3022 lines
126 KiB
C++
3022 lines
126 KiB
C++
/*
|
|
* Copyright (C) 2015 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "intrinsics_arm64.h"
|
|
|
|
#include "arch/arm64/instruction_set_features_arm64.h"
|
|
#include "art_method.h"
|
|
#include "code_generator_arm64.h"
|
|
#include "common_arm64.h"
|
|
#include "entrypoints/quick/quick_entrypoints.h"
|
|
#include "intrinsics.h"
|
|
#include "lock_word.h"
|
|
#include "mirror/array-inl.h"
|
|
#include "mirror/object_array-inl.h"
|
|
#include "mirror/reference.h"
|
|
#include "mirror/string-inl.h"
|
|
#include "scoped_thread_state_change-inl.h"
|
|
#include "thread-current-inl.h"
|
|
#include "utils/arm64/assembler_arm64.h"
|
|
|
|
using namespace vixl::aarch64; // NOLINT(build/namespaces)
|
|
|
|
// TODO(VIXL): Make VIXL compile with -Wshadow.
|
|
#pragma GCC diagnostic push
|
|
#pragma GCC diagnostic ignored "-Wshadow"
|
|
#include "aarch64/disasm-aarch64.h"
|
|
#include "aarch64/macro-assembler-aarch64.h"
|
|
#pragma GCC diagnostic pop
|
|
|
|
namespace art {
|
|
|
|
namespace arm64 {
|
|
|
|
using helpers::DRegisterFrom;
|
|
using helpers::FPRegisterFrom;
|
|
using helpers::HeapOperand;
|
|
using helpers::LocationFrom;
|
|
using helpers::OperandFrom;
|
|
using helpers::RegisterFrom;
|
|
using helpers::SRegisterFrom;
|
|
using helpers::WRegisterFrom;
|
|
using helpers::XRegisterFrom;
|
|
using helpers::InputRegisterAt;
|
|
using helpers::OutputRegister;
|
|
|
|
namespace {
|
|
|
|
ALWAYS_INLINE inline MemOperand AbsoluteHeapOperandFrom(Location location, size_t offset = 0) {
|
|
return MemOperand(XRegisterFrom(location), offset);
|
|
}
|
|
|
|
} // namespace
|
|
|
|
MacroAssembler* IntrinsicCodeGeneratorARM64::GetVIXLAssembler() {
|
|
return codegen_->GetVIXLAssembler();
|
|
}
|
|
|
|
ArenaAllocator* IntrinsicCodeGeneratorARM64::GetAllocator() {
|
|
return codegen_->GetGraph()->GetArena();
|
|
}
|
|
|
|
#define __ codegen->GetVIXLAssembler()->
|
|
|
|
static void MoveFromReturnRegister(Location trg,
|
|
Primitive::Type type,
|
|
CodeGeneratorARM64* codegen) {
|
|
if (!trg.IsValid()) {
|
|
DCHECK(type == Primitive::kPrimVoid);
|
|
return;
|
|
}
|
|
|
|
DCHECK_NE(type, Primitive::kPrimVoid);
|
|
|
|
if (Primitive::IsIntegralType(type) || type == Primitive::kPrimNot) {
|
|
Register trg_reg = RegisterFrom(trg, type);
|
|
Register res_reg = RegisterFrom(ARM64ReturnLocation(type), type);
|
|
__ Mov(trg_reg, res_reg, kDiscardForSameWReg);
|
|
} else {
|
|
FPRegister trg_reg = FPRegisterFrom(trg, type);
|
|
FPRegister res_reg = FPRegisterFrom(ARM64ReturnLocation(type), type);
|
|
__ Fmov(trg_reg, res_reg);
|
|
}
|
|
}
|
|
|
|
static void MoveArguments(HInvoke* invoke, CodeGeneratorARM64* codegen) {
|
|
InvokeDexCallingConventionVisitorARM64 calling_convention_visitor;
|
|
IntrinsicVisitor::MoveArguments(invoke, codegen, &calling_convention_visitor);
|
|
}
|
|
|
|
// Slow-path for fallback (calling the managed code to handle the intrinsic) in an intrinsified
|
|
// call. This will copy the arguments into the positions for a regular call.
|
|
//
|
|
// Note: The actual parameters are required to be in the locations given by the invoke's location
|
|
// summary. If an intrinsic modifies those locations before a slowpath call, they must be
|
|
// restored!
|
|
class IntrinsicSlowPathARM64 : public SlowPathCodeARM64 {
|
|
public:
|
|
explicit IntrinsicSlowPathARM64(HInvoke* invoke)
|
|
: SlowPathCodeARM64(invoke), invoke_(invoke) { }
|
|
|
|
void EmitNativeCode(CodeGenerator* codegen_in) OVERRIDE {
|
|
CodeGeneratorARM64* codegen = down_cast<CodeGeneratorARM64*>(codegen_in);
|
|
__ Bind(GetEntryLabel());
|
|
|
|
SaveLiveRegisters(codegen, invoke_->GetLocations());
|
|
|
|
MoveArguments(invoke_, codegen);
|
|
|
|
{
|
|
// Ensure that between the BLR (emitted by Generate*Call) and RecordPcInfo there
|
|
// are no pools emitted.
|
|
vixl::EmissionCheckScope guard(codegen->GetVIXLAssembler(), kInvokeCodeMarginSizeInBytes);
|
|
if (invoke_->IsInvokeStaticOrDirect()) {
|
|
codegen->GenerateStaticOrDirectCall(
|
|
invoke_->AsInvokeStaticOrDirect(), LocationFrom(kArtMethodRegister), this);
|
|
} else {
|
|
codegen->GenerateVirtualCall(
|
|
invoke_->AsInvokeVirtual(), LocationFrom(kArtMethodRegister), this);
|
|
}
|
|
}
|
|
|
|
// Copy the result back to the expected output.
|
|
Location out = invoke_->GetLocations()->Out();
|
|
if (out.IsValid()) {
|
|
DCHECK(out.IsRegister()); // TODO: Replace this when we support output in memory.
|
|
DCHECK(!invoke_->GetLocations()->GetLiveRegisters()->ContainsCoreRegister(out.reg()));
|
|
MoveFromReturnRegister(out, invoke_->GetType(), codegen);
|
|
}
|
|
|
|
RestoreLiveRegisters(codegen, invoke_->GetLocations());
|
|
__ B(GetExitLabel());
|
|
}
|
|
|
|
const char* GetDescription() const OVERRIDE { return "IntrinsicSlowPathARM64"; }
|
|
|
|
private:
|
|
// The instruction where this slow path is happening.
|
|
HInvoke* const invoke_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(IntrinsicSlowPathARM64);
|
|
};
|
|
|
|
// Slow path implementing the SystemArrayCopy intrinsic copy loop with read barriers.
|
|
class ReadBarrierSystemArrayCopySlowPathARM64 : public SlowPathCodeARM64 {
|
|
public:
|
|
ReadBarrierSystemArrayCopySlowPathARM64(HInstruction* instruction, Location tmp)
|
|
: SlowPathCodeARM64(instruction), tmp_(tmp) {
|
|
DCHECK(kEmitCompilerReadBarrier);
|
|
DCHECK(kUseBakerReadBarrier);
|
|
}
|
|
|
|
void EmitNativeCode(CodeGenerator* codegen_in) OVERRIDE {
|
|
CodeGeneratorARM64* codegen = down_cast<CodeGeneratorARM64*>(codegen_in);
|
|
LocationSummary* locations = instruction_->GetLocations();
|
|
DCHECK(locations->CanCall());
|
|
DCHECK(instruction_->IsInvokeStaticOrDirect())
|
|
<< "Unexpected instruction in read barrier arraycopy slow path: "
|
|
<< instruction_->DebugName();
|
|
DCHECK(instruction_->GetLocations()->Intrinsified());
|
|
DCHECK_EQ(instruction_->AsInvoke()->GetIntrinsic(), Intrinsics::kSystemArrayCopy);
|
|
|
|
const int32_t element_size = Primitive::ComponentSize(Primitive::kPrimNot);
|
|
|
|
Register src_curr_addr = XRegisterFrom(locations->GetTemp(0));
|
|
Register dst_curr_addr = XRegisterFrom(locations->GetTemp(1));
|
|
Register src_stop_addr = XRegisterFrom(locations->GetTemp(2));
|
|
Register tmp_reg = WRegisterFrom(tmp_);
|
|
|
|
__ Bind(GetEntryLabel());
|
|
vixl::aarch64::Label slow_copy_loop;
|
|
__ Bind(&slow_copy_loop);
|
|
__ Ldr(tmp_reg, MemOperand(src_curr_addr, element_size, PostIndex));
|
|
codegen->GetAssembler()->MaybeUnpoisonHeapReference(tmp_reg);
|
|
// TODO: Inline the mark bit check before calling the runtime?
|
|
// tmp_reg = ReadBarrier::Mark(tmp_reg);
|
|
// No need to save live registers; it's taken care of by the
|
|
// entrypoint. Also, there is no need to update the stack mask,
|
|
// as this runtime call will not trigger a garbage collection.
|
|
// (See ReadBarrierMarkSlowPathARM64::EmitNativeCode for more
|
|
// explanations.)
|
|
DCHECK_NE(tmp_.reg(), LR);
|
|
DCHECK_NE(tmp_.reg(), WSP);
|
|
DCHECK_NE(tmp_.reg(), WZR);
|
|
// IP0 is used internally by the ReadBarrierMarkRegX entry point
|
|
// as a temporary (and not preserved). It thus cannot be used by
|
|
// any live register in this slow path.
|
|
DCHECK_NE(LocationFrom(src_curr_addr).reg(), IP0);
|
|
DCHECK_NE(LocationFrom(dst_curr_addr).reg(), IP0);
|
|
DCHECK_NE(LocationFrom(src_stop_addr).reg(), IP0);
|
|
DCHECK_NE(tmp_.reg(), IP0);
|
|
DCHECK(0 <= tmp_.reg() && tmp_.reg() < kNumberOfWRegisters) << tmp_.reg();
|
|
// TODO: Load the entrypoint once before the loop, instead of
|
|
// loading it at every iteration.
|
|
int32_t entry_point_offset =
|
|
Thread::ReadBarrierMarkEntryPointsOffset<kArm64PointerSize>(tmp_.reg());
|
|
// This runtime call does not require a stack map.
|
|
codegen->InvokeRuntimeWithoutRecordingPcInfo(entry_point_offset, instruction_, this);
|
|
codegen->GetAssembler()->MaybePoisonHeapReference(tmp_reg);
|
|
__ Str(tmp_reg, MemOperand(dst_curr_addr, element_size, PostIndex));
|
|
__ Cmp(src_curr_addr, src_stop_addr);
|
|
__ B(&slow_copy_loop, ne);
|
|
__ B(GetExitLabel());
|
|
}
|
|
|
|
const char* GetDescription() const OVERRIDE { return "ReadBarrierSystemArrayCopySlowPathARM64"; }
|
|
|
|
private:
|
|
Location tmp_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(ReadBarrierSystemArrayCopySlowPathARM64);
|
|
};
|
|
#undef __
|
|
|
|
bool IntrinsicLocationsBuilderARM64::TryDispatch(HInvoke* invoke) {
|
|
Dispatch(invoke);
|
|
LocationSummary* res = invoke->GetLocations();
|
|
if (res == nullptr) {
|
|
return false;
|
|
}
|
|
return res->Intrinsified();
|
|
}
|
|
|
|
#define __ masm->
|
|
|
|
static void CreateFPToIntLocations(ArenaAllocator* arena, HInvoke* invoke) {
|
|
LocationSummary* locations = new (arena) LocationSummary(invoke,
|
|
LocationSummary::kNoCall,
|
|
kIntrinsified);
|
|
locations->SetInAt(0, Location::RequiresFpuRegister());
|
|
locations->SetOut(Location::RequiresRegister());
|
|
}
|
|
|
|
static void CreateIntToFPLocations(ArenaAllocator* arena, HInvoke* invoke) {
|
|
LocationSummary* locations = new (arena) LocationSummary(invoke,
|
|
LocationSummary::kNoCall,
|
|
kIntrinsified);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetOut(Location::RequiresFpuRegister());
|
|
}
|
|
|
|
static void MoveFPToInt(LocationSummary* locations, bool is64bit, MacroAssembler* masm) {
|
|
Location input = locations->InAt(0);
|
|
Location output = locations->Out();
|
|
__ Fmov(is64bit ? XRegisterFrom(output) : WRegisterFrom(output),
|
|
is64bit ? DRegisterFrom(input) : SRegisterFrom(input));
|
|
}
|
|
|
|
static void MoveIntToFP(LocationSummary* locations, bool is64bit, MacroAssembler* masm) {
|
|
Location input = locations->InAt(0);
|
|
Location output = locations->Out();
|
|
__ Fmov(is64bit ? DRegisterFrom(output) : SRegisterFrom(output),
|
|
is64bit ? XRegisterFrom(input) : WRegisterFrom(input));
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
|
|
CreateFPToIntLocations(arena_, invoke);
|
|
}
|
|
void IntrinsicLocationsBuilderARM64::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
|
|
CreateIntToFPLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitDoubleDoubleToRawLongBits(HInvoke* invoke) {
|
|
MoveFPToInt(invoke->GetLocations(), /* is64bit */ true, GetVIXLAssembler());
|
|
}
|
|
void IntrinsicCodeGeneratorARM64::VisitDoubleLongBitsToDouble(HInvoke* invoke) {
|
|
MoveIntToFP(invoke->GetLocations(), /* is64bit */ true, GetVIXLAssembler());
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
|
|
CreateFPToIntLocations(arena_, invoke);
|
|
}
|
|
void IntrinsicLocationsBuilderARM64::VisitFloatIntBitsToFloat(HInvoke* invoke) {
|
|
CreateIntToFPLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitFloatFloatToRawIntBits(HInvoke* invoke) {
|
|
MoveFPToInt(invoke->GetLocations(), /* is64bit */ false, GetVIXLAssembler());
|
|
}
|
|
void IntrinsicCodeGeneratorARM64::VisitFloatIntBitsToFloat(HInvoke* invoke) {
|
|
MoveIntToFP(invoke->GetLocations(), /* is64bit */ false, GetVIXLAssembler());
|
|
}
|
|
|
|
static void CreateIntToIntLocations(ArenaAllocator* arena, HInvoke* invoke) {
|
|
LocationSummary* locations = new (arena) LocationSummary(invoke,
|
|
LocationSummary::kNoCall,
|
|
kIntrinsified);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
|
|
}
|
|
|
|
static void GenReverseBytes(LocationSummary* locations,
|
|
Primitive::Type type,
|
|
MacroAssembler* masm) {
|
|
Location in = locations->InAt(0);
|
|
Location out = locations->Out();
|
|
|
|
switch (type) {
|
|
case Primitive::kPrimShort:
|
|
__ Rev16(WRegisterFrom(out), WRegisterFrom(in));
|
|
__ Sxth(WRegisterFrom(out), WRegisterFrom(out));
|
|
break;
|
|
case Primitive::kPrimInt:
|
|
case Primitive::kPrimLong:
|
|
__ Rev(RegisterFrom(out, type), RegisterFrom(in, type));
|
|
break;
|
|
default:
|
|
LOG(FATAL) << "Unexpected size for reverse-bytes: " << type;
|
|
UNREACHABLE();
|
|
}
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitIntegerReverseBytes(HInvoke* invoke) {
|
|
CreateIntToIntLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitIntegerReverseBytes(HInvoke* invoke) {
|
|
GenReverseBytes(invoke->GetLocations(), Primitive::kPrimInt, GetVIXLAssembler());
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitLongReverseBytes(HInvoke* invoke) {
|
|
CreateIntToIntLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitLongReverseBytes(HInvoke* invoke) {
|
|
GenReverseBytes(invoke->GetLocations(), Primitive::kPrimLong, GetVIXLAssembler());
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitShortReverseBytes(HInvoke* invoke) {
|
|
CreateIntToIntLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitShortReverseBytes(HInvoke* invoke) {
|
|
GenReverseBytes(invoke->GetLocations(), Primitive::kPrimShort, GetVIXLAssembler());
|
|
}
|
|
|
|
static void CreateIntIntToIntLocations(ArenaAllocator* arena, HInvoke* invoke) {
|
|
LocationSummary* locations = new (arena) LocationSummary(invoke,
|
|
LocationSummary::kNoCall,
|
|
kIntrinsified);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::RequiresRegister());
|
|
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
|
|
}
|
|
|
|
static void GenNumberOfLeadingZeros(LocationSummary* locations,
|
|
Primitive::Type type,
|
|
MacroAssembler* masm) {
|
|
DCHECK(type == Primitive::kPrimInt || type == Primitive::kPrimLong);
|
|
|
|
Location in = locations->InAt(0);
|
|
Location out = locations->Out();
|
|
|
|
__ Clz(RegisterFrom(out, type), RegisterFrom(in, type));
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) {
|
|
CreateIntToIntLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitIntegerNumberOfLeadingZeros(HInvoke* invoke) {
|
|
GenNumberOfLeadingZeros(invoke->GetLocations(), Primitive::kPrimInt, GetVIXLAssembler());
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitLongNumberOfLeadingZeros(HInvoke* invoke) {
|
|
CreateIntToIntLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitLongNumberOfLeadingZeros(HInvoke* invoke) {
|
|
GenNumberOfLeadingZeros(invoke->GetLocations(), Primitive::kPrimLong, GetVIXLAssembler());
|
|
}
|
|
|
|
static void GenNumberOfTrailingZeros(LocationSummary* locations,
|
|
Primitive::Type type,
|
|
MacroAssembler* masm) {
|
|
DCHECK(type == Primitive::kPrimInt || type == Primitive::kPrimLong);
|
|
|
|
Location in = locations->InAt(0);
|
|
Location out = locations->Out();
|
|
|
|
__ Rbit(RegisterFrom(out, type), RegisterFrom(in, type));
|
|
__ Clz(RegisterFrom(out, type), RegisterFrom(out, type));
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) {
|
|
CreateIntToIntLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitIntegerNumberOfTrailingZeros(HInvoke* invoke) {
|
|
GenNumberOfTrailingZeros(invoke->GetLocations(), Primitive::kPrimInt, GetVIXLAssembler());
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitLongNumberOfTrailingZeros(HInvoke* invoke) {
|
|
CreateIntToIntLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitLongNumberOfTrailingZeros(HInvoke* invoke) {
|
|
GenNumberOfTrailingZeros(invoke->GetLocations(), Primitive::kPrimLong, GetVIXLAssembler());
|
|
}
|
|
|
|
static void GenReverse(LocationSummary* locations,
|
|
Primitive::Type type,
|
|
MacroAssembler* masm) {
|
|
DCHECK(type == Primitive::kPrimInt || type == Primitive::kPrimLong);
|
|
|
|
Location in = locations->InAt(0);
|
|
Location out = locations->Out();
|
|
|
|
__ Rbit(RegisterFrom(out, type), RegisterFrom(in, type));
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitIntegerReverse(HInvoke* invoke) {
|
|
CreateIntToIntLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitIntegerReverse(HInvoke* invoke) {
|
|
GenReverse(invoke->GetLocations(), Primitive::kPrimInt, GetVIXLAssembler());
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitLongReverse(HInvoke* invoke) {
|
|
CreateIntToIntLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitLongReverse(HInvoke* invoke) {
|
|
GenReverse(invoke->GetLocations(), Primitive::kPrimLong, GetVIXLAssembler());
|
|
}
|
|
|
|
static void GenBitCount(HInvoke* instr, Primitive::Type type, MacroAssembler* masm) {
|
|
DCHECK(Primitive::IsIntOrLongType(type)) << type;
|
|
DCHECK_EQ(instr->GetType(), Primitive::kPrimInt);
|
|
DCHECK_EQ(Primitive::PrimitiveKind(instr->InputAt(0)->GetType()), type);
|
|
|
|
UseScratchRegisterScope temps(masm);
|
|
|
|
Register src = InputRegisterAt(instr, 0);
|
|
Register dst = RegisterFrom(instr->GetLocations()->Out(), type);
|
|
FPRegister fpr = (type == Primitive::kPrimLong) ? temps.AcquireD() : temps.AcquireS();
|
|
|
|
__ Fmov(fpr, src);
|
|
__ Cnt(fpr.V8B(), fpr.V8B());
|
|
__ Addv(fpr.B(), fpr.V8B());
|
|
__ Fmov(dst, fpr);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitLongBitCount(HInvoke* invoke) {
|
|
CreateIntToIntLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitLongBitCount(HInvoke* invoke) {
|
|
GenBitCount(invoke, Primitive::kPrimLong, GetVIXLAssembler());
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitIntegerBitCount(HInvoke* invoke) {
|
|
CreateIntToIntLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitIntegerBitCount(HInvoke* invoke) {
|
|
GenBitCount(invoke, Primitive::kPrimInt, GetVIXLAssembler());
|
|
}
|
|
|
|
static void CreateFPToFPLocations(ArenaAllocator* arena, HInvoke* invoke) {
|
|
LocationSummary* locations = new (arena) LocationSummary(invoke,
|
|
LocationSummary::kNoCall,
|
|
kIntrinsified);
|
|
locations->SetInAt(0, Location::RequiresFpuRegister());
|
|
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
|
|
}
|
|
|
|
static void MathAbsFP(LocationSummary* locations, bool is64bit, MacroAssembler* masm) {
|
|
Location in = locations->InAt(0);
|
|
Location out = locations->Out();
|
|
|
|
FPRegister in_reg = is64bit ? DRegisterFrom(in) : SRegisterFrom(in);
|
|
FPRegister out_reg = is64bit ? DRegisterFrom(out) : SRegisterFrom(out);
|
|
|
|
__ Fabs(out_reg, in_reg);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitMathAbsDouble(HInvoke* invoke) {
|
|
CreateFPToFPLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitMathAbsDouble(HInvoke* invoke) {
|
|
MathAbsFP(invoke->GetLocations(), /* is64bit */ true, GetVIXLAssembler());
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitMathAbsFloat(HInvoke* invoke) {
|
|
CreateFPToFPLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitMathAbsFloat(HInvoke* invoke) {
|
|
MathAbsFP(invoke->GetLocations(), /* is64bit */ false, GetVIXLAssembler());
|
|
}
|
|
|
|
static void CreateIntToInt(ArenaAllocator* arena, HInvoke* invoke) {
|
|
LocationSummary* locations = new (arena) LocationSummary(invoke,
|
|
LocationSummary::kNoCall,
|
|
kIntrinsified);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetOut(Location::RequiresRegister(), Location::kNoOutputOverlap);
|
|
}
|
|
|
|
static void GenAbsInteger(LocationSummary* locations,
|
|
bool is64bit,
|
|
MacroAssembler* masm) {
|
|
Location in = locations->InAt(0);
|
|
Location output = locations->Out();
|
|
|
|
Register in_reg = is64bit ? XRegisterFrom(in) : WRegisterFrom(in);
|
|
Register out_reg = is64bit ? XRegisterFrom(output) : WRegisterFrom(output);
|
|
|
|
__ Cmp(in_reg, Operand(0));
|
|
__ Cneg(out_reg, in_reg, lt);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitMathAbsInt(HInvoke* invoke) {
|
|
CreateIntToInt(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitMathAbsInt(HInvoke* invoke) {
|
|
GenAbsInteger(invoke->GetLocations(), /* is64bit */ false, GetVIXLAssembler());
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitMathAbsLong(HInvoke* invoke) {
|
|
CreateIntToInt(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitMathAbsLong(HInvoke* invoke) {
|
|
GenAbsInteger(invoke->GetLocations(), /* is64bit */ true, GetVIXLAssembler());
|
|
}
|
|
|
|
static void GenMinMaxFP(LocationSummary* locations,
|
|
bool is_min,
|
|
bool is_double,
|
|
MacroAssembler* masm) {
|
|
Location op1 = locations->InAt(0);
|
|
Location op2 = locations->InAt(1);
|
|
Location out = locations->Out();
|
|
|
|
FPRegister op1_reg = is_double ? DRegisterFrom(op1) : SRegisterFrom(op1);
|
|
FPRegister op2_reg = is_double ? DRegisterFrom(op2) : SRegisterFrom(op2);
|
|
FPRegister out_reg = is_double ? DRegisterFrom(out) : SRegisterFrom(out);
|
|
if (is_min) {
|
|
__ Fmin(out_reg, op1_reg, op2_reg);
|
|
} else {
|
|
__ Fmax(out_reg, op1_reg, op2_reg);
|
|
}
|
|
}
|
|
|
|
static void CreateFPFPToFPLocations(ArenaAllocator* arena, HInvoke* invoke) {
|
|
LocationSummary* locations = new (arena) LocationSummary(invoke,
|
|
LocationSummary::kNoCall,
|
|
kIntrinsified);
|
|
locations->SetInAt(0, Location::RequiresFpuRegister());
|
|
locations->SetInAt(1, Location::RequiresFpuRegister());
|
|
locations->SetOut(Location::RequiresFpuRegister(), Location::kNoOutputOverlap);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitMathMinDoubleDouble(HInvoke* invoke) {
|
|
CreateFPFPToFPLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitMathMinDoubleDouble(HInvoke* invoke) {
|
|
GenMinMaxFP(invoke->GetLocations(), /* is_min */ true, /* is_double */ true, GetVIXLAssembler());
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitMathMinFloatFloat(HInvoke* invoke) {
|
|
CreateFPFPToFPLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitMathMinFloatFloat(HInvoke* invoke) {
|
|
GenMinMaxFP(invoke->GetLocations(), /* is_min */ true, /* is_double */ false, GetVIXLAssembler());
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitMathMaxDoubleDouble(HInvoke* invoke) {
|
|
CreateFPFPToFPLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitMathMaxDoubleDouble(HInvoke* invoke) {
|
|
GenMinMaxFP(invoke->GetLocations(), /* is_min */ false, /* is_double */ true, GetVIXLAssembler());
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitMathMaxFloatFloat(HInvoke* invoke) {
|
|
CreateFPFPToFPLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitMathMaxFloatFloat(HInvoke* invoke) {
|
|
GenMinMaxFP(
|
|
invoke->GetLocations(), /* is_min */ false, /* is_double */ false, GetVIXLAssembler());
|
|
}
|
|
|
|
static void GenMinMax(LocationSummary* locations,
|
|
bool is_min,
|
|
bool is_long,
|
|
MacroAssembler* masm) {
|
|
Location op1 = locations->InAt(0);
|
|
Location op2 = locations->InAt(1);
|
|
Location out = locations->Out();
|
|
|
|
Register op1_reg = is_long ? XRegisterFrom(op1) : WRegisterFrom(op1);
|
|
Register op2_reg = is_long ? XRegisterFrom(op2) : WRegisterFrom(op2);
|
|
Register out_reg = is_long ? XRegisterFrom(out) : WRegisterFrom(out);
|
|
|
|
__ Cmp(op1_reg, op2_reg);
|
|
__ Csel(out_reg, op1_reg, op2_reg, is_min ? lt : gt);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitMathMinIntInt(HInvoke* invoke) {
|
|
CreateIntIntToIntLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitMathMinIntInt(HInvoke* invoke) {
|
|
GenMinMax(invoke->GetLocations(), /* is_min */ true, /* is_long */ false, GetVIXLAssembler());
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitMathMinLongLong(HInvoke* invoke) {
|
|
CreateIntIntToIntLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitMathMinLongLong(HInvoke* invoke) {
|
|
GenMinMax(invoke->GetLocations(), /* is_min */ true, /* is_long */ true, GetVIXLAssembler());
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitMathMaxIntInt(HInvoke* invoke) {
|
|
CreateIntIntToIntLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitMathMaxIntInt(HInvoke* invoke) {
|
|
GenMinMax(invoke->GetLocations(), /* is_min */ false, /* is_long */ false, GetVIXLAssembler());
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitMathMaxLongLong(HInvoke* invoke) {
|
|
CreateIntIntToIntLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitMathMaxLongLong(HInvoke* invoke) {
|
|
GenMinMax(invoke->GetLocations(), /* is_min */ false, /* is_long */ true, GetVIXLAssembler());
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitMathSqrt(HInvoke* invoke) {
|
|
CreateFPToFPLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitMathSqrt(HInvoke* invoke) {
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
MacroAssembler* masm = GetVIXLAssembler();
|
|
__ Fsqrt(DRegisterFrom(locations->Out()), DRegisterFrom(locations->InAt(0)));
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitMathCeil(HInvoke* invoke) {
|
|
CreateFPToFPLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitMathCeil(HInvoke* invoke) {
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
MacroAssembler* masm = GetVIXLAssembler();
|
|
__ Frintp(DRegisterFrom(locations->Out()), DRegisterFrom(locations->InAt(0)));
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitMathFloor(HInvoke* invoke) {
|
|
CreateFPToFPLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitMathFloor(HInvoke* invoke) {
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
MacroAssembler* masm = GetVIXLAssembler();
|
|
__ Frintm(DRegisterFrom(locations->Out()), DRegisterFrom(locations->InAt(0)));
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitMathRint(HInvoke* invoke) {
|
|
CreateFPToFPLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitMathRint(HInvoke* invoke) {
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
MacroAssembler* masm = GetVIXLAssembler();
|
|
__ Frintn(DRegisterFrom(locations->Out()), DRegisterFrom(locations->InAt(0)));
|
|
}
|
|
|
|
static void CreateFPToIntPlusFPTempLocations(ArenaAllocator* arena, HInvoke* invoke) {
|
|
LocationSummary* locations = new (arena) LocationSummary(invoke,
|
|
LocationSummary::kNoCall,
|
|
kIntrinsified);
|
|
locations->SetInAt(0, Location::RequiresFpuRegister());
|
|
locations->SetOut(Location::RequiresRegister());
|
|
locations->AddTemp(Location::RequiresFpuRegister());
|
|
}
|
|
|
|
static void GenMathRound(HInvoke* invoke, bool is_double, vixl::aarch64::MacroAssembler* masm) {
|
|
// Java 8 API definition for Math.round():
|
|
// Return the closest long or int to the argument, with ties rounding to positive infinity.
|
|
//
|
|
// There is no single instruction in ARMv8 that can support the above definition.
|
|
// We choose to use FCVTAS here, because it has closest semantic.
|
|
// FCVTAS performs rounding to nearest integer, ties away from zero.
|
|
// For most inputs (positive values, zero or NaN), this instruction is enough.
|
|
// We only need a few handling code after FCVTAS if the input is negative half value.
|
|
//
|
|
// The reason why we didn't choose FCVTPS instruction here is that
|
|
// although it performs rounding toward positive infinity, it doesn't perform rounding to nearest.
|
|
// For example, FCVTPS(-1.9) = -1 and FCVTPS(1.1) = 2.
|
|
// If we were using this instruction, for most inputs, more handling code would be needed.
|
|
LocationSummary* l = invoke->GetLocations();
|
|
FPRegister in_reg = is_double ? DRegisterFrom(l->InAt(0)) : SRegisterFrom(l->InAt(0));
|
|
FPRegister tmp_fp = is_double ? DRegisterFrom(l->GetTemp(0)) : SRegisterFrom(l->GetTemp(0));
|
|
Register out_reg = is_double ? XRegisterFrom(l->Out()) : WRegisterFrom(l->Out());
|
|
vixl::aarch64::Label done;
|
|
|
|
// Round to nearest integer, ties away from zero.
|
|
__ Fcvtas(out_reg, in_reg);
|
|
|
|
// For positive values, zero or NaN inputs, rounding is done.
|
|
__ Tbz(out_reg, out_reg.GetSizeInBits() - 1, &done);
|
|
|
|
// Handle input < 0 cases.
|
|
// If input is negative but not a tie, previous result (round to nearest) is valid.
|
|
// If input is a negative tie, out_reg += 1.
|
|
__ Frinta(tmp_fp, in_reg);
|
|
__ Fsub(tmp_fp, in_reg, tmp_fp);
|
|
__ Fcmp(tmp_fp, 0.5);
|
|
__ Cinc(out_reg, out_reg, eq);
|
|
|
|
__ Bind(&done);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitMathRoundDouble(HInvoke* invoke) {
|
|
CreateFPToIntPlusFPTempLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitMathRoundDouble(HInvoke* invoke) {
|
|
GenMathRound(invoke, /* is_double */ true, GetVIXLAssembler());
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitMathRoundFloat(HInvoke* invoke) {
|
|
CreateFPToIntPlusFPTempLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitMathRoundFloat(HInvoke* invoke) {
|
|
GenMathRound(invoke, /* is_double */ false, GetVIXLAssembler());
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitMemoryPeekByte(HInvoke* invoke) {
|
|
CreateIntToIntLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitMemoryPeekByte(HInvoke* invoke) {
|
|
MacroAssembler* masm = GetVIXLAssembler();
|
|
__ Ldrsb(WRegisterFrom(invoke->GetLocations()->Out()),
|
|
AbsoluteHeapOperandFrom(invoke->GetLocations()->InAt(0), 0));
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitMemoryPeekIntNative(HInvoke* invoke) {
|
|
CreateIntToIntLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitMemoryPeekIntNative(HInvoke* invoke) {
|
|
MacroAssembler* masm = GetVIXLAssembler();
|
|
__ Ldr(WRegisterFrom(invoke->GetLocations()->Out()),
|
|
AbsoluteHeapOperandFrom(invoke->GetLocations()->InAt(0), 0));
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitMemoryPeekLongNative(HInvoke* invoke) {
|
|
CreateIntToIntLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitMemoryPeekLongNative(HInvoke* invoke) {
|
|
MacroAssembler* masm = GetVIXLAssembler();
|
|
__ Ldr(XRegisterFrom(invoke->GetLocations()->Out()),
|
|
AbsoluteHeapOperandFrom(invoke->GetLocations()->InAt(0), 0));
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitMemoryPeekShortNative(HInvoke* invoke) {
|
|
CreateIntToIntLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitMemoryPeekShortNative(HInvoke* invoke) {
|
|
MacroAssembler* masm = GetVIXLAssembler();
|
|
__ Ldrsh(WRegisterFrom(invoke->GetLocations()->Out()),
|
|
AbsoluteHeapOperandFrom(invoke->GetLocations()->InAt(0), 0));
|
|
}
|
|
|
|
static void CreateIntIntToVoidLocations(ArenaAllocator* arena, HInvoke* invoke) {
|
|
LocationSummary* locations = new (arena) LocationSummary(invoke,
|
|
LocationSummary::kNoCall,
|
|
kIntrinsified);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::RequiresRegister());
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitMemoryPokeByte(HInvoke* invoke) {
|
|
CreateIntIntToVoidLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitMemoryPokeByte(HInvoke* invoke) {
|
|
MacroAssembler* masm = GetVIXLAssembler();
|
|
__ Strb(WRegisterFrom(invoke->GetLocations()->InAt(1)),
|
|
AbsoluteHeapOperandFrom(invoke->GetLocations()->InAt(0), 0));
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitMemoryPokeIntNative(HInvoke* invoke) {
|
|
CreateIntIntToVoidLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitMemoryPokeIntNative(HInvoke* invoke) {
|
|
MacroAssembler* masm = GetVIXLAssembler();
|
|
__ Str(WRegisterFrom(invoke->GetLocations()->InAt(1)),
|
|
AbsoluteHeapOperandFrom(invoke->GetLocations()->InAt(0), 0));
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitMemoryPokeLongNative(HInvoke* invoke) {
|
|
CreateIntIntToVoidLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitMemoryPokeLongNative(HInvoke* invoke) {
|
|
MacroAssembler* masm = GetVIXLAssembler();
|
|
__ Str(XRegisterFrom(invoke->GetLocations()->InAt(1)),
|
|
AbsoluteHeapOperandFrom(invoke->GetLocations()->InAt(0), 0));
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitMemoryPokeShortNative(HInvoke* invoke) {
|
|
CreateIntIntToVoidLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitMemoryPokeShortNative(HInvoke* invoke) {
|
|
MacroAssembler* masm = GetVIXLAssembler();
|
|
__ Strh(WRegisterFrom(invoke->GetLocations()->InAt(1)),
|
|
AbsoluteHeapOperandFrom(invoke->GetLocations()->InAt(0), 0));
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitThreadCurrentThread(HInvoke* invoke) {
|
|
LocationSummary* locations = new (arena_) LocationSummary(invoke,
|
|
LocationSummary::kNoCall,
|
|
kIntrinsified);
|
|
locations->SetOut(Location::RequiresRegister());
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitThreadCurrentThread(HInvoke* invoke) {
|
|
codegen_->Load(Primitive::kPrimNot, WRegisterFrom(invoke->GetLocations()->Out()),
|
|
MemOperand(tr, Thread::PeerOffset<kArm64PointerSize>().Int32Value()));
|
|
}
|
|
|
|
static void GenUnsafeGet(HInvoke* invoke,
|
|
Primitive::Type type,
|
|
bool is_volatile,
|
|
CodeGeneratorARM64* codegen) {
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
DCHECK((type == Primitive::kPrimInt) ||
|
|
(type == Primitive::kPrimLong) ||
|
|
(type == Primitive::kPrimNot));
|
|
Location base_loc = locations->InAt(1);
|
|
Register base = WRegisterFrom(base_loc); // Object pointer.
|
|
Location offset_loc = locations->InAt(2);
|
|
Register offset = XRegisterFrom(offset_loc); // Long offset.
|
|
Location trg_loc = locations->Out();
|
|
Register trg = RegisterFrom(trg_loc, type);
|
|
|
|
if (type == Primitive::kPrimNot && kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
|
|
// UnsafeGetObject/UnsafeGetObjectVolatile with Baker's read barrier case.
|
|
Register temp = WRegisterFrom(locations->GetTemp(0));
|
|
codegen->GenerateReferenceLoadWithBakerReadBarrier(invoke,
|
|
trg_loc,
|
|
base,
|
|
/* offset */ 0u,
|
|
/* index */ offset_loc,
|
|
/* scale_factor */ 0u,
|
|
temp,
|
|
/* needs_null_check */ false,
|
|
is_volatile);
|
|
} else {
|
|
// Other cases.
|
|
MemOperand mem_op(base.X(), offset);
|
|
if (is_volatile) {
|
|
codegen->LoadAcquire(invoke, trg, mem_op, /* needs_null_check */ true);
|
|
} else {
|
|
codegen->Load(type, trg, mem_op);
|
|
}
|
|
|
|
if (type == Primitive::kPrimNot) {
|
|
DCHECK(trg.IsW());
|
|
codegen->MaybeGenerateReadBarrierSlow(invoke, trg_loc, trg_loc, base_loc, 0u, offset_loc);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void CreateIntIntIntToIntLocations(ArenaAllocator* arena, HInvoke* invoke) {
|
|
bool can_call = kEmitCompilerReadBarrier &&
|
|
(invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObject ||
|
|
invoke->GetIntrinsic() == Intrinsics::kUnsafeGetObjectVolatile);
|
|
LocationSummary* locations = new (arena) LocationSummary(invoke,
|
|
(can_call
|
|
? LocationSummary::kCallOnSlowPath
|
|
: LocationSummary::kNoCall),
|
|
kIntrinsified);
|
|
if (can_call && kUseBakerReadBarrier) {
|
|
locations->SetCustomSlowPathCallerSaves(RegisterSet::Empty()); // No caller-save registers.
|
|
// We need a temporary register for the read barrier marking slow
|
|
// path in CodeGeneratorARM64::GenerateReferenceLoadWithBakerReadBarrier.
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
}
|
|
locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
|
|
locations->SetInAt(1, Location::RequiresRegister());
|
|
locations->SetInAt(2, Location::RequiresRegister());
|
|
locations->SetOut(Location::RequiresRegister(),
|
|
(can_call ? Location::kOutputOverlap : Location::kNoOutputOverlap));
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitUnsafeGet(HInvoke* invoke) {
|
|
CreateIntIntIntToIntLocations(arena_, invoke);
|
|
}
|
|
void IntrinsicLocationsBuilderARM64::VisitUnsafeGetVolatile(HInvoke* invoke) {
|
|
CreateIntIntIntToIntLocations(arena_, invoke);
|
|
}
|
|
void IntrinsicLocationsBuilderARM64::VisitUnsafeGetLong(HInvoke* invoke) {
|
|
CreateIntIntIntToIntLocations(arena_, invoke);
|
|
}
|
|
void IntrinsicLocationsBuilderARM64::VisitUnsafeGetLongVolatile(HInvoke* invoke) {
|
|
CreateIntIntIntToIntLocations(arena_, invoke);
|
|
}
|
|
void IntrinsicLocationsBuilderARM64::VisitUnsafeGetObject(HInvoke* invoke) {
|
|
CreateIntIntIntToIntLocations(arena_, invoke);
|
|
}
|
|
void IntrinsicLocationsBuilderARM64::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
|
|
CreateIntIntIntToIntLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitUnsafeGet(HInvoke* invoke) {
|
|
GenUnsafeGet(invoke, Primitive::kPrimInt, /* is_volatile */ false, codegen_);
|
|
}
|
|
void IntrinsicCodeGeneratorARM64::VisitUnsafeGetVolatile(HInvoke* invoke) {
|
|
GenUnsafeGet(invoke, Primitive::kPrimInt, /* is_volatile */ true, codegen_);
|
|
}
|
|
void IntrinsicCodeGeneratorARM64::VisitUnsafeGetLong(HInvoke* invoke) {
|
|
GenUnsafeGet(invoke, Primitive::kPrimLong, /* is_volatile */ false, codegen_);
|
|
}
|
|
void IntrinsicCodeGeneratorARM64::VisitUnsafeGetLongVolatile(HInvoke* invoke) {
|
|
GenUnsafeGet(invoke, Primitive::kPrimLong, /* is_volatile */ true, codegen_);
|
|
}
|
|
void IntrinsicCodeGeneratorARM64::VisitUnsafeGetObject(HInvoke* invoke) {
|
|
GenUnsafeGet(invoke, Primitive::kPrimNot, /* is_volatile */ false, codegen_);
|
|
}
|
|
void IntrinsicCodeGeneratorARM64::VisitUnsafeGetObjectVolatile(HInvoke* invoke) {
|
|
GenUnsafeGet(invoke, Primitive::kPrimNot, /* is_volatile */ true, codegen_);
|
|
}
|
|
|
|
static void CreateIntIntIntIntToVoid(ArenaAllocator* arena, HInvoke* invoke) {
|
|
LocationSummary* locations = new (arena) LocationSummary(invoke,
|
|
LocationSummary::kNoCall,
|
|
kIntrinsified);
|
|
locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
|
|
locations->SetInAt(1, Location::RequiresRegister());
|
|
locations->SetInAt(2, Location::RequiresRegister());
|
|
locations->SetInAt(3, Location::RequiresRegister());
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitUnsafePut(HInvoke* invoke) {
|
|
CreateIntIntIntIntToVoid(arena_, invoke);
|
|
}
|
|
void IntrinsicLocationsBuilderARM64::VisitUnsafePutOrdered(HInvoke* invoke) {
|
|
CreateIntIntIntIntToVoid(arena_, invoke);
|
|
}
|
|
void IntrinsicLocationsBuilderARM64::VisitUnsafePutVolatile(HInvoke* invoke) {
|
|
CreateIntIntIntIntToVoid(arena_, invoke);
|
|
}
|
|
void IntrinsicLocationsBuilderARM64::VisitUnsafePutObject(HInvoke* invoke) {
|
|
CreateIntIntIntIntToVoid(arena_, invoke);
|
|
}
|
|
void IntrinsicLocationsBuilderARM64::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
|
|
CreateIntIntIntIntToVoid(arena_, invoke);
|
|
}
|
|
void IntrinsicLocationsBuilderARM64::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
|
|
CreateIntIntIntIntToVoid(arena_, invoke);
|
|
}
|
|
void IntrinsicLocationsBuilderARM64::VisitUnsafePutLong(HInvoke* invoke) {
|
|
CreateIntIntIntIntToVoid(arena_, invoke);
|
|
}
|
|
void IntrinsicLocationsBuilderARM64::VisitUnsafePutLongOrdered(HInvoke* invoke) {
|
|
CreateIntIntIntIntToVoid(arena_, invoke);
|
|
}
|
|
void IntrinsicLocationsBuilderARM64::VisitUnsafePutLongVolatile(HInvoke* invoke) {
|
|
CreateIntIntIntIntToVoid(arena_, invoke);
|
|
}
|
|
|
|
static void GenUnsafePut(HInvoke* invoke,
|
|
Primitive::Type type,
|
|
bool is_volatile,
|
|
bool is_ordered,
|
|
CodeGeneratorARM64* codegen) {
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
MacroAssembler* masm = codegen->GetVIXLAssembler();
|
|
|
|
Register base = WRegisterFrom(locations->InAt(1)); // Object pointer.
|
|
Register offset = XRegisterFrom(locations->InAt(2)); // Long offset.
|
|
Register value = RegisterFrom(locations->InAt(3), type);
|
|
Register source = value;
|
|
MemOperand mem_op(base.X(), offset);
|
|
|
|
{
|
|
// We use a block to end the scratch scope before the write barrier, thus
|
|
// freeing the temporary registers so they can be used in `MarkGCCard`.
|
|
UseScratchRegisterScope temps(masm);
|
|
|
|
if (kPoisonHeapReferences && type == Primitive::kPrimNot) {
|
|
DCHECK(value.IsW());
|
|
Register temp = temps.AcquireW();
|
|
__ Mov(temp.W(), value.W());
|
|
codegen->GetAssembler()->PoisonHeapReference(temp.W());
|
|
source = temp;
|
|
}
|
|
|
|
if (is_volatile || is_ordered) {
|
|
codegen->StoreRelease(invoke, type, source, mem_op, /* needs_null_check */ false);
|
|
} else {
|
|
codegen->Store(type, source, mem_op);
|
|
}
|
|
}
|
|
|
|
if (type == Primitive::kPrimNot) {
|
|
bool value_can_be_null = true; // TODO: Worth finding out this information?
|
|
codegen->MarkGCCard(base, value, value_can_be_null);
|
|
}
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitUnsafePut(HInvoke* invoke) {
|
|
GenUnsafePut(invoke,
|
|
Primitive::kPrimInt,
|
|
/* is_volatile */ false,
|
|
/* is_ordered */ false,
|
|
codegen_);
|
|
}
|
|
void IntrinsicCodeGeneratorARM64::VisitUnsafePutOrdered(HInvoke* invoke) {
|
|
GenUnsafePut(invoke,
|
|
Primitive::kPrimInt,
|
|
/* is_volatile */ false,
|
|
/* is_ordered */ true,
|
|
codegen_);
|
|
}
|
|
void IntrinsicCodeGeneratorARM64::VisitUnsafePutVolatile(HInvoke* invoke) {
|
|
GenUnsafePut(invoke,
|
|
Primitive::kPrimInt,
|
|
/* is_volatile */ true,
|
|
/* is_ordered */ false,
|
|
codegen_);
|
|
}
|
|
void IntrinsicCodeGeneratorARM64::VisitUnsafePutObject(HInvoke* invoke) {
|
|
GenUnsafePut(invoke,
|
|
Primitive::kPrimNot,
|
|
/* is_volatile */ false,
|
|
/* is_ordered */ false,
|
|
codegen_);
|
|
}
|
|
void IntrinsicCodeGeneratorARM64::VisitUnsafePutObjectOrdered(HInvoke* invoke) {
|
|
GenUnsafePut(invoke,
|
|
Primitive::kPrimNot,
|
|
/* is_volatile */ false,
|
|
/* is_ordered */ true,
|
|
codegen_);
|
|
}
|
|
void IntrinsicCodeGeneratorARM64::VisitUnsafePutObjectVolatile(HInvoke* invoke) {
|
|
GenUnsafePut(invoke,
|
|
Primitive::kPrimNot,
|
|
/* is_volatile */ true,
|
|
/* is_ordered */ false,
|
|
codegen_);
|
|
}
|
|
void IntrinsicCodeGeneratorARM64::VisitUnsafePutLong(HInvoke* invoke) {
|
|
GenUnsafePut(invoke,
|
|
Primitive::kPrimLong,
|
|
/* is_volatile */ false,
|
|
/* is_ordered */ false,
|
|
codegen_);
|
|
}
|
|
void IntrinsicCodeGeneratorARM64::VisitUnsafePutLongOrdered(HInvoke* invoke) {
|
|
GenUnsafePut(invoke,
|
|
Primitive::kPrimLong,
|
|
/* is_volatile */ false,
|
|
/* is_ordered */ true,
|
|
codegen_);
|
|
}
|
|
void IntrinsicCodeGeneratorARM64::VisitUnsafePutLongVolatile(HInvoke* invoke) {
|
|
GenUnsafePut(invoke,
|
|
Primitive::kPrimLong,
|
|
/* is_volatile */ true,
|
|
/* is_ordered */ false,
|
|
codegen_);
|
|
}
|
|
|
|
static void CreateIntIntIntIntIntToInt(ArenaAllocator* arena,
|
|
HInvoke* invoke,
|
|
Primitive::Type type) {
|
|
bool can_call = kEmitCompilerReadBarrier &&
|
|
kUseBakerReadBarrier &&
|
|
(invoke->GetIntrinsic() == Intrinsics::kUnsafeCASObject);
|
|
LocationSummary* locations = new (arena) LocationSummary(invoke,
|
|
(can_call
|
|
? LocationSummary::kCallOnSlowPath
|
|
: LocationSummary::kNoCall),
|
|
kIntrinsified);
|
|
locations->SetInAt(0, Location::NoLocation()); // Unused receiver.
|
|
locations->SetInAt(1, Location::RequiresRegister());
|
|
locations->SetInAt(2, Location::RequiresRegister());
|
|
locations->SetInAt(3, Location::RequiresRegister());
|
|
locations->SetInAt(4, Location::RequiresRegister());
|
|
|
|
// If heap poisoning is enabled, we don't want the unpoisoning
|
|
// operations to potentially clobber the output. Likewise when
|
|
// emitting a (Baker) read barrier, which may call.
|
|
Location::OutputOverlap overlaps =
|
|
((kPoisonHeapReferences && type == Primitive::kPrimNot) || can_call)
|
|
? Location::kOutputOverlap
|
|
: Location::kNoOutputOverlap;
|
|
locations->SetOut(Location::RequiresRegister(), overlaps);
|
|
if (type == Primitive::kPrimNot && kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
|
|
// Temporary register for (Baker) read barrier.
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
}
|
|
}
|
|
|
|
static void GenCas(HInvoke* invoke, Primitive::Type type, CodeGeneratorARM64* codegen) {
|
|
MacroAssembler* masm = codegen->GetVIXLAssembler();
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
|
|
Location out_loc = locations->Out();
|
|
Register out = WRegisterFrom(out_loc); // Boolean result.
|
|
|
|
Register base = WRegisterFrom(locations->InAt(1)); // Object pointer.
|
|
Location offset_loc = locations->InAt(2);
|
|
Register offset = XRegisterFrom(offset_loc); // Long offset.
|
|
Register expected = RegisterFrom(locations->InAt(3), type); // Expected.
|
|
Register value = RegisterFrom(locations->InAt(4), type); // Value.
|
|
|
|
// This needs to be before the temp registers, as MarkGCCard also uses VIXL temps.
|
|
if (type == Primitive::kPrimNot) {
|
|
// Mark card for object assuming new value is stored.
|
|
bool value_can_be_null = true; // TODO: Worth finding out this information?
|
|
codegen->MarkGCCard(base, value, value_can_be_null);
|
|
|
|
// The only read barrier implementation supporting the
|
|
// UnsafeCASObject intrinsic is the Baker-style read barriers.
|
|
DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier);
|
|
|
|
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
|
|
Register temp = WRegisterFrom(locations->GetTemp(0));
|
|
// Need to make sure the reference stored in the field is a to-space
|
|
// one before attempting the CAS or the CAS could fail incorrectly.
|
|
codegen->UpdateReferenceFieldWithBakerReadBarrier(
|
|
invoke,
|
|
out_loc, // Unused, used only as a "temporary" within the read barrier.
|
|
base,
|
|
/* field_offset */ offset_loc,
|
|
temp,
|
|
/* needs_null_check */ false,
|
|
/* use_load_acquire */ false);
|
|
}
|
|
}
|
|
|
|
UseScratchRegisterScope temps(masm);
|
|
Register tmp_ptr = temps.AcquireX(); // Pointer to actual memory.
|
|
Register tmp_value = temps.AcquireSameSizeAs(value); // Value in memory.
|
|
|
|
Register tmp_32 = tmp_value.W();
|
|
|
|
__ Add(tmp_ptr, base.X(), Operand(offset));
|
|
|
|
if (kPoisonHeapReferences && type == Primitive::kPrimNot) {
|
|
codegen->GetAssembler()->PoisonHeapReference(expected);
|
|
if (value.Is(expected)) {
|
|
// Do not poison `value`, as it is the same register as
|
|
// `expected`, which has just been poisoned.
|
|
} else {
|
|
codegen->GetAssembler()->PoisonHeapReference(value);
|
|
}
|
|
}
|
|
|
|
// do {
|
|
// tmp_value = [tmp_ptr] - expected;
|
|
// } while (tmp_value == 0 && failure([tmp_ptr] <- r_new_value));
|
|
// result = tmp_value != 0;
|
|
|
|
vixl::aarch64::Label loop_head, exit_loop;
|
|
__ Bind(&loop_head);
|
|
__ Ldaxr(tmp_value, MemOperand(tmp_ptr));
|
|
__ Cmp(tmp_value, expected);
|
|
__ B(&exit_loop, ne);
|
|
__ Stlxr(tmp_32, value, MemOperand(tmp_ptr));
|
|
__ Cbnz(tmp_32, &loop_head);
|
|
__ Bind(&exit_loop);
|
|
__ Cset(out, eq);
|
|
|
|
if (kPoisonHeapReferences && type == Primitive::kPrimNot) {
|
|
codegen->GetAssembler()->UnpoisonHeapReference(expected);
|
|
if (value.Is(expected)) {
|
|
// Do not unpoison `value`, as it is the same register as
|
|
// `expected`, which has just been unpoisoned.
|
|
} else {
|
|
codegen->GetAssembler()->UnpoisonHeapReference(value);
|
|
}
|
|
}
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitUnsafeCASInt(HInvoke* invoke) {
|
|
CreateIntIntIntIntIntToInt(arena_, invoke, Primitive::kPrimInt);
|
|
}
|
|
void IntrinsicLocationsBuilderARM64::VisitUnsafeCASLong(HInvoke* invoke) {
|
|
CreateIntIntIntIntIntToInt(arena_, invoke, Primitive::kPrimLong);
|
|
}
|
|
void IntrinsicLocationsBuilderARM64::VisitUnsafeCASObject(HInvoke* invoke) {
|
|
// The only read barrier implementation supporting the
|
|
// UnsafeCASObject intrinsic is the Baker-style read barriers.
|
|
if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) {
|
|
return;
|
|
}
|
|
|
|
CreateIntIntIntIntIntToInt(arena_, invoke, Primitive::kPrimNot);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitUnsafeCASInt(HInvoke* invoke) {
|
|
GenCas(invoke, Primitive::kPrimInt, codegen_);
|
|
}
|
|
void IntrinsicCodeGeneratorARM64::VisitUnsafeCASLong(HInvoke* invoke) {
|
|
GenCas(invoke, Primitive::kPrimLong, codegen_);
|
|
}
|
|
void IntrinsicCodeGeneratorARM64::VisitUnsafeCASObject(HInvoke* invoke) {
|
|
// The only read barrier implementation supporting the
|
|
// UnsafeCASObject intrinsic is the Baker-style read barriers.
|
|
DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier);
|
|
|
|
GenCas(invoke, Primitive::kPrimNot, codegen_);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitStringCompareTo(HInvoke* invoke) {
|
|
LocationSummary* locations = new (arena_) LocationSummary(invoke,
|
|
invoke->InputAt(1)->CanBeNull()
|
|
? LocationSummary::kCallOnSlowPath
|
|
: LocationSummary::kNoCall,
|
|
kIntrinsified);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::RequiresRegister());
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
// Need temporary registers for String compression's feature.
|
|
if (mirror::kUseStringCompression) {
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
}
|
|
locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitStringCompareTo(HInvoke* invoke) {
|
|
MacroAssembler* masm = GetVIXLAssembler();
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
|
|
Register str = InputRegisterAt(invoke, 0);
|
|
Register arg = InputRegisterAt(invoke, 1);
|
|
DCHECK(str.IsW());
|
|
DCHECK(arg.IsW());
|
|
Register out = OutputRegister(invoke);
|
|
|
|
Register temp0 = WRegisterFrom(locations->GetTemp(0));
|
|
Register temp1 = WRegisterFrom(locations->GetTemp(1));
|
|
Register temp2 = WRegisterFrom(locations->GetTemp(2));
|
|
Register temp3;
|
|
if (mirror::kUseStringCompression) {
|
|
temp3 = WRegisterFrom(locations->GetTemp(3));
|
|
}
|
|
|
|
vixl::aarch64::Label loop;
|
|
vixl::aarch64::Label find_char_diff;
|
|
vixl::aarch64::Label end;
|
|
vixl::aarch64::Label different_compression;
|
|
|
|
// Get offsets of count and value fields within a string object.
|
|
const int32_t count_offset = mirror::String::CountOffset().Int32Value();
|
|
const int32_t value_offset = mirror::String::ValueOffset().Int32Value();
|
|
|
|
// Note that the null check must have been done earlier.
|
|
DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
|
|
|
|
// Take slow path and throw if input can be and is null.
|
|
SlowPathCodeARM64* slow_path = nullptr;
|
|
const bool can_slow_path = invoke->InputAt(1)->CanBeNull();
|
|
if (can_slow_path) {
|
|
slow_path = new (GetAllocator()) IntrinsicSlowPathARM64(invoke);
|
|
codegen_->AddSlowPath(slow_path);
|
|
__ Cbz(arg, slow_path->GetEntryLabel());
|
|
}
|
|
|
|
// Reference equality check, return 0 if same reference.
|
|
__ Subs(out, str, arg);
|
|
__ B(&end, eq);
|
|
|
|
if (mirror::kUseStringCompression) {
|
|
// Load `count` fields of this and argument strings.
|
|
__ Ldr(temp3, HeapOperand(str, count_offset));
|
|
__ Ldr(temp2, HeapOperand(arg, count_offset));
|
|
// Clean out compression flag from lengths.
|
|
__ Lsr(temp0, temp3, 1u);
|
|
__ Lsr(temp1, temp2, 1u);
|
|
} else {
|
|
// Load lengths of this and argument strings.
|
|
__ Ldr(temp0, HeapOperand(str, count_offset));
|
|
__ Ldr(temp1, HeapOperand(arg, count_offset));
|
|
}
|
|
// out = length diff.
|
|
__ Subs(out, temp0, temp1);
|
|
// temp0 = min(len(str), len(arg)).
|
|
__ Csel(temp0, temp1, temp0, ge);
|
|
// Shorter string is empty?
|
|
__ Cbz(temp0, &end);
|
|
|
|
if (mirror::kUseStringCompression) {
|
|
// Check if both strings using same compression style to use this comparison loop.
|
|
__ Eor(temp2, temp2, Operand(temp3));
|
|
// Interleave with compression flag extraction which is needed for both paths
|
|
// and also set flags which is needed only for the different compressions path.
|
|
__ Ands(temp3.W(), temp3.W(), Operand(1));
|
|
__ Tbnz(temp2, 0, &different_compression); // Does not use flags.
|
|
}
|
|
// Store offset of string value in preparation for comparison loop.
|
|
__ Mov(temp1, value_offset);
|
|
if (mirror::kUseStringCompression) {
|
|
// For string compression, calculate the number of bytes to compare (not chars).
|
|
// This could in theory exceed INT32_MAX, so treat temp0 as unsigned.
|
|
__ Lsl(temp0, temp0, temp3);
|
|
}
|
|
|
|
UseScratchRegisterScope scratch_scope(masm);
|
|
Register temp4 = scratch_scope.AcquireX();
|
|
|
|
// Assertions that must hold in order to compare strings 8 bytes at a time.
|
|
DCHECK_ALIGNED(value_offset, 8);
|
|
static_assert(IsAligned<8>(kObjectAlignment), "String of odd length is not zero padded");
|
|
|
|
const size_t char_size = Primitive::ComponentSize(Primitive::kPrimChar);
|
|
DCHECK_EQ(char_size, 2u);
|
|
|
|
// Promote temp2 to an X reg, ready for LDR.
|
|
temp2 = temp2.X();
|
|
|
|
// Loop to compare 4x16-bit characters at a time (ok because of string data alignment).
|
|
__ Bind(&loop);
|
|
__ Ldr(temp4, MemOperand(str.X(), temp1.X()));
|
|
__ Ldr(temp2, MemOperand(arg.X(), temp1.X()));
|
|
__ Cmp(temp4, temp2);
|
|
__ B(ne, &find_char_diff);
|
|
__ Add(temp1, temp1, char_size * 4);
|
|
// With string compression, we have compared 8 bytes, otherwise 4 chars.
|
|
__ Subs(temp0, temp0, (mirror::kUseStringCompression) ? 8 : 4);
|
|
__ B(&loop, hi);
|
|
__ B(&end);
|
|
|
|
// Promote temp1 to an X reg, ready for EOR.
|
|
temp1 = temp1.X();
|
|
|
|
// Find the single character difference.
|
|
__ Bind(&find_char_diff);
|
|
// Get the bit position of the first character that differs.
|
|
__ Eor(temp1, temp2, temp4);
|
|
__ Rbit(temp1, temp1);
|
|
__ Clz(temp1, temp1);
|
|
|
|
// If the number of chars remaining <= the index where the difference occurs (0-3), then
|
|
// the difference occurs outside the remaining string data, so just return length diff (out).
|
|
// Unlike ARM, we're doing the comparison in one go here, without the subtraction at the
|
|
// find_char_diff_2nd_cmp path, so it doesn't matter whether the comparison is signed or
|
|
// unsigned when string compression is disabled.
|
|
// When it's enabled, the comparison must be unsigned.
|
|
__ Cmp(temp0, Operand(temp1.W(), LSR, (mirror::kUseStringCompression) ? 3 : 4));
|
|
__ B(ls, &end);
|
|
|
|
// Extract the characters and calculate the difference.
|
|
if (mirror:: kUseStringCompression) {
|
|
__ Bic(temp1, temp1, 0x7);
|
|
__ Bic(temp1, temp1, Operand(temp3.X(), LSL, 3u));
|
|
} else {
|
|
__ Bic(temp1, temp1, 0xf);
|
|
}
|
|
__ Lsr(temp2, temp2, temp1);
|
|
__ Lsr(temp4, temp4, temp1);
|
|
if (mirror::kUseStringCompression) {
|
|
// Prioritize the case of compressed strings and calculate such result first.
|
|
__ Uxtb(temp1, temp4);
|
|
__ Sub(out, temp1.W(), Operand(temp2.W(), UXTB));
|
|
__ Tbz(temp3, 0u, &end); // If actually compressed, we're done.
|
|
}
|
|
__ Uxth(temp4, temp4);
|
|
__ Sub(out, temp4.W(), Operand(temp2.W(), UXTH));
|
|
|
|
if (mirror::kUseStringCompression) {
|
|
__ B(&end);
|
|
__ Bind(&different_compression);
|
|
|
|
// Comparison for different compression style.
|
|
const size_t c_char_size = Primitive::ComponentSize(Primitive::kPrimByte);
|
|
DCHECK_EQ(c_char_size, 1u);
|
|
temp1 = temp1.W();
|
|
temp2 = temp2.W();
|
|
temp4 = temp4.W();
|
|
|
|
// `temp1` will hold the compressed data pointer, `temp2` the uncompressed data pointer.
|
|
// Note that flags have been set by the `str` compression flag extraction to `temp3`
|
|
// before branching to the `different_compression` label.
|
|
__ Csel(temp1, str, arg, eq); // Pointer to the compressed string.
|
|
__ Csel(temp2, str, arg, ne); // Pointer to the uncompressed string.
|
|
|
|
// We want to free up the temp3, currently holding `str` compression flag, for comparison.
|
|
// So, we move it to the bottom bit of the iteration count `temp0` which we then need to treat
|
|
// as unsigned. Start by freeing the bit with a LSL and continue further down by a SUB which
|
|
// will allow `subs temp0, #2; bhi different_compression_loop` to serve as the loop condition.
|
|
__ Lsl(temp0, temp0, 1u);
|
|
|
|
// Adjust temp1 and temp2 from string pointers to data pointers.
|
|
__ Add(temp1, temp1, Operand(value_offset));
|
|
__ Add(temp2, temp2, Operand(value_offset));
|
|
|
|
// Complete the move of the compression flag.
|
|
__ Sub(temp0, temp0, Operand(temp3));
|
|
|
|
vixl::aarch64::Label different_compression_loop;
|
|
vixl::aarch64::Label different_compression_diff;
|
|
|
|
__ Bind(&different_compression_loop);
|
|
__ Ldrb(temp4, MemOperand(temp1.X(), c_char_size, PostIndex));
|
|
__ Ldrh(temp3, MemOperand(temp2.X(), char_size, PostIndex));
|
|
__ Subs(temp4, temp4, Operand(temp3));
|
|
__ B(&different_compression_diff, ne);
|
|
__ Subs(temp0, temp0, 2);
|
|
__ B(&different_compression_loop, hi);
|
|
__ B(&end);
|
|
|
|
// Calculate the difference.
|
|
__ Bind(&different_compression_diff);
|
|
__ Tst(temp0, Operand(1));
|
|
static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
|
|
"Expecting 0=compressed, 1=uncompressed");
|
|
__ Cneg(out, temp4, ne);
|
|
}
|
|
|
|
__ Bind(&end);
|
|
|
|
if (can_slow_path) {
|
|
__ Bind(slow_path->GetExitLabel());
|
|
}
|
|
}
|
|
|
|
// The cut off for unrolling the loop in String.equals() intrinsic for const strings.
|
|
// The normal loop plus the pre-header is 9 instructions without string compression and 12
|
|
// instructions with string compression. We can compare up to 8 bytes in 4 instructions
|
|
// (LDR+LDR+CMP+BNE) and up to 16 bytes in 5 instructions (LDP+LDP+CMP+CCMP+BNE). Allow up
|
|
// to 10 instructions for the unrolled loop.
|
|
constexpr size_t kShortConstStringEqualsCutoffInBytes = 32;
|
|
|
|
static const char* GetConstString(HInstruction* candidate, uint32_t* utf16_length) {
|
|
if (candidate->IsLoadString()) {
|
|
HLoadString* load_string = candidate->AsLoadString();
|
|
const DexFile& dex_file = load_string->GetDexFile();
|
|
return dex_file.StringDataAndUtf16LengthByIdx(load_string->GetStringIndex(), utf16_length);
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitStringEquals(HInvoke* invoke) {
|
|
LocationSummary* locations = new (arena_) LocationSummary(invoke,
|
|
LocationSummary::kNoCall,
|
|
kIntrinsified);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::RequiresRegister());
|
|
|
|
// For the generic implementation and for long const strings we need a temporary.
|
|
// We do not need it for short const strings, up to 8 bytes, see code generation below.
|
|
uint32_t const_string_length = 0u;
|
|
const char* const_string = GetConstString(invoke->InputAt(0), &const_string_length);
|
|
if (const_string == nullptr) {
|
|
const_string = GetConstString(invoke->InputAt(1), &const_string_length);
|
|
}
|
|
bool is_compressed =
|
|
mirror::kUseStringCompression &&
|
|
const_string != nullptr &&
|
|
mirror::String::DexFileStringAllASCII(const_string, const_string_length);
|
|
if (const_string == nullptr || const_string_length > (is_compressed ? 8u : 4u)) {
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
}
|
|
|
|
// TODO: If the String.equals() is used only for an immediately following HIf, we can
|
|
// mark it as emitted-at-use-site and emit branches directly to the appropriate blocks.
|
|
// Then we shall need an extra temporary register instead of the output register.
|
|
locations->SetOut(Location::RequiresRegister(), Location::kOutputOverlap);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitStringEquals(HInvoke* invoke) {
|
|
MacroAssembler* masm = GetVIXLAssembler();
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
|
|
Register str = WRegisterFrom(locations->InAt(0));
|
|
Register arg = WRegisterFrom(locations->InAt(1));
|
|
Register out = XRegisterFrom(locations->Out());
|
|
|
|
UseScratchRegisterScope scratch_scope(masm);
|
|
Register temp = scratch_scope.AcquireW();
|
|
Register temp1 = scratch_scope.AcquireW();
|
|
|
|
vixl::aarch64::Label loop;
|
|
vixl::aarch64::Label end;
|
|
vixl::aarch64::Label return_true;
|
|
vixl::aarch64::Label return_false;
|
|
|
|
// Get offsets of count, value, and class fields within a string object.
|
|
const int32_t count_offset = mirror::String::CountOffset().Int32Value();
|
|
const int32_t value_offset = mirror::String::ValueOffset().Int32Value();
|
|
const int32_t class_offset = mirror::Object::ClassOffset().Int32Value();
|
|
|
|
// Note that the null check must have been done earlier.
|
|
DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
|
|
|
|
StringEqualsOptimizations optimizations(invoke);
|
|
if (!optimizations.GetArgumentNotNull()) {
|
|
// Check if input is null, return false if it is.
|
|
__ Cbz(arg, &return_false);
|
|
}
|
|
|
|
// Reference equality check, return true if same reference.
|
|
__ Cmp(str, arg);
|
|
__ B(&return_true, eq);
|
|
|
|
if (!optimizations.GetArgumentIsString()) {
|
|
// Instanceof check for the argument by comparing class fields.
|
|
// All string objects must have the same type since String cannot be subclassed.
|
|
// Receiver must be a string object, so its class field is equal to all strings' class fields.
|
|
// If the argument is a string object, its class field must be equal to receiver's class field.
|
|
__ Ldr(temp, MemOperand(str.X(), class_offset));
|
|
__ Ldr(temp1, MemOperand(arg.X(), class_offset));
|
|
__ Cmp(temp, temp1);
|
|
__ B(&return_false, ne);
|
|
}
|
|
|
|
// Check if one of the inputs is a const string. Do not special-case both strings
|
|
// being const, such cases should be handled by constant folding if needed.
|
|
uint32_t const_string_length = 0u;
|
|
const char* const_string = GetConstString(invoke->InputAt(0), &const_string_length);
|
|
if (const_string == nullptr) {
|
|
const_string = GetConstString(invoke->InputAt(1), &const_string_length);
|
|
if (const_string != nullptr) {
|
|
std::swap(str, arg); // Make sure the const string is in `str`.
|
|
}
|
|
}
|
|
bool is_compressed =
|
|
mirror::kUseStringCompression &&
|
|
const_string != nullptr &&
|
|
mirror::String::DexFileStringAllASCII(const_string, const_string_length);
|
|
|
|
if (const_string != nullptr) {
|
|
// Load `count` field of the argument string and check if it matches the const string.
|
|
// Also compares the compression style, if differs return false.
|
|
__ Ldr(temp, MemOperand(arg.X(), count_offset));
|
|
// Temporarily release temp1 as we may not be able to embed the flagged count in CMP immediate.
|
|
scratch_scope.Release(temp1);
|
|
__ Cmp(temp, Operand(mirror::String::GetFlaggedCount(const_string_length, is_compressed)));
|
|
temp1 = scratch_scope.AcquireW();
|
|
__ B(&return_false, ne);
|
|
} else {
|
|
// Load `count` fields of this and argument strings.
|
|
__ Ldr(temp, MemOperand(str.X(), count_offset));
|
|
__ Ldr(temp1, MemOperand(arg.X(), count_offset));
|
|
// Check if `count` fields are equal, return false if they're not.
|
|
// Also compares the compression style, if differs return false.
|
|
__ Cmp(temp, temp1);
|
|
__ B(&return_false, ne);
|
|
}
|
|
|
|
// Assertions that must hold in order to compare strings 8 bytes at a time.
|
|
DCHECK_ALIGNED(value_offset, 8);
|
|
static_assert(IsAligned<8>(kObjectAlignment), "String of odd length is not zero padded");
|
|
|
|
if (const_string != nullptr &&
|
|
const_string_length < (is_compressed ? kShortConstStringEqualsCutoffInBytes
|
|
: kShortConstStringEqualsCutoffInBytes / 2u)) {
|
|
// Load and compare the contents. Though we know the contents of the short const string
|
|
// at compile time, materializing constants may be more code than loading from memory.
|
|
int32_t offset = value_offset;
|
|
size_t remaining_bytes =
|
|
RoundUp(is_compressed ? const_string_length : const_string_length * 2u, 8u);
|
|
temp = temp.X();
|
|
temp1 = temp1.X();
|
|
while (remaining_bytes > 8u) {
|
|
Register temp2 = XRegisterFrom(locations->GetTemp(0));
|
|
__ Ldp(temp, temp1, MemOperand(str.X(), offset));
|
|
__ Ldp(temp2, out, MemOperand(arg.X(), offset));
|
|
__ Cmp(temp, temp2);
|
|
__ Ccmp(temp1, out, NoFlag, eq);
|
|
__ B(&return_false, ne);
|
|
offset += 2u * sizeof(uint64_t);
|
|
remaining_bytes -= 2u * sizeof(uint64_t);
|
|
}
|
|
if (remaining_bytes != 0u) {
|
|
__ Ldr(temp, MemOperand(str.X(), offset));
|
|
__ Ldr(temp1, MemOperand(arg.X(), offset));
|
|
__ Cmp(temp, temp1);
|
|
__ B(&return_false, ne);
|
|
}
|
|
} else {
|
|
// Return true if both strings are empty. Even with string compression `count == 0` means empty.
|
|
static_assert(static_cast<uint32_t>(mirror::StringCompressionFlag::kCompressed) == 0u,
|
|
"Expecting 0=compressed, 1=uncompressed");
|
|
__ Cbz(temp, &return_true);
|
|
|
|
if (mirror::kUseStringCompression) {
|
|
// For string compression, calculate the number of bytes to compare (not chars).
|
|
// This could in theory exceed INT32_MAX, so treat temp as unsigned.
|
|
__ And(temp1, temp, Operand(1)); // Extract compression flag.
|
|
__ Lsr(temp, temp, 1u); // Extract length.
|
|
__ Lsl(temp, temp, temp1); // Calculate number of bytes to compare.
|
|
}
|
|
|
|
// Store offset of string value in preparation for comparison loop
|
|
__ Mov(temp1, value_offset);
|
|
|
|
temp1 = temp1.X();
|
|
Register temp2 = XRegisterFrom(locations->GetTemp(0));
|
|
// Loop to compare strings 8 bytes at a time starting at the front of the string.
|
|
// Ok to do this because strings are zero-padded to kObjectAlignment.
|
|
__ Bind(&loop);
|
|
__ Ldr(out, MemOperand(str.X(), temp1));
|
|
__ Ldr(temp2, MemOperand(arg.X(), temp1));
|
|
__ Add(temp1, temp1, Operand(sizeof(uint64_t)));
|
|
__ Cmp(out, temp2);
|
|
__ B(&return_false, ne);
|
|
// With string compression, we have compared 8 bytes, otherwise 4 chars.
|
|
__ Sub(temp, temp, Operand(mirror::kUseStringCompression ? 8 : 4), SetFlags);
|
|
__ B(&loop, hi);
|
|
}
|
|
|
|
// Return true and exit the function.
|
|
// If loop does not result in returning false, we return true.
|
|
__ Bind(&return_true);
|
|
__ Mov(out, 1);
|
|
__ B(&end);
|
|
|
|
// Return false and exit the function.
|
|
__ Bind(&return_false);
|
|
__ Mov(out, 0);
|
|
__ Bind(&end);
|
|
}
|
|
|
|
static void GenerateVisitStringIndexOf(HInvoke* invoke,
|
|
MacroAssembler* masm,
|
|
CodeGeneratorARM64* codegen,
|
|
ArenaAllocator* allocator,
|
|
bool start_at_zero) {
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
|
|
// Note that the null check must have been done earlier.
|
|
DCHECK(!invoke->CanDoImplicitNullCheckOn(invoke->InputAt(0)));
|
|
|
|
// Check for code points > 0xFFFF. Either a slow-path check when we don't know statically,
|
|
// or directly dispatch for a large constant, or omit slow-path for a small constant or a char.
|
|
SlowPathCodeARM64* slow_path = nullptr;
|
|
HInstruction* code_point = invoke->InputAt(1);
|
|
if (code_point->IsIntConstant()) {
|
|
if (static_cast<uint32_t>(code_point->AsIntConstant()->GetValue()) > 0xFFFFU) {
|
|
// Always needs the slow-path. We could directly dispatch to it, but this case should be
|
|
// rare, so for simplicity just put the full slow-path down and branch unconditionally.
|
|
slow_path = new (allocator) IntrinsicSlowPathARM64(invoke);
|
|
codegen->AddSlowPath(slow_path);
|
|
__ B(slow_path->GetEntryLabel());
|
|
__ Bind(slow_path->GetExitLabel());
|
|
return;
|
|
}
|
|
} else if (code_point->GetType() != Primitive::kPrimChar) {
|
|
Register char_reg = WRegisterFrom(locations->InAt(1));
|
|
__ Tst(char_reg, 0xFFFF0000);
|
|
slow_path = new (allocator) IntrinsicSlowPathARM64(invoke);
|
|
codegen->AddSlowPath(slow_path);
|
|
__ B(ne, slow_path->GetEntryLabel());
|
|
}
|
|
|
|
if (start_at_zero) {
|
|
// Start-index = 0.
|
|
Register tmp_reg = WRegisterFrom(locations->GetTemp(0));
|
|
__ Mov(tmp_reg, 0);
|
|
}
|
|
|
|
codegen->InvokeRuntime(kQuickIndexOf, invoke, invoke->GetDexPc(), slow_path);
|
|
CheckEntrypointTypes<kQuickIndexOf, int32_t, void*, uint32_t, uint32_t>();
|
|
|
|
if (slow_path != nullptr) {
|
|
__ Bind(slow_path->GetExitLabel());
|
|
}
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitStringIndexOf(HInvoke* invoke) {
|
|
LocationSummary* locations = new (arena_) LocationSummary(invoke,
|
|
LocationSummary::kCallOnMainAndSlowPath,
|
|
kIntrinsified);
|
|
// We have a hand-crafted assembly stub that follows the runtime calling convention. So it's
|
|
// best to align the inputs accordingly.
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
|
|
locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
|
|
locations->SetOut(calling_convention.GetReturnLocation(Primitive::kPrimInt));
|
|
|
|
// Need to send start_index=0.
|
|
locations->AddTemp(LocationFrom(calling_convention.GetRegisterAt(2)));
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitStringIndexOf(HInvoke* invoke) {
|
|
GenerateVisitStringIndexOf(
|
|
invoke, GetVIXLAssembler(), codegen_, GetAllocator(), /* start_at_zero */ true);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitStringIndexOfAfter(HInvoke* invoke) {
|
|
LocationSummary* locations = new (arena_) LocationSummary(invoke,
|
|
LocationSummary::kCallOnMainAndSlowPath,
|
|
kIntrinsified);
|
|
// We have a hand-crafted assembly stub that follows the runtime calling convention. So it's
|
|
// best to align the inputs accordingly.
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
|
|
locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
|
|
locations->SetInAt(2, LocationFrom(calling_convention.GetRegisterAt(2)));
|
|
locations->SetOut(calling_convention.GetReturnLocation(Primitive::kPrimInt));
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitStringIndexOfAfter(HInvoke* invoke) {
|
|
GenerateVisitStringIndexOf(
|
|
invoke, GetVIXLAssembler(), codegen_, GetAllocator(), /* start_at_zero */ false);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitStringNewStringFromBytes(HInvoke* invoke) {
|
|
LocationSummary* locations = new (arena_) LocationSummary(invoke,
|
|
LocationSummary::kCallOnMainAndSlowPath,
|
|
kIntrinsified);
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
|
|
locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
|
|
locations->SetInAt(2, LocationFrom(calling_convention.GetRegisterAt(2)));
|
|
locations->SetInAt(3, LocationFrom(calling_convention.GetRegisterAt(3)));
|
|
locations->SetOut(calling_convention.GetReturnLocation(Primitive::kPrimNot));
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitStringNewStringFromBytes(HInvoke* invoke) {
|
|
MacroAssembler* masm = GetVIXLAssembler();
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
|
|
Register byte_array = WRegisterFrom(locations->InAt(0));
|
|
__ Cmp(byte_array, 0);
|
|
SlowPathCodeARM64* slow_path = new (GetAllocator()) IntrinsicSlowPathARM64(invoke);
|
|
codegen_->AddSlowPath(slow_path);
|
|
__ B(eq, slow_path->GetEntryLabel());
|
|
|
|
codegen_->InvokeRuntime(kQuickAllocStringFromBytes, invoke, invoke->GetDexPc(), slow_path);
|
|
CheckEntrypointTypes<kQuickAllocStringFromBytes, void*, void*, int32_t, int32_t, int32_t>();
|
|
__ Bind(slow_path->GetExitLabel());
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitStringNewStringFromChars(HInvoke* invoke) {
|
|
LocationSummary* locations = new (arena_) LocationSummary(invoke,
|
|
LocationSummary::kCallOnMainOnly,
|
|
kIntrinsified);
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
|
|
locations->SetInAt(1, LocationFrom(calling_convention.GetRegisterAt(1)));
|
|
locations->SetInAt(2, LocationFrom(calling_convention.GetRegisterAt(2)));
|
|
locations->SetOut(calling_convention.GetReturnLocation(Primitive::kPrimNot));
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitStringNewStringFromChars(HInvoke* invoke) {
|
|
// No need to emit code checking whether `locations->InAt(2)` is a null
|
|
// pointer, as callers of the native method
|
|
//
|
|
// java.lang.StringFactory.newStringFromChars(int offset, int charCount, char[] data)
|
|
//
|
|
// all include a null check on `data` before calling that method.
|
|
codegen_->InvokeRuntime(kQuickAllocStringFromChars, invoke, invoke->GetDexPc());
|
|
CheckEntrypointTypes<kQuickAllocStringFromChars, void*, int32_t, int32_t, void*>();
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitStringNewStringFromString(HInvoke* invoke) {
|
|
LocationSummary* locations = new (arena_) LocationSummary(invoke,
|
|
LocationSummary::kCallOnMainAndSlowPath,
|
|
kIntrinsified);
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
locations->SetInAt(0, LocationFrom(calling_convention.GetRegisterAt(0)));
|
|
locations->SetOut(calling_convention.GetReturnLocation(Primitive::kPrimNot));
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitStringNewStringFromString(HInvoke* invoke) {
|
|
MacroAssembler* masm = GetVIXLAssembler();
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
|
|
Register string_to_copy = WRegisterFrom(locations->InAt(0));
|
|
__ Cmp(string_to_copy, 0);
|
|
SlowPathCodeARM64* slow_path = new (GetAllocator()) IntrinsicSlowPathARM64(invoke);
|
|
codegen_->AddSlowPath(slow_path);
|
|
__ B(eq, slow_path->GetEntryLabel());
|
|
|
|
codegen_->InvokeRuntime(kQuickAllocStringFromString, invoke, invoke->GetDexPc(), slow_path);
|
|
CheckEntrypointTypes<kQuickAllocStringFromString, void*, void*>();
|
|
__ Bind(slow_path->GetExitLabel());
|
|
}
|
|
|
|
static void CreateFPToFPCallLocations(ArenaAllocator* arena, HInvoke* invoke) {
|
|
DCHECK_EQ(invoke->GetNumberOfArguments(), 1U);
|
|
DCHECK(Primitive::IsFloatingPointType(invoke->InputAt(0)->GetType()));
|
|
DCHECK(Primitive::IsFloatingPointType(invoke->GetType()));
|
|
|
|
LocationSummary* const locations = new (arena) LocationSummary(invoke,
|
|
LocationSummary::kCallOnMainOnly,
|
|
kIntrinsified);
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
|
|
locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0)));
|
|
locations->SetOut(calling_convention.GetReturnLocation(invoke->GetType()));
|
|
}
|
|
|
|
static void CreateFPFPToFPCallLocations(ArenaAllocator* arena, HInvoke* invoke) {
|
|
DCHECK_EQ(invoke->GetNumberOfArguments(), 2U);
|
|
DCHECK(Primitive::IsFloatingPointType(invoke->InputAt(0)->GetType()));
|
|
DCHECK(Primitive::IsFloatingPointType(invoke->InputAt(1)->GetType()));
|
|
DCHECK(Primitive::IsFloatingPointType(invoke->GetType()));
|
|
|
|
LocationSummary* const locations = new (arena) LocationSummary(invoke,
|
|
LocationSummary::kCallOnMainOnly,
|
|
kIntrinsified);
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
|
|
locations->SetInAt(0, LocationFrom(calling_convention.GetFpuRegisterAt(0)));
|
|
locations->SetInAt(1, LocationFrom(calling_convention.GetFpuRegisterAt(1)));
|
|
locations->SetOut(calling_convention.GetReturnLocation(invoke->GetType()));
|
|
}
|
|
|
|
static void GenFPToFPCall(HInvoke* invoke,
|
|
CodeGeneratorARM64* codegen,
|
|
QuickEntrypointEnum entry) {
|
|
codegen->InvokeRuntime(entry, invoke, invoke->GetDexPc());
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitMathCos(HInvoke* invoke) {
|
|
CreateFPToFPCallLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitMathCos(HInvoke* invoke) {
|
|
GenFPToFPCall(invoke, codegen_, kQuickCos);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitMathSin(HInvoke* invoke) {
|
|
CreateFPToFPCallLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitMathSin(HInvoke* invoke) {
|
|
GenFPToFPCall(invoke, codegen_, kQuickSin);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitMathAcos(HInvoke* invoke) {
|
|
CreateFPToFPCallLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitMathAcos(HInvoke* invoke) {
|
|
GenFPToFPCall(invoke, codegen_, kQuickAcos);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitMathAsin(HInvoke* invoke) {
|
|
CreateFPToFPCallLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitMathAsin(HInvoke* invoke) {
|
|
GenFPToFPCall(invoke, codegen_, kQuickAsin);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitMathAtan(HInvoke* invoke) {
|
|
CreateFPToFPCallLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitMathAtan(HInvoke* invoke) {
|
|
GenFPToFPCall(invoke, codegen_, kQuickAtan);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitMathCbrt(HInvoke* invoke) {
|
|
CreateFPToFPCallLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitMathCbrt(HInvoke* invoke) {
|
|
GenFPToFPCall(invoke, codegen_, kQuickCbrt);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitMathCosh(HInvoke* invoke) {
|
|
CreateFPToFPCallLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitMathCosh(HInvoke* invoke) {
|
|
GenFPToFPCall(invoke, codegen_, kQuickCosh);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitMathExp(HInvoke* invoke) {
|
|
CreateFPToFPCallLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitMathExp(HInvoke* invoke) {
|
|
GenFPToFPCall(invoke, codegen_, kQuickExp);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitMathExpm1(HInvoke* invoke) {
|
|
CreateFPToFPCallLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitMathExpm1(HInvoke* invoke) {
|
|
GenFPToFPCall(invoke, codegen_, kQuickExpm1);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitMathLog(HInvoke* invoke) {
|
|
CreateFPToFPCallLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitMathLog(HInvoke* invoke) {
|
|
GenFPToFPCall(invoke, codegen_, kQuickLog);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitMathLog10(HInvoke* invoke) {
|
|
CreateFPToFPCallLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitMathLog10(HInvoke* invoke) {
|
|
GenFPToFPCall(invoke, codegen_, kQuickLog10);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitMathSinh(HInvoke* invoke) {
|
|
CreateFPToFPCallLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitMathSinh(HInvoke* invoke) {
|
|
GenFPToFPCall(invoke, codegen_, kQuickSinh);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitMathTan(HInvoke* invoke) {
|
|
CreateFPToFPCallLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitMathTan(HInvoke* invoke) {
|
|
GenFPToFPCall(invoke, codegen_, kQuickTan);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitMathTanh(HInvoke* invoke) {
|
|
CreateFPToFPCallLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitMathTanh(HInvoke* invoke) {
|
|
GenFPToFPCall(invoke, codegen_, kQuickTanh);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitMathAtan2(HInvoke* invoke) {
|
|
CreateFPFPToFPCallLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitMathAtan2(HInvoke* invoke) {
|
|
GenFPToFPCall(invoke, codegen_, kQuickAtan2);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitMathHypot(HInvoke* invoke) {
|
|
CreateFPFPToFPCallLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitMathHypot(HInvoke* invoke) {
|
|
GenFPToFPCall(invoke, codegen_, kQuickHypot);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitMathNextAfter(HInvoke* invoke) {
|
|
CreateFPFPToFPCallLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitMathNextAfter(HInvoke* invoke) {
|
|
GenFPToFPCall(invoke, codegen_, kQuickNextAfter);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitStringGetCharsNoCheck(HInvoke* invoke) {
|
|
LocationSummary* locations = new (arena_) LocationSummary(invoke,
|
|
LocationSummary::kNoCall,
|
|
kIntrinsified);
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
locations->SetInAt(1, Location::RequiresRegister());
|
|
locations->SetInAt(2, Location::RequiresRegister());
|
|
locations->SetInAt(3, Location::RequiresRegister());
|
|
locations->SetInAt(4, Location::RequiresRegister());
|
|
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitStringGetCharsNoCheck(HInvoke* invoke) {
|
|
MacroAssembler* masm = GetVIXLAssembler();
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
|
|
// Check assumption that sizeof(Char) is 2 (used in scaling below).
|
|
const size_t char_size = Primitive::ComponentSize(Primitive::kPrimChar);
|
|
DCHECK_EQ(char_size, 2u);
|
|
|
|
// Location of data in char array buffer.
|
|
const uint32_t data_offset = mirror::Array::DataOffset(char_size).Uint32Value();
|
|
|
|
// Location of char array data in string.
|
|
const uint32_t value_offset = mirror::String::ValueOffset().Uint32Value();
|
|
|
|
// void getCharsNoCheck(int srcBegin, int srcEnd, char[] dst, int dstBegin);
|
|
// Since getChars() calls getCharsNoCheck() - we use registers rather than constants.
|
|
Register srcObj = XRegisterFrom(locations->InAt(0));
|
|
Register srcBegin = XRegisterFrom(locations->InAt(1));
|
|
Register srcEnd = XRegisterFrom(locations->InAt(2));
|
|
Register dstObj = XRegisterFrom(locations->InAt(3));
|
|
Register dstBegin = XRegisterFrom(locations->InAt(4));
|
|
|
|
Register src_ptr = XRegisterFrom(locations->GetTemp(0));
|
|
Register num_chr = XRegisterFrom(locations->GetTemp(1));
|
|
Register tmp1 = XRegisterFrom(locations->GetTemp(2));
|
|
|
|
UseScratchRegisterScope temps(masm);
|
|
Register dst_ptr = temps.AcquireX();
|
|
Register tmp2 = temps.AcquireX();
|
|
|
|
vixl::aarch64::Label done;
|
|
vixl::aarch64::Label compressed_string_loop;
|
|
__ Sub(num_chr, srcEnd, srcBegin);
|
|
// Early out for valid zero-length retrievals.
|
|
__ Cbz(num_chr, &done);
|
|
|
|
// dst address start to copy to.
|
|
__ Add(dst_ptr, dstObj, Operand(data_offset));
|
|
__ Add(dst_ptr, dst_ptr, Operand(dstBegin, LSL, 1));
|
|
|
|
// src address to copy from.
|
|
__ Add(src_ptr, srcObj, Operand(value_offset));
|
|
vixl::aarch64::Label compressed_string_preloop;
|
|
if (mirror::kUseStringCompression) {
|
|
// Location of count in string.
|
|
const uint32_t count_offset = mirror::String::CountOffset().Uint32Value();
|
|
// String's length.
|
|
__ Ldr(tmp2, MemOperand(srcObj, count_offset));
|
|
__ Tbz(tmp2, 0, &compressed_string_preloop);
|
|
}
|
|
__ Add(src_ptr, src_ptr, Operand(srcBegin, LSL, 1));
|
|
|
|
// Do the copy.
|
|
vixl::aarch64::Label loop;
|
|
vixl::aarch64::Label remainder;
|
|
|
|
// Save repairing the value of num_chr on the < 8 character path.
|
|
__ Subs(tmp1, num_chr, 8);
|
|
__ B(lt, &remainder);
|
|
|
|
// Keep the result of the earlier subs, we are going to fetch at least 8 characters.
|
|
__ Mov(num_chr, tmp1);
|
|
|
|
// Main loop used for longer fetches loads and stores 8x16-bit characters at a time.
|
|
// (Unaligned addresses are acceptable here and not worth inlining extra code to rectify.)
|
|
__ Bind(&loop);
|
|
__ Ldp(tmp1, tmp2, MemOperand(src_ptr, char_size * 8, PostIndex));
|
|
__ Subs(num_chr, num_chr, 8);
|
|
__ Stp(tmp1, tmp2, MemOperand(dst_ptr, char_size * 8, PostIndex));
|
|
__ B(ge, &loop);
|
|
|
|
__ Adds(num_chr, num_chr, 8);
|
|
__ B(eq, &done);
|
|
|
|
// Main loop for < 8 character case and remainder handling. Loads and stores one
|
|
// 16-bit Java character at a time.
|
|
__ Bind(&remainder);
|
|
__ Ldrh(tmp1, MemOperand(src_ptr, char_size, PostIndex));
|
|
__ Subs(num_chr, num_chr, 1);
|
|
__ Strh(tmp1, MemOperand(dst_ptr, char_size, PostIndex));
|
|
__ B(gt, &remainder);
|
|
__ B(&done);
|
|
|
|
if (mirror::kUseStringCompression) {
|
|
const size_t c_char_size = Primitive::ComponentSize(Primitive::kPrimByte);
|
|
DCHECK_EQ(c_char_size, 1u);
|
|
__ Bind(&compressed_string_preloop);
|
|
__ Add(src_ptr, src_ptr, Operand(srcBegin));
|
|
// Copy loop for compressed src, copying 1 character (8-bit) to (16-bit) at a time.
|
|
__ Bind(&compressed_string_loop);
|
|
__ Ldrb(tmp1, MemOperand(src_ptr, c_char_size, PostIndex));
|
|
__ Strh(tmp1, MemOperand(dst_ptr, char_size, PostIndex));
|
|
__ Subs(num_chr, num_chr, Operand(1));
|
|
__ B(gt, &compressed_string_loop);
|
|
}
|
|
|
|
__ Bind(&done);
|
|
}
|
|
|
|
// Mirrors ARRAYCOPY_SHORT_CHAR_ARRAY_THRESHOLD in libcore, so we can choose to use the native
|
|
// implementation there for longer copy lengths.
|
|
static constexpr int32_t kSystemArrayCopyCharThreshold = 32;
|
|
|
|
static void SetSystemArrayCopyLocationRequires(LocationSummary* locations,
|
|
uint32_t at,
|
|
HInstruction* input) {
|
|
HIntConstant* const_input = input->AsIntConstant();
|
|
if (const_input != nullptr && !vixl::aarch64::Assembler::IsImmAddSub(const_input->GetValue())) {
|
|
locations->SetInAt(at, Location::RequiresRegister());
|
|
} else {
|
|
locations->SetInAt(at, Location::RegisterOrConstant(input));
|
|
}
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitSystemArrayCopyChar(HInvoke* invoke) {
|
|
// Check to see if we have known failures that will cause us to have to bail out
|
|
// to the runtime, and just generate the runtime call directly.
|
|
HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant();
|
|
HIntConstant* dst_pos = invoke->InputAt(3)->AsIntConstant();
|
|
|
|
// The positions must be non-negative.
|
|
if ((src_pos != nullptr && src_pos->GetValue() < 0) ||
|
|
(dst_pos != nullptr && dst_pos->GetValue() < 0)) {
|
|
// We will have to fail anyways.
|
|
return;
|
|
}
|
|
|
|
// The length must be >= 0 and not so long that we would (currently) prefer libcore's
|
|
// native implementation.
|
|
HIntConstant* length = invoke->InputAt(4)->AsIntConstant();
|
|
if (length != nullptr) {
|
|
int32_t len = length->GetValue();
|
|
if (len < 0 || len > kSystemArrayCopyCharThreshold) {
|
|
// Just call as normal.
|
|
return;
|
|
}
|
|
}
|
|
|
|
ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetArena();
|
|
LocationSummary* locations = new (allocator) LocationSummary(invoke,
|
|
LocationSummary::kCallOnSlowPath,
|
|
kIntrinsified);
|
|
// arraycopy(char[] src, int src_pos, char[] dst, int dst_pos, int length).
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
SetSystemArrayCopyLocationRequires(locations, 1, invoke->InputAt(1));
|
|
locations->SetInAt(2, Location::RequiresRegister());
|
|
SetSystemArrayCopyLocationRequires(locations, 3, invoke->InputAt(3));
|
|
SetSystemArrayCopyLocationRequires(locations, 4, invoke->InputAt(4));
|
|
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
}
|
|
|
|
static void CheckSystemArrayCopyPosition(MacroAssembler* masm,
|
|
const Location& pos,
|
|
const Register& input,
|
|
const Location& length,
|
|
SlowPathCodeARM64* slow_path,
|
|
const Register& temp,
|
|
bool length_is_input_length = false) {
|
|
const int32_t length_offset = mirror::Array::LengthOffset().Int32Value();
|
|
if (pos.IsConstant()) {
|
|
int32_t pos_const = pos.GetConstant()->AsIntConstant()->GetValue();
|
|
if (pos_const == 0) {
|
|
if (!length_is_input_length) {
|
|
// Check that length(input) >= length.
|
|
__ Ldr(temp, MemOperand(input, length_offset));
|
|
__ Cmp(temp, OperandFrom(length, Primitive::kPrimInt));
|
|
__ B(slow_path->GetEntryLabel(), lt);
|
|
}
|
|
} else {
|
|
// Check that length(input) >= pos.
|
|
__ Ldr(temp, MemOperand(input, length_offset));
|
|
__ Subs(temp, temp, pos_const);
|
|
__ B(slow_path->GetEntryLabel(), lt);
|
|
|
|
// Check that (length(input) - pos) >= length.
|
|
__ Cmp(temp, OperandFrom(length, Primitive::kPrimInt));
|
|
__ B(slow_path->GetEntryLabel(), lt);
|
|
}
|
|
} else if (length_is_input_length) {
|
|
// The only way the copy can succeed is if pos is zero.
|
|
__ Cbnz(WRegisterFrom(pos), slow_path->GetEntryLabel());
|
|
} else {
|
|
// Check that pos >= 0.
|
|
Register pos_reg = WRegisterFrom(pos);
|
|
__ Tbnz(pos_reg, pos_reg.GetSizeInBits() - 1, slow_path->GetEntryLabel());
|
|
|
|
// Check that pos <= length(input) && (length(input) - pos) >= length.
|
|
__ Ldr(temp, MemOperand(input, length_offset));
|
|
__ Subs(temp, temp, pos_reg);
|
|
// Ccmp if length(input) >= pos, else definitely bail to slow path (N!=V == lt).
|
|
__ Ccmp(temp, OperandFrom(length, Primitive::kPrimInt), NFlag, ge);
|
|
__ B(slow_path->GetEntryLabel(), lt);
|
|
}
|
|
}
|
|
|
|
// Compute base source address, base destination address, and end
|
|
// source address for System.arraycopy* intrinsics in `src_base`,
|
|
// `dst_base` and `src_end` respectively.
|
|
static void GenSystemArrayCopyAddresses(MacroAssembler* masm,
|
|
Primitive::Type type,
|
|
const Register& src,
|
|
const Location& src_pos,
|
|
const Register& dst,
|
|
const Location& dst_pos,
|
|
const Location& copy_length,
|
|
const Register& src_base,
|
|
const Register& dst_base,
|
|
const Register& src_end) {
|
|
// This routine is used by the SystemArrayCopy and the SystemArrayCopyChar intrinsics.
|
|
DCHECK(type == Primitive::kPrimNot || type == Primitive::kPrimChar)
|
|
<< "Unexpected element type: " << type;
|
|
const int32_t element_size = Primitive::ComponentSize(type);
|
|
const int32_t element_size_shift = Primitive::ComponentSizeShift(type);
|
|
const uint32_t data_offset = mirror::Array::DataOffset(element_size).Uint32Value();
|
|
|
|
if (src_pos.IsConstant()) {
|
|
int32_t constant = src_pos.GetConstant()->AsIntConstant()->GetValue();
|
|
__ Add(src_base, src, element_size * constant + data_offset);
|
|
} else {
|
|
__ Add(src_base, src, data_offset);
|
|
__ Add(src_base, src_base, Operand(XRegisterFrom(src_pos), LSL, element_size_shift));
|
|
}
|
|
|
|
if (dst_pos.IsConstant()) {
|
|
int32_t constant = dst_pos.GetConstant()->AsIntConstant()->GetValue();
|
|
__ Add(dst_base, dst, element_size * constant + data_offset);
|
|
} else {
|
|
__ Add(dst_base, dst, data_offset);
|
|
__ Add(dst_base, dst_base, Operand(XRegisterFrom(dst_pos), LSL, element_size_shift));
|
|
}
|
|
|
|
if (copy_length.IsConstant()) {
|
|
int32_t constant = copy_length.GetConstant()->AsIntConstant()->GetValue();
|
|
__ Add(src_end, src_base, element_size * constant);
|
|
} else {
|
|
__ Add(src_end, src_base, Operand(XRegisterFrom(copy_length), LSL, element_size_shift));
|
|
}
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitSystemArrayCopyChar(HInvoke* invoke) {
|
|
MacroAssembler* masm = GetVIXLAssembler();
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
Register src = XRegisterFrom(locations->InAt(0));
|
|
Location src_pos = locations->InAt(1);
|
|
Register dst = XRegisterFrom(locations->InAt(2));
|
|
Location dst_pos = locations->InAt(3);
|
|
Location length = locations->InAt(4);
|
|
|
|
SlowPathCodeARM64* slow_path = new (GetAllocator()) IntrinsicSlowPathARM64(invoke);
|
|
codegen_->AddSlowPath(slow_path);
|
|
|
|
// If source and destination are the same, take the slow path. Overlapping copy regions must be
|
|
// copied in reverse and we can't know in all cases if it's needed.
|
|
__ Cmp(src, dst);
|
|
__ B(slow_path->GetEntryLabel(), eq);
|
|
|
|
// Bail out if the source is null.
|
|
__ Cbz(src, slow_path->GetEntryLabel());
|
|
|
|
// Bail out if the destination is null.
|
|
__ Cbz(dst, slow_path->GetEntryLabel());
|
|
|
|
if (!length.IsConstant()) {
|
|
// Merge the following two comparisons into one:
|
|
// If the length is negative, bail out (delegate to libcore's native implementation).
|
|
// If the length > 32 then (currently) prefer libcore's native implementation.
|
|
__ Cmp(WRegisterFrom(length), kSystemArrayCopyCharThreshold);
|
|
__ B(slow_path->GetEntryLabel(), hi);
|
|
} else {
|
|
// We have already checked in the LocationsBuilder for the constant case.
|
|
DCHECK_GE(length.GetConstant()->AsIntConstant()->GetValue(), 0);
|
|
DCHECK_LE(length.GetConstant()->AsIntConstant()->GetValue(), 32);
|
|
}
|
|
|
|
Register src_curr_addr = WRegisterFrom(locations->GetTemp(0));
|
|
Register dst_curr_addr = WRegisterFrom(locations->GetTemp(1));
|
|
Register src_stop_addr = WRegisterFrom(locations->GetTemp(2));
|
|
|
|
CheckSystemArrayCopyPosition(masm,
|
|
src_pos,
|
|
src,
|
|
length,
|
|
slow_path,
|
|
src_curr_addr,
|
|
false);
|
|
|
|
CheckSystemArrayCopyPosition(masm,
|
|
dst_pos,
|
|
dst,
|
|
length,
|
|
slow_path,
|
|
src_curr_addr,
|
|
false);
|
|
|
|
src_curr_addr = src_curr_addr.X();
|
|
dst_curr_addr = dst_curr_addr.X();
|
|
src_stop_addr = src_stop_addr.X();
|
|
|
|
GenSystemArrayCopyAddresses(masm,
|
|
Primitive::kPrimChar,
|
|
src,
|
|
src_pos,
|
|
dst,
|
|
dst_pos,
|
|
length,
|
|
src_curr_addr,
|
|
dst_curr_addr,
|
|
src_stop_addr);
|
|
|
|
// Iterate over the arrays and do a raw copy of the chars.
|
|
const int32_t char_size = Primitive::ComponentSize(Primitive::kPrimChar);
|
|
UseScratchRegisterScope temps(masm);
|
|
Register tmp = temps.AcquireW();
|
|
vixl::aarch64::Label loop, done;
|
|
__ Bind(&loop);
|
|
__ Cmp(src_curr_addr, src_stop_addr);
|
|
__ B(&done, eq);
|
|
__ Ldrh(tmp, MemOperand(src_curr_addr, char_size, PostIndex));
|
|
__ Strh(tmp, MemOperand(dst_curr_addr, char_size, PostIndex));
|
|
__ B(&loop);
|
|
__ Bind(&done);
|
|
|
|
__ Bind(slow_path->GetExitLabel());
|
|
}
|
|
|
|
// We can choose to use the native implementation there for longer copy lengths.
|
|
static constexpr int32_t kSystemArrayCopyThreshold = 128;
|
|
|
|
// CodeGenerator::CreateSystemArrayCopyLocationSummary use three temporary registers.
|
|
// We want to use two temporary registers in order to reduce the register pressure in arm64.
|
|
// So we don't use the CodeGenerator::CreateSystemArrayCopyLocationSummary.
|
|
void IntrinsicLocationsBuilderARM64::VisitSystemArrayCopy(HInvoke* invoke) {
|
|
// The only read barrier implementation supporting the
|
|
// SystemArrayCopy intrinsic is the Baker-style read barriers.
|
|
if (kEmitCompilerReadBarrier && !kUseBakerReadBarrier) {
|
|
return;
|
|
}
|
|
|
|
// Check to see if we have known failures that will cause us to have to bail out
|
|
// to the runtime, and just generate the runtime call directly.
|
|
HIntConstant* src_pos = invoke->InputAt(1)->AsIntConstant();
|
|
HIntConstant* dest_pos = invoke->InputAt(3)->AsIntConstant();
|
|
|
|
// The positions must be non-negative.
|
|
if ((src_pos != nullptr && src_pos->GetValue() < 0) ||
|
|
(dest_pos != nullptr && dest_pos->GetValue() < 0)) {
|
|
// We will have to fail anyways.
|
|
return;
|
|
}
|
|
|
|
// The length must be >= 0.
|
|
HIntConstant* length = invoke->InputAt(4)->AsIntConstant();
|
|
if (length != nullptr) {
|
|
int32_t len = length->GetValue();
|
|
if (len < 0 || len >= kSystemArrayCopyThreshold) {
|
|
// Just call as normal.
|
|
return;
|
|
}
|
|
}
|
|
|
|
SystemArrayCopyOptimizations optimizations(invoke);
|
|
|
|
if (optimizations.GetDestinationIsSource()) {
|
|
if (src_pos != nullptr && dest_pos != nullptr && src_pos->GetValue() < dest_pos->GetValue()) {
|
|
// We only support backward copying if source and destination are the same.
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (optimizations.GetDestinationIsPrimitiveArray() || optimizations.GetSourceIsPrimitiveArray()) {
|
|
// We currently don't intrinsify primitive copying.
|
|
return;
|
|
}
|
|
|
|
ArenaAllocator* allocator = invoke->GetBlock()->GetGraph()->GetArena();
|
|
LocationSummary* locations = new (allocator) LocationSummary(invoke,
|
|
LocationSummary::kCallOnSlowPath,
|
|
kIntrinsified);
|
|
// arraycopy(Object src, int src_pos, Object dest, int dest_pos, int length).
|
|
locations->SetInAt(0, Location::RequiresRegister());
|
|
SetSystemArrayCopyLocationRequires(locations, 1, invoke->InputAt(1));
|
|
locations->SetInAt(2, Location::RequiresRegister());
|
|
SetSystemArrayCopyLocationRequires(locations, 3, invoke->InputAt(3));
|
|
SetSystemArrayCopyLocationRequires(locations, 4, invoke->InputAt(4));
|
|
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
|
|
// Temporary register IP0, obtained from the VIXL scratch register
|
|
// pool, cannot be used in ReadBarrierSystemArrayCopySlowPathARM64
|
|
// (because that register is clobbered by ReadBarrierMarkRegX
|
|
// entry points). It cannot be used in calls to
|
|
// CodeGeneratorARM64::GenerateFieldLoadWithBakerReadBarrier
|
|
// either. For these reasons, get a third extra temporary register
|
|
// from the register allocator.
|
|
locations->AddTemp(Location::RequiresRegister());
|
|
} else {
|
|
// Cases other than Baker read barriers: the third temporary will
|
|
// be acquired from the VIXL scratch register pool.
|
|
}
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitSystemArrayCopy(HInvoke* invoke) {
|
|
// The only read barrier implementation supporting the
|
|
// SystemArrayCopy intrinsic is the Baker-style read barriers.
|
|
DCHECK(!kEmitCompilerReadBarrier || kUseBakerReadBarrier);
|
|
|
|
MacroAssembler* masm = GetVIXLAssembler();
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
|
|
uint32_t class_offset = mirror::Object::ClassOffset().Int32Value();
|
|
uint32_t super_offset = mirror::Class::SuperClassOffset().Int32Value();
|
|
uint32_t component_offset = mirror::Class::ComponentTypeOffset().Int32Value();
|
|
uint32_t primitive_offset = mirror::Class::PrimitiveTypeOffset().Int32Value();
|
|
uint32_t monitor_offset = mirror::Object::MonitorOffset().Int32Value();
|
|
|
|
Register src = XRegisterFrom(locations->InAt(0));
|
|
Location src_pos = locations->InAt(1);
|
|
Register dest = XRegisterFrom(locations->InAt(2));
|
|
Location dest_pos = locations->InAt(3);
|
|
Location length = locations->InAt(4);
|
|
Register temp1 = WRegisterFrom(locations->GetTemp(0));
|
|
Location temp1_loc = LocationFrom(temp1);
|
|
Register temp2 = WRegisterFrom(locations->GetTemp(1));
|
|
Location temp2_loc = LocationFrom(temp2);
|
|
|
|
SlowPathCodeARM64* intrinsic_slow_path = new (GetAllocator()) IntrinsicSlowPathARM64(invoke);
|
|
codegen_->AddSlowPath(intrinsic_slow_path);
|
|
|
|
vixl::aarch64::Label conditions_on_positions_validated;
|
|
SystemArrayCopyOptimizations optimizations(invoke);
|
|
|
|
// If source and destination are the same, we go to slow path if we need to do
|
|
// forward copying.
|
|
if (src_pos.IsConstant()) {
|
|
int32_t src_pos_constant = src_pos.GetConstant()->AsIntConstant()->GetValue();
|
|
if (dest_pos.IsConstant()) {
|
|
int32_t dest_pos_constant = dest_pos.GetConstant()->AsIntConstant()->GetValue();
|
|
if (optimizations.GetDestinationIsSource()) {
|
|
// Checked when building locations.
|
|
DCHECK_GE(src_pos_constant, dest_pos_constant);
|
|
} else if (src_pos_constant < dest_pos_constant) {
|
|
__ Cmp(src, dest);
|
|
__ B(intrinsic_slow_path->GetEntryLabel(), eq);
|
|
}
|
|
// Checked when building locations.
|
|
DCHECK(!optimizations.GetDestinationIsSource()
|
|
|| (src_pos_constant >= dest_pos.GetConstant()->AsIntConstant()->GetValue()));
|
|
} else {
|
|
if (!optimizations.GetDestinationIsSource()) {
|
|
__ Cmp(src, dest);
|
|
__ B(&conditions_on_positions_validated, ne);
|
|
}
|
|
__ Cmp(WRegisterFrom(dest_pos), src_pos_constant);
|
|
__ B(intrinsic_slow_path->GetEntryLabel(), gt);
|
|
}
|
|
} else {
|
|
if (!optimizations.GetDestinationIsSource()) {
|
|
__ Cmp(src, dest);
|
|
__ B(&conditions_on_positions_validated, ne);
|
|
}
|
|
__ Cmp(RegisterFrom(src_pos, invoke->InputAt(1)->GetType()),
|
|
OperandFrom(dest_pos, invoke->InputAt(3)->GetType()));
|
|
__ B(intrinsic_slow_path->GetEntryLabel(), lt);
|
|
}
|
|
|
|
__ Bind(&conditions_on_positions_validated);
|
|
|
|
if (!optimizations.GetSourceIsNotNull()) {
|
|
// Bail out if the source is null.
|
|
__ Cbz(src, intrinsic_slow_path->GetEntryLabel());
|
|
}
|
|
|
|
if (!optimizations.GetDestinationIsNotNull() && !optimizations.GetDestinationIsSource()) {
|
|
// Bail out if the destination is null.
|
|
__ Cbz(dest, intrinsic_slow_path->GetEntryLabel());
|
|
}
|
|
|
|
// We have already checked in the LocationsBuilder for the constant case.
|
|
if (!length.IsConstant() &&
|
|
!optimizations.GetCountIsSourceLength() &&
|
|
!optimizations.GetCountIsDestinationLength()) {
|
|
// Merge the following two comparisons into one:
|
|
// If the length is negative, bail out (delegate to libcore's native implementation).
|
|
// If the length >= 128 then (currently) prefer native implementation.
|
|
__ Cmp(WRegisterFrom(length), kSystemArrayCopyThreshold);
|
|
__ B(intrinsic_slow_path->GetEntryLabel(), hs);
|
|
}
|
|
// Validity checks: source.
|
|
CheckSystemArrayCopyPosition(masm,
|
|
src_pos,
|
|
src,
|
|
length,
|
|
intrinsic_slow_path,
|
|
temp1,
|
|
optimizations.GetCountIsSourceLength());
|
|
|
|
// Validity checks: dest.
|
|
CheckSystemArrayCopyPosition(masm,
|
|
dest_pos,
|
|
dest,
|
|
length,
|
|
intrinsic_slow_path,
|
|
temp1,
|
|
optimizations.GetCountIsDestinationLength());
|
|
{
|
|
// We use a block to end the scratch scope before the write barrier, thus
|
|
// freeing the temporary registers so they can be used in `MarkGCCard`.
|
|
UseScratchRegisterScope temps(masm);
|
|
Location temp3_loc; // Used only for Baker read barrier.
|
|
Register temp3;
|
|
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
|
|
temp3_loc = locations->GetTemp(2);
|
|
temp3 = WRegisterFrom(temp3_loc);
|
|
} else {
|
|
temp3 = temps.AcquireW();
|
|
}
|
|
|
|
if (!optimizations.GetDoesNotNeedTypeCheck()) {
|
|
// Check whether all elements of the source array are assignable to the component
|
|
// type of the destination array. We do two checks: the classes are the same,
|
|
// or the destination is Object[]. If none of these checks succeed, we go to the
|
|
// slow path.
|
|
|
|
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
|
|
if (!optimizations.GetSourceIsNonPrimitiveArray()) {
|
|
// /* HeapReference<Class> */ temp1 = src->klass_
|
|
codegen_->GenerateFieldLoadWithBakerReadBarrier(invoke,
|
|
temp1_loc,
|
|
src.W(),
|
|
class_offset,
|
|
temp3_loc,
|
|
/* needs_null_check */ false,
|
|
/* use_load_acquire */ false);
|
|
// Bail out if the source is not a non primitive array.
|
|
// /* HeapReference<Class> */ temp1 = temp1->component_type_
|
|
codegen_->GenerateFieldLoadWithBakerReadBarrier(invoke,
|
|
temp1_loc,
|
|
temp1,
|
|
component_offset,
|
|
temp3_loc,
|
|
/* needs_null_check */ false,
|
|
/* use_load_acquire */ false);
|
|
__ Cbz(temp1, intrinsic_slow_path->GetEntryLabel());
|
|
// If heap poisoning is enabled, `temp1` has been unpoisoned
|
|
// by the the previous call to GenerateFieldLoadWithBakerReadBarrier.
|
|
// /* uint16_t */ temp1 = static_cast<uint16>(temp1->primitive_type_);
|
|
__ Ldrh(temp1, HeapOperand(temp1, primitive_offset));
|
|
static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
|
|
__ Cbnz(temp1, intrinsic_slow_path->GetEntryLabel());
|
|
}
|
|
|
|
// /* HeapReference<Class> */ temp1 = dest->klass_
|
|
codegen_->GenerateFieldLoadWithBakerReadBarrier(invoke,
|
|
temp1_loc,
|
|
dest.W(),
|
|
class_offset,
|
|
temp3_loc,
|
|
/* needs_null_check */ false,
|
|
/* use_load_acquire */ false);
|
|
|
|
if (!optimizations.GetDestinationIsNonPrimitiveArray()) {
|
|
// Bail out if the destination is not a non primitive array.
|
|
//
|
|
// Register `temp1` is not trashed by the read barrier emitted
|
|
// by GenerateFieldLoadWithBakerReadBarrier below, as that
|
|
// method produces a call to a ReadBarrierMarkRegX entry point,
|
|
// which saves all potentially live registers, including
|
|
// temporaries such a `temp1`.
|
|
// /* HeapReference<Class> */ temp2 = temp1->component_type_
|
|
codegen_->GenerateFieldLoadWithBakerReadBarrier(invoke,
|
|
temp2_loc,
|
|
temp1,
|
|
component_offset,
|
|
temp3_loc,
|
|
/* needs_null_check */ false,
|
|
/* use_load_acquire */ false);
|
|
__ Cbz(temp2, intrinsic_slow_path->GetEntryLabel());
|
|
// If heap poisoning is enabled, `temp2` has been unpoisoned
|
|
// by the the previous call to GenerateFieldLoadWithBakerReadBarrier.
|
|
// /* uint16_t */ temp2 = static_cast<uint16>(temp2->primitive_type_);
|
|
__ Ldrh(temp2, HeapOperand(temp2, primitive_offset));
|
|
static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
|
|
__ Cbnz(temp2, intrinsic_slow_path->GetEntryLabel());
|
|
}
|
|
|
|
// For the same reason given earlier, `temp1` is not trashed by the
|
|
// read barrier emitted by GenerateFieldLoadWithBakerReadBarrier below.
|
|
// /* HeapReference<Class> */ temp2 = src->klass_
|
|
codegen_->GenerateFieldLoadWithBakerReadBarrier(invoke,
|
|
temp2_loc,
|
|
src.W(),
|
|
class_offset,
|
|
temp3_loc,
|
|
/* needs_null_check */ false,
|
|
/* use_load_acquire */ false);
|
|
// Note: if heap poisoning is on, we are comparing two unpoisoned references here.
|
|
__ Cmp(temp1, temp2);
|
|
|
|
if (optimizations.GetDestinationIsTypedObjectArray()) {
|
|
vixl::aarch64::Label do_copy;
|
|
__ B(&do_copy, eq);
|
|
// /* HeapReference<Class> */ temp1 = temp1->component_type_
|
|
codegen_->GenerateFieldLoadWithBakerReadBarrier(invoke,
|
|
temp1_loc,
|
|
temp1,
|
|
component_offset,
|
|
temp3_loc,
|
|
/* needs_null_check */ false,
|
|
/* use_load_acquire */ false);
|
|
// /* HeapReference<Class> */ temp1 = temp1->super_class_
|
|
// We do not need to emit a read barrier for the following
|
|
// heap reference load, as `temp1` is only used in a
|
|
// comparison with null below, and this reference is not
|
|
// kept afterwards.
|
|
__ Ldr(temp1, HeapOperand(temp1, super_offset));
|
|
__ Cbnz(temp1, intrinsic_slow_path->GetEntryLabel());
|
|
__ Bind(&do_copy);
|
|
} else {
|
|
__ B(intrinsic_slow_path->GetEntryLabel(), ne);
|
|
}
|
|
} else {
|
|
// Non read barrier code.
|
|
|
|
// /* HeapReference<Class> */ temp1 = dest->klass_
|
|
__ Ldr(temp1, MemOperand(dest, class_offset));
|
|
// /* HeapReference<Class> */ temp2 = src->klass_
|
|
__ Ldr(temp2, MemOperand(src, class_offset));
|
|
bool did_unpoison = false;
|
|
if (!optimizations.GetDestinationIsNonPrimitiveArray() ||
|
|
!optimizations.GetSourceIsNonPrimitiveArray()) {
|
|
// One or two of the references need to be unpoisoned. Unpoison them
|
|
// both to make the identity check valid.
|
|
codegen_->GetAssembler()->MaybeUnpoisonHeapReference(temp1);
|
|
codegen_->GetAssembler()->MaybeUnpoisonHeapReference(temp2);
|
|
did_unpoison = true;
|
|
}
|
|
|
|
if (!optimizations.GetDestinationIsNonPrimitiveArray()) {
|
|
// Bail out if the destination is not a non primitive array.
|
|
// /* HeapReference<Class> */ temp3 = temp1->component_type_
|
|
__ Ldr(temp3, HeapOperand(temp1, component_offset));
|
|
__ Cbz(temp3, intrinsic_slow_path->GetEntryLabel());
|
|
codegen_->GetAssembler()->MaybeUnpoisonHeapReference(temp3);
|
|
// /* uint16_t */ temp3 = static_cast<uint16>(temp3->primitive_type_);
|
|
__ Ldrh(temp3, HeapOperand(temp3, primitive_offset));
|
|
static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
|
|
__ Cbnz(temp3, intrinsic_slow_path->GetEntryLabel());
|
|
}
|
|
|
|
if (!optimizations.GetSourceIsNonPrimitiveArray()) {
|
|
// Bail out if the source is not a non primitive array.
|
|
// /* HeapReference<Class> */ temp3 = temp2->component_type_
|
|
__ Ldr(temp3, HeapOperand(temp2, component_offset));
|
|
__ Cbz(temp3, intrinsic_slow_path->GetEntryLabel());
|
|
codegen_->GetAssembler()->MaybeUnpoisonHeapReference(temp3);
|
|
// /* uint16_t */ temp3 = static_cast<uint16>(temp3->primitive_type_);
|
|
__ Ldrh(temp3, HeapOperand(temp3, primitive_offset));
|
|
static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
|
|
__ Cbnz(temp3, intrinsic_slow_path->GetEntryLabel());
|
|
}
|
|
|
|
__ Cmp(temp1, temp2);
|
|
|
|
if (optimizations.GetDestinationIsTypedObjectArray()) {
|
|
vixl::aarch64::Label do_copy;
|
|
__ B(&do_copy, eq);
|
|
if (!did_unpoison) {
|
|
codegen_->GetAssembler()->MaybeUnpoisonHeapReference(temp1);
|
|
}
|
|
// /* HeapReference<Class> */ temp1 = temp1->component_type_
|
|
__ Ldr(temp1, HeapOperand(temp1, component_offset));
|
|
codegen_->GetAssembler()->MaybeUnpoisonHeapReference(temp1);
|
|
// /* HeapReference<Class> */ temp1 = temp1->super_class_
|
|
__ Ldr(temp1, HeapOperand(temp1, super_offset));
|
|
// No need to unpoison the result, we're comparing against null.
|
|
__ Cbnz(temp1, intrinsic_slow_path->GetEntryLabel());
|
|
__ Bind(&do_copy);
|
|
} else {
|
|
__ B(intrinsic_slow_path->GetEntryLabel(), ne);
|
|
}
|
|
}
|
|
} else if (!optimizations.GetSourceIsNonPrimitiveArray()) {
|
|
DCHECK(optimizations.GetDestinationIsNonPrimitiveArray());
|
|
// Bail out if the source is not a non primitive array.
|
|
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
|
|
// /* HeapReference<Class> */ temp1 = src->klass_
|
|
codegen_->GenerateFieldLoadWithBakerReadBarrier(invoke,
|
|
temp1_loc,
|
|
src.W(),
|
|
class_offset,
|
|
temp3_loc,
|
|
/* needs_null_check */ false,
|
|
/* use_load_acquire */ false);
|
|
// /* HeapReference<Class> */ temp2 = temp1->component_type_
|
|
codegen_->GenerateFieldLoadWithBakerReadBarrier(invoke,
|
|
temp2_loc,
|
|
temp1,
|
|
component_offset,
|
|
temp3_loc,
|
|
/* needs_null_check */ false,
|
|
/* use_load_acquire */ false);
|
|
__ Cbz(temp2, intrinsic_slow_path->GetEntryLabel());
|
|
// If heap poisoning is enabled, `temp2` has been unpoisoned
|
|
// by the the previous call to GenerateFieldLoadWithBakerReadBarrier.
|
|
} else {
|
|
// /* HeapReference<Class> */ temp1 = src->klass_
|
|
__ Ldr(temp1, HeapOperand(src.W(), class_offset));
|
|
codegen_->GetAssembler()->MaybeUnpoisonHeapReference(temp1);
|
|
// /* HeapReference<Class> */ temp2 = temp1->component_type_
|
|
__ Ldr(temp2, HeapOperand(temp1, component_offset));
|
|
__ Cbz(temp2, intrinsic_slow_path->GetEntryLabel());
|
|
codegen_->GetAssembler()->MaybeUnpoisonHeapReference(temp2);
|
|
}
|
|
// /* uint16_t */ temp2 = static_cast<uint16>(temp2->primitive_type_);
|
|
__ Ldrh(temp2, HeapOperand(temp2, primitive_offset));
|
|
static_assert(Primitive::kPrimNot == 0, "Expected 0 for kPrimNot");
|
|
__ Cbnz(temp2, intrinsic_slow_path->GetEntryLabel());
|
|
}
|
|
|
|
if (length.IsConstant() && length.GetConstant()->AsIntConstant()->GetValue() == 0) {
|
|
// Null constant length: not need to emit the loop code at all.
|
|
} else {
|
|
Register src_curr_addr = temp1.X();
|
|
Register dst_curr_addr = temp2.X();
|
|
Register src_stop_addr = temp3.X();
|
|
vixl::aarch64::Label done;
|
|
const Primitive::Type type = Primitive::kPrimNot;
|
|
const int32_t element_size = Primitive::ComponentSize(type);
|
|
|
|
if (length.IsRegister()) {
|
|
// Don't enter the copy loop if the length is null.
|
|
__ Cbz(WRegisterFrom(length), &done);
|
|
}
|
|
|
|
if (kEmitCompilerReadBarrier && kUseBakerReadBarrier) {
|
|
// TODO: Also convert this intrinsic to the IsGcMarking strategy?
|
|
|
|
// SystemArrayCopy implementation for Baker read barriers (see
|
|
// also CodeGeneratorARM64::GenerateReferenceLoadWithBakerReadBarrier):
|
|
//
|
|
// uint32_t rb_state = Lockword(src->monitor_).ReadBarrierState();
|
|
// lfence; // Load fence or artificial data dependency to prevent load-load reordering
|
|
// bool is_gray = (rb_state == ReadBarrier::GrayState());
|
|
// if (is_gray) {
|
|
// // Slow-path copy.
|
|
// do {
|
|
// *dest_ptr++ = MaybePoison(ReadBarrier::Mark(MaybeUnpoison(*src_ptr++)));
|
|
// } while (src_ptr != end_ptr)
|
|
// } else {
|
|
// // Fast-path copy.
|
|
// do {
|
|
// *dest_ptr++ = *src_ptr++;
|
|
// } while (src_ptr != end_ptr)
|
|
// }
|
|
|
|
// Make sure `tmp` is not IP0, as it is clobbered by
|
|
// ReadBarrierMarkRegX entry points in
|
|
// ReadBarrierSystemArrayCopySlowPathARM64.
|
|
DCHECK(temps.IsAvailable(ip0));
|
|
temps.Exclude(ip0);
|
|
Register tmp = temps.AcquireW();
|
|
DCHECK_NE(LocationFrom(tmp).reg(), IP0);
|
|
// Put IP0 back in the pool so that VIXL has at least one
|
|
// scratch register available to emit macro-instructions (note
|
|
// that IP1 is already used for `tmp`). Indeed some
|
|
// macro-instructions used in GenSystemArrayCopyAddresses
|
|
// (invoked hereunder) may require a scratch register (for
|
|
// instance to emit a load with a large constant offset).
|
|
temps.Include(ip0);
|
|
|
|
// /* int32_t */ monitor = src->monitor_
|
|
__ Ldr(tmp, HeapOperand(src.W(), monitor_offset));
|
|
// /* LockWord */ lock_word = LockWord(monitor)
|
|
static_assert(sizeof(LockWord) == sizeof(int32_t),
|
|
"art::LockWord and int32_t have different sizes.");
|
|
|
|
// Introduce a dependency on the lock_word including rb_state,
|
|
// to prevent load-load reordering, and without using
|
|
// a memory barrier (which would be more expensive).
|
|
// `src` is unchanged by this operation, but its value now depends
|
|
// on `tmp`.
|
|
__ Add(src.X(), src.X(), Operand(tmp.X(), LSR, 32));
|
|
|
|
// Compute base source address, base destination address, and end
|
|
// source address for System.arraycopy* intrinsics in `src_base`,
|
|
// `dst_base` and `src_end` respectively.
|
|
// Note that `src_curr_addr` is computed from from `src` (and
|
|
// `src_pos`) here, and thus honors the artificial dependency
|
|
// of `src` on `tmp`.
|
|
GenSystemArrayCopyAddresses(masm,
|
|
type,
|
|
src,
|
|
src_pos,
|
|
dest,
|
|
dest_pos,
|
|
length,
|
|
src_curr_addr,
|
|
dst_curr_addr,
|
|
src_stop_addr);
|
|
|
|
// Slow path used to copy array when `src` is gray.
|
|
SlowPathCodeARM64* read_barrier_slow_path =
|
|
new (GetAllocator()) ReadBarrierSystemArrayCopySlowPathARM64(invoke, LocationFrom(tmp));
|
|
codegen_->AddSlowPath(read_barrier_slow_path);
|
|
|
|
// Given the numeric representation, it's enough to check the low bit of the rb_state.
|
|
static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0");
|
|
static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1");
|
|
__ Tbnz(tmp, LockWord::kReadBarrierStateShift, read_barrier_slow_path->GetEntryLabel());
|
|
|
|
// Fast-path copy.
|
|
// Iterate over the arrays and do a raw copy of the objects. We don't need to
|
|
// poison/unpoison.
|
|
vixl::aarch64::Label loop;
|
|
__ Bind(&loop);
|
|
__ Ldr(tmp, MemOperand(src_curr_addr, element_size, PostIndex));
|
|
__ Str(tmp, MemOperand(dst_curr_addr, element_size, PostIndex));
|
|
__ Cmp(src_curr_addr, src_stop_addr);
|
|
__ B(&loop, ne);
|
|
|
|
__ Bind(read_barrier_slow_path->GetExitLabel());
|
|
} else {
|
|
// Non read barrier code.
|
|
// Compute base source address, base destination address, and end
|
|
// source address for System.arraycopy* intrinsics in `src_base`,
|
|
// `dst_base` and `src_end` respectively.
|
|
GenSystemArrayCopyAddresses(masm,
|
|
type,
|
|
src,
|
|
src_pos,
|
|
dest,
|
|
dest_pos,
|
|
length,
|
|
src_curr_addr,
|
|
dst_curr_addr,
|
|
src_stop_addr);
|
|
// Iterate over the arrays and do a raw copy of the objects. We don't need to
|
|
// poison/unpoison.
|
|
vixl::aarch64::Label loop;
|
|
__ Bind(&loop);
|
|
{
|
|
Register tmp = temps.AcquireW();
|
|
__ Ldr(tmp, MemOperand(src_curr_addr, element_size, PostIndex));
|
|
__ Str(tmp, MemOperand(dst_curr_addr, element_size, PostIndex));
|
|
}
|
|
__ Cmp(src_curr_addr, src_stop_addr);
|
|
__ B(&loop, ne);
|
|
}
|
|
__ Bind(&done);
|
|
}
|
|
}
|
|
|
|
// We only need one card marking on the destination array.
|
|
codegen_->MarkGCCard(dest.W(), Register(), /* value_can_be_null */ false);
|
|
|
|
__ Bind(intrinsic_slow_path->GetExitLabel());
|
|
}
|
|
|
|
static void GenIsInfinite(LocationSummary* locations,
|
|
bool is64bit,
|
|
MacroAssembler* masm) {
|
|
Operand infinity;
|
|
Register out;
|
|
|
|
if (is64bit) {
|
|
infinity = kPositiveInfinityDouble;
|
|
out = XRegisterFrom(locations->Out());
|
|
} else {
|
|
infinity = kPositiveInfinityFloat;
|
|
out = WRegisterFrom(locations->Out());
|
|
}
|
|
|
|
const Register zero = vixl::aarch64::Assembler::AppropriateZeroRegFor(out);
|
|
|
|
MoveFPToInt(locations, is64bit, masm);
|
|
__ Eor(out, out, infinity);
|
|
// We don't care about the sign bit, so shift left.
|
|
__ Cmp(zero, Operand(out, LSL, 1));
|
|
__ Cset(out, eq);
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitFloatIsInfinite(HInvoke* invoke) {
|
|
CreateFPToIntLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitFloatIsInfinite(HInvoke* invoke) {
|
|
GenIsInfinite(invoke->GetLocations(), /* is64bit */ false, GetVIXLAssembler());
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitDoubleIsInfinite(HInvoke* invoke) {
|
|
CreateFPToIntLocations(arena_, invoke);
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitDoubleIsInfinite(HInvoke* invoke) {
|
|
GenIsInfinite(invoke->GetLocations(), /* is64bit */ true, GetVIXLAssembler());
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitIntegerValueOf(HInvoke* invoke) {
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
IntrinsicVisitor::ComputeIntegerValueOfLocations(
|
|
invoke,
|
|
codegen_,
|
|
calling_convention.GetReturnLocation(Primitive::kPrimNot),
|
|
Location::RegisterLocation(calling_convention.GetRegisterAt(0).GetCode()));
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitIntegerValueOf(HInvoke* invoke) {
|
|
IntrinsicVisitor::IntegerValueOfInfo info = IntrinsicVisitor::ComputeIntegerValueOfInfo();
|
|
LocationSummary* locations = invoke->GetLocations();
|
|
MacroAssembler* masm = GetVIXLAssembler();
|
|
|
|
Register out = RegisterFrom(locations->Out(), Primitive::kPrimNot);
|
|
UseScratchRegisterScope temps(masm);
|
|
Register temp = temps.AcquireW();
|
|
InvokeRuntimeCallingConvention calling_convention;
|
|
Register argument = calling_convention.GetRegisterAt(0);
|
|
if (invoke->InputAt(0)->IsConstant()) {
|
|
int32_t value = invoke->InputAt(0)->AsIntConstant()->GetValue();
|
|
if (value >= info.low && value <= info.high) {
|
|
// Just embed the j.l.Integer in the code.
|
|
ScopedObjectAccess soa(Thread::Current());
|
|
mirror::Object* boxed = info.cache->Get(value + (-info.low));
|
|
DCHECK(boxed != nullptr && Runtime::Current()->GetHeap()->ObjectIsInBootImageSpace(boxed));
|
|
uint32_t address = dchecked_integral_cast<uint32_t>(reinterpret_cast<uintptr_t>(boxed));
|
|
__ Ldr(out.W(), codegen_->DeduplicateBootImageAddressLiteral(address));
|
|
} else {
|
|
// Allocate and initialize a new j.l.Integer.
|
|
// TODO: If we JIT, we could allocate the j.l.Integer now, and store it in the
|
|
// JIT object table.
|
|
uint32_t address =
|
|
dchecked_integral_cast<uint32_t>(reinterpret_cast<uintptr_t>(info.integer));
|
|
__ Ldr(argument.W(), codegen_->DeduplicateBootImageAddressLiteral(address));
|
|
codegen_->InvokeRuntime(kQuickAllocObjectInitialized, invoke, invoke->GetDexPc());
|
|
CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>();
|
|
__ Mov(temp.W(), value);
|
|
__ Str(temp.W(), HeapOperand(out.W(), info.value_offset));
|
|
// `value` is a final field :-( Ideally, we'd merge this memory barrier with the allocation
|
|
// one.
|
|
codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore);
|
|
}
|
|
} else {
|
|
Register in = RegisterFrom(locations->InAt(0), Primitive::kPrimInt);
|
|
// Check bounds of our cache.
|
|
__ Add(out.W(), in.W(), -info.low);
|
|
__ Cmp(out.W(), info.high - info.low + 1);
|
|
vixl::aarch64::Label allocate, done;
|
|
__ B(&allocate, hs);
|
|
// If the value is within the bounds, load the j.l.Integer directly from the array.
|
|
uint32_t data_offset = mirror::Array::DataOffset(kHeapReferenceSize).Uint32Value();
|
|
uint32_t address = dchecked_integral_cast<uint32_t>(reinterpret_cast<uintptr_t>(info.cache));
|
|
__ Ldr(temp.W(), codegen_->DeduplicateBootImageAddressLiteral(data_offset + address));
|
|
MemOperand source = HeapOperand(
|
|
temp, out.X(), LSL, Primitive::ComponentSizeShift(Primitive::kPrimNot));
|
|
codegen_->Load(Primitive::kPrimNot, out, source);
|
|
codegen_->GetAssembler()->MaybeUnpoisonHeapReference(out);
|
|
__ B(&done);
|
|
__ Bind(&allocate);
|
|
// Otherwise allocate and initialize a new j.l.Integer.
|
|
address = dchecked_integral_cast<uint32_t>(reinterpret_cast<uintptr_t>(info.integer));
|
|
__ Ldr(argument.W(), codegen_->DeduplicateBootImageAddressLiteral(address));
|
|
codegen_->InvokeRuntime(kQuickAllocObjectInitialized, invoke, invoke->GetDexPc());
|
|
CheckEntrypointTypes<kQuickAllocObjectWithChecks, void*, mirror::Class*>();
|
|
__ Str(in.W(), HeapOperand(out.W(), info.value_offset));
|
|
// `value` is a final field :-( Ideally, we'd merge this memory barrier with the allocation
|
|
// one.
|
|
codegen_->GenerateMemoryBarrier(MemBarrierKind::kStoreStore);
|
|
__ Bind(&done);
|
|
}
|
|
}
|
|
|
|
void IntrinsicLocationsBuilderARM64::VisitThreadInterrupted(HInvoke* invoke) {
|
|
LocationSummary* locations = new (arena_) LocationSummary(invoke,
|
|
LocationSummary::kNoCall,
|
|
kIntrinsified);
|
|
locations->SetOut(Location::RequiresRegister());
|
|
}
|
|
|
|
void IntrinsicCodeGeneratorARM64::VisitThreadInterrupted(HInvoke* invoke) {
|
|
MacroAssembler* masm = GetVIXLAssembler();
|
|
Register out = RegisterFrom(invoke->GetLocations()->Out(), Primitive::kPrimInt);
|
|
UseScratchRegisterScope temps(masm);
|
|
Register temp = temps.AcquireX();
|
|
|
|
__ Add(temp, tr, Thread::InterruptedOffset<kArm64PointerSize>().Int32Value());
|
|
__ Ldar(out.W(), MemOperand(temp));
|
|
|
|
vixl::aarch64::Label done;
|
|
__ Cbz(out.W(), &done);
|
|
__ Stlr(wzr, MemOperand(temp));
|
|
__ Bind(&done);
|
|
}
|
|
|
|
UNIMPLEMENTED_INTRINSIC(ARM64, ReferenceGetReferent)
|
|
UNIMPLEMENTED_INTRINSIC(ARM64, IntegerHighestOneBit)
|
|
UNIMPLEMENTED_INTRINSIC(ARM64, LongHighestOneBit)
|
|
UNIMPLEMENTED_INTRINSIC(ARM64, IntegerLowestOneBit)
|
|
UNIMPLEMENTED_INTRINSIC(ARM64, LongLowestOneBit)
|
|
|
|
UNIMPLEMENTED_INTRINSIC(ARM64, StringStringIndexOf);
|
|
UNIMPLEMENTED_INTRINSIC(ARM64, StringStringIndexOfAfter);
|
|
UNIMPLEMENTED_INTRINSIC(ARM64, StringBufferAppend);
|
|
UNIMPLEMENTED_INTRINSIC(ARM64, StringBufferLength);
|
|
UNIMPLEMENTED_INTRINSIC(ARM64, StringBufferToString);
|
|
UNIMPLEMENTED_INTRINSIC(ARM64, StringBuilderAppend);
|
|
UNIMPLEMENTED_INTRINSIC(ARM64, StringBuilderLength);
|
|
UNIMPLEMENTED_INTRINSIC(ARM64, StringBuilderToString);
|
|
|
|
// 1.8.
|
|
UNIMPLEMENTED_INTRINSIC(ARM64, UnsafeGetAndAddInt)
|
|
UNIMPLEMENTED_INTRINSIC(ARM64, UnsafeGetAndAddLong)
|
|
UNIMPLEMENTED_INTRINSIC(ARM64, UnsafeGetAndSetInt)
|
|
UNIMPLEMENTED_INTRINSIC(ARM64, UnsafeGetAndSetLong)
|
|
UNIMPLEMENTED_INTRINSIC(ARM64, UnsafeGetAndSetObject)
|
|
|
|
UNREACHABLE_INTRINSICS(ARM64)
|
|
|
|
#undef __
|
|
|
|
} // namespace arm64
|
|
} // namespace art
|