2670 lines
110 KiB
C++
2670 lines
110 KiB
C++
/*
|
|
* Copyright (C) 2012 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "art_method-inl.h"
|
|
#include "base/callee_save_type.h"
|
|
#include "base/enums.h"
|
|
#include "callee_save_frame.h"
|
|
#include "common_throws.h"
|
|
#include "debugger.h"
|
|
#include "dex_file-inl.h"
|
|
#include "dex_instruction-inl.h"
|
|
#include "entrypoints/entrypoint_utils-inl.h"
|
|
#include "entrypoints/runtime_asm_entrypoints.h"
|
|
#include "gc/accounting/card_table-inl.h"
|
|
#include "imt_conflict_table.h"
|
|
#include "imtable-inl.h"
|
|
#include "interpreter/interpreter.h"
|
|
#include "instrumentation.h"
|
|
#include "linear_alloc.h"
|
|
#include "method_bss_mapping.h"
|
|
#include "method_handles.h"
|
|
#include "method_reference.h"
|
|
#include "mirror/class-inl.h"
|
|
#include "mirror/dex_cache-inl.h"
|
|
#include "mirror/method.h"
|
|
#include "mirror/method_handle_impl.h"
|
|
#include "mirror/object-inl.h"
|
|
#include "mirror/object_array-inl.h"
|
|
#include "oat_file.h"
|
|
#include "oat_quick_method_header.h"
|
|
#include "quick_exception_handler.h"
|
|
#include "runtime.h"
|
|
#include "scoped_thread_state_change-inl.h"
|
|
#include "stack.h"
|
|
#include "thread-inl.h"
|
|
#include "well_known_classes.h"
|
|
|
|
namespace art {
|
|
|
|
// Visits the arguments as saved to the stack by a CalleeSaveType::kRefAndArgs callee save frame.
|
|
class QuickArgumentVisitor {
|
|
// Number of bytes for each out register in the caller method's frame.
|
|
static constexpr size_t kBytesStackArgLocation = 4;
|
|
// Frame size in bytes of a callee-save frame for RefsAndArgs.
|
|
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_FrameSize =
|
|
GetCalleeSaveFrameSize(kRuntimeISA, CalleeSaveType::kSaveRefsAndArgs);
|
|
#if defined(__arm__)
|
|
// The callee save frame is pointed to by SP.
|
|
// | argN | |
|
|
// | ... | |
|
|
// | arg4 | |
|
|
// | arg3 spill | | Caller's frame
|
|
// | arg2 spill | |
|
|
// | arg1 spill | |
|
|
// | Method* | ---
|
|
// | LR |
|
|
// | ... | 4x6 bytes callee saves
|
|
// | R3 |
|
|
// | R2 |
|
|
// | R1 |
|
|
// | S15 |
|
|
// | : |
|
|
// | S0 |
|
|
// | | 4x2 bytes padding
|
|
// | Method* | <- sp
|
|
static constexpr bool kSplitPairAcrossRegisterAndStack = kArm32QuickCodeUseSoftFloat;
|
|
static constexpr bool kAlignPairRegister = !kArm32QuickCodeUseSoftFloat;
|
|
static constexpr bool kQuickSoftFloatAbi = kArm32QuickCodeUseSoftFloat;
|
|
static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = !kArm32QuickCodeUseSoftFloat;
|
|
static constexpr bool kQuickSkipOddFpRegisters = false;
|
|
static constexpr size_t kNumQuickGprArgs = 3;
|
|
static constexpr size_t kNumQuickFprArgs = kArm32QuickCodeUseSoftFloat ? 0 : 16;
|
|
static constexpr bool kGprFprLockstep = false;
|
|
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
|
|
arm::ArmCalleeSaveFpr1Offset(CalleeSaveType::kSaveRefsAndArgs); // Offset of first FPR arg.
|
|
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
|
|
arm::ArmCalleeSaveGpr1Offset(CalleeSaveType::kSaveRefsAndArgs); // Offset of first GPR arg.
|
|
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
|
|
arm::ArmCalleeSaveLrOffset(CalleeSaveType::kSaveRefsAndArgs); // Offset of return address.
|
|
static size_t GprIndexToGprOffset(uint32_t gpr_index) {
|
|
return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
|
|
}
|
|
#elif defined(__aarch64__)
|
|
// The callee save frame is pointed to by SP.
|
|
// | argN | |
|
|
// | ... | |
|
|
// | arg4 | |
|
|
// | arg3 spill | | Caller's frame
|
|
// | arg2 spill | |
|
|
// | arg1 spill | |
|
|
// | Method* | ---
|
|
// | LR |
|
|
// | X29 |
|
|
// | : |
|
|
// | X20 |
|
|
// | X7 |
|
|
// | : |
|
|
// | X1 |
|
|
// | D7 |
|
|
// | : |
|
|
// | D0 |
|
|
// | | padding
|
|
// | Method* | <- sp
|
|
static constexpr bool kSplitPairAcrossRegisterAndStack = false;
|
|
static constexpr bool kAlignPairRegister = false;
|
|
static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI.
|
|
static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
|
|
static constexpr bool kQuickSkipOddFpRegisters = false;
|
|
static constexpr size_t kNumQuickGprArgs = 7; // 7 arguments passed in GPRs.
|
|
static constexpr size_t kNumQuickFprArgs = 8; // 8 arguments passed in FPRs.
|
|
static constexpr bool kGprFprLockstep = false;
|
|
// Offset of first FPR arg.
|
|
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset =
|
|
arm64::Arm64CalleeSaveFpr1Offset(CalleeSaveType::kSaveRefsAndArgs);
|
|
// Offset of first GPR arg.
|
|
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset =
|
|
arm64::Arm64CalleeSaveGpr1Offset(CalleeSaveType::kSaveRefsAndArgs);
|
|
// Offset of return address.
|
|
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset =
|
|
arm64::Arm64CalleeSaveLrOffset(CalleeSaveType::kSaveRefsAndArgs);
|
|
static size_t GprIndexToGprOffset(uint32_t gpr_index) {
|
|
return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
|
|
}
|
|
#elif defined(__mips__) && !defined(__LP64__)
|
|
// The callee save frame is pointed to by SP.
|
|
// | argN | |
|
|
// | ... | |
|
|
// | arg4 | |
|
|
// | arg3 spill | | Caller's frame
|
|
// | arg2 spill | |
|
|
// | arg1 spill | |
|
|
// | Method* | ---
|
|
// | RA |
|
|
// | ... | callee saves
|
|
// | T1 | arg5
|
|
// | T0 | arg4
|
|
// | A3 | arg3
|
|
// | A2 | arg2
|
|
// | A1 | arg1
|
|
// | F19 |
|
|
// | F18 | f_arg5
|
|
// | F17 |
|
|
// | F16 | f_arg4
|
|
// | F15 |
|
|
// | F14 | f_arg3
|
|
// | F13 |
|
|
// | F12 | f_arg2
|
|
// | F11 |
|
|
// | F10 | f_arg1
|
|
// | F9 |
|
|
// | F8 | f_arg0
|
|
// | | padding
|
|
// | A0/Method* | <- sp
|
|
static constexpr bool kSplitPairAcrossRegisterAndStack = false;
|
|
static constexpr bool kAlignPairRegister = true;
|
|
static constexpr bool kQuickSoftFloatAbi = false;
|
|
static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
|
|
static constexpr bool kQuickSkipOddFpRegisters = true;
|
|
static constexpr size_t kNumQuickGprArgs = 5; // 5 arguments passed in GPRs.
|
|
static constexpr size_t kNumQuickFprArgs = 12; // 6 arguments passed in FPRs. Floats can be
|
|
// passed only in even numbered registers and each
|
|
// double occupies two registers.
|
|
static constexpr bool kGprFprLockstep = false;
|
|
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 8; // Offset of first FPR arg.
|
|
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 56; // Offset of first GPR arg.
|
|
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 108; // Offset of return address.
|
|
static size_t GprIndexToGprOffset(uint32_t gpr_index) {
|
|
return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
|
|
}
|
|
#elif defined(__mips__) && defined(__LP64__)
|
|
// The callee save frame is pointed to by SP.
|
|
// | argN | |
|
|
// | ... | |
|
|
// | arg4 | |
|
|
// | arg3 spill | | Caller's frame
|
|
// | arg2 spill | |
|
|
// | arg1 spill | |
|
|
// | Method* | ---
|
|
// | RA |
|
|
// | ... | callee saves
|
|
// | A7 | arg7
|
|
// | A6 | arg6
|
|
// | A5 | arg5
|
|
// | A4 | arg4
|
|
// | A3 | arg3
|
|
// | A2 | arg2
|
|
// | A1 | arg1
|
|
// | F19 | f_arg7
|
|
// | F18 | f_arg6
|
|
// | F17 | f_arg5
|
|
// | F16 | f_arg4
|
|
// | F15 | f_arg3
|
|
// | F14 | f_arg2
|
|
// | F13 | f_arg1
|
|
// | F12 | f_arg0
|
|
// | | padding
|
|
// | A0/Method* | <- sp
|
|
// NOTE: for Mip64, when A0 is skipped, F12 is also skipped.
|
|
static constexpr bool kSplitPairAcrossRegisterAndStack = false;
|
|
static constexpr bool kAlignPairRegister = false;
|
|
static constexpr bool kQuickSoftFloatAbi = false;
|
|
static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
|
|
static constexpr bool kQuickSkipOddFpRegisters = false;
|
|
static constexpr size_t kNumQuickGprArgs = 7; // 7 arguments passed in GPRs.
|
|
static constexpr size_t kNumQuickFprArgs = 7; // 7 arguments passed in FPRs.
|
|
static constexpr bool kGprFprLockstep = true;
|
|
|
|
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 24; // Offset of first FPR arg (F13).
|
|
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80; // Offset of first GPR arg (A1).
|
|
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 200; // Offset of return address.
|
|
static size_t GprIndexToGprOffset(uint32_t gpr_index) {
|
|
return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
|
|
}
|
|
#elif defined(__i386__)
|
|
// The callee save frame is pointed to by SP.
|
|
// | argN | |
|
|
// | ... | |
|
|
// | arg4 | |
|
|
// | arg3 spill | | Caller's frame
|
|
// | arg2 spill | |
|
|
// | arg1 spill | |
|
|
// | Method* | ---
|
|
// | Return |
|
|
// | EBP,ESI,EDI | callee saves
|
|
// | EBX | arg3
|
|
// | EDX | arg2
|
|
// | ECX | arg1
|
|
// | XMM3 | float arg 4
|
|
// | XMM2 | float arg 3
|
|
// | XMM1 | float arg 2
|
|
// | XMM0 | float arg 1
|
|
// | EAX/Method* | <- sp
|
|
static constexpr bool kSplitPairAcrossRegisterAndStack = false;
|
|
static constexpr bool kAlignPairRegister = false;
|
|
static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI.
|
|
static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
|
|
static constexpr bool kQuickSkipOddFpRegisters = false;
|
|
static constexpr size_t kNumQuickGprArgs = 3; // 3 arguments passed in GPRs.
|
|
static constexpr size_t kNumQuickFprArgs = 4; // 4 arguments passed in FPRs.
|
|
static constexpr bool kGprFprLockstep = false;
|
|
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 4; // Offset of first FPR arg.
|
|
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 4 + 4*8; // Offset of first GPR arg.
|
|
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 28 + 4*8; // Offset of return address.
|
|
static size_t GprIndexToGprOffset(uint32_t gpr_index) {
|
|
return gpr_index * GetBytesPerGprSpillLocation(kRuntimeISA);
|
|
}
|
|
#elif defined(__x86_64__)
|
|
// The callee save frame is pointed to by SP.
|
|
// | argN | |
|
|
// | ... | |
|
|
// | reg. arg spills | | Caller's frame
|
|
// | Method* | ---
|
|
// | Return |
|
|
// | R15 | callee save
|
|
// | R14 | callee save
|
|
// | R13 | callee save
|
|
// | R12 | callee save
|
|
// | R9 | arg5
|
|
// | R8 | arg4
|
|
// | RSI/R6 | arg1
|
|
// | RBP/R5 | callee save
|
|
// | RBX/R3 | callee save
|
|
// | RDX/R2 | arg2
|
|
// | RCX/R1 | arg3
|
|
// | XMM7 | float arg 8
|
|
// | XMM6 | float arg 7
|
|
// | XMM5 | float arg 6
|
|
// | XMM4 | float arg 5
|
|
// | XMM3 | float arg 4
|
|
// | XMM2 | float arg 3
|
|
// | XMM1 | float arg 2
|
|
// | XMM0 | float arg 1
|
|
// | Padding |
|
|
// | RDI/Method* | <- sp
|
|
static constexpr bool kSplitPairAcrossRegisterAndStack = false;
|
|
static constexpr bool kAlignPairRegister = false;
|
|
static constexpr bool kQuickSoftFloatAbi = false; // This is a hard float ABI.
|
|
static constexpr bool kQuickDoubleRegAlignedFloatBackFilled = false;
|
|
static constexpr bool kQuickSkipOddFpRegisters = false;
|
|
static constexpr size_t kNumQuickGprArgs = 5; // 5 arguments passed in GPRs.
|
|
static constexpr size_t kNumQuickFprArgs = 8; // 8 arguments passed in FPRs.
|
|
static constexpr bool kGprFprLockstep = false;
|
|
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset = 16; // Offset of first FPR arg.
|
|
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset = 80 + 4*8; // Offset of first GPR arg.
|
|
static constexpr size_t kQuickCalleeSaveFrame_RefAndArgs_LrOffset = 168 + 4*8; // Offset of return address.
|
|
static size_t GprIndexToGprOffset(uint32_t gpr_index) {
|
|
switch (gpr_index) {
|
|
case 0: return (4 * GetBytesPerGprSpillLocation(kRuntimeISA));
|
|
case 1: return (1 * GetBytesPerGprSpillLocation(kRuntimeISA));
|
|
case 2: return (0 * GetBytesPerGprSpillLocation(kRuntimeISA));
|
|
case 3: return (5 * GetBytesPerGprSpillLocation(kRuntimeISA));
|
|
case 4: return (6 * GetBytesPerGprSpillLocation(kRuntimeISA));
|
|
default:
|
|
LOG(FATAL) << "Unexpected GPR index: " << gpr_index;
|
|
return 0;
|
|
}
|
|
}
|
|
#else
|
|
#error "Unsupported architecture"
|
|
#endif
|
|
|
|
public:
|
|
// Special handling for proxy methods. Proxy methods are instance methods so the
|
|
// 'this' object is the 1st argument. They also have the same frame layout as the
|
|
// kRefAndArgs runtime method. Since 'this' is a reference, it is located in the
|
|
// 1st GPR.
|
|
static mirror::Object* GetProxyThisObject(ArtMethod** sp)
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
CHECK((*sp)->IsProxyMethod());
|
|
CHECK_GT(kNumQuickGprArgs, 0u);
|
|
constexpr uint32_t kThisGprIndex = 0u; // 'this' is in the 1st GPR.
|
|
size_t this_arg_offset = kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset +
|
|
GprIndexToGprOffset(kThisGprIndex);
|
|
uint8_t* this_arg_address = reinterpret_cast<uint8_t*>(sp) + this_arg_offset;
|
|
return reinterpret_cast<StackReference<mirror::Object>*>(this_arg_address)->AsMirrorPtr();
|
|
}
|
|
|
|
static ArtMethod* GetCallingMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
DCHECK((*sp)->IsCalleeSaveMethod());
|
|
return GetCalleeSaveMethodCaller(sp, CalleeSaveType::kSaveRefsAndArgs);
|
|
}
|
|
|
|
static ArtMethod* GetOuterMethod(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
DCHECK((*sp)->IsCalleeSaveMethod());
|
|
uint8_t* previous_sp =
|
|
reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize;
|
|
return *reinterpret_cast<ArtMethod**>(previous_sp);
|
|
}
|
|
|
|
static uint32_t GetCallingDexPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
DCHECK((*sp)->IsCalleeSaveMethod());
|
|
const size_t callee_frame_size = GetCalleeSaveFrameSize(kRuntimeISA,
|
|
CalleeSaveType::kSaveRefsAndArgs);
|
|
ArtMethod** caller_sp = reinterpret_cast<ArtMethod**>(
|
|
reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
|
|
uintptr_t outer_pc = QuickArgumentVisitor::GetCallingPc(sp);
|
|
const OatQuickMethodHeader* current_code = (*caller_sp)->GetOatQuickMethodHeader(outer_pc);
|
|
uintptr_t outer_pc_offset = current_code->NativeQuickPcOffset(outer_pc);
|
|
|
|
if (current_code->IsOptimized()) {
|
|
CodeInfo code_info = current_code->GetOptimizedCodeInfo();
|
|
CodeInfoEncoding encoding = code_info.ExtractEncoding();
|
|
StackMap stack_map = code_info.GetStackMapForNativePcOffset(outer_pc_offset, encoding);
|
|
DCHECK(stack_map.IsValid());
|
|
if (stack_map.HasInlineInfo(encoding.stack_map.encoding)) {
|
|
InlineInfo inline_info = code_info.GetInlineInfoOf(stack_map, encoding);
|
|
return inline_info.GetDexPcAtDepth(encoding.inline_info.encoding,
|
|
inline_info.GetDepth(encoding.inline_info.encoding)-1);
|
|
} else {
|
|
return stack_map.GetDexPc(encoding.stack_map.encoding);
|
|
}
|
|
} else {
|
|
return current_code->ToDexPc(*caller_sp, outer_pc);
|
|
}
|
|
}
|
|
|
|
static bool GetInvokeType(ArtMethod** sp, InvokeType* invoke_type, uint32_t* dex_method_index)
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
DCHECK((*sp)->IsCalleeSaveMethod());
|
|
const size_t callee_frame_size = GetCalleeSaveFrameSize(kRuntimeISA,
|
|
CalleeSaveType::kSaveRefsAndArgs);
|
|
ArtMethod** caller_sp = reinterpret_cast<ArtMethod**>(
|
|
reinterpret_cast<uintptr_t>(sp) + callee_frame_size);
|
|
uintptr_t outer_pc = QuickArgumentVisitor::GetCallingPc(sp);
|
|
const OatQuickMethodHeader* current_code = (*caller_sp)->GetOatQuickMethodHeader(outer_pc);
|
|
if (!current_code->IsOptimized()) {
|
|
return false;
|
|
}
|
|
uintptr_t outer_pc_offset = current_code->NativeQuickPcOffset(outer_pc);
|
|
CodeInfo code_info = current_code->GetOptimizedCodeInfo();
|
|
CodeInfoEncoding encoding = code_info.ExtractEncoding();
|
|
MethodInfo method_info = current_code->GetOptimizedMethodInfo();
|
|
InvokeInfo invoke(code_info.GetInvokeInfoForNativePcOffset(outer_pc_offset, encoding));
|
|
if (invoke.IsValid()) {
|
|
*invoke_type = static_cast<InvokeType>(invoke.GetInvokeType(encoding.invoke_info.encoding));
|
|
*dex_method_index = invoke.GetMethodIndex(encoding.invoke_info.encoding, method_info);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// For the given quick ref and args quick frame, return the caller's PC.
|
|
static uintptr_t GetCallingPc(ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
DCHECK((*sp)->IsCalleeSaveMethod());
|
|
uint8_t* lr = reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_LrOffset;
|
|
return *reinterpret_cast<uintptr_t*>(lr);
|
|
}
|
|
|
|
QuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
|
|
uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) :
|
|
is_static_(is_static), shorty_(shorty), shorty_len_(shorty_len),
|
|
gpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Gpr1Offset),
|
|
fpr_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_Fpr1Offset),
|
|
stack_args_(reinterpret_cast<uint8_t*>(sp) + kQuickCalleeSaveFrame_RefAndArgs_FrameSize
|
|
+ sizeof(ArtMethod*)), // Skip ArtMethod*.
|
|
gpr_index_(0), fpr_index_(0), fpr_double_index_(0), stack_index_(0),
|
|
cur_type_(Primitive::kPrimVoid), is_split_long_or_double_(false) {
|
|
static_assert(kQuickSoftFloatAbi == (kNumQuickFprArgs == 0),
|
|
"Number of Quick FPR arguments unexpected");
|
|
static_assert(!(kQuickSoftFloatAbi && kQuickDoubleRegAlignedFloatBackFilled),
|
|
"Double alignment unexpected");
|
|
// For register alignment, we want to assume that counters(fpr_double_index_) are even if the
|
|
// next register is even.
|
|
static_assert(!kQuickDoubleRegAlignedFloatBackFilled || kNumQuickFprArgs % 2 == 0,
|
|
"Number of Quick FPR arguments not even");
|
|
DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
|
|
}
|
|
|
|
virtual ~QuickArgumentVisitor() {}
|
|
|
|
virtual void Visit() = 0;
|
|
|
|
Primitive::Type GetParamPrimitiveType() const {
|
|
return cur_type_;
|
|
}
|
|
|
|
uint8_t* GetParamAddress() const {
|
|
if (!kQuickSoftFloatAbi) {
|
|
Primitive::Type type = GetParamPrimitiveType();
|
|
if (UNLIKELY((type == Primitive::kPrimDouble) || (type == Primitive::kPrimFloat))) {
|
|
if (type == Primitive::kPrimDouble && kQuickDoubleRegAlignedFloatBackFilled) {
|
|
if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
|
|
return fpr_args_ + (fpr_double_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
|
|
}
|
|
} else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
|
|
return fpr_args_ + (fpr_index_ * GetBytesPerFprSpillLocation(kRuntimeISA));
|
|
}
|
|
return stack_args_ + (stack_index_ * kBytesStackArgLocation);
|
|
}
|
|
}
|
|
if (gpr_index_ < kNumQuickGprArgs) {
|
|
return gpr_args_ + GprIndexToGprOffset(gpr_index_);
|
|
}
|
|
return stack_args_ + (stack_index_ * kBytesStackArgLocation);
|
|
}
|
|
|
|
bool IsSplitLongOrDouble() const {
|
|
if ((GetBytesPerGprSpillLocation(kRuntimeISA) == 4) ||
|
|
(GetBytesPerFprSpillLocation(kRuntimeISA) == 4)) {
|
|
return is_split_long_or_double_;
|
|
} else {
|
|
return false; // An optimization for when GPR and FPRs are 64bit.
|
|
}
|
|
}
|
|
|
|
bool IsParamAReference() const {
|
|
return GetParamPrimitiveType() == Primitive::kPrimNot;
|
|
}
|
|
|
|
bool IsParamALongOrDouble() const {
|
|
Primitive::Type type = GetParamPrimitiveType();
|
|
return type == Primitive::kPrimLong || type == Primitive::kPrimDouble;
|
|
}
|
|
|
|
uint64_t ReadSplitLongParam() const {
|
|
// The splitted long is always available through the stack.
|
|
return *reinterpret_cast<uint64_t*>(stack_args_
|
|
+ stack_index_ * kBytesStackArgLocation);
|
|
}
|
|
|
|
void IncGprIndex() {
|
|
gpr_index_++;
|
|
if (kGprFprLockstep) {
|
|
fpr_index_++;
|
|
}
|
|
}
|
|
|
|
void IncFprIndex() {
|
|
fpr_index_++;
|
|
if (kGprFprLockstep) {
|
|
gpr_index_++;
|
|
}
|
|
}
|
|
|
|
void VisitArguments() REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
// (a) 'stack_args_' should point to the first method's argument
|
|
// (b) whatever the argument type it is, the 'stack_index_' should
|
|
// be moved forward along with every visiting.
|
|
gpr_index_ = 0;
|
|
fpr_index_ = 0;
|
|
if (kQuickDoubleRegAlignedFloatBackFilled) {
|
|
fpr_double_index_ = 0;
|
|
}
|
|
stack_index_ = 0;
|
|
if (!is_static_) { // Handle this.
|
|
cur_type_ = Primitive::kPrimNot;
|
|
is_split_long_or_double_ = false;
|
|
Visit();
|
|
stack_index_++;
|
|
if (kNumQuickGprArgs > 0) {
|
|
IncGprIndex();
|
|
}
|
|
}
|
|
for (uint32_t shorty_index = 1; shorty_index < shorty_len_; ++shorty_index) {
|
|
cur_type_ = Primitive::GetType(shorty_[shorty_index]);
|
|
switch (cur_type_) {
|
|
case Primitive::kPrimNot:
|
|
case Primitive::kPrimBoolean:
|
|
case Primitive::kPrimByte:
|
|
case Primitive::kPrimChar:
|
|
case Primitive::kPrimShort:
|
|
case Primitive::kPrimInt:
|
|
is_split_long_or_double_ = false;
|
|
Visit();
|
|
stack_index_++;
|
|
if (gpr_index_ < kNumQuickGprArgs) {
|
|
IncGprIndex();
|
|
}
|
|
break;
|
|
case Primitive::kPrimFloat:
|
|
is_split_long_or_double_ = false;
|
|
Visit();
|
|
stack_index_++;
|
|
if (kQuickSoftFloatAbi) {
|
|
if (gpr_index_ < kNumQuickGprArgs) {
|
|
IncGprIndex();
|
|
}
|
|
} else {
|
|
if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
|
|
IncFprIndex();
|
|
if (kQuickDoubleRegAlignedFloatBackFilled) {
|
|
// Double should not overlap with float.
|
|
// For example, if fpr_index_ = 3, fpr_double_index_ should be at least 4.
|
|
fpr_double_index_ = std::max(fpr_double_index_, RoundUp(fpr_index_, 2));
|
|
// Float should not overlap with double.
|
|
if (fpr_index_ % 2 == 0) {
|
|
fpr_index_ = std::max(fpr_double_index_, fpr_index_);
|
|
}
|
|
} else if (kQuickSkipOddFpRegisters) {
|
|
IncFprIndex();
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
case Primitive::kPrimDouble:
|
|
case Primitive::kPrimLong:
|
|
if (kQuickSoftFloatAbi || (cur_type_ == Primitive::kPrimLong)) {
|
|
if (cur_type_ == Primitive::kPrimLong &&
|
|
#if defined(__mips__) && !defined(__LP64__)
|
|
(gpr_index_ == 0 || gpr_index_ == 2) &&
|
|
#else
|
|
gpr_index_ == 0 &&
|
|
#endif
|
|
kAlignPairRegister) {
|
|
// Currently, this is only for ARM and MIPS, where we align long parameters with
|
|
// even-numbered registers by skipping R1 (on ARM) or A1(A3) (on MIPS) and using
|
|
// R2 (on ARM) or A2(T0) (on MIPS) instead.
|
|
IncGprIndex();
|
|
}
|
|
is_split_long_or_double_ = (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) &&
|
|
((gpr_index_ + 1) == kNumQuickGprArgs);
|
|
if (!kSplitPairAcrossRegisterAndStack && is_split_long_or_double_) {
|
|
// We don't want to split this. Pass over this register.
|
|
gpr_index_++;
|
|
is_split_long_or_double_ = false;
|
|
}
|
|
Visit();
|
|
if (kBytesStackArgLocation == 4) {
|
|
stack_index_+= 2;
|
|
} else {
|
|
CHECK_EQ(kBytesStackArgLocation, 8U);
|
|
stack_index_++;
|
|
}
|
|
if (gpr_index_ < kNumQuickGprArgs) {
|
|
IncGprIndex();
|
|
if (GetBytesPerGprSpillLocation(kRuntimeISA) == 4) {
|
|
if (gpr_index_ < kNumQuickGprArgs) {
|
|
IncGprIndex();
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
is_split_long_or_double_ = (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) &&
|
|
((fpr_index_ + 1) == kNumQuickFprArgs) && !kQuickDoubleRegAlignedFloatBackFilled;
|
|
Visit();
|
|
if (kBytesStackArgLocation == 4) {
|
|
stack_index_+= 2;
|
|
} else {
|
|
CHECK_EQ(kBytesStackArgLocation, 8U);
|
|
stack_index_++;
|
|
}
|
|
if (kQuickDoubleRegAlignedFloatBackFilled) {
|
|
if (fpr_double_index_ + 2 < kNumQuickFprArgs + 1) {
|
|
fpr_double_index_ += 2;
|
|
// Float should not overlap with double.
|
|
if (fpr_index_ % 2 == 0) {
|
|
fpr_index_ = std::max(fpr_double_index_, fpr_index_);
|
|
}
|
|
}
|
|
} else if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
|
|
IncFprIndex();
|
|
if (GetBytesPerFprSpillLocation(kRuntimeISA) == 4) {
|
|
if (fpr_index_ + 1 < kNumQuickFprArgs + 1) {
|
|
IncFprIndex();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
default:
|
|
LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty_;
|
|
}
|
|
}
|
|
}
|
|
|
|
protected:
|
|
const bool is_static_;
|
|
const char* const shorty_;
|
|
const uint32_t shorty_len_;
|
|
|
|
private:
|
|
uint8_t* const gpr_args_; // Address of GPR arguments in callee save frame.
|
|
uint8_t* const fpr_args_; // Address of FPR arguments in callee save frame.
|
|
uint8_t* const stack_args_; // Address of stack arguments in caller's frame.
|
|
uint32_t gpr_index_; // Index into spilled GPRs.
|
|
// Index into spilled FPRs.
|
|
// In case kQuickDoubleRegAlignedFloatBackFilled, it may index a hole while fpr_double_index_
|
|
// holds a higher register number.
|
|
uint32_t fpr_index_;
|
|
// Index into spilled FPRs for aligned double.
|
|
// Only used when kQuickDoubleRegAlignedFloatBackFilled. Next available double register indexed in
|
|
// terms of singles, may be behind fpr_index.
|
|
uint32_t fpr_double_index_;
|
|
uint32_t stack_index_; // Index into arguments on the stack.
|
|
// The current type of argument during VisitArguments.
|
|
Primitive::Type cur_type_;
|
|
// Does a 64bit parameter straddle the register and stack arguments?
|
|
bool is_split_long_or_double_;
|
|
};
|
|
|
|
// Returns the 'this' object of a proxy method. This function is only used by StackVisitor. It
|
|
// allows to use the QuickArgumentVisitor constants without moving all the code in its own module.
|
|
extern "C" mirror::Object* artQuickGetProxyThisObject(ArtMethod** sp)
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
return QuickArgumentVisitor::GetProxyThisObject(sp);
|
|
}
|
|
|
|
// Visits arguments on the stack placing them into the shadow frame.
|
|
class BuildQuickShadowFrameVisitor FINAL : public QuickArgumentVisitor {
|
|
public:
|
|
BuildQuickShadowFrameVisitor(ArtMethod** sp, bool is_static, const char* shorty,
|
|
uint32_t shorty_len, ShadowFrame* sf, size_t first_arg_reg) :
|
|
QuickArgumentVisitor(sp, is_static, shorty, shorty_len), sf_(sf), cur_reg_(first_arg_reg) {}
|
|
|
|
void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
|
|
|
|
private:
|
|
ShadowFrame* const sf_;
|
|
uint32_t cur_reg_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(BuildQuickShadowFrameVisitor);
|
|
};
|
|
|
|
void BuildQuickShadowFrameVisitor::Visit() {
|
|
Primitive::Type type = GetParamPrimitiveType();
|
|
switch (type) {
|
|
case Primitive::kPrimLong: // Fall-through.
|
|
case Primitive::kPrimDouble:
|
|
if (IsSplitLongOrDouble()) {
|
|
sf_->SetVRegLong(cur_reg_, ReadSplitLongParam());
|
|
} else {
|
|
sf_->SetVRegLong(cur_reg_, *reinterpret_cast<jlong*>(GetParamAddress()));
|
|
}
|
|
++cur_reg_;
|
|
break;
|
|
case Primitive::kPrimNot: {
|
|
StackReference<mirror::Object>* stack_ref =
|
|
reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
|
|
sf_->SetVRegReference(cur_reg_, stack_ref->AsMirrorPtr());
|
|
}
|
|
break;
|
|
case Primitive::kPrimBoolean: // Fall-through.
|
|
case Primitive::kPrimByte: // Fall-through.
|
|
case Primitive::kPrimChar: // Fall-through.
|
|
case Primitive::kPrimShort: // Fall-through.
|
|
case Primitive::kPrimInt: // Fall-through.
|
|
case Primitive::kPrimFloat:
|
|
sf_->SetVReg(cur_reg_, *reinterpret_cast<jint*>(GetParamAddress()));
|
|
break;
|
|
case Primitive::kPrimVoid:
|
|
LOG(FATAL) << "UNREACHABLE";
|
|
UNREACHABLE();
|
|
}
|
|
++cur_reg_;
|
|
}
|
|
|
|
extern "C" uint64_t artQuickToInterpreterBridge(ArtMethod* method, Thread* self, ArtMethod** sp)
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
// Ensure we don't get thread suspension until the object arguments are safely in the shadow
|
|
// frame.
|
|
ScopedQuickEntrypointChecks sqec(self);
|
|
|
|
if (UNLIKELY(!method->IsInvokable())) {
|
|
method->ThrowInvocationTimeError();
|
|
return 0;
|
|
}
|
|
|
|
JValue tmp_value;
|
|
ShadowFrame* deopt_frame = self->PopStackedShadowFrame(
|
|
StackedShadowFrameType::kDeoptimizationShadowFrame, false);
|
|
ManagedStack fragment;
|
|
|
|
DCHECK(!method->IsNative()) << method->PrettyMethod();
|
|
uint32_t shorty_len = 0;
|
|
ArtMethod* non_proxy_method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
|
|
const DexFile::CodeItem* code_item = non_proxy_method->GetCodeItem();
|
|
DCHECK(code_item != nullptr) << method->PrettyMethod();
|
|
const char* shorty = non_proxy_method->GetShorty(&shorty_len);
|
|
|
|
JValue result;
|
|
|
|
if (deopt_frame != nullptr) {
|
|
// Coming from partial-fragment deopt.
|
|
|
|
if (kIsDebugBuild) {
|
|
// Sanity-check: are the methods as expected? We check that the last shadow frame (the bottom
|
|
// of the call-stack) corresponds to the called method.
|
|
ShadowFrame* linked = deopt_frame;
|
|
while (linked->GetLink() != nullptr) {
|
|
linked = linked->GetLink();
|
|
}
|
|
CHECK_EQ(method, linked->GetMethod()) << method->PrettyMethod() << " "
|
|
<< ArtMethod::PrettyMethod(linked->GetMethod());
|
|
}
|
|
|
|
if (VLOG_IS_ON(deopt)) {
|
|
// Print out the stack to verify that it was a partial-fragment deopt.
|
|
LOG(INFO) << "Continue-ing from deopt. Stack is:";
|
|
QuickExceptionHandler::DumpFramesWithType(self, true);
|
|
}
|
|
|
|
ObjPtr<mirror::Throwable> pending_exception;
|
|
bool from_code = false;
|
|
self->PopDeoptimizationContext(&result, &pending_exception, /* out */ &from_code);
|
|
|
|
// Push a transition back into managed code onto the linked list in thread.
|
|
self->PushManagedStackFragment(&fragment);
|
|
|
|
// Ensure that the stack is still in order.
|
|
if (kIsDebugBuild) {
|
|
class DummyStackVisitor : public StackVisitor {
|
|
public:
|
|
explicit DummyStackVisitor(Thread* self_in) REQUIRES_SHARED(Locks::mutator_lock_)
|
|
: StackVisitor(self_in, nullptr, StackVisitor::StackWalkKind::kIncludeInlinedFrames) {}
|
|
|
|
bool VisitFrame() OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
// Nothing to do here. In a debug build, SanityCheckFrame will do the work in the walking
|
|
// logic. Just always say we want to continue.
|
|
return true;
|
|
}
|
|
};
|
|
DummyStackVisitor dsv(self);
|
|
dsv.WalkStack();
|
|
}
|
|
|
|
// Restore the exception that was pending before deoptimization then interpret the
|
|
// deoptimized frames.
|
|
if (pending_exception != nullptr) {
|
|
self->SetException(pending_exception);
|
|
}
|
|
interpreter::EnterInterpreterFromDeoptimize(self, deopt_frame, from_code, &result);
|
|
} else {
|
|
const char* old_cause = self->StartAssertNoThreadSuspension(
|
|
"Building interpreter shadow frame");
|
|
uint16_t num_regs = code_item->registers_size_;
|
|
// No last shadow coming from quick.
|
|
ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
|
|
CREATE_SHADOW_FRAME(num_regs, /* link */ nullptr, method, /* dex pc */ 0);
|
|
ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
|
|
size_t first_arg_reg = code_item->registers_size_ - code_item->ins_size_;
|
|
BuildQuickShadowFrameVisitor shadow_frame_builder(sp, method->IsStatic(), shorty, shorty_len,
|
|
shadow_frame, first_arg_reg);
|
|
shadow_frame_builder.VisitArguments();
|
|
const bool needs_initialization =
|
|
method->IsStatic() && !method->GetDeclaringClass()->IsInitialized();
|
|
// Push a transition back into managed code onto the linked list in thread.
|
|
self->PushManagedStackFragment(&fragment);
|
|
self->PushShadowFrame(shadow_frame);
|
|
self->EndAssertNoThreadSuspension(old_cause);
|
|
|
|
if (needs_initialization) {
|
|
// Ensure static method's class is initialized.
|
|
StackHandleScope<1> hs(self);
|
|
Handle<mirror::Class> h_class(hs.NewHandle(shadow_frame->GetMethod()->GetDeclaringClass()));
|
|
if (!Runtime::Current()->GetClassLinker()->EnsureInitialized(self, h_class, true, true)) {
|
|
DCHECK(Thread::Current()->IsExceptionPending())
|
|
<< shadow_frame->GetMethod()->PrettyMethod();
|
|
self->PopManagedStackFragment(fragment);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
result = interpreter::EnterInterpreterFromEntryPoint(self, code_item, shadow_frame);
|
|
}
|
|
|
|
// Pop transition.
|
|
self->PopManagedStackFragment(fragment);
|
|
|
|
// Request a stack deoptimization if needed
|
|
ArtMethod* caller = QuickArgumentVisitor::GetCallingMethod(sp);
|
|
uintptr_t caller_pc = QuickArgumentVisitor::GetCallingPc(sp);
|
|
// If caller_pc is the instrumentation exit stub, the stub will check to see if deoptimization
|
|
// should be done and it knows the real return pc.
|
|
if (UNLIKELY(caller_pc != reinterpret_cast<uintptr_t>(GetQuickInstrumentationExitPc()) &&
|
|
Dbg::IsForcedInterpreterNeededForUpcall(self, caller))) {
|
|
if (!Runtime::Current()->IsAsyncDeoptimizeable(caller_pc)) {
|
|
LOG(WARNING) << "Got a deoptimization request on un-deoptimizable method "
|
|
<< caller->PrettyMethod();
|
|
} else {
|
|
// Push the context of the deoptimization stack so we can restore the return value and the
|
|
// exception before executing the deoptimized frames.
|
|
self->PushDeoptimizationContext(
|
|
result, shorty[0] == 'L', /* from_code */ false, self->GetException());
|
|
|
|
// Set special exception to cause deoptimization.
|
|
self->SetException(Thread::GetDeoptimizationException());
|
|
}
|
|
}
|
|
|
|
// No need to restore the args since the method has already been run by the interpreter.
|
|
return result.GetJ();
|
|
}
|
|
|
|
// Visits arguments on the stack placing them into the args vector, Object* arguments are converted
|
|
// to jobjects.
|
|
class BuildQuickArgumentVisitor FINAL : public QuickArgumentVisitor {
|
|
public:
|
|
BuildQuickArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty, uint32_t shorty_len,
|
|
ScopedObjectAccessUnchecked* soa, std::vector<jvalue>* args) :
|
|
QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa), args_(args) {}
|
|
|
|
void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
|
|
|
|
void FixupReferences() REQUIRES_SHARED(Locks::mutator_lock_);
|
|
|
|
private:
|
|
ScopedObjectAccessUnchecked* const soa_;
|
|
std::vector<jvalue>* const args_;
|
|
// References which we must update when exiting in case the GC moved the objects.
|
|
std::vector<std::pair<jobject, StackReference<mirror::Object>*>> references_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(BuildQuickArgumentVisitor);
|
|
};
|
|
|
|
void BuildQuickArgumentVisitor::Visit() {
|
|
jvalue val;
|
|
Primitive::Type type = GetParamPrimitiveType();
|
|
switch (type) {
|
|
case Primitive::kPrimNot: {
|
|
StackReference<mirror::Object>* stack_ref =
|
|
reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
|
|
val.l = soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
|
|
references_.push_back(std::make_pair(val.l, stack_ref));
|
|
break;
|
|
}
|
|
case Primitive::kPrimLong: // Fall-through.
|
|
case Primitive::kPrimDouble:
|
|
if (IsSplitLongOrDouble()) {
|
|
val.j = ReadSplitLongParam();
|
|
} else {
|
|
val.j = *reinterpret_cast<jlong*>(GetParamAddress());
|
|
}
|
|
break;
|
|
case Primitive::kPrimBoolean: // Fall-through.
|
|
case Primitive::kPrimByte: // Fall-through.
|
|
case Primitive::kPrimChar: // Fall-through.
|
|
case Primitive::kPrimShort: // Fall-through.
|
|
case Primitive::kPrimInt: // Fall-through.
|
|
case Primitive::kPrimFloat:
|
|
val.i = *reinterpret_cast<jint*>(GetParamAddress());
|
|
break;
|
|
case Primitive::kPrimVoid:
|
|
LOG(FATAL) << "UNREACHABLE";
|
|
UNREACHABLE();
|
|
}
|
|
args_->push_back(val);
|
|
}
|
|
|
|
void BuildQuickArgumentVisitor::FixupReferences() {
|
|
// Fixup any references which may have changed.
|
|
for (const auto& pair : references_) {
|
|
pair.second->Assign(soa_->Decode<mirror::Object>(pair.first));
|
|
soa_->Env()->DeleteLocalRef(pair.first);
|
|
}
|
|
}
|
|
// Handler for invocation on proxy methods. On entry a frame will exist for the proxy object method
|
|
// which is responsible for recording callee save registers. We explicitly place into jobjects the
|
|
// incoming reference arguments (so they survive GC). We invoke the invocation handler, which is a
|
|
// field within the proxy object, which will box the primitive arguments and deal with error cases.
|
|
extern "C" uint64_t artQuickProxyInvokeHandler(
|
|
ArtMethod* proxy_method, mirror::Object* receiver, Thread* self, ArtMethod** sp)
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
DCHECK(proxy_method->IsProxyMethod()) << proxy_method->PrettyMethod();
|
|
DCHECK(receiver->GetClass()->IsProxyClass()) << proxy_method->PrettyMethod();
|
|
// Ensure we don't get thread suspension until the object arguments are safely in jobjects.
|
|
const char* old_cause =
|
|
self->StartAssertNoThreadSuspension("Adding to IRT proxy object arguments");
|
|
// Register the top of the managed stack, making stack crawlable.
|
|
DCHECK_EQ((*sp), proxy_method) << proxy_method->PrettyMethod();
|
|
self->VerifyStack();
|
|
// Start new JNI local reference state.
|
|
JNIEnvExt* env = self->GetJniEnv();
|
|
ScopedObjectAccessUnchecked soa(env);
|
|
ScopedJniEnvLocalRefState env_state(env);
|
|
// Create local ref. copies of proxy method and the receiver.
|
|
jobject rcvr_jobj = soa.AddLocalReference<jobject>(receiver);
|
|
|
|
// Placing arguments into args vector and remove the receiver.
|
|
ArtMethod* non_proxy_method = proxy_method->GetInterfaceMethodIfProxy(kRuntimePointerSize);
|
|
CHECK(!non_proxy_method->IsStatic()) << proxy_method->PrettyMethod() << " "
|
|
<< non_proxy_method->PrettyMethod();
|
|
std::vector<jvalue> args;
|
|
uint32_t shorty_len = 0;
|
|
const char* shorty = non_proxy_method->GetShorty(&shorty_len);
|
|
BuildQuickArgumentVisitor local_ref_visitor(sp, false, shorty, shorty_len, &soa, &args);
|
|
|
|
local_ref_visitor.VisitArguments();
|
|
DCHECK_GT(args.size(), 0U) << proxy_method->PrettyMethod();
|
|
args.erase(args.begin());
|
|
|
|
// Convert proxy method into expected interface method.
|
|
ArtMethod* interface_method = proxy_method->FindOverriddenMethod(kRuntimePointerSize);
|
|
DCHECK(interface_method != nullptr) << proxy_method->PrettyMethod();
|
|
DCHECK(!interface_method->IsProxyMethod()) << interface_method->PrettyMethod();
|
|
self->EndAssertNoThreadSuspension(old_cause);
|
|
DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
|
|
DCHECK(!Runtime::Current()->IsActiveTransaction());
|
|
jobject interface_method_jobj = soa.AddLocalReference<jobject>(
|
|
mirror::Method::CreateFromArtMethod<kRuntimePointerSize, false>(soa.Self(),
|
|
interface_method));
|
|
|
|
// All naked Object*s should now be in jobjects, so its safe to go into the main invoke code
|
|
// that performs allocations.
|
|
JValue result = InvokeProxyInvocationHandler(soa, shorty, rcvr_jobj, interface_method_jobj, args);
|
|
// Restore references which might have moved.
|
|
local_ref_visitor.FixupReferences();
|
|
return result.GetJ();
|
|
}
|
|
|
|
// Read object references held in arguments from quick frames and place in a JNI local references,
|
|
// so they don't get garbage collected.
|
|
class RememberForGcArgumentVisitor FINAL : public QuickArgumentVisitor {
|
|
public:
|
|
RememberForGcArgumentVisitor(ArtMethod** sp, bool is_static, const char* shorty,
|
|
uint32_t shorty_len, ScopedObjectAccessUnchecked* soa) :
|
|
QuickArgumentVisitor(sp, is_static, shorty, shorty_len), soa_(soa) {}
|
|
|
|
void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
|
|
|
|
void FixupReferences() REQUIRES_SHARED(Locks::mutator_lock_);
|
|
|
|
private:
|
|
ScopedObjectAccessUnchecked* const soa_;
|
|
// References which we must update when exiting in case the GC moved the objects.
|
|
std::vector<std::pair<jobject, StackReference<mirror::Object>*> > references_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(RememberForGcArgumentVisitor);
|
|
};
|
|
|
|
void RememberForGcArgumentVisitor::Visit() {
|
|
if (IsParamAReference()) {
|
|
StackReference<mirror::Object>* stack_ref =
|
|
reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
|
|
jobject reference =
|
|
soa_->AddLocalReference<jobject>(stack_ref->AsMirrorPtr());
|
|
references_.push_back(std::make_pair(reference, stack_ref));
|
|
}
|
|
}
|
|
|
|
void RememberForGcArgumentVisitor::FixupReferences() {
|
|
// Fixup any references which may have changed.
|
|
for (const auto& pair : references_) {
|
|
pair.second->Assign(soa_->Decode<mirror::Object>(pair.first));
|
|
soa_->Env()->DeleteLocalRef(pair.first);
|
|
}
|
|
}
|
|
|
|
extern "C" const void* artInstrumentationMethodEntryFromCode(ArtMethod* method,
|
|
mirror::Object* this_object,
|
|
Thread* self,
|
|
ArtMethod** sp)
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
const void* result;
|
|
// Instrumentation changes the stack. Thus, when exiting, the stack cannot be verified, so skip
|
|
// that part.
|
|
ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false);
|
|
instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
|
|
if (instrumentation->IsDeoptimized(method)) {
|
|
result = GetQuickToInterpreterBridge();
|
|
} else {
|
|
result = instrumentation->GetQuickCodeFor(method, kRuntimePointerSize);
|
|
DCHECK(!Runtime::Current()->GetClassLinker()->IsQuickToInterpreterBridge(result));
|
|
}
|
|
|
|
bool interpreter_entry = (result == GetQuickToInterpreterBridge());
|
|
bool is_static = method->IsStatic();
|
|
uint32_t shorty_len;
|
|
const char* shorty =
|
|
method->GetInterfaceMethodIfProxy(kRuntimePointerSize)->GetShorty(&shorty_len);
|
|
|
|
ScopedObjectAccessUnchecked soa(self);
|
|
RememberForGcArgumentVisitor visitor(sp, is_static, shorty, shorty_len, &soa);
|
|
visitor.VisitArguments();
|
|
|
|
instrumentation->PushInstrumentationStackFrame(self,
|
|
is_static ? nullptr : this_object,
|
|
method,
|
|
QuickArgumentVisitor::GetCallingPc(sp),
|
|
interpreter_entry);
|
|
|
|
visitor.FixupReferences();
|
|
if (UNLIKELY(self->IsExceptionPending())) {
|
|
return nullptr;
|
|
}
|
|
CHECK(result != nullptr) << method->PrettyMethod();
|
|
return result;
|
|
}
|
|
|
|
extern "C" TwoWordReturn artInstrumentationMethodExitFromCode(Thread* self,
|
|
ArtMethod** sp,
|
|
uint64_t* gpr_result,
|
|
uint64_t* fpr_result)
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
DCHECK_EQ(reinterpret_cast<uintptr_t>(self), reinterpret_cast<uintptr_t>(Thread::Current()));
|
|
CHECK(gpr_result != nullptr);
|
|
CHECK(fpr_result != nullptr);
|
|
// Instrumentation exit stub must not be entered with a pending exception.
|
|
CHECK(!self->IsExceptionPending()) << "Enter instrumentation exit stub with pending exception "
|
|
<< self->GetException()->Dump();
|
|
// Compute address of return PC and sanity check that it currently holds 0.
|
|
size_t return_pc_offset = GetCalleeSaveReturnPcOffset(kRuntimeISA, CalleeSaveType::kSaveRefsOnly);
|
|
uintptr_t* return_pc = reinterpret_cast<uintptr_t*>(reinterpret_cast<uint8_t*>(sp) +
|
|
return_pc_offset);
|
|
CHECK_EQ(*return_pc, 0U);
|
|
|
|
// Pop the frame filling in the return pc. The low half of the return value is 0 when
|
|
// deoptimization shouldn't be performed with the high-half having the return address. When
|
|
// deoptimization should be performed the low half is zero and the high-half the address of the
|
|
// deoptimization entry point.
|
|
instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation();
|
|
TwoWordReturn return_or_deoptimize_pc = instrumentation->PopInstrumentationStackFrame(
|
|
self, return_pc, gpr_result, fpr_result);
|
|
if (self->IsExceptionPending()) {
|
|
return GetTwoWordFailureValue();
|
|
}
|
|
return return_or_deoptimize_pc;
|
|
}
|
|
|
|
// Lazily resolve a method for quick. Called by stub code.
|
|
extern "C" const void* artQuickResolutionTrampoline(
|
|
ArtMethod* called, mirror::Object* receiver, Thread* self, ArtMethod** sp)
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
// The resolution trampoline stashes the resolved method into the callee-save frame to transport
|
|
// it. Thus, when exiting, the stack cannot be verified (as the resolved method most likely
|
|
// does not have the same stack layout as the callee-save method).
|
|
ScopedQuickEntrypointChecks sqec(self, kIsDebugBuild, false);
|
|
// Start new JNI local reference state
|
|
JNIEnvExt* env = self->GetJniEnv();
|
|
ScopedObjectAccessUnchecked soa(env);
|
|
ScopedJniEnvLocalRefState env_state(env);
|
|
const char* old_cause = self->StartAssertNoThreadSuspension("Quick method resolution set up");
|
|
|
|
// Compute details about the called method (avoid GCs)
|
|
ClassLinker* linker = Runtime::Current()->GetClassLinker();
|
|
InvokeType invoke_type;
|
|
MethodReference called_method(nullptr, 0);
|
|
const bool called_method_known_on_entry = !called->IsRuntimeMethod();
|
|
ArtMethod* caller = nullptr;
|
|
if (!called_method_known_on_entry) {
|
|
caller = QuickArgumentVisitor::GetCallingMethod(sp);
|
|
called_method.dex_file = caller->GetDexFile();
|
|
|
|
InvokeType stack_map_invoke_type;
|
|
uint32_t stack_map_dex_method_idx;
|
|
const bool found_stack_map = QuickArgumentVisitor::GetInvokeType(sp,
|
|
&stack_map_invoke_type,
|
|
&stack_map_dex_method_idx);
|
|
// For debug builds, we make sure both of the paths are consistent by also looking at the dex
|
|
// code.
|
|
if (!found_stack_map || kIsDebugBuild) {
|
|
uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
|
|
const DexFile::CodeItem* code;
|
|
code = caller->GetCodeItem();
|
|
CHECK_LT(dex_pc, code->insns_size_in_code_units_);
|
|
const Instruction* instr = Instruction::At(&code->insns_[dex_pc]);
|
|
Instruction::Code instr_code = instr->Opcode();
|
|
bool is_range;
|
|
switch (instr_code) {
|
|
case Instruction::INVOKE_DIRECT:
|
|
invoke_type = kDirect;
|
|
is_range = false;
|
|
break;
|
|
case Instruction::INVOKE_DIRECT_RANGE:
|
|
invoke_type = kDirect;
|
|
is_range = true;
|
|
break;
|
|
case Instruction::INVOKE_STATIC:
|
|
invoke_type = kStatic;
|
|
is_range = false;
|
|
break;
|
|
case Instruction::INVOKE_STATIC_RANGE:
|
|
invoke_type = kStatic;
|
|
is_range = true;
|
|
break;
|
|
case Instruction::INVOKE_SUPER:
|
|
invoke_type = kSuper;
|
|
is_range = false;
|
|
break;
|
|
case Instruction::INVOKE_SUPER_RANGE:
|
|
invoke_type = kSuper;
|
|
is_range = true;
|
|
break;
|
|
case Instruction::INVOKE_VIRTUAL:
|
|
invoke_type = kVirtual;
|
|
is_range = false;
|
|
break;
|
|
case Instruction::INVOKE_VIRTUAL_RANGE:
|
|
invoke_type = kVirtual;
|
|
is_range = true;
|
|
break;
|
|
case Instruction::INVOKE_INTERFACE:
|
|
invoke_type = kInterface;
|
|
is_range = false;
|
|
break;
|
|
case Instruction::INVOKE_INTERFACE_RANGE:
|
|
invoke_type = kInterface;
|
|
is_range = true;
|
|
break;
|
|
default:
|
|
LOG(FATAL) << "Unexpected call into trampoline: " << instr->DumpString(nullptr);
|
|
UNREACHABLE();
|
|
}
|
|
called_method.dex_method_index = (is_range) ? instr->VRegB_3rc() : instr->VRegB_35c();
|
|
// Check that the invoke matches what we expected, note that this path only happens for debug
|
|
// builds.
|
|
if (found_stack_map) {
|
|
DCHECK_EQ(stack_map_invoke_type, invoke_type);
|
|
if (invoke_type != kSuper) {
|
|
// Super may be sharpened.
|
|
DCHECK_EQ(stack_map_dex_method_idx, called_method.dex_method_index)
|
|
<< called_method.dex_file->PrettyMethod(stack_map_dex_method_idx) << " "
|
|
<< called_method.dex_file->PrettyMethod(called_method.dex_method_index);
|
|
}
|
|
} else {
|
|
VLOG(dex) << "Accessed dex file for invoke " << invoke_type << " "
|
|
<< called_method.dex_method_index;
|
|
}
|
|
} else {
|
|
invoke_type = stack_map_invoke_type;
|
|
called_method.dex_method_index = stack_map_dex_method_idx;
|
|
}
|
|
} else {
|
|
invoke_type = kStatic;
|
|
called_method.dex_file = called->GetDexFile();
|
|
called_method.dex_method_index = called->GetDexMethodIndex();
|
|
}
|
|
uint32_t shorty_len;
|
|
const char* shorty =
|
|
called_method.dex_file->GetMethodShorty(
|
|
called_method.dex_file->GetMethodId(called_method.dex_method_index), &shorty_len);
|
|
RememberForGcArgumentVisitor visitor(sp, invoke_type == kStatic, shorty, shorty_len, &soa);
|
|
visitor.VisitArguments();
|
|
self->EndAssertNoThreadSuspension(old_cause);
|
|
const bool virtual_or_interface = invoke_type == kVirtual || invoke_type == kInterface;
|
|
// Resolve method filling in dex cache.
|
|
if (!called_method_known_on_entry) {
|
|
StackHandleScope<1> hs(self);
|
|
mirror::Object* dummy = nullptr;
|
|
HandleWrapper<mirror::Object> h_receiver(
|
|
hs.NewHandleWrapper(virtual_or_interface ? &receiver : &dummy));
|
|
DCHECK_EQ(caller->GetDexFile(), called_method.dex_file);
|
|
called = linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>(
|
|
self, called_method.dex_method_index, caller, invoke_type);
|
|
|
|
// Update .bss entry in oat file if any.
|
|
if (called != nullptr && called_method.dex_file->GetOatDexFile() != nullptr) {
|
|
const MethodBssMapping* mapping =
|
|
called_method.dex_file->GetOatDexFile()->GetMethodBssMapping();
|
|
if (mapping != nullptr) {
|
|
auto pp = std::partition_point(
|
|
mapping->begin(),
|
|
mapping->end(),
|
|
[called_method](const MethodBssMappingEntry& entry) {
|
|
return entry.method_index < called_method.dex_method_index;
|
|
});
|
|
if (pp != mapping->end() && pp->CoversIndex(called_method.dex_method_index)) {
|
|
size_t bss_offset = pp->GetBssOffset(called_method.dex_method_index,
|
|
static_cast<size_t>(kRuntimePointerSize));
|
|
DCHECK_ALIGNED(bss_offset, static_cast<size_t>(kRuntimePointerSize));
|
|
const OatFile* oat_file = called_method.dex_file->GetOatDexFile()->GetOatFile();
|
|
ArtMethod** method_entry = reinterpret_cast<ArtMethod**>(const_cast<uint8_t*>(
|
|
oat_file->BssBegin() + bss_offset));
|
|
DCHECK_GE(method_entry, oat_file->GetBssMethods().data());
|
|
DCHECK_LT(method_entry,
|
|
oat_file->GetBssMethods().data() + oat_file->GetBssMethods().size());
|
|
*method_entry = called;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
const void* code = nullptr;
|
|
if (LIKELY(!self->IsExceptionPending())) {
|
|
// Incompatible class change should have been handled in resolve method.
|
|
CHECK(!called->CheckIncompatibleClassChange(invoke_type))
|
|
<< called->PrettyMethod() << " " << invoke_type;
|
|
if (virtual_or_interface || invoke_type == kSuper) {
|
|
// Refine called method based on receiver for kVirtual/kInterface, and
|
|
// caller for kSuper.
|
|
ArtMethod* orig_called = called;
|
|
if (invoke_type == kVirtual) {
|
|
CHECK(receiver != nullptr) << invoke_type;
|
|
called = receiver->GetClass()->FindVirtualMethodForVirtual(called, kRuntimePointerSize);
|
|
} else if (invoke_type == kInterface) {
|
|
CHECK(receiver != nullptr) << invoke_type;
|
|
called = receiver->GetClass()->FindVirtualMethodForInterface(called, kRuntimePointerSize);
|
|
} else {
|
|
DCHECK_EQ(invoke_type, kSuper);
|
|
CHECK(caller != nullptr) << invoke_type;
|
|
StackHandleScope<2> hs(self);
|
|
Handle<mirror::DexCache> dex_cache(
|
|
hs.NewHandle(caller->GetDeclaringClass()->GetDexCache()));
|
|
Handle<mirror::ClassLoader> class_loader(
|
|
hs.NewHandle(caller->GetDeclaringClass()->GetClassLoader()));
|
|
// TODO Maybe put this into a mirror::Class function.
|
|
ObjPtr<mirror::Class> ref_class = linker->LookupResolvedType(
|
|
*dex_cache->GetDexFile(),
|
|
dex_cache->GetDexFile()->GetMethodId(called_method.dex_method_index).class_idx_,
|
|
dex_cache.Get(),
|
|
class_loader.Get());
|
|
if (ref_class->IsInterface()) {
|
|
called = ref_class->FindVirtualMethodForInterfaceSuper(called, kRuntimePointerSize);
|
|
} else {
|
|
called = caller->GetDeclaringClass()->GetSuperClass()->GetVTableEntry(
|
|
called->GetMethodIndex(), kRuntimePointerSize);
|
|
}
|
|
}
|
|
|
|
CHECK(called != nullptr) << orig_called->PrettyMethod() << " "
|
|
<< mirror::Object::PrettyTypeOf(receiver) << " "
|
|
<< invoke_type << " " << orig_called->GetVtableIndex();
|
|
}
|
|
|
|
// Ensure that the called method's class is initialized.
|
|
StackHandleScope<1> hs(soa.Self());
|
|
Handle<mirror::Class> called_class(hs.NewHandle(called->GetDeclaringClass()));
|
|
linker->EnsureInitialized(soa.Self(), called_class, true, true);
|
|
if (LIKELY(called_class->IsInitialized())) {
|
|
if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
|
|
// If we are single-stepping or the called method is deoptimized (by a
|
|
// breakpoint, for example), then we have to execute the called method
|
|
// with the interpreter.
|
|
code = GetQuickToInterpreterBridge();
|
|
} else if (UNLIKELY(Dbg::IsForcedInstrumentationNeededForResolution(self, caller))) {
|
|
// If the caller is deoptimized (by a breakpoint, for example), we have to
|
|
// continue its execution with interpreter when returning from the called
|
|
// method. Because we do not want to execute the called method with the
|
|
// interpreter, we wrap its execution into the instrumentation stubs.
|
|
// When the called method returns, it will execute the instrumentation
|
|
// exit hook that will determine the need of the interpreter with a call
|
|
// to Dbg::IsForcedInterpreterNeededForUpcall and deoptimize the stack if
|
|
// it is needed.
|
|
code = GetQuickInstrumentationEntryPoint();
|
|
} else {
|
|
code = called->GetEntryPointFromQuickCompiledCode();
|
|
}
|
|
} else if (called_class->IsInitializing()) {
|
|
if (UNLIKELY(Dbg::IsForcedInterpreterNeededForResolution(self, called))) {
|
|
// If we are single-stepping or the called method is deoptimized (by a
|
|
// breakpoint, for example), then we have to execute the called method
|
|
// with the interpreter.
|
|
code = GetQuickToInterpreterBridge();
|
|
} else if (invoke_type == kStatic) {
|
|
// Class is still initializing, go to oat and grab code (trampoline must be left in place
|
|
// until class is initialized to stop races between threads).
|
|
code = linker->GetQuickOatCodeFor(called);
|
|
} else {
|
|
// No trampoline for non-static methods.
|
|
code = called->GetEntryPointFromQuickCompiledCode();
|
|
}
|
|
} else {
|
|
DCHECK(called_class->IsErroneous());
|
|
}
|
|
}
|
|
CHECK_EQ(code == nullptr, self->IsExceptionPending());
|
|
// Fixup any locally saved objects may have moved during a GC.
|
|
visitor.FixupReferences();
|
|
// Place called method in callee-save frame to be placed as first argument to quick method.
|
|
*sp = called;
|
|
|
|
return code;
|
|
}
|
|
|
|
/*
|
|
* This class uses a couple of observations to unite the different calling conventions through
|
|
* a few constants.
|
|
*
|
|
* 1) Number of registers used for passing is normally even, so counting down has no penalty for
|
|
* possible alignment.
|
|
* 2) Known 64b architectures store 8B units on the stack, both for integral and floating point
|
|
* types, so using uintptr_t is OK. Also means that we can use kRegistersNeededX to denote
|
|
* when we have to split things
|
|
* 3) The only soft-float, Arm, is 32b, so no widening needs to be taken into account for floats
|
|
* and we can use Int handling directly.
|
|
* 4) Only 64b architectures widen, and their stack is aligned 8B anyways, so no padding code
|
|
* necessary when widening. Also, widening of Ints will take place implicitly, and the
|
|
* extension should be compatible with Aarch64, which mandates copying the available bits
|
|
* into LSB and leaving the rest unspecified.
|
|
* 5) Aligning longs and doubles is necessary on arm only, and it's the same in registers and on
|
|
* the stack.
|
|
* 6) There is only little endian.
|
|
*
|
|
*
|
|
* Actual work is supposed to be done in a delegate of the template type. The interface is as
|
|
* follows:
|
|
*
|
|
* void PushGpr(uintptr_t): Add a value for the next GPR
|
|
*
|
|
* void PushFpr4(float): Add a value for the next FPR of size 32b. Is only called if we need
|
|
* padding, that is, think the architecture is 32b and aligns 64b.
|
|
*
|
|
* void PushFpr8(uint64_t): Push a double. We _will_ call this on 32b, it's the callee's job to
|
|
* split this if necessary. The current state will have aligned, if
|
|
* necessary.
|
|
*
|
|
* void PushStack(uintptr_t): Push a value to the stack.
|
|
*
|
|
* uintptr_t PushHandleScope(mirror::Object* ref): Add a reference to the HandleScope. This _will_ have nullptr,
|
|
* as this might be important for null initialization.
|
|
* Must return the jobject, that is, the reference to the
|
|
* entry in the HandleScope (nullptr if necessary).
|
|
*
|
|
*/
|
|
template<class T> class BuildNativeCallFrameStateMachine {
|
|
public:
|
|
#if defined(__arm__)
|
|
// TODO: These are all dummy values!
|
|
static constexpr bool kNativeSoftFloatAbi = true;
|
|
static constexpr size_t kNumNativeGprArgs = 4; // 4 arguments passed in GPRs, r0-r3
|
|
static constexpr size_t kNumNativeFprArgs = 0; // 0 arguments passed in FPRs.
|
|
|
|
static constexpr size_t kRegistersNeededForLong = 2;
|
|
static constexpr size_t kRegistersNeededForDouble = 2;
|
|
static constexpr bool kMultiRegistersAligned = true;
|
|
static constexpr bool kMultiFPRegistersWidened = false;
|
|
static constexpr bool kMultiGPRegistersWidened = false;
|
|
static constexpr bool kAlignLongOnStack = true;
|
|
static constexpr bool kAlignDoubleOnStack = true;
|
|
#elif defined(__aarch64__)
|
|
static constexpr bool kNativeSoftFloatAbi = false; // This is a hard float ABI.
|
|
static constexpr size_t kNumNativeGprArgs = 8; // 6 arguments passed in GPRs.
|
|
static constexpr size_t kNumNativeFprArgs = 8; // 8 arguments passed in FPRs.
|
|
|
|
static constexpr size_t kRegistersNeededForLong = 1;
|
|
static constexpr size_t kRegistersNeededForDouble = 1;
|
|
static constexpr bool kMultiRegistersAligned = false;
|
|
static constexpr bool kMultiFPRegistersWidened = false;
|
|
static constexpr bool kMultiGPRegistersWidened = false;
|
|
static constexpr bool kAlignLongOnStack = false;
|
|
static constexpr bool kAlignDoubleOnStack = false;
|
|
#elif defined(__mips__) && !defined(__LP64__)
|
|
static constexpr bool kNativeSoftFloatAbi = true; // This is a hard float ABI.
|
|
static constexpr size_t kNumNativeGprArgs = 4; // 4 arguments passed in GPRs.
|
|
static constexpr size_t kNumNativeFprArgs = 0; // 0 arguments passed in FPRs.
|
|
|
|
static constexpr size_t kRegistersNeededForLong = 2;
|
|
static constexpr size_t kRegistersNeededForDouble = 2;
|
|
static constexpr bool kMultiRegistersAligned = true;
|
|
static constexpr bool kMultiFPRegistersWidened = true;
|
|
static constexpr bool kMultiGPRegistersWidened = false;
|
|
static constexpr bool kAlignLongOnStack = true;
|
|
static constexpr bool kAlignDoubleOnStack = true;
|
|
#elif defined(__mips__) && defined(__LP64__)
|
|
// Let the code prepare GPRs only and we will load the FPRs with same data.
|
|
static constexpr bool kNativeSoftFloatAbi = true;
|
|
static constexpr size_t kNumNativeGprArgs = 8;
|
|
static constexpr size_t kNumNativeFprArgs = 0;
|
|
|
|
static constexpr size_t kRegistersNeededForLong = 1;
|
|
static constexpr size_t kRegistersNeededForDouble = 1;
|
|
static constexpr bool kMultiRegistersAligned = false;
|
|
static constexpr bool kMultiFPRegistersWidened = false;
|
|
static constexpr bool kMultiGPRegistersWidened = true;
|
|
static constexpr bool kAlignLongOnStack = false;
|
|
static constexpr bool kAlignDoubleOnStack = false;
|
|
#elif defined(__i386__)
|
|
// TODO: Check these!
|
|
static constexpr bool kNativeSoftFloatAbi = false; // Not using int registers for fp
|
|
static constexpr size_t kNumNativeGprArgs = 0; // 6 arguments passed in GPRs.
|
|
static constexpr size_t kNumNativeFprArgs = 0; // 8 arguments passed in FPRs.
|
|
|
|
static constexpr size_t kRegistersNeededForLong = 2;
|
|
static constexpr size_t kRegistersNeededForDouble = 2;
|
|
static constexpr bool kMultiRegistersAligned = false; // x86 not using regs, anyways
|
|
static constexpr bool kMultiFPRegistersWidened = false;
|
|
static constexpr bool kMultiGPRegistersWidened = false;
|
|
static constexpr bool kAlignLongOnStack = false;
|
|
static constexpr bool kAlignDoubleOnStack = false;
|
|
#elif defined(__x86_64__)
|
|
static constexpr bool kNativeSoftFloatAbi = false; // This is a hard float ABI.
|
|
static constexpr size_t kNumNativeGprArgs = 6; // 6 arguments passed in GPRs.
|
|
static constexpr size_t kNumNativeFprArgs = 8; // 8 arguments passed in FPRs.
|
|
|
|
static constexpr size_t kRegistersNeededForLong = 1;
|
|
static constexpr size_t kRegistersNeededForDouble = 1;
|
|
static constexpr bool kMultiRegistersAligned = false;
|
|
static constexpr bool kMultiFPRegistersWidened = false;
|
|
static constexpr bool kMultiGPRegistersWidened = false;
|
|
static constexpr bool kAlignLongOnStack = false;
|
|
static constexpr bool kAlignDoubleOnStack = false;
|
|
#else
|
|
#error "Unsupported architecture"
|
|
#endif
|
|
|
|
public:
|
|
explicit BuildNativeCallFrameStateMachine(T* delegate)
|
|
: gpr_index_(kNumNativeGprArgs),
|
|
fpr_index_(kNumNativeFprArgs),
|
|
stack_entries_(0),
|
|
delegate_(delegate) {
|
|
// For register alignment, we want to assume that counters (gpr_index_, fpr_index_) are even iff
|
|
// the next register is even; counting down is just to make the compiler happy...
|
|
static_assert(kNumNativeGprArgs % 2 == 0U, "Number of native GPR arguments not even");
|
|
static_assert(kNumNativeFprArgs % 2 == 0U, "Number of native FPR arguments not even");
|
|
}
|
|
|
|
virtual ~BuildNativeCallFrameStateMachine() {}
|
|
|
|
bool HavePointerGpr() const {
|
|
return gpr_index_ > 0;
|
|
}
|
|
|
|
void AdvancePointer(const void* val) {
|
|
if (HavePointerGpr()) {
|
|
gpr_index_--;
|
|
PushGpr(reinterpret_cast<uintptr_t>(val));
|
|
} else {
|
|
stack_entries_++; // TODO: have a field for pointer length as multiple of 32b
|
|
PushStack(reinterpret_cast<uintptr_t>(val));
|
|
gpr_index_ = 0;
|
|
}
|
|
}
|
|
|
|
bool HaveHandleScopeGpr() const {
|
|
return gpr_index_ > 0;
|
|
}
|
|
|
|
void AdvanceHandleScope(mirror::Object* ptr) REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
uintptr_t handle = PushHandle(ptr);
|
|
if (HaveHandleScopeGpr()) {
|
|
gpr_index_--;
|
|
PushGpr(handle);
|
|
} else {
|
|
stack_entries_++;
|
|
PushStack(handle);
|
|
gpr_index_ = 0;
|
|
}
|
|
}
|
|
|
|
bool HaveIntGpr() const {
|
|
return gpr_index_ > 0;
|
|
}
|
|
|
|
void AdvanceInt(uint32_t val) {
|
|
if (HaveIntGpr()) {
|
|
gpr_index_--;
|
|
if (kMultiGPRegistersWidened) {
|
|
DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
|
|
PushGpr(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
|
|
} else {
|
|
PushGpr(val);
|
|
}
|
|
} else {
|
|
stack_entries_++;
|
|
if (kMultiGPRegistersWidened) {
|
|
DCHECK_EQ(sizeof(uintptr_t), sizeof(int64_t));
|
|
PushStack(static_cast<int64_t>(bit_cast<int32_t, uint32_t>(val)));
|
|
} else {
|
|
PushStack(val);
|
|
}
|
|
gpr_index_ = 0;
|
|
}
|
|
}
|
|
|
|
bool HaveLongGpr() const {
|
|
return gpr_index_ >= kRegistersNeededForLong + (LongGprNeedsPadding() ? 1 : 0);
|
|
}
|
|
|
|
bool LongGprNeedsPadding() const {
|
|
return kRegistersNeededForLong > 1 && // only pad when using multiple registers
|
|
kAlignLongOnStack && // and when it needs alignment
|
|
(gpr_index_ & 1) == 1; // counter is odd, see constructor
|
|
}
|
|
|
|
bool LongStackNeedsPadding() const {
|
|
return kRegistersNeededForLong > 1 && // only pad when using multiple registers
|
|
kAlignLongOnStack && // and when it needs 8B alignment
|
|
(stack_entries_ & 1) == 1; // counter is odd
|
|
}
|
|
|
|
void AdvanceLong(uint64_t val) {
|
|
if (HaveLongGpr()) {
|
|
if (LongGprNeedsPadding()) {
|
|
PushGpr(0);
|
|
gpr_index_--;
|
|
}
|
|
if (kRegistersNeededForLong == 1) {
|
|
PushGpr(static_cast<uintptr_t>(val));
|
|
} else {
|
|
PushGpr(static_cast<uintptr_t>(val & 0xFFFFFFFF));
|
|
PushGpr(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
|
|
}
|
|
gpr_index_ -= kRegistersNeededForLong;
|
|
} else {
|
|
if (LongStackNeedsPadding()) {
|
|
PushStack(0);
|
|
stack_entries_++;
|
|
}
|
|
if (kRegistersNeededForLong == 1) {
|
|
PushStack(static_cast<uintptr_t>(val));
|
|
stack_entries_++;
|
|
} else {
|
|
PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
|
|
PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
|
|
stack_entries_ += 2;
|
|
}
|
|
gpr_index_ = 0;
|
|
}
|
|
}
|
|
|
|
bool HaveFloatFpr() const {
|
|
return fpr_index_ > 0;
|
|
}
|
|
|
|
void AdvanceFloat(float val) {
|
|
if (kNativeSoftFloatAbi) {
|
|
AdvanceInt(bit_cast<uint32_t, float>(val));
|
|
} else {
|
|
if (HaveFloatFpr()) {
|
|
fpr_index_--;
|
|
if (kRegistersNeededForDouble == 1) {
|
|
if (kMultiFPRegistersWidened) {
|
|
PushFpr8(bit_cast<uint64_t, double>(val));
|
|
} else {
|
|
// No widening, just use the bits.
|
|
PushFpr8(static_cast<uint64_t>(bit_cast<uint32_t, float>(val)));
|
|
}
|
|
} else {
|
|
PushFpr4(val);
|
|
}
|
|
} else {
|
|
stack_entries_++;
|
|
if (kRegistersNeededForDouble == 1 && kMultiFPRegistersWidened) {
|
|
// Need to widen before storing: Note the "double" in the template instantiation.
|
|
// Note: We need to jump through those hoops to make the compiler happy.
|
|
DCHECK_EQ(sizeof(uintptr_t), sizeof(uint64_t));
|
|
PushStack(static_cast<uintptr_t>(bit_cast<uint64_t, double>(val)));
|
|
} else {
|
|
PushStack(static_cast<uintptr_t>(bit_cast<uint32_t, float>(val)));
|
|
}
|
|
fpr_index_ = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool HaveDoubleFpr() const {
|
|
return fpr_index_ >= kRegistersNeededForDouble + (DoubleFprNeedsPadding() ? 1 : 0);
|
|
}
|
|
|
|
bool DoubleFprNeedsPadding() const {
|
|
return kRegistersNeededForDouble > 1 && // only pad when using multiple registers
|
|
kAlignDoubleOnStack && // and when it needs alignment
|
|
(fpr_index_ & 1) == 1; // counter is odd, see constructor
|
|
}
|
|
|
|
bool DoubleStackNeedsPadding() const {
|
|
return kRegistersNeededForDouble > 1 && // only pad when using multiple registers
|
|
kAlignDoubleOnStack && // and when it needs 8B alignment
|
|
(stack_entries_ & 1) == 1; // counter is odd
|
|
}
|
|
|
|
void AdvanceDouble(uint64_t val) {
|
|
if (kNativeSoftFloatAbi) {
|
|
AdvanceLong(val);
|
|
} else {
|
|
if (HaveDoubleFpr()) {
|
|
if (DoubleFprNeedsPadding()) {
|
|
PushFpr4(0);
|
|
fpr_index_--;
|
|
}
|
|
PushFpr8(val);
|
|
fpr_index_ -= kRegistersNeededForDouble;
|
|
} else {
|
|
if (DoubleStackNeedsPadding()) {
|
|
PushStack(0);
|
|
stack_entries_++;
|
|
}
|
|
if (kRegistersNeededForDouble == 1) {
|
|
PushStack(static_cast<uintptr_t>(val));
|
|
stack_entries_++;
|
|
} else {
|
|
PushStack(static_cast<uintptr_t>(val & 0xFFFFFFFF));
|
|
PushStack(static_cast<uintptr_t>((val >> 32) & 0xFFFFFFFF));
|
|
stack_entries_ += 2;
|
|
}
|
|
fpr_index_ = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
uint32_t GetStackEntries() const {
|
|
return stack_entries_;
|
|
}
|
|
|
|
uint32_t GetNumberOfUsedGprs() const {
|
|
return kNumNativeGprArgs - gpr_index_;
|
|
}
|
|
|
|
uint32_t GetNumberOfUsedFprs() const {
|
|
return kNumNativeFprArgs - fpr_index_;
|
|
}
|
|
|
|
private:
|
|
void PushGpr(uintptr_t val) {
|
|
delegate_->PushGpr(val);
|
|
}
|
|
void PushFpr4(float val) {
|
|
delegate_->PushFpr4(val);
|
|
}
|
|
void PushFpr8(uint64_t val) {
|
|
delegate_->PushFpr8(val);
|
|
}
|
|
void PushStack(uintptr_t val) {
|
|
delegate_->PushStack(val);
|
|
}
|
|
uintptr_t PushHandle(mirror::Object* ref) REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
return delegate_->PushHandle(ref);
|
|
}
|
|
|
|
uint32_t gpr_index_; // Number of free GPRs
|
|
uint32_t fpr_index_; // Number of free FPRs
|
|
uint32_t stack_entries_; // Stack entries are in multiples of 32b, as floats are usually not
|
|
// extended
|
|
T* const delegate_; // What Push implementation gets called
|
|
};
|
|
|
|
// Computes the sizes of register stacks and call stack area. Handling of references can be extended
|
|
// in subclasses.
|
|
//
|
|
// To handle native pointers, use "L" in the shorty for an object reference, which simulates
|
|
// them with handles.
|
|
class ComputeNativeCallFrameSize {
|
|
public:
|
|
ComputeNativeCallFrameSize() : num_stack_entries_(0) {}
|
|
|
|
virtual ~ComputeNativeCallFrameSize() {}
|
|
|
|
uint32_t GetStackSize() const {
|
|
return num_stack_entries_ * sizeof(uintptr_t);
|
|
}
|
|
|
|
uint8_t* LayoutCallStack(uint8_t* sp8) const {
|
|
sp8 -= GetStackSize();
|
|
// Align by kStackAlignment.
|
|
sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
|
|
return sp8;
|
|
}
|
|
|
|
uint8_t* LayoutCallRegisterStacks(uint8_t* sp8, uintptr_t** start_gpr, uint32_t** start_fpr)
|
|
const {
|
|
// Assumption is OK right now, as we have soft-float arm
|
|
size_t fregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeFprArgs;
|
|
sp8 -= fregs * sizeof(uintptr_t);
|
|
*start_fpr = reinterpret_cast<uint32_t*>(sp8);
|
|
size_t iregs = BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>::kNumNativeGprArgs;
|
|
sp8 -= iregs * sizeof(uintptr_t);
|
|
*start_gpr = reinterpret_cast<uintptr_t*>(sp8);
|
|
return sp8;
|
|
}
|
|
|
|
uint8_t* LayoutNativeCall(uint8_t* sp8, uintptr_t** start_stack, uintptr_t** start_gpr,
|
|
uint32_t** start_fpr) const {
|
|
// Native call stack.
|
|
sp8 = LayoutCallStack(sp8);
|
|
*start_stack = reinterpret_cast<uintptr_t*>(sp8);
|
|
|
|
// Put fprs and gprs below.
|
|
sp8 = LayoutCallRegisterStacks(sp8, start_gpr, start_fpr);
|
|
|
|
// Return the new bottom.
|
|
return sp8;
|
|
}
|
|
|
|
virtual void WalkHeader(
|
|
BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm ATTRIBUTE_UNUSED)
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
}
|
|
|
|
void Walk(const char* shorty, uint32_t shorty_len) REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize> sm(this);
|
|
|
|
WalkHeader(&sm);
|
|
|
|
for (uint32_t i = 1; i < shorty_len; ++i) {
|
|
Primitive::Type cur_type_ = Primitive::GetType(shorty[i]);
|
|
switch (cur_type_) {
|
|
case Primitive::kPrimNot:
|
|
// TODO: fix abuse of mirror types.
|
|
sm.AdvanceHandleScope(
|
|
reinterpret_cast<mirror::Object*>(0x12345678));
|
|
break;
|
|
|
|
case Primitive::kPrimBoolean:
|
|
case Primitive::kPrimByte:
|
|
case Primitive::kPrimChar:
|
|
case Primitive::kPrimShort:
|
|
case Primitive::kPrimInt:
|
|
sm.AdvanceInt(0);
|
|
break;
|
|
case Primitive::kPrimFloat:
|
|
sm.AdvanceFloat(0);
|
|
break;
|
|
case Primitive::kPrimDouble:
|
|
sm.AdvanceDouble(0);
|
|
break;
|
|
case Primitive::kPrimLong:
|
|
sm.AdvanceLong(0);
|
|
break;
|
|
default:
|
|
LOG(FATAL) << "Unexpected type: " << cur_type_ << " in " << shorty;
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
num_stack_entries_ = sm.GetStackEntries();
|
|
}
|
|
|
|
void PushGpr(uintptr_t /* val */) {
|
|
// not optimizing registers, yet
|
|
}
|
|
|
|
void PushFpr4(float /* val */) {
|
|
// not optimizing registers, yet
|
|
}
|
|
|
|
void PushFpr8(uint64_t /* val */) {
|
|
// not optimizing registers, yet
|
|
}
|
|
|
|
void PushStack(uintptr_t /* val */) {
|
|
// counting is already done in the superclass
|
|
}
|
|
|
|
virtual uintptr_t PushHandle(mirror::Object* /* ptr */) {
|
|
return reinterpret_cast<uintptr_t>(nullptr);
|
|
}
|
|
|
|
protected:
|
|
uint32_t num_stack_entries_;
|
|
};
|
|
|
|
class ComputeGenericJniFrameSize FINAL : public ComputeNativeCallFrameSize {
|
|
public:
|
|
explicit ComputeGenericJniFrameSize(bool critical_native)
|
|
: num_handle_scope_references_(0), critical_native_(critical_native) {}
|
|
|
|
// Lays out the callee-save frame. Assumes that the incorrect frame corresponding to RefsAndArgs
|
|
// is at *m = sp. Will update to point to the bottom of the save frame.
|
|
//
|
|
// Note: assumes ComputeAll() has been run before.
|
|
void LayoutCalleeSaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
ArtMethod* method = **m;
|
|
|
|
DCHECK_EQ(Runtime::Current()->GetClassLinker()->GetImagePointerSize(), kRuntimePointerSize);
|
|
|
|
uint8_t* sp8 = reinterpret_cast<uint8_t*>(sp);
|
|
|
|
// First, fix up the layout of the callee-save frame.
|
|
// We have to squeeze in the HandleScope, and relocate the method pointer.
|
|
|
|
// "Free" the slot for the method.
|
|
sp8 += sizeof(void*); // In the callee-save frame we use a full pointer.
|
|
|
|
// Under the callee saves put handle scope and new method stack reference.
|
|
size_t handle_scope_size = HandleScope::SizeOf(num_handle_scope_references_);
|
|
size_t scope_and_method = handle_scope_size + sizeof(ArtMethod*);
|
|
|
|
sp8 -= scope_and_method;
|
|
// Align by kStackAlignment.
|
|
sp8 = reinterpret_cast<uint8_t*>(RoundDown(reinterpret_cast<uintptr_t>(sp8), kStackAlignment));
|
|
|
|
uint8_t* sp8_table = sp8 + sizeof(ArtMethod*);
|
|
*handle_scope = HandleScope::Create(sp8_table, self->GetTopHandleScope(),
|
|
num_handle_scope_references_);
|
|
|
|
// Add a slot for the method pointer, and fill it. Fix the pointer-pointer given to us.
|
|
uint8_t* method_pointer = sp8;
|
|
auto** new_method_ref = reinterpret_cast<ArtMethod**>(method_pointer);
|
|
*new_method_ref = method;
|
|
*m = new_method_ref;
|
|
}
|
|
|
|
// Adds space for the cookie. Note: may leave stack unaligned.
|
|
void LayoutCookie(uint8_t** sp) const {
|
|
// Reference cookie and padding
|
|
*sp -= 8;
|
|
}
|
|
|
|
// Re-layout the callee-save frame (insert a handle-scope). Then add space for the cookie.
|
|
// Returns the new bottom. Note: this may be unaligned.
|
|
uint8_t* LayoutJNISaveFrame(Thread* self, ArtMethod*** m, void* sp, HandleScope** handle_scope)
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
// First, fix up the layout of the callee-save frame.
|
|
// We have to squeeze in the HandleScope, and relocate the method pointer.
|
|
LayoutCalleeSaveFrame(self, m, sp, handle_scope);
|
|
|
|
// The bottom of the callee-save frame is now where the method is, *m.
|
|
uint8_t* sp8 = reinterpret_cast<uint8_t*>(*m);
|
|
|
|
// Add space for cookie.
|
|
LayoutCookie(&sp8);
|
|
|
|
return sp8;
|
|
}
|
|
|
|
// WARNING: After this, *sp won't be pointing to the method anymore!
|
|
uint8_t* ComputeLayout(Thread* self, ArtMethod*** m, const char* shorty, uint32_t shorty_len,
|
|
HandleScope** handle_scope, uintptr_t** start_stack, uintptr_t** start_gpr,
|
|
uint32_t** start_fpr)
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
Walk(shorty, shorty_len);
|
|
|
|
// JNI part.
|
|
uint8_t* sp8 = LayoutJNISaveFrame(self, m, reinterpret_cast<void*>(*m), handle_scope);
|
|
|
|
sp8 = LayoutNativeCall(sp8, start_stack, start_gpr, start_fpr);
|
|
|
|
// Return the new bottom.
|
|
return sp8;
|
|
}
|
|
|
|
uintptr_t PushHandle(mirror::Object* /* ptr */) OVERRIDE;
|
|
|
|
// Add JNIEnv* and jobj/jclass before the shorty-derived elements.
|
|
void WalkHeader(BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) OVERRIDE
|
|
REQUIRES_SHARED(Locks::mutator_lock_);
|
|
|
|
private:
|
|
uint32_t num_handle_scope_references_;
|
|
const bool critical_native_;
|
|
};
|
|
|
|
uintptr_t ComputeGenericJniFrameSize::PushHandle(mirror::Object* /* ptr */) {
|
|
num_handle_scope_references_++;
|
|
return reinterpret_cast<uintptr_t>(nullptr);
|
|
}
|
|
|
|
void ComputeGenericJniFrameSize::WalkHeader(
|
|
BuildNativeCallFrameStateMachine<ComputeNativeCallFrameSize>* sm) {
|
|
// First 2 parameters are always excluded for @CriticalNative.
|
|
if (UNLIKELY(critical_native_)) {
|
|
return;
|
|
}
|
|
|
|
// JNIEnv
|
|
sm->AdvancePointer(nullptr);
|
|
|
|
// Class object or this as first argument
|
|
sm->AdvanceHandleScope(reinterpret_cast<mirror::Object*>(0x12345678));
|
|
}
|
|
|
|
// Class to push values to three separate regions. Used to fill the native call part. Adheres to
|
|
// the template requirements of BuildGenericJniFrameStateMachine.
|
|
class FillNativeCall {
|
|
public:
|
|
FillNativeCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) :
|
|
cur_gpr_reg_(gpr_regs), cur_fpr_reg_(fpr_regs), cur_stack_arg_(stack_args) {}
|
|
|
|
virtual ~FillNativeCall() {}
|
|
|
|
void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args) {
|
|
cur_gpr_reg_ = gpr_regs;
|
|
cur_fpr_reg_ = fpr_regs;
|
|
cur_stack_arg_ = stack_args;
|
|
}
|
|
|
|
void PushGpr(uintptr_t val) {
|
|
*cur_gpr_reg_ = val;
|
|
cur_gpr_reg_++;
|
|
}
|
|
|
|
void PushFpr4(float val) {
|
|
*cur_fpr_reg_ = val;
|
|
cur_fpr_reg_++;
|
|
}
|
|
|
|
void PushFpr8(uint64_t val) {
|
|
uint64_t* tmp = reinterpret_cast<uint64_t*>(cur_fpr_reg_);
|
|
*tmp = val;
|
|
cur_fpr_reg_ += 2;
|
|
}
|
|
|
|
void PushStack(uintptr_t val) {
|
|
*cur_stack_arg_ = val;
|
|
cur_stack_arg_++;
|
|
}
|
|
|
|
virtual uintptr_t PushHandle(mirror::Object*) REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
LOG(FATAL) << "(Non-JNI) Native call does not use handles.";
|
|
UNREACHABLE();
|
|
}
|
|
|
|
private:
|
|
uintptr_t* cur_gpr_reg_;
|
|
uint32_t* cur_fpr_reg_;
|
|
uintptr_t* cur_stack_arg_;
|
|
};
|
|
|
|
// Visits arguments on the stack placing them into a region lower down the stack for the benefit
|
|
// of transitioning into native code.
|
|
class BuildGenericJniFrameVisitor FINAL : public QuickArgumentVisitor {
|
|
public:
|
|
BuildGenericJniFrameVisitor(Thread* self,
|
|
bool is_static,
|
|
bool critical_native,
|
|
const char* shorty,
|
|
uint32_t shorty_len,
|
|
ArtMethod*** sp)
|
|
: QuickArgumentVisitor(*sp, is_static, shorty, shorty_len),
|
|
jni_call_(nullptr, nullptr, nullptr, nullptr, critical_native),
|
|
sm_(&jni_call_) {
|
|
ComputeGenericJniFrameSize fsc(critical_native);
|
|
uintptr_t* start_gpr_reg;
|
|
uint32_t* start_fpr_reg;
|
|
uintptr_t* start_stack_arg;
|
|
bottom_of_used_area_ = fsc.ComputeLayout(self, sp, shorty, shorty_len,
|
|
&handle_scope_,
|
|
&start_stack_arg,
|
|
&start_gpr_reg, &start_fpr_reg);
|
|
|
|
jni_call_.Reset(start_gpr_reg, start_fpr_reg, start_stack_arg, handle_scope_);
|
|
|
|
// First 2 parameters are always excluded for CriticalNative methods.
|
|
if (LIKELY(!critical_native)) {
|
|
// jni environment is always first argument
|
|
sm_.AdvancePointer(self->GetJniEnv());
|
|
|
|
if (is_static) {
|
|
sm_.AdvanceHandleScope((**sp)->GetDeclaringClass());
|
|
} // else "this" reference is already handled by QuickArgumentVisitor.
|
|
}
|
|
}
|
|
|
|
void Visit() REQUIRES_SHARED(Locks::mutator_lock_) OVERRIDE;
|
|
|
|
void FinalizeHandleScope(Thread* self) REQUIRES_SHARED(Locks::mutator_lock_);
|
|
|
|
StackReference<mirror::Object>* GetFirstHandleScopeEntry() {
|
|
return handle_scope_->GetHandle(0).GetReference();
|
|
}
|
|
|
|
jobject GetFirstHandleScopeJObject() const REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
return handle_scope_->GetHandle(0).ToJObject();
|
|
}
|
|
|
|
void* GetBottomOfUsedArea() const {
|
|
return bottom_of_used_area_;
|
|
}
|
|
|
|
private:
|
|
// A class to fill a JNI call. Adds reference/handle-scope management to FillNativeCall.
|
|
class FillJniCall FINAL : public FillNativeCall {
|
|
public:
|
|
FillJniCall(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args,
|
|
HandleScope* handle_scope, bool critical_native)
|
|
: FillNativeCall(gpr_regs, fpr_regs, stack_args),
|
|
handle_scope_(handle_scope),
|
|
cur_entry_(0),
|
|
critical_native_(critical_native) {}
|
|
|
|
uintptr_t PushHandle(mirror::Object* ref) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_);
|
|
|
|
void Reset(uintptr_t* gpr_regs, uint32_t* fpr_regs, uintptr_t* stack_args, HandleScope* scope) {
|
|
FillNativeCall::Reset(gpr_regs, fpr_regs, stack_args);
|
|
handle_scope_ = scope;
|
|
cur_entry_ = 0U;
|
|
}
|
|
|
|
void ResetRemainingScopeSlots() REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
// Initialize padding entries.
|
|
size_t expected_slots = handle_scope_->NumberOfReferences();
|
|
while (cur_entry_ < expected_slots) {
|
|
handle_scope_->GetMutableHandle(cur_entry_++).Assign(nullptr);
|
|
}
|
|
|
|
if (!critical_native_) {
|
|
// Non-critical natives have at least the self class (jclass) or this (jobject).
|
|
DCHECK_NE(cur_entry_, 0U);
|
|
}
|
|
}
|
|
|
|
bool CriticalNative() const {
|
|
return critical_native_;
|
|
}
|
|
|
|
private:
|
|
HandleScope* handle_scope_;
|
|
size_t cur_entry_;
|
|
const bool critical_native_;
|
|
};
|
|
|
|
HandleScope* handle_scope_;
|
|
FillJniCall jni_call_;
|
|
void* bottom_of_used_area_;
|
|
|
|
BuildNativeCallFrameStateMachine<FillJniCall> sm_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(BuildGenericJniFrameVisitor);
|
|
};
|
|
|
|
uintptr_t BuildGenericJniFrameVisitor::FillJniCall::PushHandle(mirror::Object* ref) {
|
|
uintptr_t tmp;
|
|
MutableHandle<mirror::Object> h = handle_scope_->GetMutableHandle(cur_entry_);
|
|
h.Assign(ref);
|
|
tmp = reinterpret_cast<uintptr_t>(h.ToJObject());
|
|
cur_entry_++;
|
|
return tmp;
|
|
}
|
|
|
|
void BuildGenericJniFrameVisitor::Visit() {
|
|
Primitive::Type type = GetParamPrimitiveType();
|
|
switch (type) {
|
|
case Primitive::kPrimLong: {
|
|
jlong long_arg;
|
|
if (IsSplitLongOrDouble()) {
|
|
long_arg = ReadSplitLongParam();
|
|
} else {
|
|
long_arg = *reinterpret_cast<jlong*>(GetParamAddress());
|
|
}
|
|
sm_.AdvanceLong(long_arg);
|
|
break;
|
|
}
|
|
case Primitive::kPrimDouble: {
|
|
uint64_t double_arg;
|
|
if (IsSplitLongOrDouble()) {
|
|
// Read into union so that we don't case to a double.
|
|
double_arg = ReadSplitLongParam();
|
|
} else {
|
|
double_arg = *reinterpret_cast<uint64_t*>(GetParamAddress());
|
|
}
|
|
sm_.AdvanceDouble(double_arg);
|
|
break;
|
|
}
|
|
case Primitive::kPrimNot: {
|
|
StackReference<mirror::Object>* stack_ref =
|
|
reinterpret_cast<StackReference<mirror::Object>*>(GetParamAddress());
|
|
sm_.AdvanceHandleScope(stack_ref->AsMirrorPtr());
|
|
break;
|
|
}
|
|
case Primitive::kPrimFloat:
|
|
sm_.AdvanceFloat(*reinterpret_cast<float*>(GetParamAddress()));
|
|
break;
|
|
case Primitive::kPrimBoolean: // Fall-through.
|
|
case Primitive::kPrimByte: // Fall-through.
|
|
case Primitive::kPrimChar: // Fall-through.
|
|
case Primitive::kPrimShort: // Fall-through.
|
|
case Primitive::kPrimInt: // Fall-through.
|
|
sm_.AdvanceInt(*reinterpret_cast<jint*>(GetParamAddress()));
|
|
break;
|
|
case Primitive::kPrimVoid:
|
|
LOG(FATAL) << "UNREACHABLE";
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
void BuildGenericJniFrameVisitor::FinalizeHandleScope(Thread* self) {
|
|
// Clear out rest of the scope.
|
|
jni_call_.ResetRemainingScopeSlots();
|
|
if (!jni_call_.CriticalNative()) {
|
|
// Install HandleScope.
|
|
self->PushHandleScope(handle_scope_);
|
|
}
|
|
}
|
|
|
|
#if defined(__arm__) || defined(__aarch64__)
|
|
extern "C" const void* artFindNativeMethod();
|
|
#else
|
|
extern "C" const void* artFindNativeMethod(Thread* self);
|
|
#endif
|
|
|
|
static uint64_t artQuickGenericJniEndJNIRef(Thread* self,
|
|
uint32_t cookie,
|
|
bool fast_native ATTRIBUTE_UNUSED,
|
|
jobject l,
|
|
jobject lock) {
|
|
// TODO: add entrypoints for @FastNative returning objects.
|
|
if (lock != nullptr) {
|
|
return reinterpret_cast<uint64_t>(JniMethodEndWithReferenceSynchronized(l, cookie, lock, self));
|
|
} else {
|
|
return reinterpret_cast<uint64_t>(JniMethodEndWithReference(l, cookie, self));
|
|
}
|
|
}
|
|
|
|
static void artQuickGenericJniEndJNINonRef(Thread* self,
|
|
uint32_t cookie,
|
|
bool fast_native,
|
|
jobject lock) {
|
|
if (lock != nullptr) {
|
|
JniMethodEndSynchronized(cookie, lock, self);
|
|
// Ignore "fast_native" here because synchronized functions aren't very fast.
|
|
} else {
|
|
if (UNLIKELY(fast_native)) {
|
|
JniMethodFastEnd(cookie, self);
|
|
} else {
|
|
JniMethodEnd(cookie, self);
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Initializes an alloca region assumed to be directly below sp for a native call:
|
|
* Create a HandleScope and call stack and fill a mini stack with values to be pushed to registers.
|
|
* The final element on the stack is a pointer to the native code.
|
|
*
|
|
* On entry, the stack has a standard callee-save frame above sp, and an alloca below it.
|
|
* We need to fix this, as the handle scope needs to go into the callee-save frame.
|
|
*
|
|
* The return of this function denotes:
|
|
* 1) How many bytes of the alloca can be released, if the value is non-negative.
|
|
* 2) An error, if the value is negative.
|
|
*/
|
|
extern "C" TwoWordReturn artQuickGenericJniTrampoline(Thread* self, ArtMethod** sp)
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
ArtMethod* called = *sp;
|
|
DCHECK(called->IsNative()) << called->PrettyMethod(true);
|
|
// Fix up a callee-save frame at the bottom of the stack (at `*sp`,
|
|
// above the alloca region) while we check for optimization
|
|
// annotations, thus allowing stack walking until the completion of
|
|
// the JNI frame creation.
|
|
//
|
|
// Note however that the Generic JNI trampoline does not expect
|
|
// exception being thrown at that stage.
|
|
*sp = Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs);
|
|
self->SetTopOfStack(sp);
|
|
uint32_t shorty_len = 0;
|
|
const char* shorty = called->GetShorty(&shorty_len);
|
|
// Optimization annotations lookup does not try to resolve classes,
|
|
// as this may throw an exception, which is not supported by the
|
|
// Generic JNI trampoline at this stage; instead, method's
|
|
// annotations' classes are looked up in the bootstrap class
|
|
// loader's resolved types (which won't trigger an exception).
|
|
bool critical_native = called->IsAnnotatedWithCriticalNative();
|
|
// ArtMethod::IsAnnotatedWithCriticalNative should not throw
|
|
// an exception; clear it if it happened anyway.
|
|
// TODO: Revisit this code path and turn this into a CHECK(!self->IsExceptionPending()).
|
|
if (self->IsExceptionPending()) {
|
|
self->ClearException();
|
|
}
|
|
bool fast_native = called->IsAnnotatedWithFastNative();
|
|
// ArtMethod::IsAnnotatedWithFastNative should not throw
|
|
// an exception; clear it if it happened anyway.
|
|
// TODO: Revisit this code path and turn this into a CHECK(!self->IsExceptionPending()).
|
|
if (self->IsExceptionPending()) {
|
|
self->ClearException();
|
|
}
|
|
bool normal_native = !critical_native && !fast_native;
|
|
// Restore the initial ArtMethod pointer at `*sp`.
|
|
*sp = called;
|
|
|
|
// Run the visitor and update sp.
|
|
BuildGenericJniFrameVisitor visitor(self,
|
|
called->IsStatic(),
|
|
critical_native,
|
|
shorty,
|
|
shorty_len,
|
|
&sp);
|
|
{
|
|
ScopedAssertNoThreadSuspension sants(__FUNCTION__);
|
|
visitor.VisitArguments();
|
|
// FinalizeHandleScope pushes the handle scope on the thread.
|
|
visitor.FinalizeHandleScope(self);
|
|
}
|
|
|
|
// Fix up managed-stack things in Thread.
|
|
self->SetTopOfStack(sp);
|
|
|
|
self->VerifyStack();
|
|
|
|
uint32_t cookie;
|
|
uint32_t* sp32;
|
|
// Skip calling JniMethodStart for @CriticalNative.
|
|
if (LIKELY(!critical_native)) {
|
|
// Start JNI, save the cookie.
|
|
if (called->IsSynchronized()) {
|
|
DCHECK(normal_native) << " @FastNative and synchronize is not supported";
|
|
cookie = JniMethodStartSynchronized(visitor.GetFirstHandleScopeJObject(), self);
|
|
if (self->IsExceptionPending()) {
|
|
self->PopHandleScope();
|
|
// A negative value denotes an error.
|
|
return GetTwoWordFailureValue();
|
|
}
|
|
} else {
|
|
if (fast_native) {
|
|
cookie = JniMethodFastStart(self);
|
|
} else {
|
|
DCHECK(normal_native);
|
|
cookie = JniMethodStart(self);
|
|
}
|
|
}
|
|
sp32 = reinterpret_cast<uint32_t*>(sp);
|
|
*(sp32 - 1) = cookie;
|
|
}
|
|
|
|
// Retrieve the stored native code.
|
|
void const* nativeCode = called->GetEntryPointFromJni();
|
|
|
|
// There are two cases for the content of nativeCode:
|
|
// 1) Pointer to the native function.
|
|
// 2) Pointer to the trampoline for native code binding.
|
|
// In the second case, we need to execute the binding and continue with the actual native function
|
|
// pointer.
|
|
DCHECK(nativeCode != nullptr);
|
|
if (nativeCode == GetJniDlsymLookupStub()) {
|
|
#if defined(__arm__) || defined(__aarch64__)
|
|
nativeCode = artFindNativeMethod();
|
|
#else
|
|
nativeCode = artFindNativeMethod(self);
|
|
#endif
|
|
|
|
if (nativeCode == nullptr) {
|
|
DCHECK(self->IsExceptionPending()); // There should be an exception pending now.
|
|
|
|
// @CriticalNative calls do not need to call back into JniMethodEnd.
|
|
if (LIKELY(!critical_native)) {
|
|
// End JNI, as the assembly will move to deliver the exception.
|
|
jobject lock = called->IsSynchronized() ? visitor.GetFirstHandleScopeJObject() : nullptr;
|
|
if (shorty[0] == 'L') {
|
|
artQuickGenericJniEndJNIRef(self, cookie, fast_native, nullptr, lock);
|
|
} else {
|
|
artQuickGenericJniEndJNINonRef(self, cookie, fast_native, lock);
|
|
}
|
|
}
|
|
|
|
return GetTwoWordFailureValue();
|
|
}
|
|
// Note that the native code pointer will be automatically set by artFindNativeMethod().
|
|
}
|
|
|
|
#if defined(__mips__) && !defined(__LP64__)
|
|
// On MIPS32 if the first two arguments are floating-point, we need to know their types
|
|
// so that art_quick_generic_jni_trampoline can correctly extract them from the stack
|
|
// and load into floating-point registers.
|
|
// Possible arrangements of first two floating-point arguments on the stack (32-bit FPU
|
|
// view):
|
|
// (1)
|
|
// | DOUBLE | DOUBLE | other args, if any
|
|
// | F12 | F13 | F14 | F15 |
|
|
// | SP+0 | SP+4 | SP+8 | SP+12 | SP+16
|
|
// (2)
|
|
// | DOUBLE | FLOAT | (PAD) | other args, if any
|
|
// | F12 | F13 | F14 | |
|
|
// | SP+0 | SP+4 | SP+8 | SP+12 | SP+16
|
|
// (3)
|
|
// | FLOAT | (PAD) | DOUBLE | other args, if any
|
|
// | F12 | | F14 | F15 |
|
|
// | SP+0 | SP+4 | SP+8 | SP+12 | SP+16
|
|
// (4)
|
|
// | FLOAT | FLOAT | other args, if any
|
|
// | F12 | F14 |
|
|
// | SP+0 | SP+4 | SP+8
|
|
// As you can see, only the last case (4) is special. In all others we can just
|
|
// load F12/F13 and F14/F15 in the same manner.
|
|
// Set bit 0 of the native code address to 1 in this case (valid code addresses
|
|
// are always a multiple of 4 on MIPS32, so we have 2 spare bits available).
|
|
if (nativeCode != nullptr &&
|
|
shorty != nullptr &&
|
|
shorty_len >= 3 &&
|
|
shorty[1] == 'F' &&
|
|
shorty[2] == 'F') {
|
|
nativeCode = reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(nativeCode) | 1);
|
|
}
|
|
#endif
|
|
|
|
// Return native code addr(lo) and bottom of alloca address(hi).
|
|
return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(visitor.GetBottomOfUsedArea()),
|
|
reinterpret_cast<uintptr_t>(nativeCode));
|
|
}
|
|
|
|
// Defined in quick_jni_entrypoints.cc.
|
|
extern uint64_t GenericJniMethodEnd(Thread* self, uint32_t saved_local_ref_cookie,
|
|
jvalue result, uint64_t result_f, ArtMethod* called,
|
|
HandleScope* handle_scope);
|
|
/*
|
|
* Is called after the native JNI code. Responsible for cleanup (handle scope, saved state) and
|
|
* unlocking.
|
|
*/
|
|
extern "C" uint64_t artQuickGenericJniEndTrampoline(Thread* self,
|
|
jvalue result,
|
|
uint64_t result_f) {
|
|
// We're here just back from a native call. We don't have the shared mutator lock at this point
|
|
// yet until we call GoToRunnable() later in GenericJniMethodEnd(). Accessing objects or doing
|
|
// anything that requires a mutator lock before that would cause problems as GC may have the
|
|
// exclusive mutator lock and may be moving objects, etc.
|
|
ArtMethod** sp = self->GetManagedStack()->GetTopQuickFrame();
|
|
uint32_t* sp32 = reinterpret_cast<uint32_t*>(sp);
|
|
ArtMethod* called = *sp;
|
|
uint32_t cookie = *(sp32 - 1);
|
|
HandleScope* table = reinterpret_cast<HandleScope*>(reinterpret_cast<uint8_t*>(sp) + sizeof(*sp));
|
|
return GenericJniMethodEnd(self, cookie, result, result_f, called, table);
|
|
}
|
|
|
|
// We use TwoWordReturn to optimize scalar returns. We use the hi value for code, and the lo value
|
|
// for the method pointer.
|
|
//
|
|
// It is valid to use this, as at the usage points here (returns from C functions) we are assuming
|
|
// to hold the mutator lock (see REQUIRES_SHARED(Locks::mutator_lock_) annotations).
|
|
|
|
template <InvokeType type, bool access_check>
|
|
static TwoWordReturn artInvokeCommon(uint32_t method_idx,
|
|
ObjPtr<mirror::Object> this_object,
|
|
Thread* self,
|
|
ArtMethod** sp) {
|
|
ScopedQuickEntrypointChecks sqec(self);
|
|
DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs));
|
|
ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
|
|
ArtMethod* method = FindMethodFast<type, access_check>(method_idx, this_object, caller_method);
|
|
if (UNLIKELY(method == nullptr)) {
|
|
const DexFile* dex_file = caller_method->GetDeclaringClass()->GetDexCache()->GetDexFile();
|
|
uint32_t shorty_len;
|
|
const char* shorty = dex_file->GetMethodShorty(dex_file->GetMethodId(method_idx), &shorty_len);
|
|
{
|
|
// Remember the args in case a GC happens in FindMethodFromCode.
|
|
ScopedObjectAccessUnchecked soa(self->GetJniEnv());
|
|
RememberForGcArgumentVisitor visitor(sp, type == kStatic, shorty, shorty_len, &soa);
|
|
visitor.VisitArguments();
|
|
method = FindMethodFromCode<type, access_check>(method_idx,
|
|
&this_object,
|
|
caller_method,
|
|
self);
|
|
visitor.FixupReferences();
|
|
}
|
|
|
|
if (UNLIKELY(method == nullptr)) {
|
|
CHECK(self->IsExceptionPending());
|
|
return GetTwoWordFailureValue(); // Failure.
|
|
}
|
|
}
|
|
DCHECK(!self->IsExceptionPending());
|
|
const void* code = method->GetEntryPointFromQuickCompiledCode();
|
|
|
|
// When we return, the caller will branch to this address, so it had better not be 0!
|
|
DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod()
|
|
<< " location: "
|
|
<< method->GetDexFile()->GetLocation();
|
|
|
|
return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
|
|
reinterpret_cast<uintptr_t>(method));
|
|
}
|
|
|
|
// Explicit artInvokeCommon template function declarations to please analysis tool.
|
|
#define EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(type, access_check) \
|
|
template REQUIRES_SHARED(Locks::mutator_lock_) \
|
|
TwoWordReturn artInvokeCommon<type, access_check>( \
|
|
uint32_t method_idx, ObjPtr<mirror::Object> his_object, Thread* self, ArtMethod** sp)
|
|
|
|
EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, false);
|
|
EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kVirtual, true);
|
|
EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, false);
|
|
EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kInterface, true);
|
|
EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, false);
|
|
EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kDirect, true);
|
|
EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, false);
|
|
EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kStatic, true);
|
|
EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, false);
|
|
EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL(kSuper, true);
|
|
#undef EXPLICIT_INVOKE_COMMON_TEMPLATE_DECL
|
|
|
|
// See comments in runtime_support_asm.S
|
|
extern "C" TwoWordReturn artInvokeInterfaceTrampolineWithAccessCheck(
|
|
uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
return artInvokeCommon<kInterface, true>(method_idx, this_object, self, sp);
|
|
}
|
|
|
|
extern "C" TwoWordReturn artInvokeDirectTrampolineWithAccessCheck(
|
|
uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
return artInvokeCommon<kDirect, true>(method_idx, this_object, self, sp);
|
|
}
|
|
|
|
extern "C" TwoWordReturn artInvokeStaticTrampolineWithAccessCheck(
|
|
uint32_t method_idx,
|
|
mirror::Object* this_object ATTRIBUTE_UNUSED,
|
|
Thread* self,
|
|
ArtMethod** sp) REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
// For static, this_object is not required and may be random garbage. Don't pass it down so that
|
|
// it doesn't cause ObjPtr alignment failure check.
|
|
return artInvokeCommon<kStatic, true>(method_idx, nullptr, self, sp);
|
|
}
|
|
|
|
extern "C" TwoWordReturn artInvokeSuperTrampolineWithAccessCheck(
|
|
uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
return artInvokeCommon<kSuper, true>(method_idx, this_object, self, sp);
|
|
}
|
|
|
|
extern "C" TwoWordReturn artInvokeVirtualTrampolineWithAccessCheck(
|
|
uint32_t method_idx, mirror::Object* this_object, Thread* self, ArtMethod** sp)
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
return artInvokeCommon<kVirtual, true>(method_idx, this_object, self, sp);
|
|
}
|
|
|
|
// Helper function for art_quick_imt_conflict_trampoline to look up the interface method.
|
|
extern "C" ArtMethod* artLookupResolvedMethod(uint32_t method_index, ArtMethod* referrer)
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
ScopedAssertNoThreadSuspension ants(__FUNCTION__);
|
|
DCHECK(!referrer->IsProxyMethod());
|
|
ArtMethod* result = Runtime::Current()->GetClassLinker()->LookupResolvedMethod(
|
|
method_index, referrer->GetDexCache(), referrer->GetClassLoader());
|
|
DCHECK(result == nullptr ||
|
|
result->GetDeclaringClass()->IsInterface() ||
|
|
result->GetDeclaringClass() ==
|
|
WellKnownClasses::ToClass(WellKnownClasses::java_lang_Object))
|
|
<< result->PrettyMethod();
|
|
return result;
|
|
}
|
|
|
|
// Determine target of interface dispatch. The interface method and this object are known non-null.
|
|
// The interface method is the method returned by the dex cache in the conflict trampoline.
|
|
extern "C" TwoWordReturn artInvokeInterfaceTrampoline(ArtMethod* interface_method,
|
|
mirror::Object* raw_this_object,
|
|
Thread* self,
|
|
ArtMethod** sp)
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
ScopedQuickEntrypointChecks sqec(self);
|
|
StackHandleScope<2> hs(self);
|
|
Handle<mirror::Object> this_object = hs.NewHandle(raw_this_object);
|
|
Handle<mirror::Class> cls = hs.NewHandle(this_object->GetClass());
|
|
|
|
ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
|
|
ArtMethod* method = nullptr;
|
|
ImTable* imt = cls->GetImt(kRuntimePointerSize);
|
|
|
|
if (UNLIKELY(interface_method == nullptr)) {
|
|
// The interface method is unresolved, so resolve it in the dex file of the caller.
|
|
// Fetch the dex_method_idx of the target interface method from the caller.
|
|
uint32_t dex_method_idx;
|
|
uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
|
|
const DexFile::CodeItem* code_item = caller_method->GetCodeItem();
|
|
DCHECK_LT(dex_pc, code_item->insns_size_in_code_units_);
|
|
const Instruction* instr = Instruction::At(&code_item->insns_[dex_pc]);
|
|
Instruction::Code instr_code = instr->Opcode();
|
|
DCHECK(instr_code == Instruction::INVOKE_INTERFACE ||
|
|
instr_code == Instruction::INVOKE_INTERFACE_RANGE)
|
|
<< "Unexpected call into interface trampoline: " << instr->DumpString(nullptr);
|
|
if (instr_code == Instruction::INVOKE_INTERFACE) {
|
|
dex_method_idx = instr->VRegB_35c();
|
|
} else {
|
|
DCHECK_EQ(instr_code, Instruction::INVOKE_INTERFACE_RANGE);
|
|
dex_method_idx = instr->VRegB_3rc();
|
|
}
|
|
|
|
const DexFile& dex_file = caller_method->GetDeclaringClass()->GetDexFile();
|
|
uint32_t shorty_len;
|
|
const char* shorty = dex_file.GetMethodShorty(dex_file.GetMethodId(dex_method_idx),
|
|
&shorty_len);
|
|
{
|
|
// Remember the args in case a GC happens in ClassLinker::ResolveMethod().
|
|
ScopedObjectAccessUnchecked soa(self->GetJniEnv());
|
|
RememberForGcArgumentVisitor visitor(sp, false, shorty, shorty_len, &soa);
|
|
visitor.VisitArguments();
|
|
ClassLinker* class_linker = Runtime::Current()->GetClassLinker();
|
|
interface_method = class_linker->ResolveMethod<ClassLinker::ResolveMode::kNoChecks>(
|
|
self, dex_method_idx, caller_method, kInterface);
|
|
visitor.FixupReferences();
|
|
}
|
|
|
|
if (UNLIKELY(interface_method == nullptr)) {
|
|
CHECK(self->IsExceptionPending());
|
|
return GetTwoWordFailureValue(); // Failure.
|
|
}
|
|
}
|
|
|
|
DCHECK(!interface_method->IsRuntimeMethod());
|
|
// Look whether we have a match in the ImtConflictTable.
|
|
uint32_t imt_index = ImTable::GetImtIndex(interface_method);
|
|
ArtMethod* conflict_method = imt->Get(imt_index, kRuntimePointerSize);
|
|
if (LIKELY(conflict_method->IsRuntimeMethod())) {
|
|
ImtConflictTable* current_table = conflict_method->GetImtConflictTable(kRuntimePointerSize);
|
|
DCHECK(current_table != nullptr);
|
|
method = current_table->Lookup(interface_method, kRuntimePointerSize);
|
|
} else {
|
|
// It seems we aren't really a conflict method!
|
|
if (kIsDebugBuild) {
|
|
ArtMethod* m = cls->FindVirtualMethodForInterface(interface_method, kRuntimePointerSize);
|
|
CHECK_EQ(conflict_method, m)
|
|
<< interface_method->PrettyMethod() << " / " << conflict_method->PrettyMethod() << " / "
|
|
<< " / " << ArtMethod::PrettyMethod(m) << " / " << cls->PrettyClass();
|
|
}
|
|
method = conflict_method;
|
|
}
|
|
if (method != nullptr) {
|
|
return GetTwoWordSuccessValue(
|
|
reinterpret_cast<uintptr_t>(method->GetEntryPointFromQuickCompiledCode()),
|
|
reinterpret_cast<uintptr_t>(method));
|
|
}
|
|
|
|
// No match, use the IfTable.
|
|
method = cls->FindVirtualMethodForInterface(interface_method, kRuntimePointerSize);
|
|
if (UNLIKELY(method == nullptr)) {
|
|
ThrowIncompatibleClassChangeErrorClassForInterfaceDispatch(
|
|
interface_method, this_object.Get(), caller_method);
|
|
return GetTwoWordFailureValue(); // Failure.
|
|
}
|
|
|
|
// We arrive here if we have found an implementation, and it is not in the ImtConflictTable.
|
|
// We create a new table with the new pair { interface_method, method }.
|
|
DCHECK(conflict_method->IsRuntimeMethod());
|
|
ArtMethod* new_conflict_method = Runtime::Current()->GetClassLinker()->AddMethodToConflictTable(
|
|
cls.Get(),
|
|
conflict_method,
|
|
interface_method,
|
|
method,
|
|
/*force_new_conflict_method*/false);
|
|
if (new_conflict_method != conflict_method) {
|
|
// Update the IMT if we create a new conflict method. No fence needed here, as the
|
|
// data is consistent.
|
|
imt->Set(imt_index,
|
|
new_conflict_method,
|
|
kRuntimePointerSize);
|
|
}
|
|
|
|
const void* code = method->GetEntryPointFromQuickCompiledCode();
|
|
|
|
// When we return, the caller will branch to this address, so it had better not be 0!
|
|
DCHECK(code != nullptr) << "Code was null in method: " << method->PrettyMethod()
|
|
<< " location: " << method->GetDexFile()->GetLocation();
|
|
|
|
return GetTwoWordSuccessValue(reinterpret_cast<uintptr_t>(code),
|
|
reinterpret_cast<uintptr_t>(method));
|
|
}
|
|
|
|
// Returns shorty type so the caller can determine how to put |result|
|
|
// into expected registers. The shorty type is static so the compiler
|
|
// could call different flavors of this code path depending on the
|
|
// shorty type though this would require different entry points for
|
|
// each type.
|
|
extern "C" uintptr_t artInvokePolymorphic(
|
|
JValue* result,
|
|
mirror::Object* raw_method_handle,
|
|
Thread* self,
|
|
ArtMethod** sp)
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
ScopedQuickEntrypointChecks sqec(self);
|
|
DCHECK_EQ(*sp, Runtime::Current()->GetCalleeSaveMethod(CalleeSaveType::kSaveRefsAndArgs));
|
|
|
|
// Start new JNI local reference state
|
|
JNIEnvExt* env = self->GetJniEnv();
|
|
ScopedObjectAccessUnchecked soa(env);
|
|
ScopedJniEnvLocalRefState env_state(env);
|
|
const char* old_cause = self->StartAssertNoThreadSuspension("Making stack arguments safe.");
|
|
|
|
// From the instruction, get the |callsite_shorty| and expose arguments on the stack to the GC.
|
|
ArtMethod* caller_method = QuickArgumentVisitor::GetCallingMethod(sp);
|
|
uint32_t dex_pc = QuickArgumentVisitor::GetCallingDexPc(sp);
|
|
const DexFile::CodeItem* code = caller_method->GetCodeItem();
|
|
const Instruction* inst = Instruction::At(&code->insns_[dex_pc]);
|
|
DCHECK(inst->Opcode() == Instruction::INVOKE_POLYMORPHIC ||
|
|
inst->Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
|
|
const DexFile* dex_file = caller_method->GetDexFile();
|
|
const uint32_t proto_idx = inst->VRegH();
|
|
const char* shorty = dex_file->GetShorty(proto_idx);
|
|
const size_t shorty_length = strlen(shorty);
|
|
static const bool kMethodIsStatic = false; // invoke() and invokeExact() are not static.
|
|
RememberForGcArgumentVisitor gc_visitor(sp, kMethodIsStatic, shorty, shorty_length, &soa);
|
|
gc_visitor.VisitArguments();
|
|
|
|
// Wrap raw_method_handle in a Handle for safety.
|
|
StackHandleScope<5> hs(self);
|
|
Handle<mirror::MethodHandle> method_handle(
|
|
hs.NewHandle(ObjPtr<mirror::MethodHandle>::DownCast(MakeObjPtr(raw_method_handle))));
|
|
raw_method_handle = nullptr;
|
|
self->EndAssertNoThreadSuspension(old_cause);
|
|
|
|
// Resolve method - it's either MethodHandle.invoke() or MethodHandle.invokeExact().
|
|
ClassLinker* linker = Runtime::Current()->GetClassLinker();
|
|
ArtMethod* resolved_method = linker->ResolveMethod<ClassLinker::ResolveMode::kCheckICCEAndIAE>(
|
|
self, inst->VRegB(), caller_method, kVirtual);
|
|
DCHECK((resolved_method ==
|
|
jni::DecodeArtMethod(WellKnownClasses::java_lang_invoke_MethodHandle_invokeExact)) ||
|
|
(resolved_method ==
|
|
jni::DecodeArtMethod(WellKnownClasses::java_lang_invoke_MethodHandle_invoke)));
|
|
if (UNLIKELY(method_handle.IsNull())) {
|
|
ThrowNullPointerExceptionForMethodAccess(resolved_method, InvokeType::kVirtual);
|
|
return static_cast<uintptr_t>('V');
|
|
}
|
|
|
|
Handle<mirror::Class> caller_class(hs.NewHandle(caller_method->GetDeclaringClass()));
|
|
Handle<mirror::MethodType> method_type(hs.NewHandle(linker->ResolveMethodType(
|
|
*dex_file, proto_idx,
|
|
hs.NewHandle<mirror::DexCache>(caller_class->GetDexCache()),
|
|
hs.NewHandle<mirror::ClassLoader>(caller_class->GetClassLoader()))));
|
|
// This implies we couldn't resolve one or more types in this method handle.
|
|
if (UNLIKELY(method_type.IsNull())) {
|
|
CHECK(self->IsExceptionPending());
|
|
return static_cast<uintptr_t>('V');
|
|
}
|
|
|
|
DCHECK_EQ(ArtMethod::NumArgRegisters(shorty) + 1u, (uint32_t)inst->VRegA());
|
|
DCHECK_EQ(resolved_method->IsStatic(), kMethodIsStatic);
|
|
|
|
// Fix references before constructing the shadow frame.
|
|
gc_visitor.FixupReferences();
|
|
|
|
// Construct shadow frame placing arguments consecutively from |first_arg|.
|
|
const bool is_range = (inst->Opcode() == Instruction::INVOKE_POLYMORPHIC_RANGE);
|
|
const size_t num_vregs = is_range ? inst->VRegA_4rcc() : inst->VRegA_45cc();
|
|
const size_t first_arg = 0;
|
|
ShadowFrameAllocaUniquePtr shadow_frame_unique_ptr =
|
|
CREATE_SHADOW_FRAME(num_vregs, /* link */ nullptr, resolved_method, dex_pc);
|
|
ShadowFrame* shadow_frame = shadow_frame_unique_ptr.get();
|
|
ScopedStackedShadowFramePusher
|
|
frame_pusher(self, shadow_frame, StackedShadowFrameType::kShadowFrameUnderConstruction);
|
|
BuildQuickShadowFrameVisitor shadow_frame_builder(sp,
|
|
kMethodIsStatic,
|
|
shorty,
|
|
strlen(shorty),
|
|
shadow_frame,
|
|
first_arg);
|
|
shadow_frame_builder.VisitArguments();
|
|
|
|
// Push a transition back into managed code onto the linked list in thread.
|
|
ManagedStack fragment;
|
|
self->PushManagedStackFragment(&fragment);
|
|
|
|
// Call DoInvokePolymorphic with |is_range| = true, as shadow frame has argument registers in
|
|
// consecutive order.
|
|
uint32_t unused_args[Instruction::kMaxVarArgRegs] = {};
|
|
uint32_t first_callee_arg = first_arg + 1;
|
|
if (!DoInvokePolymorphic<true /* is_range */>(self,
|
|
resolved_method,
|
|
*shadow_frame,
|
|
method_handle,
|
|
method_type,
|
|
unused_args,
|
|
first_callee_arg,
|
|
result)) {
|
|
DCHECK(self->IsExceptionPending());
|
|
}
|
|
|
|
// Pop transition record.
|
|
self->PopManagedStackFragment(fragment);
|
|
|
|
return static_cast<uintptr_t>(shorty[0]);
|
|
}
|
|
|
|
} // namespace art
|