|
codegen_->GenerateUnresolvedFieldAccess(instruction,
|
|
instruction->GetFieldType(),
|
|
instruction->GetFieldIndex(),
|
|
instruction->GetDexPc(),
|
|
calling_convention);
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitUnresolvedStaticFieldSet(
|
|
HUnresolvedStaticFieldSet* instruction) {
|
|
FieldAccessCallingConventionMIPS calling_convention;
|
|
codegen_->CreateUnresolvedFieldLocationSummary(instruction,
|
|
instruction->GetFieldType(),
|
|
calling_convention);
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitUnresolvedStaticFieldSet(
|
|
HUnresolvedStaticFieldSet* instruction) {
|
|
FieldAccessCallingConventionMIPS calling_convention;
|
|
codegen_->GenerateUnresolvedFieldAccess(instruction,
|
|
instruction->GetFieldType(),
|
|
instruction->GetFieldIndex(),
|
|
instruction->GetDexPc(),
|
|
calling_convention);
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitSuspendCheck(HSuspendCheck* instruction) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnSlowPath);
|
|
// In suspend check slow path, usually there are no caller-save registers at all.
|
|
// If SIMD instructions are present, however, we force spilling all live SIMD
|
|
// registers in full width (since the runtime only saves/restores lower part).
|
|
locations->SetCustomSlowPathCallerSaves(
|
|
GetGraph()->HasSIMD() ? RegisterSet::AllFpu() : RegisterSet::Empty());
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitSuspendCheck(HSuspendCheck* instruction) {
|
|
HBasicBlock* block = instruction->GetBlock();
|
|
if (block->GetLoopInformation() != nullptr) {
|
|
DCHECK(block->GetLoopInformation()->GetSuspendCheck() == instruction);
|
|
// The back edge will generate the suspend check.
|
|
return;
|
|
}
|
|
if (block->IsEntryBlock() && instruction->GetNext()->IsGoto()) {
|
|
// The goto will generate the suspend check.
|
|
return;
|
|
}
|
|
GenerateSuspendCheck(instruction, nullptr);
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitThrow(HThrow* instruction) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kCallOnMainOnly);
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
locations->SetInAt(0, Location::RegisterLocation(calling_convention.GetRegisterAt(0)));
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitThrow(HThrow* instruction) {
|
|
codegen_->InvokeRuntime(kQuickDeliverException, instruction, instruction->GetDexPc());
|
|
CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>();
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitTypeConversion(HTypeConversion* conversion) {
|
|
Primitive::Type input_type = conversion->GetInputType();
|
|
Primitive::Type result_type = conversion->GetResultType();
|
|
DCHECK_NE(input_type, result_type);
|
|
bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
|
|
|
|
if ((input_type == Primitive::kPrimNot) || (input_type == Primitive::kPrimVoid) ||
|
|
(result_type == Primitive::kPrimNot) || (result_type == Primitive::kPrimVoid)) {
|
|
LOG(FATAL) << "Unexpected type conversion from " << input_type << " to " << result_type;
|
|
}
|
|
|
|
LocationSummary::CallKind call_kind = LocationSummary::kNoCall;
|
|
if (!isR6 &&
|
|
((Primitive::IsFloatingPointType(result_type) && input_type == Primitive::kPrimLong) ||
|
|
(result_type == Primitive::kPrimLong && Primitive::IsFloatingPointType(input_type)))) {
|
|
call_kind = LocationSummary::kCallOnMainOnly;
|
|
}
|
|
|
|
LocationSummary* locations = new (GetGraph()->GetArena()) LocationSummary(conversion, call_kind);
|
|
|
|
if (call_kind == LocationSummary::kNoCall) {
|
|
if (Primitive::IsFloatingPointType(input_type)) {
|
|
locations->SetInAt(0, Location::RequiresFpuRegister());
|
|
} else {
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
}
|
|
|
|
if (Primitive::IsFloatingPointType(result_type)) {
|
|
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
|
|
} else {
|
|
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
|
|
}
|
|
} else {
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
|
|
if (Primitive::IsFloatingPointType(input_type)) {
|
|
locations->SetInAt(0, Location::FpuRegisterLocation(calling_convention.GetFpuRegisterAt(0)));
|
|
} else {
|
|
DCHECK_EQ(input_type, Primitive::kPrimLong);
|
|
locations->SetInAt(0, Location::RegisterPairLocation(
|
|
calling_convention.GetRegisterAt(0), calling_convention.GetRegisterAt(1)));
|
|
}
|
|
|
|
locations->SetOut(calling_convention.GetReturnLocation(result_type));
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitTypeConversion(HTypeConversion* conversion) {
|
|
LocationSummary* locations = conversion->GetLocations();
|
|
Primitive::Type result_type = conversion->GetResultType();
|
|
Primitive::Type input_type = conversion->GetInputType();
|
|
bool has_sign_extension = codegen_->GetInstructionSetFeatures().IsMipsIsaRevGreaterThanEqual2();
|
|
bool isR6 = codegen_->GetInstructionSetFeatures().IsR6();
|
|
|
|
DCHECK_NE(input_type, result_type);
|
|
|
|
if (result_type == Primitive::kPrimLong && Primitive::IsIntegralType(input_type)) {
|
|
Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
|
|
Register dst_low = locations->Out().AsRegisterPairLow<Register>();
|
|
Register src = locations->InAt(0).AsRegister<Register>();
|
|
|
|
if (dst_low != src) {
|
|
__ Move(dst_low, src);
|
|
}
|
|
__ Sra(dst_high, src, 31);
|
|
} else if (Primitive::IsIntegralType(result_type) && Primitive::IsIntegralType(input_type)) {
|
|
Register dst = locations->Out().AsRegister<Register>();
|
|
Register src = (input_type == Primitive::kPrimLong)
|
|
? locations->InAt(0).AsRegisterPairLow<Register>()
|
|
: locations->InAt(0).AsRegister<Register>();
|
|
|
|
switch (result_type) {
|
|
case Primitive::kPrimChar:
|
|
__ Andi(dst, src, 0xFFFF);
|
|
break;
|
|
case Primitive::kPrimByte:
|
|
if (has_sign_extension) {
|
|
__ Seb(dst, src);
|
|
} else {
|
|
__ Sll(dst, src, 24);
|
|
__ Sra(dst, dst, 24);
|
|
}
|
|
break;
|
|
case Primitive::kPrimShort:
|
|
if (has_sign_extension) {
|
|
__ Seh(dst, src);
|
|
} else {
|
|
__ Sll(dst, src, 16);
|
|
__ Sra(dst, dst, 16);
|
|
}
|
|
break;
|
|
case Primitive::kPrimInt:
|
|
if (dst != src) {
|
|
__ Move(dst, src);
|
|
}
|
|
break;
|
|
|
|
default:
|
|
LOG(FATAL) << "Unexpected type conversion from " << input_type
|
|
<< " to " << result_type;
|
|
}
|
|
} else if (Primitive::IsFloatingPointType(result_type) && Primitive::IsIntegralType(input_type)) {
|
|
if (input_type == Primitive::kPrimLong) {
|
|
if (isR6) {
|
|
// cvt.s.l/cvt.d.l requires MIPSR2+ with FR=1. MIPS32R6 is implemented as a secondary
|
|
// architecture on top of MIPS64R6, which has FR=1, and therefore can use the instruction.
|
|
Register src_high = locations->InAt(0).AsRegisterPairHigh<Register>();
|
|
Register src_low = locations->InAt(0).AsRegisterPairLow<Register>();
|
|
FRegister dst = locations->Out().AsFpuRegister<FRegister>();
|
|
__ Mtc1(src_low, FTMP);
|
|
__ Mthc1(src_high, FTMP);
|
|
if (result_type == Primitive::kPrimFloat) {
|
|
__ Cvtsl(dst, FTMP);
|
|
} else {
|
|
__ Cvtdl(dst, FTMP);
|
|
}
|
|
} else {
|
|
QuickEntrypointEnum entrypoint = (result_type == Primitive::kPrimFloat) ? kQuickL2f
|
|
: kQuickL2d;
|
|
codegen_->InvokeRuntime(entrypoint, conversion, conversion->GetDexPc());
|
|
if (result_type == Primitive::kPrimFloat) {
|
|
CheckEntrypointTypes<kQuickL2f, float, int64_t>();
|
|
} else {
|
|
CheckEntrypointTypes<kQuickL2d, double, int64_t>();
|
|
}
|
|
}
|
|
} else {
|
|
Register src = locations->InAt(0).AsRegister<Register>();
|
|
FRegister dst = locations->Out().AsFpuRegister<FRegister>();
|
|
__ Mtc1(src, FTMP);
|
|
if (result_type == Primitive::kPrimFloat) {
|
|
__ Cvtsw(dst, FTMP);
|
|
} else {
|
|
__ Cvtdw(dst, FTMP);
|
|
}
|
|
}
|
|
} else if (Primitive::IsIntegralType(result_type) && Primitive::IsFloatingPointType(input_type)) {
|
|
CHECK(result_type == Primitive::kPrimInt || result_type == Primitive::kPrimLong);
|
|
|
|
// When NAN2008=1 (R6), the truncate instruction caps the output at the minimum/maximum
|
|
// value of the output type if the input is outside of the range after the truncation or
|
|
// produces 0 when the input is a NaN. IOW, the three special cases produce three distinct
|
|
// results. This matches the desired float/double-to-int/long conversion exactly.
|
|
//
|
|
// When NAN2008=0 (R2 and before), the truncate instruction produces the maximum positive
|
|
// value when the input is either a NaN or is outside of the range of the output type
|
|
// after the truncation. IOW, the three special cases (NaN, too small, too big) produce
|
|
// the same result.
|
|
//
|
|
// The code takes care of the different behaviors by first comparing the input to the
|
|
// minimum output value (-2**-63 for truncating to long, -2**-31 for truncating to int).
|
|
// If the input is greater than or equal to the minimum, it procedes to the truncate
|
|
// instruction, which will handle such an input the same way irrespective of NAN2008.
|
|
// Otherwise the input is compared to itself to determine whether it is a NaN or not
|
|
// in order to return either zero or the minimum value.
|
|
if (result_type == Primitive::kPrimLong) {
|
|
if (isR6) {
|
|
// trunc.l.s/trunc.l.d requires MIPSR2+ with FR=1. MIPS32R6 is implemented as a secondary
|
|
// architecture on top of MIPS64R6, which has FR=1, and therefore can use the instruction.
|
|
FRegister src = locations->InAt(0).AsFpuRegister<FRegister>();
|
|
Register dst_high = locations->Out().AsRegisterPairHigh<Register>();
|
|
Register dst_low = locations->Out().AsRegisterPairLow<Register>();
|
|
|
|
if (input_type == Primitive::kPrimFloat) {
|
|
__ TruncLS(FTMP, src);
|
|
} else {
|
|
__ TruncLD(FTMP, src);
|
|
}
|
|
__ Mfc1(dst_low, FTMP);
|
|
__ Mfhc1(dst_high, FTMP);
|
|
} else {
|
|
QuickEntrypointEnum entrypoint = (input_type == Primitive::kPrimFloat) ? kQuickF2l
|
|
: kQuickD2l;
|
|
codegen_->InvokeRuntime(entrypoint, conversion, conversion->GetDexPc());
|
|
if (input_type == Primitive::kPrimFloat) {
|
|
CheckEntrypointTypes<kQuickF2l, int64_t, float>();
|
|
} else {
|
|
CheckEntrypointTypes<kQuickD2l, int64_t, double>();
|
|
}
|
|
}
|
|
} else {
|
|
FRegister src = locations->InAt(0).AsFpuRegister<FRegister>();
|
|
Register dst = locations->Out().AsRegister<Register>();
|
|
MipsLabel truncate;
|
|
MipsLabel done;
|
|
|
|
if (!isR6) {
|
|
if (input_type == Primitive::kPrimFloat) {
|
|
uint32_t min_val = bit_cast<uint32_t, float>(std::numeric_limits<int32_t>::min());
|
|
__ LoadConst32(TMP, min_val);
|
|
__ Mtc1(TMP, FTMP);
|
|
} else {
|
|
uint64_t min_val = bit_cast<uint64_t, double>(std::numeric_limits<int32_t>::min());
|
|
__ LoadConst32(TMP, High32Bits(min_val));
|
|
__ Mtc1(ZERO, FTMP);
|
|
__ MoveToFpuHigh(TMP, FTMP);
|
|
}
|
|
|
|
if (input_type == Primitive::kPrimFloat) {
|
|
__ ColeS(0, FTMP, src);
|
|
} else {
|
|
__ ColeD(0, FTMP, src);
|
|
}
|
|
__ Bc1t(0, &truncate);
|
|
|
|
if (input_type == Primitive::kPrimFloat) {
|
|
__ CeqS(0, src, src);
|
|
} else {
|
|
__ CeqD(0, src, src);
|
|
}
|
|
__ LoadConst32(dst, std::numeric_limits<int32_t>::min());
|
|
__ Movf(dst, ZERO, 0);
|
|
|
|
__ B(&done);
|
|
|
|
__ Bind(&truncate);
|
|
}
|
|
|
|
if (input_type == Primitive::kPrimFloat) {
|
|
__ TruncWS(FTMP, src);
|
|
} else {
|
|
__ TruncWD(FTMP, src);
|
|
}
|
|
__ Mfc1(dst, FTMP);
|
|
|
|
if (!isR6) {
|
|
__ Bind(&done);
|
|
}
|
|
}
|
|
} else if (Primitive::IsFloatingPointType(result_type) &&
|
|
Primitive::IsFloatingPointType(input_type)) {
|
|
FRegister dst = locations->Out().AsFpuRegister<FRegister>();
|
|
FRegister src = locations->InAt(0).AsFpuRegister<FRegister>();
|
|
if (result_type == Primitive::kPrimFloat) {
|
|
__ Cvtsd(dst, src);
|
|
} else {
|
|
__ Cvtds(dst, src);
|
|
}
|
|
} else {
|
|
LOG(FATAL) << "Unexpected or unimplemented type conversion from " << input_type
|
|
<< " to " << result_type;
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitUShr(HUShr* ushr) {
|
|
HandleShift(ushr);
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitUShr(HUShr* ushr) {
|
|
HandleShift(ushr);
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitXor(HXor* instruction) {
|
|
HandleBinaryOp(instruction);
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitXor(HXor* instruction) {
|
|
HandleBinaryOp(instruction);
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
|
|
// Nothing to do, this should be removed during prepare for register allocator.
|
|
LOG(FATAL) << "Unreachable";
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitBoundType(HBoundType* instruction ATTRIBUTE_UNUSED) {
|
|
// Nothing to do, this should be removed during prepare for register allocator.
|
|
LOG(FATAL) << "Unreachable";
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitEqual(HEqual* comp) {
|
|
HandleCondition(comp);
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitEqual(HEqual* comp) {
|
|
HandleCondition(comp);
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitNotEqual(HNotEqual* comp) {
|
|
HandleCondition(comp);
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitNotEqual(HNotEqual* comp) {
|
|
HandleCondition(comp);
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitLessThan(HLessThan* comp) {
|
|
HandleCondition(comp);
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitLessThan(HLessThan* comp) {
|
|
HandleCondition(comp);
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
|
|
HandleCondition(comp);
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitLessThanOrEqual(HLessThanOrEqual* comp) {
|
|
HandleCondition(comp);
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitGreaterThan(HGreaterThan* comp) {
|
|
HandleCondition(comp);
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitGreaterThan(HGreaterThan* comp) {
|
|
HandleCondition(comp);
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
|
|
HandleCondition(comp);
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitGreaterThanOrEqual(HGreaterThanOrEqual* comp) {
|
|
HandleCondition(comp);
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitBelow(HBelow* comp) {
|
|
HandleCondition(comp);
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitBelow(HBelow* comp) {
|
|
HandleCondition(comp);
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitBelowOrEqual(HBelowOrEqual* comp) {
|
|
HandleCondition(comp);
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitBelowOrEqual(HBelowOrEqual* comp) {
|
|
HandleCondition(comp);
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitAbove(HAbove* comp) {
|
|
HandleCondition(comp);
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitAbove(HAbove* comp) {
|
|
HandleCondition(comp);
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitAboveOrEqual(HAboveOrEqual* comp) {
|
|
HandleCondition(comp);
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitAboveOrEqual(HAboveOrEqual* comp) {
|
|
HandleCondition(comp);
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitPackedSwitch(HPackedSwitch* switch_instr) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(switch_instr, LocationSummary::kNoCall);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::GenPackedSwitchWithCompares(Register value_reg,
|
|
int32_t lower_bound,
|
|
uint32_t num_entries,
|
|
HBasicBlock* switch_block,
|
|
HBasicBlock* default_block) {
|
|
// Create a set of compare/jumps.
|
|
Register temp_reg = TMP;
|
|
__ Addiu32(temp_reg, value_reg, -lower_bound);
|
|
// Jump to default if index is negative
|
|
// Note: We don't check the case that index is positive while value < lower_bound, because in
|
|
// this case, index >= num_entries must be true. So that we can save one branch instruction.
|
|
__ Bltz(temp_reg, codegen_->GetLabelOf(default_block));
|
|
|
|
const ArenaVector<HBasicBlock*>& successors = switch_block->GetSuccessors();
|
|
// Jump to successors[0] if value == lower_bound.
|
|
__ Beqz(temp_reg, codegen_->GetLabelOf(successors[0]));
|
|
int32_t last_index = 0;
|
|
for (; num_entries - last_index > 2; last_index += 2) {
|
|
__ Addiu(temp_reg, temp_reg, -2);
|
|
// Jump to successors[last_index + 1] if value < case_value[last_index + 2].
|
|
__ Bltz(temp_reg, codegen_->GetLabelOf(successors[last_index + 1]));
|
|
// Jump to successors[last_index + 2] if value == case_value[last_index + 2].
|
|
__ Beqz(temp_reg, codegen_->GetLabelOf(successors[last_index + 2]));
|
|
}
|
|
if (num_entries - last_index == 2) {
|
|
// The last missing case_value.
|
|
__ Addiu(temp_reg, temp_reg, -1);
|
|
__ Beqz(temp_reg, codegen_->GetLabelOf(successors[last_index + 1]));
|
|
}
|
|
|
|
// And the default for any other value.
|
|
if (!codegen_->GoesToNextBlock(switch_block, default_block)) {
|
|
__ B(codegen_->GetLabelOf(default_block));
|
|
}
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::GenTableBasedPackedSwitch(Register value_reg,
|
|
Register constant_area,
|
|
int32_t lower_bound,
|
|
uint32_t num_entries,
|
|
HBasicBlock* switch_block,
|
|
HBasicBlock* default_block) {
|
|
// Create a jump table.
|
|
std::vector<MipsLabel*> labels(num_entries);
|
|
const ArenaVector<HBasicBlock*>& successors = switch_block->GetSuccessors();
|
|
for (uint32_t i = 0; i < num_entries; i++) {
|
|
labels[i] = codegen_->GetLabelOf(successors[i]);
|
|
}
|
|
JumpTable* table = __ CreateJumpTable(std::move(labels));
|
|
|
|
// Is the value in range?
|
|
__ Addiu32(TMP, value_reg, -lower_bound);
|
|
if (IsInt<16>(static_cast<int32_t>(num_entries))) {
|
|
__ Sltiu(AT, TMP, num_entries);
|
|
__ Beqz(AT, codegen_->GetLabelOf(default_block));
|
|
} else {
|
|
__ LoadConst32(AT, num_entries);
|
|
__ Bgeu(TMP, AT, codegen_->GetLabelOf(default_block));
|
|
}
|
|
|
|
// We are in the range of the table.
|
|
// Load the target address from the jump table, indexing by the value.
|
|
__ LoadLabelAddress(AT, constant_area, table->GetLabel());
|
|
__ ShiftAndAdd(TMP, TMP, AT, 2, TMP);
|
|
__ Lw(TMP, TMP, 0);
|
|
// Compute the absolute target address by adding the table start address
|
|
// (the table contains offsets to targets relative to its start).
|
|
__ Addu(TMP, TMP, AT);
|
|
// And jump.
|
|
__ Jr(TMP);
|
|
__ NopIfNoReordering();
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitPackedSwitch(HPackedSwitch* switch_instr) {
|
|
int32_t lower_bound = switch_instr->GetStartValue();
|
|
uint32_t num_entries = switch_instr->GetNumEntries();
|
|
LocationSummary* locations = switch_instr->GetLocations();
|
|
Register value_reg = locations->InAt(0).AsRegister<Register>();
|
|
HBasicBlock* switch_block = switch_instr->GetBlock();
|
|
HBasicBlock* default_block = switch_instr->GetDefaultBlock();
|
|
|
|
if (codegen_->GetInstructionSetFeatures().IsR6() &&
|
|
num_entries > kPackedSwitchJumpTableThreshold) {
|
|
// R6 uses PC-relative addressing to access the jump table.
|
|
// R2, OTOH, requires an HMipsComputeBaseMethodAddress input to access
|
|
// the jump table and it is implemented by changing HPackedSwitch to
|
|
// HMipsPackedSwitch, which bears HMipsComputeBaseMethodAddress.
|
|
// See VisitMipsPackedSwitch() for the table-based implementation on R2.
|
|
GenTableBasedPackedSwitch(value_reg,
|
|
ZERO,
|
|
lower_bound,
|
|
num_entries,
|
|
switch_block,
|
|
default_block);
|
|
} else {
|
|
GenPackedSwitchWithCompares(value_reg,
|
|
lower_bound,
|
|
num_entries,
|
|
switch_block,
|
|
default_block);
|
|
}
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitMipsPackedSwitch(HMipsPackedSwitch* switch_instr) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(switch_instr, LocationSummary::kNoCall);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
// Constant area pointer (HMipsComputeBaseMethodAddress).
|
|
locations->SetInAt(1, Location::RequiresRegister());
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitMipsPackedSwitch(HMipsPackedSwitch* switch_instr) {
|
|
int32_t lower_bound = switch_instr->GetStartValue();
|
|
uint32_t num_entries = switch_instr->GetNumEntries();
|
|
LocationSummary* locations = switch_instr->GetLocations();
|
|
Register value_reg = locations->InAt(0).AsRegister<Register>();
|
|
Register constant_area = locations->InAt(1).AsRegister<Register>();
|
|
HBasicBlock* switch_block = switch_instr->GetBlock();
|
|
HBasicBlock* default_block = switch_instr->GetDefaultBlock();
|
|
|
|
// This is an R2-only path. HPackedSwitch has been changed to
|
|
// HMipsPackedSwitch, which bears HMipsComputeBaseMethodAddress
|
|
// required to address the jump table relative to PC.
|
|
GenTableBasedPackedSwitch(value_reg,
|
|
constant_area,
|
|
lower_bound,
|
|
num_entries,
|
|
switch_block,
|
|
default_block);
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitMipsComputeBaseMethodAddress(
|
|
HMipsComputeBaseMethodAddress* insn) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(insn, LocationSummary::kNoCall);
|
|
locations->SetOut(Location::RequiresRegister());
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitMipsComputeBaseMethodAddress(
|
|
HMipsComputeBaseMethodAddress* insn) {
|
|
LocationSummary* locations = insn->GetLocations();
|
|
Register reg = locations->Out().AsRegister<Register>();
|
|
|
|
CHECK(!codegen_->GetInstructionSetFeatures().IsR6());
|
|
|
|
// Generate a dummy PC-relative call to obtain PC.
|
|
__ Nal();
|
|
// Grab the return address off RA.
|
|
__ Move(reg, RA);
|
|
|
|
// Remember this offset (the obtained PC value) for later use with constant area.
|
|
__ BindPcRelBaseLabel();
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
|
|
// The trampoline uses the same calling convention as dex calling conventions,
|
|
// except instead of loading arg0/r0 with the target Method*, arg0/r0 will contain
|
|
// the method_idx.
|
|
HandleInvoke(invoke);
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitInvokeUnresolved(HInvokeUnresolved* invoke) {
|
|
codegen_->GenerateInvokeUnresolvedRuntimeCall(invoke);
|
|
}
|
|
|
|
void LocationsBuilderMIPS::VisitClassTableGet(HClassTableGet* instruction) {
|
|
LocationSummary* locations =
|
|
new (GetGraph()->GetArena()) LocationSummary(instruction, LocationSummary::kNoCall);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetOut(Location::RequiresRegister());
|
|
}
|
|
|
|
void InstructionCodeGeneratorMIPS::VisitClassTableGet(HClassTableGet* instruction) {
|
|
LocationSummary* locations = instruction->GetLocations();
|
|
if (instruction->GetTableKind() == HClassTableGet::TableKind::kVTable) {
|
|
uint32_t method_offset = mirror::Class::EmbeddedVTableEntryOffset(
|
|
instruction->GetIndex(), kMipsPointerSize).SizeValue();
|
|
__ LoadFromOffset(kLoadWord,
|
|
locations->Out().AsRegister<Register>(),
|
|
locations->InAt(0).AsRegister<Register>(),
|
|
method_offset);
|
|
} else {
|
|
uint32_t method_offset = static_cast<uint32_t>(ImTable::OffsetOfElement(
|
|
instruction->GetIndex(), kMipsPointerSize));
|
|
__ LoadFromOffset(kLoadWord,
|
|
locations->Out().AsRegister<Register>(),
|
|
locations->InAt(0).AsRegister<Register>(),
|
|
mirror::Class::ImtPtrOffset(kMipsPointerSize).Uint32Value());
|
|
__ LoadFromOffset(kLoadWord,
|
|
locations->Out().AsRegister<Register>(),
|
|
locations->Out().AsRegister<Register>(),
|
|
method_offset);
|
|
}
|
|
}
|
|
|
|
#undef __
|
|
#undef QUICK_ENTRY_POINT
|
|
|
|
} // namespace mips
|
|
} // namespace art
|