1619 lines
67 KiB
C++
1619 lines
67 KiB
C++
/*
|
|
* Copyright (C) 2011 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#ifndef ART_COMPILER_UTILS_MIPS_ASSEMBLER_MIPS_H_
|
|
#define ART_COMPILER_UTILS_MIPS_ASSEMBLER_MIPS_H_
|
|
|
|
#include <deque>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "arch/mips/instruction_set_features_mips.h"
|
|
#include "base/arena_containers.h"
|
|
#include "base/enums.h"
|
|
#include "base/macros.h"
|
|
#include "base/stl_util_identity.h"
|
|
#include "constants_mips.h"
|
|
#include "globals.h"
|
|
#include "managed_register_mips.h"
|
|
#include "offsets.h"
|
|
#include "utils/assembler.h"
|
|
#include "utils/jni_macro_assembler.h"
|
|
#include "utils/label.h"
|
|
|
|
namespace art {
|
|
namespace mips {
|
|
|
|
static constexpr size_t kMipsHalfwordSize = 2;
|
|
static constexpr size_t kMipsWordSize = 4;
|
|
static constexpr size_t kMipsDoublewordSize = 8;
|
|
|
|
enum LoadOperandType {
|
|
kLoadSignedByte,
|
|
kLoadUnsignedByte,
|
|
kLoadSignedHalfword,
|
|
kLoadUnsignedHalfword,
|
|
kLoadWord,
|
|
kLoadDoubleword,
|
|
kLoadQuadword
|
|
};
|
|
|
|
enum StoreOperandType {
|
|
kStoreByte,
|
|
kStoreHalfword,
|
|
kStoreWord,
|
|
kStoreDoubleword,
|
|
kStoreQuadword
|
|
};
|
|
|
|
// Used to test the values returned by ClassS/ClassD.
|
|
enum FPClassMaskType {
|
|
kSignalingNaN = 0x001,
|
|
kQuietNaN = 0x002,
|
|
kNegativeInfinity = 0x004,
|
|
kNegativeNormal = 0x008,
|
|
kNegativeSubnormal = 0x010,
|
|
kNegativeZero = 0x020,
|
|
kPositiveInfinity = 0x040,
|
|
kPositiveNormal = 0x080,
|
|
kPositiveSubnormal = 0x100,
|
|
kPositiveZero = 0x200,
|
|
};
|
|
|
|
class MipsLabel : public Label {
|
|
public:
|
|
MipsLabel() : prev_branch_id_plus_one_(0) {}
|
|
|
|
MipsLabel(MipsLabel&& src)
|
|
: Label(std::move(src)), prev_branch_id_plus_one_(src.prev_branch_id_plus_one_) {}
|
|
|
|
private:
|
|
uint32_t prev_branch_id_plus_one_; // To get distance from preceding branch, if any.
|
|
|
|
friend class MipsAssembler;
|
|
DISALLOW_COPY_AND_ASSIGN(MipsLabel);
|
|
};
|
|
|
|
// Assembler literal is a value embedded in code, retrieved using a PC-relative load.
|
|
class Literal {
|
|
public:
|
|
static constexpr size_t kMaxSize = 8;
|
|
|
|
Literal(uint32_t size, const uint8_t* data)
|
|
: label_(), size_(size) {
|
|
DCHECK_LE(size, Literal::kMaxSize);
|
|
memcpy(data_, data, size);
|
|
}
|
|
|
|
template <typename T>
|
|
T GetValue() const {
|
|
DCHECK_EQ(size_, sizeof(T));
|
|
T value;
|
|
memcpy(&value, data_, sizeof(T));
|
|
return value;
|
|
}
|
|
|
|
uint32_t GetSize() const {
|
|
return size_;
|
|
}
|
|
|
|
const uint8_t* GetData() const {
|
|
return data_;
|
|
}
|
|
|
|
MipsLabel* GetLabel() {
|
|
return &label_;
|
|
}
|
|
|
|
const MipsLabel* GetLabel() const {
|
|
return &label_;
|
|
}
|
|
|
|
private:
|
|
MipsLabel label_;
|
|
const uint32_t size_;
|
|
uint8_t data_[kMaxSize];
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(Literal);
|
|
};
|
|
|
|
// Jump table: table of labels emitted after the literals. Similar to literals.
|
|
class JumpTable {
|
|
public:
|
|
explicit JumpTable(std::vector<MipsLabel*>&& labels)
|
|
: label_(), labels_(std::move(labels)) {
|
|
}
|
|
|
|
uint32_t GetSize() const {
|
|
return static_cast<uint32_t>(labels_.size()) * sizeof(uint32_t);
|
|
}
|
|
|
|
const std::vector<MipsLabel*>& GetData() const {
|
|
return labels_;
|
|
}
|
|
|
|
MipsLabel* GetLabel() {
|
|
return &label_;
|
|
}
|
|
|
|
const MipsLabel* GetLabel() const {
|
|
return &label_;
|
|
}
|
|
|
|
private:
|
|
MipsLabel label_;
|
|
std::vector<MipsLabel*> labels_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(JumpTable);
|
|
};
|
|
|
|
// Slowpath entered when Thread::Current()->_exception is non-null.
|
|
class MipsExceptionSlowPath {
|
|
public:
|
|
explicit MipsExceptionSlowPath(MipsManagedRegister scratch, size_t stack_adjust)
|
|
: scratch_(scratch), stack_adjust_(stack_adjust) {}
|
|
|
|
MipsExceptionSlowPath(MipsExceptionSlowPath&& src)
|
|
: scratch_(src.scratch_),
|
|
stack_adjust_(src.stack_adjust_),
|
|
exception_entry_(std::move(src.exception_entry_)) {}
|
|
|
|
private:
|
|
MipsLabel* Entry() { return &exception_entry_; }
|
|
const MipsManagedRegister scratch_;
|
|
const size_t stack_adjust_;
|
|
MipsLabel exception_entry_;
|
|
|
|
friend class MipsAssembler;
|
|
DISALLOW_COPY_AND_ASSIGN(MipsExceptionSlowPath);
|
|
};
|
|
|
|
class MipsAssembler FINAL : public Assembler, public JNIMacroAssembler<PointerSize::k32> {
|
|
public:
|
|
using JNIBase = JNIMacroAssembler<PointerSize::k32>;
|
|
|
|
explicit MipsAssembler(ArenaAllocator* arena,
|
|
const MipsInstructionSetFeatures* instruction_set_features = nullptr)
|
|
: Assembler(arena),
|
|
overwriting_(false),
|
|
overwrite_location_(0),
|
|
reordering_(true),
|
|
ds_fsm_state_(kExpectingLabel),
|
|
ds_fsm_target_pc_(0),
|
|
literals_(arena->Adapter(kArenaAllocAssembler)),
|
|
jump_tables_(arena->Adapter(kArenaAllocAssembler)),
|
|
last_position_adjustment_(0),
|
|
last_old_position_(0),
|
|
last_branch_id_(0),
|
|
has_msa_(instruction_set_features != nullptr ? instruction_set_features->HasMsa() : false),
|
|
isa_features_(instruction_set_features) {
|
|
cfi().DelayEmittingAdvancePCs();
|
|
}
|
|
|
|
size_t CodeSize() const OVERRIDE { return Assembler::CodeSize(); }
|
|
size_t CodePosition() OVERRIDE;
|
|
DebugFrameOpCodeWriterForAssembler& cfi() { return Assembler::cfi(); }
|
|
|
|
virtual ~MipsAssembler() {
|
|
for (auto& branch : branches_) {
|
|
CHECK(branch.IsResolved());
|
|
}
|
|
}
|
|
|
|
// Emit Machine Instructions.
|
|
void Addu(Register rd, Register rs, Register rt);
|
|
void Addiu(Register rt, Register rs, uint16_t imm16);
|
|
void Subu(Register rd, Register rs, Register rt);
|
|
|
|
void MultR2(Register rs, Register rt); // R2
|
|
void MultuR2(Register rs, Register rt); // R2
|
|
void DivR2(Register rs, Register rt); // R2
|
|
void DivuR2(Register rs, Register rt); // R2
|
|
void MulR2(Register rd, Register rs, Register rt); // R2
|
|
void DivR2(Register rd, Register rs, Register rt); // R2
|
|
void ModR2(Register rd, Register rs, Register rt); // R2
|
|
void DivuR2(Register rd, Register rs, Register rt); // R2
|
|
void ModuR2(Register rd, Register rs, Register rt); // R2
|
|
void MulR6(Register rd, Register rs, Register rt); // R6
|
|
void MuhR6(Register rd, Register rs, Register rt); // R6
|
|
void MuhuR6(Register rd, Register rs, Register rt); // R6
|
|
void DivR6(Register rd, Register rs, Register rt); // R6
|
|
void ModR6(Register rd, Register rs, Register rt); // R6
|
|
void DivuR6(Register rd, Register rs, Register rt); // R6
|
|
void ModuR6(Register rd, Register rs, Register rt); // R6
|
|
|
|
void And(Register rd, Register rs, Register rt);
|
|
void Andi(Register rt, Register rs, uint16_t imm16);
|
|
void Or(Register rd, Register rs, Register rt);
|
|
void Ori(Register rt, Register rs, uint16_t imm16);
|
|
void Xor(Register rd, Register rs, Register rt);
|
|
void Xori(Register rt, Register rs, uint16_t imm16);
|
|
void Nor(Register rd, Register rs, Register rt);
|
|
|
|
void Movz(Register rd, Register rs, Register rt); // R2
|
|
void Movn(Register rd, Register rs, Register rt); // R2
|
|
void Seleqz(Register rd, Register rs, Register rt); // R6
|
|
void Selnez(Register rd, Register rs, Register rt); // R6
|
|
void ClzR6(Register rd, Register rs);
|
|
void ClzR2(Register rd, Register rs);
|
|
void CloR6(Register rd, Register rs);
|
|
void CloR2(Register rd, Register rs);
|
|
|
|
void Seb(Register rd, Register rt); // R2+
|
|
void Seh(Register rd, Register rt); // R2+
|
|
void Wsbh(Register rd, Register rt); // R2+
|
|
void Bitswap(Register rd, Register rt); // R6
|
|
|
|
void Sll(Register rd, Register rt, int shamt);
|
|
void Srl(Register rd, Register rt, int shamt);
|
|
void Rotr(Register rd, Register rt, int shamt); // R2+
|
|
void Sra(Register rd, Register rt, int shamt);
|
|
void Sllv(Register rd, Register rt, Register rs);
|
|
void Srlv(Register rd, Register rt, Register rs);
|
|
void Rotrv(Register rd, Register rt, Register rs); // R2+
|
|
void Srav(Register rd, Register rt, Register rs);
|
|
void Ext(Register rd, Register rt, int pos, int size); // R2+
|
|
void Ins(Register rd, Register rt, int pos, int size); // R2+
|
|
void Lsa(Register rd, Register rs, Register rt, int saPlusOne); // R6
|
|
void ShiftAndAdd(Register dst, Register src_idx, Register src_base, int shamt, Register tmp = AT);
|
|
|
|
void Lb(Register rt, Register rs, uint16_t imm16);
|
|
void Lh(Register rt, Register rs, uint16_t imm16);
|
|
void Lw(Register rt, Register rs, uint16_t imm16);
|
|
void Lwl(Register rt, Register rs, uint16_t imm16);
|
|
void Lwr(Register rt, Register rs, uint16_t imm16);
|
|
void Lbu(Register rt, Register rs, uint16_t imm16);
|
|
void Lhu(Register rt, Register rs, uint16_t imm16);
|
|
void Lwpc(Register rs, uint32_t imm19); // R6
|
|
void Lui(Register rt, uint16_t imm16);
|
|
void Aui(Register rt, Register rs, uint16_t imm16); // R6
|
|
void Sync(uint32_t stype);
|
|
void Mfhi(Register rd); // R2
|
|
void Mflo(Register rd); // R2
|
|
|
|
void Sb(Register rt, Register rs, uint16_t imm16);
|
|
void Sh(Register rt, Register rs, uint16_t imm16);
|
|
void Sw(Register rt, Register rs, uint16_t imm16);
|
|
void Swl(Register rt, Register rs, uint16_t imm16);
|
|
void Swr(Register rt, Register rs, uint16_t imm16);
|
|
|
|
void LlR2(Register rt, Register base, int16_t imm16 = 0);
|
|
void ScR2(Register rt, Register base, int16_t imm16 = 0);
|
|
void LlR6(Register rt, Register base, int16_t imm9 = 0);
|
|
void ScR6(Register rt, Register base, int16_t imm9 = 0);
|
|
|
|
void Slt(Register rd, Register rs, Register rt);
|
|
void Sltu(Register rd, Register rs, Register rt);
|
|
void Slti(Register rt, Register rs, uint16_t imm16);
|
|
void Sltiu(Register rt, Register rs, uint16_t imm16);
|
|
|
|
// Branches and jumps to immediate offsets/addresses do not take care of their
|
|
// delay/forbidden slots and generally should not be used directly. This applies
|
|
// to the following R2 and R6 branch/jump instructions with imm16, imm21, addr26
|
|
// offsets/addresses.
|
|
// Use branches/jumps to labels instead.
|
|
void B(uint16_t imm16);
|
|
void Bal(uint16_t imm16);
|
|
void Beq(Register rs, Register rt, uint16_t imm16);
|
|
void Bne(Register rs, Register rt, uint16_t imm16);
|
|
void Beqz(Register rt, uint16_t imm16);
|
|
void Bnez(Register rt, uint16_t imm16);
|
|
void Bltz(Register rt, uint16_t imm16);
|
|
void Bgez(Register rt, uint16_t imm16);
|
|
void Blez(Register rt, uint16_t imm16);
|
|
void Bgtz(Register rt, uint16_t imm16);
|
|
void Bc1f(uint16_t imm16); // R2
|
|
void Bc1f(int cc, uint16_t imm16); // R2
|
|
void Bc1t(uint16_t imm16); // R2
|
|
void Bc1t(int cc, uint16_t imm16); // R2
|
|
void J(uint32_t addr26);
|
|
void Jal(uint32_t addr26);
|
|
// Jalr() and Jr() fill their delay slots when reordering is enabled.
|
|
// When reordering is disabled, the delay slots must be filled manually.
|
|
// You may use NopIfNoReordering() to fill them when reordering is disabled.
|
|
void Jalr(Register rd, Register rs);
|
|
void Jalr(Register rs);
|
|
void Jr(Register rs);
|
|
// Nal() does not fill its delay slot. It must be filled manually.
|
|
void Nal();
|
|
void Auipc(Register rs, uint16_t imm16); // R6
|
|
void Addiupc(Register rs, uint32_t imm19); // R6
|
|
void Bc(uint32_t imm26); // R6
|
|
void Balc(uint32_t imm26); // R6
|
|
void Jic(Register rt, uint16_t imm16); // R6
|
|
void Jialc(Register rt, uint16_t imm16); // R6
|
|
void Bltc(Register rs, Register rt, uint16_t imm16); // R6
|
|
void Bltzc(Register rt, uint16_t imm16); // R6
|
|
void Bgtzc(Register rt, uint16_t imm16); // R6
|
|
void Bgec(Register rs, Register rt, uint16_t imm16); // R6
|
|
void Bgezc(Register rt, uint16_t imm16); // R6
|
|
void Blezc(Register rt, uint16_t imm16); // R6
|
|
void Bltuc(Register rs, Register rt, uint16_t imm16); // R6
|
|
void Bgeuc(Register rs, Register rt, uint16_t imm16); // R6
|
|
void Beqc(Register rs, Register rt, uint16_t imm16); // R6
|
|
void Bnec(Register rs, Register rt, uint16_t imm16); // R6
|
|
void Beqzc(Register rs, uint32_t imm21); // R6
|
|
void Bnezc(Register rs, uint32_t imm21); // R6
|
|
void Bc1eqz(FRegister ft, uint16_t imm16); // R6
|
|
void Bc1nez(FRegister ft, uint16_t imm16); // R6
|
|
|
|
void AddS(FRegister fd, FRegister fs, FRegister ft);
|
|
void SubS(FRegister fd, FRegister fs, FRegister ft);
|
|
void MulS(FRegister fd, FRegister fs, FRegister ft);
|
|
void DivS(FRegister fd, FRegister fs, FRegister ft);
|
|
void AddD(FRegister fd, FRegister fs, FRegister ft);
|
|
void SubD(FRegister fd, FRegister fs, FRegister ft);
|
|
void MulD(FRegister fd, FRegister fs, FRegister ft);
|
|
void DivD(FRegister fd, FRegister fs, FRegister ft);
|
|
void SqrtS(FRegister fd, FRegister fs);
|
|
void SqrtD(FRegister fd, FRegister fs);
|
|
void AbsS(FRegister fd, FRegister fs);
|
|
void AbsD(FRegister fd, FRegister fs);
|
|
void MovS(FRegister fd, FRegister fs);
|
|
void MovD(FRegister fd, FRegister fs);
|
|
void NegS(FRegister fd, FRegister fs);
|
|
void NegD(FRegister fd, FRegister fs);
|
|
|
|
void CunS(FRegister fs, FRegister ft); // R2
|
|
void CunS(int cc, FRegister fs, FRegister ft); // R2
|
|
void CeqS(FRegister fs, FRegister ft); // R2
|
|
void CeqS(int cc, FRegister fs, FRegister ft); // R2
|
|
void CueqS(FRegister fs, FRegister ft); // R2
|
|
void CueqS(int cc, FRegister fs, FRegister ft); // R2
|
|
void ColtS(FRegister fs, FRegister ft); // R2
|
|
void ColtS(int cc, FRegister fs, FRegister ft); // R2
|
|
void CultS(FRegister fs, FRegister ft); // R2
|
|
void CultS(int cc, FRegister fs, FRegister ft); // R2
|
|
void ColeS(FRegister fs, FRegister ft); // R2
|
|
void ColeS(int cc, FRegister fs, FRegister ft); // R2
|
|
void CuleS(FRegister fs, FRegister ft); // R2
|
|
void CuleS(int cc, FRegister fs, FRegister ft); // R2
|
|
void CunD(FRegister fs, FRegister ft); // R2
|
|
void CunD(int cc, FRegister fs, FRegister ft); // R2
|
|
void CeqD(FRegister fs, FRegister ft); // R2
|
|
void CeqD(int cc, FRegister fs, FRegister ft); // R2
|
|
void CueqD(FRegister fs, FRegister ft); // R2
|
|
void CueqD(int cc, FRegister fs, FRegister ft); // R2
|
|
void ColtD(FRegister fs, FRegister ft); // R2
|
|
void ColtD(int cc, FRegister fs, FRegister ft); // R2
|
|
void CultD(FRegister fs, FRegister ft); // R2
|
|
void CultD(int cc, FRegister fs, FRegister ft); // R2
|
|
void ColeD(FRegister fs, FRegister ft); // R2
|
|
void ColeD(int cc, FRegister fs, FRegister ft); // R2
|
|
void CuleD(FRegister fs, FRegister ft); // R2
|
|
void CuleD(int cc, FRegister fs, FRegister ft); // R2
|
|
void CmpUnS(FRegister fd, FRegister fs, FRegister ft); // R6
|
|
void CmpEqS(FRegister fd, FRegister fs, FRegister ft); // R6
|
|
void CmpUeqS(FRegister fd, FRegister fs, FRegister ft); // R6
|
|
void CmpLtS(FRegister fd, FRegister fs, FRegister ft); // R6
|
|
void CmpUltS(FRegister fd, FRegister fs, FRegister ft); // R6
|
|
void CmpLeS(FRegister fd, FRegister fs, FRegister ft); // R6
|
|
void CmpUleS(FRegister fd, FRegister fs, FRegister ft); // R6
|
|
void CmpOrS(FRegister fd, FRegister fs, FRegister ft); // R6
|
|
void CmpUneS(FRegister fd, FRegister fs, FRegister ft); // R6
|
|
void CmpNeS(FRegister fd, FRegister fs, FRegister ft); // R6
|
|
void CmpUnD(FRegister fd, FRegister fs, FRegister ft); // R6
|
|
void CmpEqD(FRegister fd, FRegister fs, FRegister ft); // R6
|
|
void CmpUeqD(FRegister fd, FRegister fs, FRegister ft); // R6
|
|
void CmpLtD(FRegister fd, FRegister fs, FRegister ft); // R6
|
|
void CmpUltD(FRegister fd, FRegister fs, FRegister ft); // R6
|
|
void CmpLeD(FRegister fd, FRegister fs, FRegister ft); // R6
|
|
void CmpUleD(FRegister fd, FRegister fs, FRegister ft); // R6
|
|
void CmpOrD(FRegister fd, FRegister fs, FRegister ft); // R6
|
|
void CmpUneD(FRegister fd, FRegister fs, FRegister ft); // R6
|
|
void CmpNeD(FRegister fd, FRegister fs, FRegister ft); // R6
|
|
void Movf(Register rd, Register rs, int cc = 0); // R2
|
|
void Movt(Register rd, Register rs, int cc = 0); // R2
|
|
void MovfS(FRegister fd, FRegister fs, int cc = 0); // R2
|
|
void MovfD(FRegister fd, FRegister fs, int cc = 0); // R2
|
|
void MovtS(FRegister fd, FRegister fs, int cc = 0); // R2
|
|
void MovtD(FRegister fd, FRegister fs, int cc = 0); // R2
|
|
void MovzS(FRegister fd, FRegister fs, Register rt); // R2
|
|
void MovzD(FRegister fd, FRegister fs, Register rt); // R2
|
|
void MovnS(FRegister fd, FRegister fs, Register rt); // R2
|
|
void MovnD(FRegister fd, FRegister fs, Register rt); // R2
|
|
void SelS(FRegister fd, FRegister fs, FRegister ft); // R6
|
|
void SelD(FRegister fd, FRegister fs, FRegister ft); // R6
|
|
void SeleqzS(FRegister fd, FRegister fs, FRegister ft); // R6
|
|
void SeleqzD(FRegister fd, FRegister fs, FRegister ft); // R6
|
|
void SelnezS(FRegister fd, FRegister fs, FRegister ft); // R6
|
|
void SelnezD(FRegister fd, FRegister fs, FRegister ft); // R6
|
|
void ClassS(FRegister fd, FRegister fs); // R6
|
|
void ClassD(FRegister fd, FRegister fs); // R6
|
|
void MinS(FRegister fd, FRegister fs, FRegister ft); // R6
|
|
void MinD(FRegister fd, FRegister fs, FRegister ft); // R6
|
|
void MaxS(FRegister fd, FRegister fs, FRegister ft); // R6
|
|
void MaxD(FRegister fd, FRegister fs, FRegister ft); // R6
|
|
|
|
void TruncLS(FRegister fd, FRegister fs); // R2+, FR=1
|
|
void TruncLD(FRegister fd, FRegister fs); // R2+, FR=1
|
|
void TruncWS(FRegister fd, FRegister fs);
|
|
void TruncWD(FRegister fd, FRegister fs);
|
|
void Cvtsw(FRegister fd, FRegister fs);
|
|
void Cvtdw(FRegister fd, FRegister fs);
|
|
void Cvtsd(FRegister fd, FRegister fs);
|
|
void Cvtds(FRegister fd, FRegister fs);
|
|
void Cvtsl(FRegister fd, FRegister fs); // R2+, FR=1
|
|
void Cvtdl(FRegister fd, FRegister fs); // R2+, FR=1
|
|
void FloorWS(FRegister fd, FRegister fs);
|
|
void FloorWD(FRegister fd, FRegister fs);
|
|
|
|
void Mfc1(Register rt, FRegister fs);
|
|
void Mtc1(Register rt, FRegister fs);
|
|
void Mfhc1(Register rt, FRegister fs);
|
|
void Mthc1(Register rt, FRegister fs);
|
|
void MoveFromFpuHigh(Register rt, FRegister fs);
|
|
void MoveToFpuHigh(Register rt, FRegister fs);
|
|
void Lwc1(FRegister ft, Register rs, uint16_t imm16);
|
|
void Ldc1(FRegister ft, Register rs, uint16_t imm16);
|
|
void Swc1(FRegister ft, Register rs, uint16_t imm16);
|
|
void Sdc1(FRegister ft, Register rs, uint16_t imm16);
|
|
|
|
void Break();
|
|
void Nop();
|
|
void NopIfNoReordering();
|
|
void Move(Register rd, Register rs);
|
|
void Clear(Register rd);
|
|
void Not(Register rd, Register rs);
|
|
|
|
// MSA instructions.
|
|
void AndV(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void OrV(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void NorV(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void XorV(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
|
|
void AddvB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void AddvH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void AddvW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void AddvD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void SubvB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void SubvH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void SubvW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void SubvD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void MulvB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void MulvH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void MulvW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void MulvD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Div_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Div_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Div_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Div_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Div_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Div_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Div_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Div_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Mod_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Mod_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Mod_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Mod_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Mod_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Mod_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Mod_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Mod_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Add_aB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Add_aH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Add_aW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Add_aD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Ave_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Ave_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Ave_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Ave_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Ave_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Ave_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Ave_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Ave_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Aver_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Aver_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Aver_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Aver_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Aver_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Aver_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Aver_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Aver_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Max_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Max_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Max_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Max_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Max_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Max_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Max_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Max_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Min_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Min_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Min_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Min_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Min_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Min_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Min_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void Min_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
|
|
void FaddW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void FaddD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void FsubW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void FsubD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void FmulW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void FmulD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void FdivW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void FdivD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void FmaxW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void FmaxD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void FminW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void FminD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
|
|
void Ffint_sW(VectorRegister wd, VectorRegister ws);
|
|
void Ffint_sD(VectorRegister wd, VectorRegister ws);
|
|
void Ftint_sW(VectorRegister wd, VectorRegister ws);
|
|
void Ftint_sD(VectorRegister wd, VectorRegister ws);
|
|
|
|
void SllB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void SllH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void SllW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void SllD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void SraB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void SraH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void SraW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void SraD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void SrlB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void SrlH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void SrlW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void SrlD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
|
|
// Immediate shift instructions, where shamtN denotes shift amount (must be between 0 and 2^N-1).
|
|
void SlliB(VectorRegister wd, VectorRegister ws, int shamt3);
|
|
void SlliH(VectorRegister wd, VectorRegister ws, int shamt4);
|
|
void SlliW(VectorRegister wd, VectorRegister ws, int shamt5);
|
|
void SlliD(VectorRegister wd, VectorRegister ws, int shamt6);
|
|
void SraiB(VectorRegister wd, VectorRegister ws, int shamt3);
|
|
void SraiH(VectorRegister wd, VectorRegister ws, int shamt4);
|
|
void SraiW(VectorRegister wd, VectorRegister ws, int shamt5);
|
|
void SraiD(VectorRegister wd, VectorRegister ws, int shamt6);
|
|
void SrliB(VectorRegister wd, VectorRegister ws, int shamt3);
|
|
void SrliH(VectorRegister wd, VectorRegister ws, int shamt4);
|
|
void SrliW(VectorRegister wd, VectorRegister ws, int shamt5);
|
|
void SrliD(VectorRegister wd, VectorRegister ws, int shamt6);
|
|
|
|
void MoveV(VectorRegister wd, VectorRegister ws);
|
|
void SplatiB(VectorRegister wd, VectorRegister ws, int n4);
|
|
void SplatiH(VectorRegister wd, VectorRegister ws, int n3);
|
|
void SplatiW(VectorRegister wd, VectorRegister ws, int n2);
|
|
void SplatiD(VectorRegister wd, VectorRegister ws, int n1);
|
|
void FillB(VectorRegister wd, Register rs);
|
|
void FillH(VectorRegister wd, Register rs);
|
|
void FillW(VectorRegister wd, Register rs);
|
|
|
|
void LdiB(VectorRegister wd, int imm8);
|
|
void LdiH(VectorRegister wd, int imm10);
|
|
void LdiW(VectorRegister wd, int imm10);
|
|
void LdiD(VectorRegister wd, int imm10);
|
|
void LdB(VectorRegister wd, Register rs, int offset);
|
|
void LdH(VectorRegister wd, Register rs, int offset);
|
|
void LdW(VectorRegister wd, Register rs, int offset);
|
|
void LdD(VectorRegister wd, Register rs, int offset);
|
|
void StB(VectorRegister wd, Register rs, int offset);
|
|
void StH(VectorRegister wd, Register rs, int offset);
|
|
void StW(VectorRegister wd, Register rs, int offset);
|
|
void StD(VectorRegister wd, Register rs, int offset);
|
|
|
|
void IlvrB(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void IlvrH(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void IlvrW(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
void IlvrD(VectorRegister wd, VectorRegister ws, VectorRegister wt);
|
|
|
|
// Helper for replicating floating point value in all destination elements.
|
|
void ReplicateFPToVectorRegister(VectorRegister dst, FRegister src, bool is_double);
|
|
|
|
// Higher level composite instructions.
|
|
void LoadConst32(Register rd, int32_t value);
|
|
void LoadConst64(Register reg_hi, Register reg_lo, int64_t value);
|
|
void LoadDConst64(FRegister rd, int64_t value, Register temp);
|
|
void LoadSConst32(FRegister r, int32_t value, Register temp);
|
|
void Addiu32(Register rt, Register rs, int32_t value, Register rtmp = AT);
|
|
|
|
// These will generate R2 branches or R6 branches as appropriate and take care of
|
|
// the delay/forbidden slots.
|
|
void Bind(MipsLabel* label);
|
|
void B(MipsLabel* label);
|
|
void Bal(MipsLabel* label);
|
|
void Beq(Register rs, Register rt, MipsLabel* label);
|
|
void Bne(Register rs, Register rt, MipsLabel* label);
|
|
void Beqz(Register rt, MipsLabel* label);
|
|
void Bnez(Register rt, MipsLabel* label);
|
|
void Bltz(Register rt, MipsLabel* label);
|
|
void Bgez(Register rt, MipsLabel* label);
|
|
void Blez(Register rt, MipsLabel* label);
|
|
void Bgtz(Register rt, MipsLabel* label);
|
|
void Blt(Register rs, Register rt, MipsLabel* label);
|
|
void Bge(Register rs, Register rt, MipsLabel* label);
|
|
void Bltu(Register rs, Register rt, MipsLabel* label);
|
|
void Bgeu(Register rs, Register rt, MipsLabel* label);
|
|
void Bc1f(MipsLabel* label); // R2
|
|
void Bc1f(int cc, MipsLabel* label); // R2
|
|
void Bc1t(MipsLabel* label); // R2
|
|
void Bc1t(int cc, MipsLabel* label); // R2
|
|
void Bc1eqz(FRegister ft, MipsLabel* label); // R6
|
|
void Bc1nez(FRegister ft, MipsLabel* label); // R6
|
|
|
|
void EmitLoad(ManagedRegister m_dst, Register src_register, int32_t src_offset, size_t size);
|
|
void AdjustBaseAndOffset(Register& base,
|
|
int32_t& offset,
|
|
bool is_doubleword,
|
|
bool is_float = false);
|
|
void AdjustBaseOffsetAndElementSizeShift(Register& base,
|
|
int32_t& offset,
|
|
int& element_size_shift);
|
|
|
|
private:
|
|
// This will be used as an argument for loads/stores
|
|
// when there is no need for implicit null checks.
|
|
struct NoImplicitNullChecker {
|
|
void operator()() const {}
|
|
};
|
|
|
|
public:
|
|
template <typename ImplicitNullChecker = NoImplicitNullChecker>
|
|
void StoreConstToOffset(StoreOperandType type,
|
|
int64_t value,
|
|
Register base,
|
|
int32_t offset,
|
|
Register temp,
|
|
ImplicitNullChecker null_checker = NoImplicitNullChecker()) {
|
|
// We permit `base` and `temp` to coincide (however, we check that neither is AT),
|
|
// in which case the `base` register may be overwritten in the process.
|
|
CHECK_NE(temp, AT); // Must not use AT as temp, so as not to overwrite the adjusted base.
|
|
AdjustBaseAndOffset(base, offset, /* is_doubleword */ (type == kStoreDoubleword));
|
|
uint32_t low = Low32Bits(value);
|
|
uint32_t high = High32Bits(value);
|
|
Register reg;
|
|
// If the adjustment left `base` unchanged and equal to `temp`, we can't use `temp`
|
|
// to load and hold the value but we can use AT instead as AT hasn't been used yet.
|
|
// Otherwise, `temp` can be used for the value. And if `temp` is the same as the
|
|
// original `base` (that is, `base` prior to the adjustment), the original `base`
|
|
// register will be overwritten.
|
|
if (base == temp) {
|
|
temp = AT;
|
|
}
|
|
if (low == 0) {
|
|
reg = ZERO;
|
|
} else {
|
|
reg = temp;
|
|
LoadConst32(reg, low);
|
|
}
|
|
switch (type) {
|
|
case kStoreByte:
|
|
Sb(reg, base, offset);
|
|
break;
|
|
case kStoreHalfword:
|
|
Sh(reg, base, offset);
|
|
break;
|
|
case kStoreWord:
|
|
Sw(reg, base, offset);
|
|
break;
|
|
case kStoreDoubleword:
|
|
Sw(reg, base, offset);
|
|
null_checker();
|
|
if (high == 0) {
|
|
reg = ZERO;
|
|
} else {
|
|
reg = temp;
|
|
if (high != low) {
|
|
LoadConst32(reg, high);
|
|
}
|
|
}
|
|
Sw(reg, base, offset + kMipsWordSize);
|
|
break;
|
|
default:
|
|
LOG(FATAL) << "UNREACHABLE";
|
|
}
|
|
if (type != kStoreDoubleword) {
|
|
null_checker();
|
|
}
|
|
}
|
|
|
|
template <typename ImplicitNullChecker = NoImplicitNullChecker>
|
|
void LoadFromOffset(LoadOperandType type,
|
|
Register reg,
|
|
Register base,
|
|
int32_t offset,
|
|
ImplicitNullChecker null_checker = NoImplicitNullChecker()) {
|
|
AdjustBaseAndOffset(base, offset, /* is_doubleword */ (type == kLoadDoubleword));
|
|
switch (type) {
|
|
case kLoadSignedByte:
|
|
Lb(reg, base, offset);
|
|
break;
|
|
case kLoadUnsignedByte:
|
|
Lbu(reg, base, offset);
|
|
break;
|
|
case kLoadSignedHalfword:
|
|
Lh(reg, base, offset);
|
|
break;
|
|
case kLoadUnsignedHalfword:
|
|
Lhu(reg, base, offset);
|
|
break;
|
|
case kLoadWord:
|
|
Lw(reg, base, offset);
|
|
break;
|
|
case kLoadDoubleword:
|
|
if (reg == base) {
|
|
// This will clobber the base when loading the lower register. Since we have to load the
|
|
// higher register as well, this will fail. Solution: reverse the order.
|
|
Lw(static_cast<Register>(reg + 1), base, offset + kMipsWordSize);
|
|
null_checker();
|
|
Lw(reg, base, offset);
|
|
} else {
|
|
Lw(reg, base, offset);
|
|
null_checker();
|
|
Lw(static_cast<Register>(reg + 1), base, offset + kMipsWordSize);
|
|
}
|
|
break;
|
|
default:
|
|
LOG(FATAL) << "UNREACHABLE";
|
|
}
|
|
if (type != kLoadDoubleword) {
|
|
null_checker();
|
|
}
|
|
}
|
|
|
|
template <typename ImplicitNullChecker = NoImplicitNullChecker>
|
|
void LoadSFromOffset(FRegister reg,
|
|
Register base,
|
|
int32_t offset,
|
|
ImplicitNullChecker null_checker = NoImplicitNullChecker()) {
|
|
AdjustBaseAndOffset(base, offset, /* is_doubleword */ false, /* is_float */ true);
|
|
Lwc1(reg, base, offset);
|
|
null_checker();
|
|
}
|
|
|
|
template <typename ImplicitNullChecker = NoImplicitNullChecker>
|
|
void LoadDFromOffset(FRegister reg,
|
|
Register base,
|
|
int32_t offset,
|
|
ImplicitNullChecker null_checker = NoImplicitNullChecker()) {
|
|
AdjustBaseAndOffset(base, offset, /* is_doubleword */ true, /* is_float */ true);
|
|
if (IsAligned<kMipsDoublewordSize>(offset)) {
|
|
Ldc1(reg, base, offset);
|
|
null_checker();
|
|
} else {
|
|
if (Is32BitFPU()) {
|
|
Lwc1(reg, base, offset);
|
|
null_checker();
|
|
Lwc1(static_cast<FRegister>(reg + 1), base, offset + kMipsWordSize);
|
|
} else {
|
|
// 64-bit FPU.
|
|
Lwc1(reg, base, offset);
|
|
null_checker();
|
|
Lw(T8, base, offset + kMipsWordSize);
|
|
Mthc1(T8, reg);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename ImplicitNullChecker = NoImplicitNullChecker>
|
|
void LoadQFromOffset(FRegister reg,
|
|
Register base,
|
|
int32_t offset,
|
|
ImplicitNullChecker null_checker = NoImplicitNullChecker()) {
|
|
int element_size_shift = -1;
|
|
AdjustBaseOffsetAndElementSizeShift(base, offset, element_size_shift);
|
|
switch (element_size_shift) {
|
|
case TIMES_1: LdB(static_cast<VectorRegister>(reg), base, offset); break;
|
|
case TIMES_2: LdH(static_cast<VectorRegister>(reg), base, offset); break;
|
|
case TIMES_4: LdW(static_cast<VectorRegister>(reg), base, offset); break;
|
|
case TIMES_8: LdD(static_cast<VectorRegister>(reg), base, offset); break;
|
|
default:
|
|
LOG(FATAL) << "UNREACHABLE";
|
|
}
|
|
null_checker();
|
|
}
|
|
|
|
template <typename ImplicitNullChecker = NoImplicitNullChecker>
|
|
void StoreToOffset(StoreOperandType type,
|
|
Register reg,
|
|
Register base,
|
|
int32_t offset,
|
|
ImplicitNullChecker null_checker = NoImplicitNullChecker()) {
|
|
// Must not use AT as `reg`, so as not to overwrite the value being stored
|
|
// with the adjusted `base`.
|
|
CHECK_NE(reg, AT);
|
|
AdjustBaseAndOffset(base, offset, /* is_doubleword */ (type == kStoreDoubleword));
|
|
switch (type) {
|
|
case kStoreByte:
|
|
Sb(reg, base, offset);
|
|
break;
|
|
case kStoreHalfword:
|
|
Sh(reg, base, offset);
|
|
break;
|
|
case kStoreWord:
|
|
Sw(reg, base, offset);
|
|
break;
|
|
case kStoreDoubleword:
|
|
CHECK_NE(reg, base);
|
|
CHECK_NE(static_cast<Register>(reg + 1), base);
|
|
Sw(reg, base, offset);
|
|
null_checker();
|
|
Sw(static_cast<Register>(reg + 1), base, offset + kMipsWordSize);
|
|
break;
|
|
default:
|
|
LOG(FATAL) << "UNREACHABLE";
|
|
}
|
|
if (type != kStoreDoubleword) {
|
|
null_checker();
|
|
}
|
|
}
|
|
|
|
template <typename ImplicitNullChecker = NoImplicitNullChecker>
|
|
void StoreSToOffset(FRegister reg,
|
|
Register base,
|
|
int32_t offset,
|
|
ImplicitNullChecker null_checker = NoImplicitNullChecker()) {
|
|
AdjustBaseAndOffset(base, offset, /* is_doubleword */ false, /* is_float */ true);
|
|
Swc1(reg, base, offset);
|
|
null_checker();
|
|
}
|
|
|
|
template <typename ImplicitNullChecker = NoImplicitNullChecker>
|
|
void StoreDToOffset(FRegister reg,
|
|
Register base,
|
|
int32_t offset,
|
|
ImplicitNullChecker null_checker = NoImplicitNullChecker()) {
|
|
AdjustBaseAndOffset(base, offset, /* is_doubleword */ true, /* is_float */ true);
|
|
if (IsAligned<kMipsDoublewordSize>(offset)) {
|
|
Sdc1(reg, base, offset);
|
|
null_checker();
|
|
} else {
|
|
if (Is32BitFPU()) {
|
|
Swc1(reg, base, offset);
|
|
null_checker();
|
|
Swc1(static_cast<FRegister>(reg + 1), base, offset + kMipsWordSize);
|
|
} else {
|
|
// 64-bit FPU.
|
|
Mfhc1(T8, reg);
|
|
Swc1(reg, base, offset);
|
|
null_checker();
|
|
Sw(T8, base, offset + kMipsWordSize);
|
|
}
|
|
}
|
|
}
|
|
|
|
template <typename ImplicitNullChecker = NoImplicitNullChecker>
|
|
void StoreQToOffset(FRegister reg,
|
|
Register base,
|
|
int32_t offset,
|
|
ImplicitNullChecker null_checker = NoImplicitNullChecker()) {
|
|
int element_size_shift = -1;
|
|
AdjustBaseOffsetAndElementSizeShift(base, offset, element_size_shift);
|
|
switch (element_size_shift) {
|
|
case TIMES_1: StB(static_cast<VectorRegister>(reg), base, offset); break;
|
|
case TIMES_2: StH(static_cast<VectorRegister>(reg), base, offset); break;
|
|
case TIMES_4: StW(static_cast<VectorRegister>(reg), base, offset); break;
|
|
case TIMES_8: StD(static_cast<VectorRegister>(reg), base, offset); break;
|
|
default:
|
|
LOG(FATAL) << "UNREACHABLE";
|
|
}
|
|
null_checker();
|
|
}
|
|
|
|
void LoadFromOffset(LoadOperandType type, Register reg, Register base, int32_t offset);
|
|
void LoadSFromOffset(FRegister reg, Register base, int32_t offset);
|
|
void LoadDFromOffset(FRegister reg, Register base, int32_t offset);
|
|
void LoadQFromOffset(FRegister reg, Register base, int32_t offset);
|
|
void StoreToOffset(StoreOperandType type, Register reg, Register base, int32_t offset);
|
|
void StoreSToOffset(FRegister reg, Register base, int32_t offset);
|
|
void StoreDToOffset(FRegister reg, Register base, int32_t offset);
|
|
void StoreQToOffset(FRegister reg, Register base, int32_t offset);
|
|
|
|
// Emit data (e.g. encoded instruction or immediate) to the instruction stream.
|
|
void Emit(uint32_t value);
|
|
|
|
// Push/pop composite routines.
|
|
void Push(Register rs);
|
|
void Pop(Register rd);
|
|
void PopAndReturn(Register rd, Register rt);
|
|
|
|
//
|
|
// Heap poisoning.
|
|
//
|
|
|
|
// Poison a heap reference contained in `src` and store it in `dst`.
|
|
void PoisonHeapReference(Register dst, Register src) {
|
|
// dst = -src.
|
|
Subu(dst, ZERO, src);
|
|
}
|
|
// Poison a heap reference contained in `reg`.
|
|
void PoisonHeapReference(Register reg) {
|
|
// reg = -reg.
|
|
PoisonHeapReference(reg, reg);
|
|
}
|
|
// Unpoison a heap reference contained in `reg`.
|
|
void UnpoisonHeapReference(Register reg) {
|
|
// reg = -reg.
|
|
Subu(reg, ZERO, reg);
|
|
}
|
|
// Poison a heap reference contained in `reg` if heap poisoning is enabled.
|
|
void MaybePoisonHeapReference(Register reg) {
|
|
if (kPoisonHeapReferences) {
|
|
PoisonHeapReference(reg);
|
|
}
|
|
}
|
|
// Unpoison a heap reference contained in `reg` if heap poisoning is enabled.
|
|
void MaybeUnpoisonHeapReference(Register reg) {
|
|
if (kPoisonHeapReferences) {
|
|
UnpoisonHeapReference(reg);
|
|
}
|
|
}
|
|
|
|
void Bind(Label* label) OVERRIDE {
|
|
Bind(down_cast<MipsLabel*>(label));
|
|
}
|
|
void Jump(Label* label ATTRIBUTE_UNUSED) OVERRIDE {
|
|
UNIMPLEMENTED(FATAL) << "Do not use Jump for MIPS";
|
|
}
|
|
|
|
// Don't warn about a different virtual Bind/Jump in the base class.
|
|
using JNIBase::Bind;
|
|
using JNIBase::Jump;
|
|
|
|
// Create a new label that can be used with Jump/Bind calls.
|
|
std::unique_ptr<JNIMacroLabel> CreateLabel() OVERRIDE {
|
|
LOG(FATAL) << "Not implemented on MIPS32";
|
|
UNREACHABLE();
|
|
}
|
|
// Emit an unconditional jump to the label.
|
|
void Jump(JNIMacroLabel* label ATTRIBUTE_UNUSED) OVERRIDE {
|
|
LOG(FATAL) << "Not implemented on MIPS32";
|
|
UNREACHABLE();
|
|
}
|
|
// Emit a conditional jump to the label by applying a unary condition test to the register.
|
|
void Jump(JNIMacroLabel* label ATTRIBUTE_UNUSED,
|
|
JNIMacroUnaryCondition cond ATTRIBUTE_UNUSED,
|
|
ManagedRegister test ATTRIBUTE_UNUSED) OVERRIDE {
|
|
LOG(FATAL) << "Not implemented on MIPS32";
|
|
UNREACHABLE();
|
|
}
|
|
|
|
// Code at this offset will serve as the target for the Jump call.
|
|
void Bind(JNIMacroLabel* label ATTRIBUTE_UNUSED) OVERRIDE {
|
|
LOG(FATAL) << "Not implemented on MIPS32";
|
|
UNREACHABLE();
|
|
}
|
|
|
|
// Create a new literal with a given value.
|
|
// NOTE: Force the template parameter to be explicitly specified.
|
|
template <typename T>
|
|
Literal* NewLiteral(typename Identity<T>::type value) {
|
|
static_assert(std::is_integral<T>::value, "T must be an integral type.");
|
|
return NewLiteral(sizeof(value), reinterpret_cast<const uint8_t*>(&value));
|
|
}
|
|
|
|
// Load label address using the base register (for R2 only) or using PC-relative loads
|
|
// (for R6 only; base_reg must be ZERO). To be used with data labels in the literal /
|
|
// jump table area only and not with regular code labels.
|
|
void LoadLabelAddress(Register dest_reg, Register base_reg, MipsLabel* label);
|
|
|
|
// Create a new literal with the given data.
|
|
Literal* NewLiteral(size_t size, const uint8_t* data);
|
|
|
|
// Load literal using the base register (for R2 only) or using PC-relative loads
|
|
// (for R6 only; base_reg must be ZERO).
|
|
void LoadLiteral(Register dest_reg, Register base_reg, Literal* literal);
|
|
|
|
// Create a jump table for the given labels that will be emitted when finalizing.
|
|
// When the table is emitted, offsets will be relative to the location of the table.
|
|
// The table location is determined by the location of its label (the label precedes
|
|
// the table data) and should be loaded using LoadLabelAddress().
|
|
JumpTable* CreateJumpTable(std::vector<MipsLabel*>&& labels);
|
|
|
|
//
|
|
// Overridden common assembler high-level functionality.
|
|
//
|
|
|
|
// Emit code that will create an activation on the stack.
|
|
void BuildFrame(size_t frame_size,
|
|
ManagedRegister method_reg,
|
|
ArrayRef<const ManagedRegister> callee_save_regs,
|
|
const ManagedRegisterEntrySpills& entry_spills) OVERRIDE;
|
|
|
|
// Emit code that will remove an activation from the stack.
|
|
void RemoveFrame(size_t frame_size, ArrayRef<const ManagedRegister> callee_save_regs)
|
|
OVERRIDE;
|
|
|
|
void IncreaseFrameSize(size_t adjust) OVERRIDE;
|
|
void DecreaseFrameSize(size_t adjust) OVERRIDE;
|
|
|
|
// Store routines.
|
|
void Store(FrameOffset offs, ManagedRegister msrc, size_t size) OVERRIDE;
|
|
void StoreRef(FrameOffset dest, ManagedRegister msrc) OVERRIDE;
|
|
void StoreRawPtr(FrameOffset dest, ManagedRegister msrc) OVERRIDE;
|
|
|
|
void StoreImmediateToFrame(FrameOffset dest, uint32_t imm, ManagedRegister mscratch) OVERRIDE;
|
|
|
|
void StoreStackOffsetToThread(ThreadOffset32 thr_offs,
|
|
FrameOffset fr_offs,
|
|
ManagedRegister mscratch) OVERRIDE;
|
|
|
|
void StoreStackPointerToThread(ThreadOffset32 thr_offs) OVERRIDE;
|
|
|
|
void StoreSpanning(FrameOffset dest,
|
|
ManagedRegister msrc,
|
|
FrameOffset in_off,
|
|
ManagedRegister mscratch) OVERRIDE;
|
|
|
|
// Load routines.
|
|
void Load(ManagedRegister mdest, FrameOffset src, size_t size) OVERRIDE;
|
|
|
|
void LoadFromThread(ManagedRegister mdest, ThreadOffset32 src, size_t size) OVERRIDE;
|
|
|
|
void LoadRef(ManagedRegister dest, FrameOffset src) OVERRIDE;
|
|
|
|
void LoadRef(ManagedRegister mdest,
|
|
ManagedRegister base,
|
|
MemberOffset offs,
|
|
bool unpoison_reference) OVERRIDE;
|
|
|
|
void LoadRawPtr(ManagedRegister mdest, ManagedRegister base, Offset offs) OVERRIDE;
|
|
|
|
void LoadRawPtrFromThread(ManagedRegister mdest, ThreadOffset32 offs) OVERRIDE;
|
|
|
|
// Copying routines.
|
|
void Move(ManagedRegister mdest, ManagedRegister msrc, size_t size) OVERRIDE;
|
|
|
|
void CopyRawPtrFromThread(FrameOffset fr_offs,
|
|
ThreadOffset32 thr_offs,
|
|
ManagedRegister mscratch) OVERRIDE;
|
|
|
|
void CopyRawPtrToThread(ThreadOffset32 thr_offs,
|
|
FrameOffset fr_offs,
|
|
ManagedRegister mscratch) OVERRIDE;
|
|
|
|
void CopyRef(FrameOffset dest, FrameOffset src, ManagedRegister mscratch) OVERRIDE;
|
|
|
|
void Copy(FrameOffset dest, FrameOffset src, ManagedRegister mscratch, size_t size) OVERRIDE;
|
|
|
|
void Copy(FrameOffset dest,
|
|
ManagedRegister src_base,
|
|
Offset src_offset,
|
|
ManagedRegister mscratch,
|
|
size_t size) OVERRIDE;
|
|
|
|
void Copy(ManagedRegister dest_base,
|
|
Offset dest_offset,
|
|
FrameOffset src,
|
|
ManagedRegister mscratch,
|
|
size_t size) OVERRIDE;
|
|
|
|
void Copy(FrameOffset dest,
|
|
FrameOffset src_base,
|
|
Offset src_offset,
|
|
ManagedRegister mscratch,
|
|
size_t size) OVERRIDE;
|
|
|
|
void Copy(ManagedRegister dest,
|
|
Offset dest_offset,
|
|
ManagedRegister src,
|
|
Offset src_offset,
|
|
ManagedRegister mscratch,
|
|
size_t size) OVERRIDE;
|
|
|
|
void Copy(FrameOffset dest,
|
|
Offset dest_offset,
|
|
FrameOffset src,
|
|
Offset src_offset,
|
|
ManagedRegister mscratch,
|
|
size_t size) OVERRIDE;
|
|
|
|
void MemoryBarrier(ManagedRegister) OVERRIDE;
|
|
|
|
// Sign extension.
|
|
void SignExtend(ManagedRegister mreg, size_t size) OVERRIDE;
|
|
|
|
// Zero extension.
|
|
void ZeroExtend(ManagedRegister mreg, size_t size) OVERRIDE;
|
|
|
|
// Exploit fast access in managed code to Thread::Current().
|
|
void GetCurrentThread(ManagedRegister tr) OVERRIDE;
|
|
void GetCurrentThread(FrameOffset dest_offset, ManagedRegister mscratch) OVERRIDE;
|
|
|
|
// Set up out_reg to hold a Object** into the handle scope, or to be null if the
|
|
// value is null and null_allowed. in_reg holds a possibly stale reference
|
|
// that can be used to avoid loading the handle scope entry to see if the value is
|
|
// null.
|
|
void CreateHandleScopeEntry(ManagedRegister out_reg,
|
|
FrameOffset handlescope_offset,
|
|
ManagedRegister in_reg,
|
|
bool null_allowed) OVERRIDE;
|
|
|
|
// Set up out_off to hold a Object** into the handle scope, or to be null if the
|
|
// value is null and null_allowed.
|
|
void CreateHandleScopeEntry(FrameOffset out_off,
|
|
FrameOffset handlescope_offset,
|
|
ManagedRegister mscratch,
|
|
bool null_allowed) OVERRIDE;
|
|
|
|
// src holds a handle scope entry (Object**) load this into dst.
|
|
void LoadReferenceFromHandleScope(ManagedRegister dst, ManagedRegister src) OVERRIDE;
|
|
|
|
// Heap::VerifyObject on src. In some cases (such as a reference to this) we
|
|
// know that src may not be null.
|
|
void VerifyObject(ManagedRegister src, bool could_be_null) OVERRIDE;
|
|
void VerifyObject(FrameOffset src, bool could_be_null) OVERRIDE;
|
|
|
|
// Call to address held at [base+offset].
|
|
void Call(ManagedRegister base, Offset offset, ManagedRegister mscratch) OVERRIDE;
|
|
void Call(FrameOffset base, Offset offset, ManagedRegister mscratch) OVERRIDE;
|
|
void CallFromThread(ThreadOffset32 offset, ManagedRegister mscratch) OVERRIDE;
|
|
|
|
// Generate code to check if Thread::Current()->exception_ is non-null
|
|
// and branch to a ExceptionSlowPath if it is.
|
|
void ExceptionPoll(ManagedRegister mscratch, size_t stack_adjust) OVERRIDE;
|
|
|
|
// Emit slow paths queued during assembly and promote short branches to long if needed.
|
|
void FinalizeCode() OVERRIDE;
|
|
|
|
// Emit branches and finalize all instructions.
|
|
void FinalizeInstructions(const MemoryRegion& region);
|
|
|
|
// Returns the (always-)current location of a label (can be used in class CodeGeneratorMIPS,
|
|
// must be used instead of MipsLabel::GetPosition()).
|
|
uint32_t GetLabelLocation(const MipsLabel* label) const;
|
|
|
|
// Get the final position of a label after local fixup based on the old position
|
|
// recorded before FinalizeCode().
|
|
uint32_t GetAdjustedPosition(uint32_t old_position);
|
|
|
|
// R2 doesn't have PC-relative addressing, which we need to access literals. We simulate it by
|
|
// reading the PC value into a general-purpose register with the NAL instruction and then loading
|
|
// literals through this base register. The code generator calls this method (at most once per
|
|
// method being compiled) to bind a label to the location for which the PC value is acquired.
|
|
// The assembler then computes literal offsets relative to this label.
|
|
void BindPcRelBaseLabel();
|
|
|
|
// Returns the location of the label bound with BindPcRelBaseLabel().
|
|
uint32_t GetPcRelBaseLabelLocation() const;
|
|
|
|
// Note that PC-relative literal loads are handled as pseudo branches because they need very
|
|
// similar relocation and may similarly expand in size to accomodate for larger offsets relative
|
|
// to PC.
|
|
enum BranchCondition {
|
|
kCondLT,
|
|
kCondGE,
|
|
kCondLE,
|
|
kCondGT,
|
|
kCondLTZ,
|
|
kCondGEZ,
|
|
kCondLEZ,
|
|
kCondGTZ,
|
|
kCondEQ,
|
|
kCondNE,
|
|
kCondEQZ,
|
|
kCondNEZ,
|
|
kCondLTU,
|
|
kCondGEU,
|
|
kCondF, // Floating-point predicate false.
|
|
kCondT, // Floating-point predicate true.
|
|
kUncond,
|
|
};
|
|
friend std::ostream& operator<<(std::ostream& os, const BranchCondition& rhs);
|
|
|
|
// Enables or disables instruction reordering (IOW, automatic filling of delay slots)
|
|
// similarly to ".set reorder" / ".set noreorder" in traditional MIPS assembly.
|
|
// Returns the last state, which may be useful for temporary enabling/disabling of
|
|
// reordering.
|
|
bool SetReorder(bool enable);
|
|
|
|
private:
|
|
// Description of the last instruction in terms of input and output registers.
|
|
// Used to make the decision of moving the instruction into a delay slot.
|
|
struct DelaySlot {
|
|
DelaySlot();
|
|
// Encoded instruction that may be used to fill the delay slot or 0
|
|
// (0 conveniently represents NOP).
|
|
uint32_t instruction_;
|
|
// Mask of output GPRs for the instruction.
|
|
uint32_t gpr_outs_mask_;
|
|
// Mask of input GPRs for the instruction.
|
|
uint32_t gpr_ins_mask_;
|
|
// Mask of output FPRs for the instruction.
|
|
uint32_t fpr_outs_mask_;
|
|
// Mask of input FPRs for the instruction.
|
|
uint32_t fpr_ins_mask_;
|
|
// Mask of output FPU condition code flags for the instruction.
|
|
uint32_t cc_outs_mask_;
|
|
// Mask of input FPU condition code flags for the instruction.
|
|
uint32_t cc_ins_mask_;
|
|
// Branches never operate on the LO and HI registers, hence there's
|
|
// no mask for LO and HI.
|
|
};
|
|
|
|
// Delay slot finite state machine's (DS FSM's) state. The FSM state is updated
|
|
// upon every new instruction and label generated. The FSM detects instructions
|
|
// suitable for delay slots and immediately preceded with labels. These are target
|
|
// instructions for branches. If an unconditional R2 branch does not get its delay
|
|
// slot filled with the immediately preceding instruction, it may instead get the
|
|
// slot filled with the target instruction (the branch will need its offset
|
|
// incremented past the target instruction). We call this "absorption". The FSM
|
|
// records PCs of the target instructions suitable for this optimization.
|
|
enum DsFsmState {
|
|
kExpectingLabel,
|
|
kExpectingInstruction,
|
|
kExpectingCommit
|
|
};
|
|
friend std::ostream& operator<<(std::ostream& os, const DsFsmState& rhs);
|
|
|
|
class Branch {
|
|
public:
|
|
enum Type {
|
|
// R2 short branches.
|
|
kUncondBranch,
|
|
kCondBranch,
|
|
kCall,
|
|
// R2 near label.
|
|
kLabel,
|
|
// R2 near literal.
|
|
kLiteral,
|
|
// R2 long branches.
|
|
kLongUncondBranch,
|
|
kLongCondBranch,
|
|
kLongCall,
|
|
// R2 far label.
|
|
kFarLabel,
|
|
// R2 far literal.
|
|
kFarLiteral,
|
|
// R6 short branches.
|
|
kR6UncondBranch,
|
|
kR6CondBranch,
|
|
kR6Call,
|
|
// R6 near label.
|
|
kR6Label,
|
|
// R6 near literal.
|
|
kR6Literal,
|
|
// R6 long branches.
|
|
kR6LongUncondBranch,
|
|
kR6LongCondBranch,
|
|
kR6LongCall,
|
|
// R6 far label.
|
|
kR6FarLabel,
|
|
// R6 far literal.
|
|
kR6FarLiteral,
|
|
};
|
|
// Bit sizes of offsets defined as enums to minimize chance of typos.
|
|
enum OffsetBits {
|
|
kOffset16 = 16,
|
|
kOffset18 = 18,
|
|
kOffset21 = 21,
|
|
kOffset23 = 23,
|
|
kOffset28 = 28,
|
|
kOffset32 = 32,
|
|
};
|
|
|
|
static constexpr uint32_t kUnresolved = 0xffffffff; // Unresolved target_
|
|
static constexpr int32_t kMaxBranchLength = 32;
|
|
static constexpr int32_t kMaxBranchSize = kMaxBranchLength * sizeof(uint32_t);
|
|
// The following two instruction encodings can never legally occur in branch delay
|
|
// slots and are used as markers.
|
|
//
|
|
// kUnfilledDelaySlot means that the branch may use either the preceding or the target
|
|
// instruction to fill its delay slot (the latter is only possible with unconditional
|
|
// R2 branches and is termed here as "absorption").
|
|
static constexpr uint32_t kUnfilledDelaySlot = 0x10000000; // beq zero, zero, 0.
|
|
// kUnfillableDelaySlot means that the branch cannot use an instruction (other than NOP)
|
|
// to fill its delay slot. This is only used for unconditional R2 branches to prevent
|
|
// absorption of the target instruction when reordering is disabled.
|
|
static constexpr uint32_t kUnfillableDelaySlot = 0x13FF0000; // beq ra, ra, 0.
|
|
|
|
struct BranchInfo {
|
|
// Branch length as a number of 4-byte-long instructions.
|
|
uint32_t length;
|
|
// Ordinal number (0-based) of the first (or the only) instruction that contains the branch's
|
|
// PC-relative offset (or its most significant 16-bit half, which goes first).
|
|
uint32_t instr_offset;
|
|
// Different MIPS instructions with PC-relative offsets apply said offsets to slightly
|
|
// different origins, e.g. to PC or PC+4. Encode the origin distance (as a number of 4-byte
|
|
// instructions) from the instruction containing the offset.
|
|
uint32_t pc_org;
|
|
// How large (in bits) a PC-relative offset can be for a given type of branch (kR6CondBranch
|
|
// is an exception: use kOffset23 for beqzc/bnezc).
|
|
OffsetBits offset_size;
|
|
// Some MIPS instructions with PC-relative offsets shift the offset by 2. Encode the shift
|
|
// count.
|
|
int offset_shift;
|
|
};
|
|
static const BranchInfo branch_info_[/* Type */];
|
|
|
|
// Unconditional branch or call.
|
|
Branch(bool is_r6, uint32_t location, uint32_t target, bool is_call);
|
|
// Conditional branch.
|
|
Branch(bool is_r6,
|
|
uint32_t location,
|
|
uint32_t target,
|
|
BranchCondition condition,
|
|
Register lhs_reg,
|
|
Register rhs_reg);
|
|
// Label address (in literal area) or literal.
|
|
Branch(bool is_r6,
|
|
uint32_t location,
|
|
Register dest_reg,
|
|
Register base_reg,
|
|
Type label_or_literal_type);
|
|
|
|
// Some conditional branches with lhs = rhs are effectively NOPs, while some
|
|
// others are effectively unconditional. MIPSR6 conditional branches require lhs != rhs.
|
|
// So, we need a way to identify such branches in order to emit no instructions for them
|
|
// or change them to unconditional.
|
|
static bool IsNop(BranchCondition condition, Register lhs, Register rhs);
|
|
static bool IsUncond(BranchCondition condition, Register lhs, Register rhs);
|
|
|
|
static BranchCondition OppositeCondition(BranchCondition cond);
|
|
|
|
Type GetType() const;
|
|
BranchCondition GetCondition() const;
|
|
Register GetLeftRegister() const;
|
|
Register GetRightRegister() const;
|
|
uint32_t GetTarget() const;
|
|
uint32_t GetLocation() const;
|
|
uint32_t GetOldLocation() const;
|
|
uint32_t GetPrecedingInstructionLength(Type type) const;
|
|
uint32_t GetPrecedingInstructionSize(Type type) const;
|
|
uint32_t GetLength() const;
|
|
uint32_t GetOldLength() const;
|
|
uint32_t GetSize() const;
|
|
uint32_t GetOldSize() const;
|
|
uint32_t GetEndLocation() const;
|
|
uint32_t GetOldEndLocation() const;
|
|
bool IsLong() const;
|
|
bool IsResolved() const;
|
|
|
|
// Various helpers for branch delay slot management.
|
|
bool CanHaveDelayedInstruction(const DelaySlot& delay_slot) const;
|
|
void SetDelayedInstruction(uint32_t instruction);
|
|
uint32_t GetDelayedInstruction() const;
|
|
void DecrementLocations();
|
|
|
|
// Returns the bit size of the signed offset that the branch instruction can handle.
|
|
OffsetBits GetOffsetSize() const;
|
|
|
|
// Calculates the distance between two byte locations in the assembler buffer and
|
|
// returns the number of bits needed to represent the distance as a signed integer.
|
|
//
|
|
// Branch instructions have signed offsets of 16, 19 (addiupc), 21 (beqzc/bnezc),
|
|
// and 26 (bc) bits, which are additionally shifted left 2 positions at run time.
|
|
//
|
|
// Composite branches (made of several instructions) with longer reach have 32-bit
|
|
// offsets encoded as 2 16-bit "halves" in two instructions (high half goes first).
|
|
// The composite branches cover the range of PC + +/-2GB on MIPS32 CPUs. However,
|
|
// the range is not end-to-end on MIPS64 (unless addresses are forced to zero- or
|
|
// sign-extend from 32 to 64 bits by the appropriate CPU configuration).
|
|
// Consider the following implementation of a long unconditional branch, for
|
|
// example:
|
|
//
|
|
// auipc at, offset_31_16 // at = pc + sign_extend(offset_31_16) << 16
|
|
// jic at, offset_15_0 // pc = at + sign_extend(offset_15_0)
|
|
//
|
|
// Both of the above instructions take 16-bit signed offsets as immediate operands.
|
|
// When bit 15 of offset_15_0 is 1, it effectively causes subtraction of 0x10000
|
|
// due to sign extension. This must be compensated for by incrementing offset_31_16
|
|
// by 1. offset_31_16 can only be incremented by 1 if it's not 0x7FFF. If it is
|
|
// 0x7FFF, adding 1 will overflow the positive offset into the negative range.
|
|
// Therefore, the long branch range is something like from PC - 0x80000000 to
|
|
// PC + 0x7FFF7FFF, IOW, shorter by 32KB on one side.
|
|
//
|
|
// The returned values are therefore: 18, 21, 23, 28 and 32. There's also a special
|
|
// case with the addiu instruction and a 16 bit offset.
|
|
static OffsetBits GetOffsetSizeNeeded(uint32_t location, uint32_t target);
|
|
|
|
// Resolve a branch when the target is known.
|
|
void Resolve(uint32_t target);
|
|
|
|
// Relocate a branch by a given delta if needed due to expansion of this or another
|
|
// branch at a given location by this delta (just changes location_ and target_).
|
|
void Relocate(uint32_t expand_location, uint32_t delta);
|
|
|
|
// If the branch is short, changes its type to long.
|
|
void PromoteToLong();
|
|
|
|
// If necessary, updates the type by promoting a short branch to a long branch
|
|
// based on the branch location and target. Returns the amount (in bytes) by
|
|
// which the branch size has increased.
|
|
// max_short_distance caps the maximum distance between location_ and target_
|
|
// that is allowed for short branches. This is for debugging/testing purposes.
|
|
// max_short_distance = 0 forces all short branches to become long.
|
|
// Use the implicit default argument when not debugging/testing.
|
|
uint32_t PromoteIfNeeded(uint32_t location,
|
|
uint32_t max_short_distance = std::numeric_limits<uint32_t>::max());
|
|
|
|
// Returns the location of the instruction(s) containing the offset.
|
|
uint32_t GetOffsetLocation() const;
|
|
|
|
// Calculates and returns the offset ready for encoding in the branch instruction(s).
|
|
uint32_t GetOffset(uint32_t location) const;
|
|
|
|
private:
|
|
// Completes branch construction by determining and recording its type.
|
|
void InitializeType(Type initial_type, bool is_r6);
|
|
// Helper for the above.
|
|
void InitShortOrLong(OffsetBits ofs_size, Type short_type, Type long_type);
|
|
|
|
uint32_t old_location_; // Offset into assembler buffer in bytes.
|
|
uint32_t location_; // Offset into assembler buffer in bytes.
|
|
uint32_t target_; // Offset into assembler buffer in bytes.
|
|
|
|
uint32_t lhs_reg_; // Left-hand side register in conditional branches or
|
|
// FPU condition code. Destination register in literals.
|
|
uint32_t rhs_reg_; // Right-hand side register in conditional branches.
|
|
// Base register in literals (ZERO on R6).
|
|
BranchCondition condition_; // Condition for conditional branches.
|
|
|
|
Type type_; // Current type of the branch.
|
|
Type old_type_; // Initial type of the branch.
|
|
|
|
uint32_t delayed_instruction_; // Encoded instruction for the delay slot or
|
|
// kUnfilledDelaySlot if none but fillable or
|
|
// kUnfillableDelaySlot if none and unfillable
|
|
// (the latter is only used for unconditional R2
|
|
// branches).
|
|
};
|
|
friend std::ostream& operator<<(std::ostream& os, const Branch::Type& rhs);
|
|
friend std::ostream& operator<<(std::ostream& os, const Branch::OffsetBits& rhs);
|
|
|
|
uint32_t EmitR(int opcode, Register rs, Register rt, Register rd, int shamt, int funct);
|
|
uint32_t EmitI(int opcode, Register rs, Register rt, uint16_t imm);
|
|
uint32_t EmitI21(int opcode, Register rs, uint32_t imm21);
|
|
uint32_t EmitI26(int opcode, uint32_t imm26);
|
|
uint32_t EmitFR(int opcode, int fmt, FRegister ft, FRegister fs, FRegister fd, int funct);
|
|
uint32_t EmitFI(int opcode, int fmt, FRegister rt, uint16_t imm);
|
|
void EmitBcondR2(BranchCondition cond, Register rs, Register rt, uint16_t imm16);
|
|
void EmitBcondR6(BranchCondition cond, Register rs, Register rt, uint32_t imm16_21);
|
|
uint32_t EmitMsa3R(int operation,
|
|
int df,
|
|
VectorRegister wt,
|
|
VectorRegister ws,
|
|
VectorRegister wd,
|
|
int minor_opcode);
|
|
uint32_t EmitMsaBIT(int operation,
|
|
int df_m,
|
|
VectorRegister ws,
|
|
VectorRegister wd,
|
|
int minor_opcode);
|
|
uint32_t EmitMsaELM(int operation,
|
|
int df_n,
|
|
VectorRegister ws,
|
|
VectorRegister wd,
|
|
int minor_opcode);
|
|
uint32_t EmitMsaMI10(int s10, Register rs, VectorRegister wd, int minor_opcode, int df);
|
|
uint32_t EmitMsaI10(int operation, int df, int i10, VectorRegister wd, int minor_opcode);
|
|
uint32_t EmitMsa2R(int operation, int df, VectorRegister ws, VectorRegister wd, int minor_opcode);
|
|
uint32_t EmitMsa2RF(int operation,
|
|
int df,
|
|
VectorRegister ws,
|
|
VectorRegister wd,
|
|
int minor_opcode);
|
|
|
|
void Buncond(MipsLabel* label);
|
|
void Bcond(MipsLabel* label, BranchCondition condition, Register lhs, Register rhs = ZERO);
|
|
void Call(MipsLabel* label);
|
|
void FinalizeLabeledBranch(MipsLabel* label);
|
|
|
|
// Various helpers for branch delay slot management.
|
|
void DsFsmInstr(uint32_t instruction,
|
|
uint32_t gpr_outs_mask,
|
|
uint32_t gpr_ins_mask,
|
|
uint32_t fpr_outs_mask,
|
|
uint32_t fpr_ins_mask,
|
|
uint32_t cc_outs_mask,
|
|
uint32_t cc_ins_mask);
|
|
void DsFsmInstrNop(uint32_t instruction);
|
|
void DsFsmInstrRrr(uint32_t instruction, Register out, Register in1, Register in2);
|
|
void DsFsmInstrRrrr(uint32_t instruction, Register in1_out, Register in2, Register in3);
|
|
void DsFsmInstrFff(uint32_t instruction, FRegister out, FRegister in1, FRegister in2);
|
|
void DsFsmInstrFfff(uint32_t instruction, FRegister in1_out, FRegister in2, FRegister in3);
|
|
void DsFsmInstrFffr(uint32_t instruction, FRegister in1_out, FRegister in2, Register in3);
|
|
void DsFsmInstrRf(uint32_t instruction, Register out, FRegister in);
|
|
void DsFsmInstrFr(uint32_t instruction, FRegister out, Register in);
|
|
void DsFsmInstrFR(uint32_t instruction, FRegister in1, Register in2);
|
|
void DsFsmInstrCff(uint32_t instruction, int cc_out, FRegister in1, FRegister in2);
|
|
void DsFsmInstrRrrc(uint32_t instruction, Register in1_out, Register in2, int cc_in);
|
|
void DsFsmInstrFffc(uint32_t instruction, FRegister in1_out, FRegister in2, int cc_in);
|
|
void DsFsmLabel();
|
|
void DsFsmCommitLabel();
|
|
void DsFsmDropLabel();
|
|
void MoveInstructionToDelaySlot(Branch& branch);
|
|
bool CanExchangeWithSlt(Register rs, Register rt) const;
|
|
void ExchangeWithSlt(const DelaySlot& forwarded_slot);
|
|
void GenerateSltForCondBranch(bool unsigned_slt, Register rs, Register rt);
|
|
|
|
Branch* GetBranch(uint32_t branch_id);
|
|
const Branch* GetBranch(uint32_t branch_id) const;
|
|
uint32_t GetBranchLocationOrPcRelBase(const MipsAssembler::Branch* branch) const;
|
|
uint32_t GetBranchOrPcRelBaseForEncoding(const MipsAssembler::Branch* branch) const;
|
|
|
|
void EmitLiterals();
|
|
void ReserveJumpTableSpace();
|
|
void EmitJumpTables();
|
|
void PromoteBranches();
|
|
void EmitBranch(Branch* branch);
|
|
void EmitBranches();
|
|
void PatchCFI(size_t number_of_delayed_adjust_pcs);
|
|
|
|
// Emits exception block.
|
|
void EmitExceptionPoll(MipsExceptionSlowPath* exception);
|
|
|
|
bool HasMsa() const {
|
|
return has_msa_;
|
|
}
|
|
|
|
bool IsR6() const {
|
|
if (isa_features_ != nullptr) {
|
|
return isa_features_->IsR6();
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
bool Is32BitFPU() const {
|
|
if (isa_features_ != nullptr) {
|
|
return isa_features_->Is32BitFloatingPoint();
|
|
} else {
|
|
return true;
|
|
}
|
|
}
|
|
|
|
// List of exception blocks to generate at the end of the code cache.
|
|
std::vector<MipsExceptionSlowPath> exception_blocks_;
|
|
|
|
std::vector<Branch> branches_;
|
|
|
|
// Whether appending instructions at the end of the buffer or overwriting the existing ones.
|
|
bool overwriting_;
|
|
// The current overwrite location.
|
|
uint32_t overwrite_location_;
|
|
|
|
// Whether instruction reordering (IOW, automatic filling of delay slots) is enabled.
|
|
bool reordering_;
|
|
// Information about the last instruction that may be used to fill a branch delay slot.
|
|
DelaySlot delay_slot_;
|
|
// Delay slot FSM state.
|
|
DsFsmState ds_fsm_state_;
|
|
// PC of the current labeled target instruction.
|
|
uint32_t ds_fsm_target_pc_;
|
|
// PCs of labeled target instructions.
|
|
std::vector<uint32_t> ds_fsm_target_pcs_;
|
|
|
|
// Use std::deque<> for literal labels to allow insertions at the end
|
|
// without invalidating pointers and references to existing elements.
|
|
ArenaDeque<Literal> literals_;
|
|
|
|
// Jump table list.
|
|
ArenaDeque<JumpTable> jump_tables_;
|
|
|
|
// There's no PC-relative addressing on MIPS32R2. So, in order to access literals relative to PC
|
|
// we get PC using the NAL instruction. This label marks the position within the assembler buffer
|
|
// that PC (from NAL) points to.
|
|
MipsLabel pc_rel_base_label_;
|
|
|
|
// Data for GetAdjustedPosition(), see the description there.
|
|
uint32_t last_position_adjustment_;
|
|
uint32_t last_old_position_;
|
|
uint32_t last_branch_id_;
|
|
|
|
const bool has_msa_;
|
|
|
|
const MipsInstructionSetFeatures* isa_features_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(MipsAssembler);
|
|
};
|
|
|
|
} // namespace mips
|
|
} // namespace art
|
|
|
|
#endif // ART_COMPILER_UTILS_MIPS_ASSEMBLER_MIPS_H_
|