482 lines
24 KiB
C++
482 lines
24 KiB
C++
/*
|
|
* Copyright (C) 2017 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
// Contains all the entry points to the C Neural Networks API.
|
|
// We do basic validation of the operands and then call the class
|
|
// that implements the functionality.
|
|
|
|
#define LOG_TAG "NeuralNetworks"
|
|
|
|
#include "NeuralNetworks.h"
|
|
|
|
#include "Callbacks.h"
|
|
#include "CompilationBuilder.h"
|
|
#include "ExecutionBuilder.h"
|
|
#include "Manager.h"
|
|
#include "Memory.h"
|
|
#include "NeuralNetworksOEM.h"
|
|
#include "ModelBuilder.h"
|
|
|
|
#include <memory>
|
|
#include <vector>
|
|
|
|
// Make sure the constants defined in the header files have not changed values.
|
|
// IMPORTANT: When adding new values, update kNumberOfDataTypes or kNumberOfDataTypesOEM
|
|
// in Utils.h.
|
|
static_assert(ANEURALNETWORKS_FLOAT32 == 0, "ANEURALNETWORKS_FLOAT32 has changed");
|
|
static_assert(ANEURALNETWORKS_INT32 == 1, "ANEURALNETWORKS_INT32 has changed");
|
|
static_assert(ANEURALNETWORKS_UINT32 == 2, "ANEURALNETWORKS_UINT32 has changed");
|
|
static_assert(ANEURALNETWORKS_TENSOR_FLOAT32 == 3,
|
|
"ANEURALNETWORKS_TENSOR_FLOAT32 has changed");
|
|
static_assert(ANEURALNETWORKS_TENSOR_INT32 == 4, "ANEURALNETWORKS_TENSOR_INT32 has changed");
|
|
static_assert(ANEURALNETWORKS_TENSOR_QUANT8_ASYMM == 5,
|
|
"ANEURALNETWORKS_TENSOR_QUANT8_ASYMM has changed");
|
|
static_assert(ANEURALNETWORKS_OEM_SCALAR == 10000, "ANEURALNETWORKS_OEM_SCALAR has changed");
|
|
static_assert(ANEURALNETWORKS_TENSOR_OEM_BYTE == 10001,
|
|
"ANEURALNETWORKS_TENSOR_OEM_BYTE has changed");
|
|
|
|
// IMPORTANT: When adding new values, update kNumberOfOperationTypes or
|
|
// kNumberOfOperationTypesOEMin Utils.h.
|
|
static_assert(ANEURALNETWORKS_ADD == 0, "ANEURALNETWORKS_ADD has changed");
|
|
static_assert(ANEURALNETWORKS_AVERAGE_POOL_2D == 1,
|
|
"ANEURALNETWORKS_AVERAGE_POOL_2D has changed");
|
|
static_assert(ANEURALNETWORKS_CONCATENATION == 2, "ANEURALNETWORKS_CONCATENATION has changed");
|
|
static_assert(ANEURALNETWORKS_CONV_2D == 3, "ANEURALNETWORKS_CONV_2D has changed");
|
|
static_assert(ANEURALNETWORKS_DEPTHWISE_CONV_2D == 4,
|
|
"ANEURALNETWORKS_DEPTHWISE_CONV_2D has changed");
|
|
static_assert(ANEURALNETWORKS_DEPTH_TO_SPACE == 5,
|
|
"ANEURALNETWORKS_DEPTH_TO_SPACE has changed");
|
|
static_assert(ANEURALNETWORKS_DEQUANTIZE == 6, "ANEURALNETWORKS_DEQUANTIZE has changed");
|
|
static_assert(ANEURALNETWORKS_EMBEDDING_LOOKUP == 7,
|
|
"ANEURALNETWORKS_EMBEDDING_LOOKUP has changed");
|
|
static_assert(ANEURALNETWORKS_FLOOR == 8, "ANEURALNETWORKS_FLOOR has changed");
|
|
static_assert(ANEURALNETWORKS_FULLY_CONNECTED == 9,
|
|
"ANEURALNETWORKS_FULLY_CONNECTED has changed");
|
|
static_assert(ANEURALNETWORKS_HASHTABLE_LOOKUP == 10,
|
|
"ANEURALNETWORKS_HASHTABLE_LOOKUP has changed");
|
|
static_assert(ANEURALNETWORKS_L2_NORMALIZATION == 11,
|
|
"ANEURALNETWORKS_L2_NORMALIZATION has changed");
|
|
static_assert(ANEURALNETWORKS_L2_POOL_2D == 12, "ANEURALNETWORKS_L2_POOL has changed");
|
|
static_assert(ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION == 13,
|
|
"ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION has changed");
|
|
static_assert(ANEURALNETWORKS_LOGISTIC == 14, "ANEURALNETWORKS_LOGISTIC has changed");
|
|
static_assert(ANEURALNETWORKS_LSH_PROJECTION == 15,
|
|
"ANEURALNETWORKS_LSH_PROJECTION has changed");
|
|
static_assert(ANEURALNETWORKS_LSTM == 16, "ANEURALNETWORKS_LSTM has changed");
|
|
static_assert(ANEURALNETWORKS_MAX_POOL_2D == 17, "ANEURALNETWORKS_MAX_POOL has changed");
|
|
static_assert(ANEURALNETWORKS_MUL == 18, "ANEURALNETWORKS_MUL has changed");
|
|
static_assert(ANEURALNETWORKS_RELU == 19, "ANEURALNETWORKS_RELU has changed");
|
|
static_assert(ANEURALNETWORKS_RELU1 == 20, "ANEURALNETWORKS_RELU1 has changed");
|
|
static_assert(ANEURALNETWORKS_RELU6 == 21, "ANEURALNETWORKS_RELU6 has changed");
|
|
static_assert(ANEURALNETWORKS_RESHAPE == 22, "ANEURALNETWORKS_RESHAPE has changed");
|
|
static_assert(ANEURALNETWORKS_RESIZE_BILINEAR == 23,
|
|
"ANEURALNETWORKS_RESIZE_BILINEAR has changed");
|
|
static_assert(ANEURALNETWORKS_RNN == 24, "ANEURALNETWORKS_RNN has changed");
|
|
static_assert(ANEURALNETWORKS_SOFTMAX == 25, "ANEURALNETWORKS_SOFTMAX has changed");
|
|
static_assert(ANEURALNETWORKS_SPACE_TO_DEPTH == 26,
|
|
"ANEURALNETWORKS_SPACE_TO_DEPTH has changed");
|
|
static_assert(ANEURALNETWORKS_SVDF == 27, "ANEURALNETWORKS_SVDF has changed");
|
|
static_assert(ANEURALNETWORKS_TANH == 28, "ANEURALNETWORKS_TANH has changed");
|
|
static_assert(ANEURALNETWORKS_OEM_OPERATION == 10000,
|
|
"ANEURALNETWORKS_OEM_OPERATION has changed");
|
|
|
|
static_assert(ANEURALNETWORKS_FUSED_NONE == 0, "ANEURALNETWORKS_FUSED_NONE has changed");
|
|
static_assert(ANEURALNETWORKS_FUSED_RELU == 1, "ANEURALNETWORKS_FUSED_RELU has changed");
|
|
static_assert(ANEURALNETWORKS_FUSED_RELU1 == 2, "ANEURALNETWORKS_FUSED_RELU1 has changed");
|
|
static_assert(ANEURALNETWORKS_FUSED_RELU6 == 3, "ANEURALNETWORKS_FUSED_RELU6 has changed");
|
|
|
|
static_assert(ANEURALNETWORKS_PREFER_LOW_POWER == 0,
|
|
"ANEURALNETWORKS_PREFER_LOW_POWER has changed");
|
|
static_assert(ANEURALNETWORKS_PREFER_FAST_SINGLE_ANSWER == 1,
|
|
"ANEURALNETWORKS_PREFER_FAST_SINGLE_ANSWER has changed");
|
|
static_assert(ANEURALNETWORKS_PREFER_SUSTAINED_SPEED == 2,
|
|
"ANEURALNETWORKS_PREFER_SUSTAINED_SPEED has changed");
|
|
|
|
static_assert(ANEURALNETWORKS_NO_ERROR == 0, "ANEURALNETWORKS_NO_ERROR has changed");
|
|
static_assert(ANEURALNETWORKS_OUT_OF_MEMORY == 1, "ANEURALNETWORKS_OUT_OF_MEMORY has changed");
|
|
static_assert(ANEURALNETWORKS_INCOMPLETE == 2, "ANEURALNETWORKS_INCOMPLETE has changed");
|
|
static_assert(ANEURALNETWORKS_UNEXPECTED_NULL == 3,
|
|
"ANEURALNETWORKS_UNEXPECTED_NULL has changed");
|
|
static_assert(ANEURALNETWORKS_BAD_DATA == 4, "ANEURALNETWORKS_BAD_DATA has changed");
|
|
static_assert(ANEURALNETWORKS_OP_FAILED == 5, "ANEURALNETWORKS_OP_FAILED has changed");
|
|
static_assert(ANEURALNETWORKS_BAD_STATE == 6, "ANEURALNETWORKS_BAD_STATE has changed");
|
|
|
|
static_assert(ANEURALNETWORKS_MAX_SIZE_OF_IMMEDIATELY_COPIED_VALUES == 128,
|
|
"ANEURALNETWORKS_MAX_SIZE_OF_IMMEDIATELY_COPIED_VALUES has changed");
|
|
|
|
// Make sure that the constants are compatible with the values defined in
|
|
// hardware/interfaces/neuralnetworks/1.0/types.hal.
|
|
static_assert(static_cast<int32_t>(OperandType::OEM) == ANEURALNETWORKS_OEM_SCALAR,
|
|
"OEM != ANEURALNETWORKS_OEM");
|
|
static_assert(static_cast<int32_t>(OperandType::FLOAT32) == ANEURALNETWORKS_FLOAT32,
|
|
"FLOAT32 != ANEURALNETWORKS_FLOAT32");
|
|
static_assert(static_cast<int32_t>(OperandType::INT32) == ANEURALNETWORKS_INT32,
|
|
"INT32 != ANEURALNETWORKS_INT32");
|
|
static_assert(static_cast<int32_t>(OperandType::UINT32) == ANEURALNETWORKS_UINT32,
|
|
"UINT32 != ANEURALNETWORKS_UINT32");
|
|
static_assert(static_cast<int32_t>(OperandType::TENSOR_OEM_BYTE) == ANEURALNETWORKS_TENSOR_OEM_BYTE,
|
|
"TENSOR_OEM_BYTE != ANEURALNETWORKS_TENSOR_OEM_BYTE");
|
|
static_assert(static_cast<int32_t>(OperandType::TENSOR_FLOAT32) == ANEURALNETWORKS_TENSOR_FLOAT32,
|
|
"TENSOR_FLOAT32 != ANEURALNETWORKS_TENSOR_FLOAT32");
|
|
static_assert(static_cast<int32_t>(OperandType::TENSOR_QUANT8_ASYMM) ==
|
|
ANEURALNETWORKS_TENSOR_QUANT8_ASYMM,
|
|
"TENSOR_QUANT8_ASYMM != ANEURALNETWORKS_TENSOR_QUANT8_ASYMM");
|
|
|
|
static_assert(static_cast<int32_t>(OperationType::ADD) == ANEURALNETWORKS_ADD,
|
|
"OperationType::ADD != ANEURALNETWORKS_ADD");
|
|
static_assert(static_cast<int32_t>(OperationType::AVERAGE_POOL_2D) ==
|
|
ANEURALNETWORKS_AVERAGE_POOL_2D,
|
|
"OperationType::AVERAGE_POOL_2D != ANEURALNETWORKS_AVERAGE_POOL_2D");
|
|
static_assert(static_cast<int32_t>(OperationType::CONV_2D) == ANEURALNETWORKS_CONV_2D,
|
|
"OperationType::CONV_2D != ANEURALNETWORKS_CONV_2D");
|
|
static_assert(static_cast<int32_t>(OperationType::DEPTHWISE_CONV_2D) ==
|
|
ANEURALNETWORKS_DEPTHWISE_CONV_2D,
|
|
"OperationType::DEPTHWISE_CONV_2D != ANEURALNETWORKS_DEPTHWISE_CONV_2D");
|
|
static_assert(static_cast<int32_t>(OperationType::DEPTH_TO_SPACE) ==
|
|
ANEURALNETWORKS_DEPTH_TO_SPACE,
|
|
"OperationType::DEPTH_TO_SPACE != ANEURALNETWORKS_DEPTH_TO_SPACE");
|
|
static_assert(static_cast<int32_t>(OperationType::DEQUANTIZE) == ANEURALNETWORKS_DEQUANTIZE,
|
|
"OperationType::DEQUANTIZE != ANEURALNETWORKS_DEQUANTIZE");
|
|
static_assert(static_cast<int32_t>(OperationType::EMBEDDING_LOOKUP) ==
|
|
ANEURALNETWORKS_EMBEDDING_LOOKUP,
|
|
"OperationType::EMBEDDING_LOOKUP != ANEURALNETWORKS_EMBEDDING_LOOKUP");
|
|
static_assert(static_cast<int32_t>(OperationType::FLOOR) == ANEURALNETWORKS_FLOOR,
|
|
"OperationType::FLOOR != ANEURALNETWORKS_FLOOR");
|
|
static_assert(static_cast<int32_t>(OperationType::FULLY_CONNECTED) ==
|
|
ANEURALNETWORKS_FULLY_CONNECTED,
|
|
"OperationType::FULLY_CONNECTED != ANEURALNETWORKS_FULLY_CONNECTED");
|
|
static_assert(static_cast<int32_t>(OperationType::HASHTABLE_LOOKUP) ==
|
|
ANEURALNETWORKS_HASHTABLE_LOOKUP,
|
|
"OperationType::HASHTABLE_LOOKUP != ANEURALNETWORKS_HASHTABLE_LOOKUP");
|
|
static_assert(static_cast<int32_t>(OperationType::L2_NORMALIZATION) ==
|
|
ANEURALNETWORKS_L2_NORMALIZATION,
|
|
"OperationType::L2_NORMALIZATION != ANEURALNETWORKS_L2_NORMALIZATION");
|
|
static_assert(static_cast<int32_t>(OperationType::L2_POOL_2D) == ANEURALNETWORKS_L2_POOL_2D,
|
|
"OperationType::L2_POOL_2D != ANEURALNETWORKS_L2_POOL_2D");
|
|
static_assert(static_cast<int32_t>(OperationType::LOCAL_RESPONSE_NORMALIZATION) ==
|
|
ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION,
|
|
"OperationType::LOCAL_RESPONSE_NORMALIZATION != "
|
|
"ANEURALNETWORKS_LOCAL_RESPONSE_NORMALIZATION");
|
|
static_assert(static_cast<int32_t>(OperationType::LOGISTIC) == ANEURALNETWORKS_LOGISTIC,
|
|
"OperationType::LOGISTIC != ANEURALNETWORKS_LOGISTIC");
|
|
static_assert(static_cast<int32_t>(OperationType::LSH_PROJECTION) ==
|
|
ANEURALNETWORKS_LSH_PROJECTION,
|
|
"OperationType::LSH_PROJECTION != ANEURALNETWORKS_LSH_PROJECTION");
|
|
static_assert(static_cast<int32_t>(OperationType::LSTM) == ANEURALNETWORKS_LSTM,
|
|
"OperationType::LSTM != ANEURALNETWORKS_LSTM");
|
|
static_assert(static_cast<int32_t>(OperationType::MAX_POOL_2D) == ANEURALNETWORKS_MAX_POOL_2D,
|
|
"OperationType::MAX_POOL_2D != ANEURALNETWORKS_MAX_POOL_2D");
|
|
static_assert(static_cast<int32_t>(OperationType::MUL) == ANEURALNETWORKS_MUL,
|
|
"OperationType::MUL != ANEURALNETWORKS_MUL");
|
|
static_assert(static_cast<int32_t>(OperationType::RELU) == ANEURALNETWORKS_RELU,
|
|
"OperationType::RELU != ANEURALNETWORKS_RELU");
|
|
static_assert(static_cast<int32_t>(OperationType::RELU1) == ANEURALNETWORKS_RELU1,
|
|
"OperationType::RELU1 != ANEURALNETWORKS_RELU1");
|
|
static_assert(static_cast<int32_t>(OperationType::RELU6) == ANEURALNETWORKS_RELU6,
|
|
"OperationType::RELU6 != ANEURALNETWORKS_RELU6");
|
|
static_assert(static_cast<int32_t>(OperationType::RESHAPE) == ANEURALNETWORKS_RESHAPE,
|
|
"OperationType::RESHAPE != ANEURALNETWORKS_RESHAPE");
|
|
static_assert(static_cast<int32_t>(OperationType::RESIZE_BILINEAR) ==
|
|
ANEURALNETWORKS_RESIZE_BILINEAR,
|
|
"OperationType::RESIZE_BILINEAR != ANEURALNETWORKS_RESIZE_BILINEAR");
|
|
static_assert(static_cast<int32_t>(OperationType::RNN) == ANEURALNETWORKS_RNN,
|
|
"OperationType::RNN != ANEURALNETWORKS_RNN");
|
|
static_assert(static_cast<int32_t>(OperationType::SOFTMAX) == ANEURALNETWORKS_SOFTMAX,
|
|
"OperationType::SOFTMAX != ANEURALNETWORKS_SOFTMAX");
|
|
static_assert(static_cast<int32_t>(OperationType::SPACE_TO_DEPTH) ==
|
|
ANEURALNETWORKS_SPACE_TO_DEPTH,
|
|
"OperationType::SPACE_TO_DEPTH != ANEURALNETWORKS_SPACE_TO_DEPTH");
|
|
static_assert(static_cast<int32_t>(OperationType::SVDF) == ANEURALNETWORKS_SVDF,
|
|
"OperationType::SVDF != ANEURALNETWORKS_SVDF");
|
|
static_assert(static_cast<int32_t>(OperationType::TANH) == ANEURALNETWORKS_TANH,
|
|
"OperationType::TANH != ANEURALNETWORKS_TANH");
|
|
|
|
static_assert(static_cast<int32_t>(FusedActivationFunc::NONE) == ANEURALNETWORKS_FUSED_NONE,
|
|
"FusedActivationFunc::NONE != ANEURALNETWORKS_FUSED_NONE");
|
|
static_assert(static_cast<int32_t>(FusedActivationFunc::RELU) == ANEURALNETWORKS_FUSED_RELU,
|
|
"FusedActivationFunc::RELU != ANEURALNETWORKS_FUSED_RELU");
|
|
static_assert(static_cast<int32_t>(FusedActivationFunc::RELU1) == ANEURALNETWORKS_FUSED_RELU1,
|
|
"FusedActivationFunc::RELU1 != ANEURALNETWORKS_FUSED_RELU1");
|
|
static_assert(static_cast<int32_t>(FusedActivationFunc::RELU6) == ANEURALNETWORKS_FUSED_RELU6,
|
|
"FusedActivationFunc::RELU6 != ANEURALNETWORKS_FUSED_RELU6");
|
|
|
|
using android::sp;
|
|
using namespace android::nn;
|
|
|
|
int ANeuralNetworksMemory_createFromFd(size_t size, int prot, int fd, size_t offset,
|
|
ANeuralNetworksMemory** memory) {
|
|
*memory = nullptr;
|
|
std::unique_ptr<MemoryFd> m = std::make_unique<MemoryFd>();
|
|
if (m == nullptr) {
|
|
return ANEURALNETWORKS_OUT_OF_MEMORY;
|
|
}
|
|
int n = m->set(size, prot, fd, offset);
|
|
if (n != ANEURALNETWORKS_NO_ERROR) {
|
|
return n;
|
|
}
|
|
*memory = reinterpret_cast<ANeuralNetworksMemory*>(m.release());
|
|
return ANEURALNETWORKS_NO_ERROR;
|
|
}
|
|
|
|
void ANeuralNetworksMemory_free(ANeuralNetworksMemory* memory) {
|
|
// No validation. Free of nullptr is valid.
|
|
Memory* m = reinterpret_cast<Memory*>(memory);
|
|
delete m;
|
|
}
|
|
|
|
int ANeuralNetworksModel_create(ANeuralNetworksModel** model) {
|
|
initVLogMask();
|
|
if (!model) {
|
|
LOG(ERROR) << "ANeuralNetworksModel_create passed a nullptr";
|
|
return ANEURALNETWORKS_UNEXPECTED_NULL;
|
|
}
|
|
ModelBuilder* m = new ModelBuilder();
|
|
if (m == nullptr) {
|
|
*model = nullptr;
|
|
return ANEURALNETWORKS_OUT_OF_MEMORY;
|
|
}
|
|
*model = reinterpret_cast<ANeuralNetworksModel*>(m);
|
|
return ANEURALNETWORKS_NO_ERROR;
|
|
}
|
|
|
|
void ANeuralNetworksModel_free(ANeuralNetworksModel* model) {
|
|
// No validation. Free of nullptr is valid.
|
|
ModelBuilder* m = reinterpret_cast<ModelBuilder*>(model);
|
|
delete m;
|
|
}
|
|
|
|
int ANeuralNetworksModel_finish(ANeuralNetworksModel* model) {
|
|
if (!model) {
|
|
LOG(ERROR) << "ANeuralNetworksModel_finish passed a nullptr";
|
|
return ANEURALNETWORKS_UNEXPECTED_NULL;
|
|
}
|
|
ModelBuilder* m = reinterpret_cast<ModelBuilder*>(model);
|
|
return m->finish();
|
|
}
|
|
|
|
int ANeuralNetworksModel_addOperand(ANeuralNetworksModel* model,
|
|
const ANeuralNetworksOperandType* type) {
|
|
if (!model || !type) {
|
|
LOG(ERROR) << "ANeuralNetworksModel_addOperand passed a nullptr";
|
|
return ANEURALNETWORKS_UNEXPECTED_NULL;
|
|
}
|
|
ModelBuilder* m = reinterpret_cast<ModelBuilder*>(model);
|
|
return m->addOperand(*type);
|
|
}
|
|
|
|
int ANeuralNetworksModel_setOperandValue(ANeuralNetworksModel* model, int32_t index,
|
|
const void* buffer, size_t length) {
|
|
if (!model || !buffer) {
|
|
LOG(ERROR) << "ANeuralNetworksModel_setOperandValue passed a nullptr";
|
|
return ANEURALNETWORKS_UNEXPECTED_NULL;
|
|
}
|
|
ModelBuilder* m = reinterpret_cast<ModelBuilder*>(model);
|
|
return m->setOperandValue(index, buffer, length);
|
|
}
|
|
|
|
int ANeuralNetworksModel_setOperandValueFromMemory(ANeuralNetworksModel* model, int32_t index,
|
|
const ANeuralNetworksMemory* memory,
|
|
size_t offset, size_t length) {
|
|
if (!model || !memory) {
|
|
LOG(ERROR) << "ANeuralNetworksModel_setOperandValue passed a nullptr";
|
|
return ANEURALNETWORKS_UNEXPECTED_NULL;
|
|
}
|
|
const Memory* mem = reinterpret_cast<const Memory*>(memory);
|
|
ModelBuilder* m = reinterpret_cast<ModelBuilder*>(model);
|
|
return m->setOperandValueFromMemory(index, mem, offset, length);
|
|
}
|
|
|
|
int ANeuralNetworksModel_addOperation(ANeuralNetworksModel* model,
|
|
ANeuralNetworksOperationType type, uint32_t inputCount,
|
|
const uint32_t* inputs, uint32_t outputCount,
|
|
const uint32_t* outputs) {
|
|
if (!model || !inputs || !outputs) {
|
|
LOG(ERROR) << "ANeuralNetworksModel_addOperation passed a nullptr";
|
|
return ANEURALNETWORKS_UNEXPECTED_NULL;
|
|
}
|
|
ModelBuilder* m = reinterpret_cast<ModelBuilder*>(model);
|
|
return m->addOperation(type, inputCount, inputs, outputCount, outputs);
|
|
}
|
|
|
|
int ANeuralNetworksModel_identifyInputsAndOutputs(ANeuralNetworksModel* model, uint32_t inputCount,
|
|
const uint32_t* inputs, uint32_t outputCount,
|
|
const uint32_t* outputs) {
|
|
if (!model || !inputs || !outputs) {
|
|
LOG(ERROR) << ("ANeuralNetworksModel_identifyInputsAndOutputs passed a nullptr");
|
|
return ANEURALNETWORKS_UNEXPECTED_NULL;
|
|
}
|
|
ModelBuilder* m = reinterpret_cast<ModelBuilder*>(model);
|
|
return m->identifyInputsAndOutputs(inputCount, inputs, outputCount, outputs);
|
|
}
|
|
|
|
int ANeuralNetworksCompilation_create(ANeuralNetworksModel* model,
|
|
ANeuralNetworksCompilation** compilation) {
|
|
if (!model || !compilation) {
|
|
LOG(ERROR) << "ANeuralNetworksCompilation_create passed a nullptr";
|
|
return ANEURALNETWORKS_UNEXPECTED_NULL;
|
|
}
|
|
|
|
ModelBuilder* m = reinterpret_cast<ModelBuilder*>(model);
|
|
CompilationBuilder* c = nullptr;
|
|
int result = m->createCompilation(&c);
|
|
*compilation = reinterpret_cast<ANeuralNetworksCompilation*>(c);
|
|
return result;
|
|
}
|
|
|
|
void ANeuralNetworksCompilation_free(ANeuralNetworksCompilation* compilation) {
|
|
// No validation. Free of nullptr is valid.
|
|
// TODO specification says that a compilation-in-flight can be deleted
|
|
CompilationBuilder* c = reinterpret_cast<CompilationBuilder*>(compilation);
|
|
delete c;
|
|
}
|
|
|
|
int ANeuralNetworksCompilation_setPreference(ANeuralNetworksCompilation* compilation,
|
|
int32_t preference) {
|
|
if (!compilation) {
|
|
LOG(ERROR) << "ANeuralNetworksCompilation_setPreference passed a nullptr";
|
|
return ANEURALNETWORKS_UNEXPECTED_NULL;
|
|
}
|
|
CompilationBuilder* c = reinterpret_cast<CompilationBuilder*>(compilation);
|
|
return c->setPreference(preference);
|
|
}
|
|
|
|
int ANeuralNetworksCompilation_finish(ANeuralNetworksCompilation* compilation) {
|
|
if (!compilation) {
|
|
LOG(ERROR) << "ANeuralNetworksCompilation_finish passed a nullptr";
|
|
return ANEURALNETWORKS_UNEXPECTED_NULL;
|
|
}
|
|
CompilationBuilder* c = reinterpret_cast<CompilationBuilder*>(compilation);
|
|
return c->finish();
|
|
}
|
|
|
|
int ANeuralNetworksExecution_create(ANeuralNetworksCompilation* compilation,
|
|
ANeuralNetworksExecution** execution) {
|
|
if (!compilation || !execution) {
|
|
LOG(ERROR) << "ANeuralNetworksExecution_create passed a nullptr";
|
|
return ANEURALNETWORKS_UNEXPECTED_NULL;
|
|
}
|
|
|
|
CompilationBuilder* c = reinterpret_cast<CompilationBuilder*>(compilation);
|
|
ExecutionBuilder* r = nullptr;
|
|
int result = c->createExecution(&r);
|
|
*execution = reinterpret_cast<ANeuralNetworksExecution*>(r);
|
|
return result;
|
|
}
|
|
|
|
void ANeuralNetworksExecution_free(ANeuralNetworksExecution* execution) {
|
|
// TODO specification says that an execution-in-flight can be deleted
|
|
// No validation. Free of nullptr is valid.
|
|
ExecutionBuilder* r = reinterpret_cast<ExecutionBuilder*>(execution);
|
|
delete r;
|
|
}
|
|
|
|
int ANeuralNetworksExecution_setInput(ANeuralNetworksExecution* execution, int32_t index,
|
|
const ANeuralNetworksOperandType* type, const void* buffer,
|
|
size_t length) {
|
|
// TODO: For a non-optional input, also verify that buffer is not null.
|
|
if (!execution) {
|
|
LOG(ERROR) << "ANeuralNetworksExecution_setInput passed a nullptr";
|
|
return ANEURALNETWORKS_UNEXPECTED_NULL;
|
|
}
|
|
ExecutionBuilder* r = reinterpret_cast<ExecutionBuilder*>(execution);
|
|
return r->setInput(index, type, buffer, length);
|
|
}
|
|
|
|
int ANeuralNetworksExecution_setInputFromMemory(ANeuralNetworksExecution* execution, int32_t index,
|
|
const ANeuralNetworksOperandType* type,
|
|
const ANeuralNetworksMemory* memory, size_t offset,
|
|
size_t length) {
|
|
if (!execution || !memory) {
|
|
LOG(ERROR) << "ANeuralNetworksExecution_setInputFromMemory passed a nullptr";
|
|
return ANEURALNETWORKS_UNEXPECTED_NULL;
|
|
}
|
|
|
|
const Memory* m = reinterpret_cast<const Memory*>(memory);
|
|
ExecutionBuilder* r = reinterpret_cast<ExecutionBuilder*>(execution);
|
|
return r->setInputFromMemory(index, type, m, offset, length);
|
|
}
|
|
|
|
int ANeuralNetworksExecution_setOutput(ANeuralNetworksExecution* execution, int32_t index,
|
|
const ANeuralNetworksOperandType* type, void* buffer,
|
|
size_t length) {
|
|
if (!execution || !buffer) {
|
|
LOG(ERROR) << "ANeuralNetworksExecution_setOutput passed a nullptr";
|
|
return ANEURALNETWORKS_UNEXPECTED_NULL;
|
|
}
|
|
ExecutionBuilder* r = reinterpret_cast<ExecutionBuilder*>(execution);
|
|
return r->setOutput(index, type, buffer, length);
|
|
}
|
|
|
|
int ANeuralNetworksExecution_setOutputFromMemory(ANeuralNetworksExecution* execution, int32_t index,
|
|
const ANeuralNetworksOperandType* type,
|
|
const ANeuralNetworksMemory* memory, size_t offset,
|
|
size_t length) {
|
|
if (!execution || !memory) {
|
|
LOG(ERROR) << "ANeuralNetworksExecution_setOutputFromMemory passed a nullptr";
|
|
return ANEURALNETWORKS_UNEXPECTED_NULL;
|
|
}
|
|
|
|
ExecutionBuilder* r = reinterpret_cast<ExecutionBuilder*>(execution);
|
|
const Memory* m = reinterpret_cast<const Memory*>(memory);
|
|
return r->setOutputFromMemory(index, type, m, offset, length);
|
|
}
|
|
|
|
int ANeuralNetworksExecution_startCompute(ANeuralNetworksExecution* execution,
|
|
ANeuralNetworksEvent** event) {
|
|
if (!execution || !event) {
|
|
LOG(ERROR) << "ANeuralNetworksExecution_startCompute passed a nullptr";
|
|
return ANEURALNETWORKS_UNEXPECTED_NULL;
|
|
}
|
|
// TODO validate the rest
|
|
|
|
ExecutionBuilder* r = reinterpret_cast<ExecutionBuilder*>(execution);
|
|
|
|
// Dynamically allocate an sp to wrap an ExecutionCallback, seen in the NN
|
|
// API as an abstract event object. The sp<ExecutionCallback> object is
|
|
// returned when the execution has been successfully launched, otherwise a
|
|
// nullptr is returned. The sp is used for ref-counting purposes. Without
|
|
// it, the HIDL service could attempt to communicate with a dead callback
|
|
// object.
|
|
std::unique_ptr<sp<ExecutionCallback>> e = std::make_unique<sp<ExecutionCallback>>();
|
|
*event = nullptr;
|
|
|
|
int n = r->startCompute(e.get());
|
|
if (n != ANEURALNETWORKS_NO_ERROR) {
|
|
return n;
|
|
}
|
|
*event = reinterpret_cast<ANeuralNetworksEvent*>(e.release());
|
|
return ANEURALNETWORKS_NO_ERROR;
|
|
}
|
|
|
|
int ANeuralNetworksEvent_wait(ANeuralNetworksEvent* event) {
|
|
if (event == nullptr) {
|
|
LOG(ERROR) << "ANeuralNetworksEvent_wait passed a nullptr";
|
|
return ANEURALNETWORKS_UNEXPECTED_NULL;
|
|
}
|
|
|
|
sp<ExecutionCallback>* e = reinterpret_cast<sp<ExecutionCallback>*>(event);
|
|
(*e)->wait();
|
|
return ANEURALNETWORKS_NO_ERROR;
|
|
}
|
|
|
|
void ANeuralNetworksEvent_free(ANeuralNetworksEvent* event) {
|
|
// No validation. Free of nullptr is valid.
|
|
if (event) {
|
|
sp<ExecutionCallback>* e = reinterpret_cast<sp<ExecutionCallback>*>(event);
|
|
(*e)->wait();
|
|
delete e;
|
|
}
|
|
}
|