7064 lines
257 KiB
C++
7064 lines
257 KiB
C++
/*
|
|
* Copyright (C) 2014 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#ifndef ART_COMPILER_OPTIMIZING_NODES_H_
|
|
#define ART_COMPILER_OPTIMIZING_NODES_H_
|
|
|
|
#include <algorithm>
|
|
#include <array>
|
|
#include <type_traits>
|
|
|
|
#include "base/arena_bit_vector.h"
|
|
#include "base/arena_containers.h"
|
|
#include "base/arena_object.h"
|
|
#include "base/array_ref.h"
|
|
#include "base/iteration_range.h"
|
|
#include "base/stl_util.h"
|
|
#include "base/transform_array_ref.h"
|
|
#include "dex_file.h"
|
|
#include "dex_file_types.h"
|
|
#include "deoptimization_kind.h"
|
|
#include "entrypoints/quick/quick_entrypoints_enum.h"
|
|
#include "handle.h"
|
|
#include "handle_scope.h"
|
|
#include "invoke_type.h"
|
|
#include "intrinsics_enum.h"
|
|
#include "locations.h"
|
|
#include "method_reference.h"
|
|
#include "mirror/class.h"
|
|
#include "offsets.h"
|
|
#include "primitive.h"
|
|
#include "utils/intrusive_forward_list.h"
|
|
|
|
namespace art {
|
|
|
|
class GraphChecker;
|
|
class HBasicBlock;
|
|
class HConstructorFence;
|
|
class HCurrentMethod;
|
|
class HDoubleConstant;
|
|
class HEnvironment;
|
|
class HFloatConstant;
|
|
class HGraphBuilder;
|
|
class HGraphVisitor;
|
|
class HInstruction;
|
|
class HIntConstant;
|
|
class HInvoke;
|
|
class HLongConstant;
|
|
class HNullConstant;
|
|
class HParameterValue;
|
|
class HPhi;
|
|
class HSuspendCheck;
|
|
class HTryBoundary;
|
|
class LiveInterval;
|
|
class LocationSummary;
|
|
class SlowPathCode;
|
|
class SsaBuilder;
|
|
|
|
namespace mirror {
|
|
class DexCache;
|
|
} // namespace mirror
|
|
|
|
static const int kDefaultNumberOfBlocks = 8;
|
|
static const int kDefaultNumberOfSuccessors = 2;
|
|
static const int kDefaultNumberOfPredecessors = 2;
|
|
static const int kDefaultNumberOfExceptionalPredecessors = 0;
|
|
static const int kDefaultNumberOfDominatedBlocks = 1;
|
|
static const int kDefaultNumberOfBackEdges = 1;
|
|
|
|
// The maximum (meaningful) distance (31) that can be used in an integer shift/rotate operation.
|
|
static constexpr int32_t kMaxIntShiftDistance = 0x1f;
|
|
// The maximum (meaningful) distance (63) that can be used in a long shift/rotate operation.
|
|
static constexpr int32_t kMaxLongShiftDistance = 0x3f;
|
|
|
|
static constexpr uint32_t kUnknownFieldIndex = static_cast<uint32_t>(-1);
|
|
static constexpr uint16_t kUnknownClassDefIndex = static_cast<uint16_t>(-1);
|
|
|
|
static constexpr InvokeType kInvalidInvokeType = static_cast<InvokeType>(-1);
|
|
|
|
static constexpr uint32_t kNoDexPc = -1;
|
|
|
|
inline bool IsSameDexFile(const DexFile& lhs, const DexFile& rhs) {
|
|
// For the purposes of the compiler, the dex files must actually be the same object
|
|
// if we want to safely treat them as the same. This is especially important for JIT
|
|
// as custom class loaders can open the same underlying file (or memory) multiple
|
|
// times and provide different class resolution but no two class loaders should ever
|
|
// use the same DexFile object - doing so is an unsupported hack that can lead to
|
|
// all sorts of weird failures.
|
|
return &lhs == &rhs;
|
|
}
|
|
|
|
enum IfCondition {
|
|
// All types.
|
|
kCondEQ, // ==
|
|
kCondNE, // !=
|
|
// Signed integers and floating-point numbers.
|
|
kCondLT, // <
|
|
kCondLE, // <=
|
|
kCondGT, // >
|
|
kCondGE, // >=
|
|
// Unsigned integers.
|
|
kCondB, // <
|
|
kCondBE, // <=
|
|
kCondA, // >
|
|
kCondAE, // >=
|
|
// First and last aliases.
|
|
kCondFirst = kCondEQ,
|
|
kCondLast = kCondAE,
|
|
};
|
|
|
|
enum GraphAnalysisResult {
|
|
kAnalysisSkipped,
|
|
kAnalysisInvalidBytecode,
|
|
kAnalysisFailThrowCatchLoop,
|
|
kAnalysisFailAmbiguousArrayOp,
|
|
kAnalysisSuccess,
|
|
};
|
|
|
|
template <typename T>
|
|
static inline typename std::make_unsigned<T>::type MakeUnsigned(T x) {
|
|
return static_cast<typename std::make_unsigned<T>::type>(x);
|
|
}
|
|
|
|
class HInstructionList : public ValueObject {
|
|
public:
|
|
HInstructionList() : first_instruction_(nullptr), last_instruction_(nullptr) {}
|
|
|
|
void AddInstruction(HInstruction* instruction);
|
|
void RemoveInstruction(HInstruction* instruction);
|
|
|
|
// Insert `instruction` before/after an existing instruction `cursor`.
|
|
void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
|
|
void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
|
|
|
|
// Return true if this list contains `instruction`.
|
|
bool Contains(HInstruction* instruction) const;
|
|
|
|
// Return true if `instruction1` is found before `instruction2` in
|
|
// this instruction list and false otherwise. Abort if none
|
|
// of these instructions is found.
|
|
bool FoundBefore(const HInstruction* instruction1,
|
|
const HInstruction* instruction2) const;
|
|
|
|
bool IsEmpty() const { return first_instruction_ == nullptr; }
|
|
void Clear() { first_instruction_ = last_instruction_ = nullptr; }
|
|
|
|
// Update the block of all instructions to be `block`.
|
|
void SetBlockOfInstructions(HBasicBlock* block) const;
|
|
|
|
void AddAfter(HInstruction* cursor, const HInstructionList& instruction_list);
|
|
void AddBefore(HInstruction* cursor, const HInstructionList& instruction_list);
|
|
void Add(const HInstructionList& instruction_list);
|
|
|
|
// Return the number of instructions in the list. This is an expensive operation.
|
|
size_t CountSize() const;
|
|
|
|
private:
|
|
HInstruction* first_instruction_;
|
|
HInstruction* last_instruction_;
|
|
|
|
friend class HBasicBlock;
|
|
friend class HGraph;
|
|
friend class HInstruction;
|
|
friend class HInstructionIterator;
|
|
friend class HInstructionIteratorHandleChanges;
|
|
friend class HBackwardInstructionIterator;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HInstructionList);
|
|
};
|
|
|
|
class ReferenceTypeInfo : ValueObject {
|
|
public:
|
|
typedef Handle<mirror::Class> TypeHandle;
|
|
|
|
static ReferenceTypeInfo Create(TypeHandle type_handle, bool is_exact);
|
|
|
|
static ReferenceTypeInfo Create(TypeHandle type_handle) REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
return Create(type_handle, type_handle->CannotBeAssignedFromOtherTypes());
|
|
}
|
|
|
|
static ReferenceTypeInfo CreateUnchecked(TypeHandle type_handle, bool is_exact) {
|
|
return ReferenceTypeInfo(type_handle, is_exact);
|
|
}
|
|
|
|
static ReferenceTypeInfo CreateInvalid() { return ReferenceTypeInfo(); }
|
|
|
|
static bool IsValidHandle(TypeHandle handle) {
|
|
return handle.GetReference() != nullptr;
|
|
}
|
|
|
|
bool IsValid() const {
|
|
return IsValidHandle(type_handle_);
|
|
}
|
|
|
|
bool IsExact() const { return is_exact_; }
|
|
|
|
bool IsObjectClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
DCHECK(IsValid());
|
|
return GetTypeHandle()->IsObjectClass();
|
|
}
|
|
|
|
bool IsStringClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
DCHECK(IsValid());
|
|
return GetTypeHandle()->IsStringClass();
|
|
}
|
|
|
|
bool IsObjectArray() const REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
DCHECK(IsValid());
|
|
return IsArrayClass() && GetTypeHandle()->GetComponentType()->IsObjectClass();
|
|
}
|
|
|
|
bool IsInterface() const REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
DCHECK(IsValid());
|
|
return GetTypeHandle()->IsInterface();
|
|
}
|
|
|
|
bool IsArrayClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
DCHECK(IsValid());
|
|
return GetTypeHandle()->IsArrayClass();
|
|
}
|
|
|
|
bool IsPrimitiveArrayClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
DCHECK(IsValid());
|
|
return GetTypeHandle()->IsPrimitiveArray();
|
|
}
|
|
|
|
bool IsNonPrimitiveArrayClass() const REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
DCHECK(IsValid());
|
|
return GetTypeHandle()->IsArrayClass() && !GetTypeHandle()->IsPrimitiveArray();
|
|
}
|
|
|
|
bool CanArrayHold(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
DCHECK(IsValid());
|
|
if (!IsExact()) return false;
|
|
if (!IsArrayClass()) return false;
|
|
return GetTypeHandle()->GetComponentType()->IsAssignableFrom(rti.GetTypeHandle().Get());
|
|
}
|
|
|
|
bool CanArrayHoldValuesOf(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
DCHECK(IsValid());
|
|
if (!IsExact()) return false;
|
|
if (!IsArrayClass()) return false;
|
|
if (!rti.IsArrayClass()) return false;
|
|
return GetTypeHandle()->GetComponentType()->IsAssignableFrom(
|
|
rti.GetTypeHandle()->GetComponentType());
|
|
}
|
|
|
|
Handle<mirror::Class> GetTypeHandle() const { return type_handle_; }
|
|
|
|
bool IsSupertypeOf(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
DCHECK(IsValid());
|
|
DCHECK(rti.IsValid());
|
|
return GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
|
|
}
|
|
|
|
bool IsStrictSupertypeOf(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
DCHECK(IsValid());
|
|
DCHECK(rti.IsValid());
|
|
return GetTypeHandle().Get() != rti.GetTypeHandle().Get() &&
|
|
GetTypeHandle()->IsAssignableFrom(rti.GetTypeHandle().Get());
|
|
}
|
|
|
|
// Returns true if the type information provide the same amount of details.
|
|
// Note that it does not mean that the instructions have the same actual type
|
|
// (because the type can be the result of a merge).
|
|
bool IsEqual(ReferenceTypeInfo rti) const REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
if (!IsValid() && !rti.IsValid()) {
|
|
// Invalid types are equal.
|
|
return true;
|
|
}
|
|
if (!IsValid() || !rti.IsValid()) {
|
|
// One is valid, the other not.
|
|
return false;
|
|
}
|
|
return IsExact() == rti.IsExact()
|
|
&& GetTypeHandle().Get() == rti.GetTypeHandle().Get();
|
|
}
|
|
|
|
private:
|
|
ReferenceTypeInfo() : type_handle_(TypeHandle()), is_exact_(false) {}
|
|
ReferenceTypeInfo(TypeHandle type_handle, bool is_exact)
|
|
: type_handle_(type_handle), is_exact_(is_exact) { }
|
|
|
|
// The class of the object.
|
|
TypeHandle type_handle_;
|
|
// Whether or not the type is exact or a superclass of the actual type.
|
|
// Whether or not we have any information about this type.
|
|
bool is_exact_;
|
|
};
|
|
|
|
std::ostream& operator<<(std::ostream& os, const ReferenceTypeInfo& rhs);
|
|
|
|
// Control-flow graph of a method. Contains a list of basic blocks.
|
|
class HGraph : public ArenaObject<kArenaAllocGraph> {
|
|
public:
|
|
HGraph(ArenaAllocator* arena,
|
|
const DexFile& dex_file,
|
|
uint32_t method_idx,
|
|
InstructionSet instruction_set,
|
|
InvokeType invoke_type = kInvalidInvokeType,
|
|
bool debuggable = false,
|
|
bool osr = false,
|
|
int start_instruction_id = 0)
|
|
: arena_(arena),
|
|
blocks_(arena->Adapter(kArenaAllocBlockList)),
|
|
reverse_post_order_(arena->Adapter(kArenaAllocReversePostOrder)),
|
|
linear_order_(arena->Adapter(kArenaAllocLinearOrder)),
|
|
entry_block_(nullptr),
|
|
exit_block_(nullptr),
|
|
maximum_number_of_out_vregs_(0),
|
|
number_of_vregs_(0),
|
|
number_of_in_vregs_(0),
|
|
temporaries_vreg_slots_(0),
|
|
has_bounds_checks_(false),
|
|
has_try_catch_(false),
|
|
has_simd_(false),
|
|
has_loops_(false),
|
|
has_irreducible_loops_(false),
|
|
debuggable_(debuggable),
|
|
current_instruction_id_(start_instruction_id),
|
|
dex_file_(dex_file),
|
|
method_idx_(method_idx),
|
|
invoke_type_(invoke_type),
|
|
in_ssa_form_(false),
|
|
number_of_cha_guards_(0),
|
|
instruction_set_(instruction_set),
|
|
cached_null_constant_(nullptr),
|
|
cached_int_constants_(std::less<int32_t>(), arena->Adapter(kArenaAllocConstantsMap)),
|
|
cached_float_constants_(std::less<int32_t>(), arena->Adapter(kArenaAllocConstantsMap)),
|
|
cached_long_constants_(std::less<int64_t>(), arena->Adapter(kArenaAllocConstantsMap)),
|
|
cached_double_constants_(std::less<int64_t>(), arena->Adapter(kArenaAllocConstantsMap)),
|
|
cached_current_method_(nullptr),
|
|
art_method_(nullptr),
|
|
inexact_object_rti_(ReferenceTypeInfo::CreateInvalid()),
|
|
osr_(osr),
|
|
cha_single_implementation_list_(arena->Adapter(kArenaAllocCHA)) {
|
|
blocks_.reserve(kDefaultNumberOfBlocks);
|
|
}
|
|
|
|
// Acquires and stores RTI of inexact Object to be used when creating HNullConstant.
|
|
void InitializeInexactObjectRTI(VariableSizedHandleScope* handles);
|
|
|
|
ArenaAllocator* GetArena() const { return arena_; }
|
|
const ArenaVector<HBasicBlock*>& GetBlocks() const { return blocks_; }
|
|
|
|
bool IsInSsaForm() const { return in_ssa_form_; }
|
|
void SetInSsaForm() { in_ssa_form_ = true; }
|
|
|
|
HBasicBlock* GetEntryBlock() const { return entry_block_; }
|
|
HBasicBlock* GetExitBlock() const { return exit_block_; }
|
|
bool HasExitBlock() const { return exit_block_ != nullptr; }
|
|
|
|
void SetEntryBlock(HBasicBlock* block) { entry_block_ = block; }
|
|
void SetExitBlock(HBasicBlock* block) { exit_block_ = block; }
|
|
|
|
void AddBlock(HBasicBlock* block);
|
|
|
|
void ComputeDominanceInformation();
|
|
void ClearDominanceInformation();
|
|
void ClearLoopInformation();
|
|
void FindBackEdges(ArenaBitVector* visited);
|
|
GraphAnalysisResult BuildDominatorTree();
|
|
void SimplifyCFG();
|
|
void SimplifyCatchBlocks();
|
|
|
|
// Analyze all natural loops in this graph. Returns a code specifying that it
|
|
// was successful or the reason for failure. The method will fail if a loop
|
|
// is a throw-catch loop, i.e. the header is a catch block.
|
|
GraphAnalysisResult AnalyzeLoops() const;
|
|
|
|
// Iterate over blocks to compute try block membership. Needs reverse post
|
|
// order and loop information.
|
|
void ComputeTryBlockInformation();
|
|
|
|
// Inline this graph in `outer_graph`, replacing the given `invoke` instruction.
|
|
// Returns the instruction to replace the invoke expression or null if the
|
|
// invoke is for a void method. Note that the caller is responsible for replacing
|
|
// and removing the invoke instruction.
|
|
HInstruction* InlineInto(HGraph* outer_graph, HInvoke* invoke);
|
|
|
|
// Update the loop and try membership of `block`, which was spawned from `reference`.
|
|
// In case `reference` is a back edge, `replace_if_back_edge` notifies whether `block`
|
|
// should be the new back edge.
|
|
void UpdateLoopAndTryInformationOfNewBlock(HBasicBlock* block,
|
|
HBasicBlock* reference,
|
|
bool replace_if_back_edge);
|
|
|
|
// Need to add a couple of blocks to test if the loop body is entered and
|
|
// put deoptimization instructions, etc.
|
|
void TransformLoopHeaderForBCE(HBasicBlock* header);
|
|
|
|
// Adds a new loop directly after the loop with the given header and exit.
|
|
// Returns the new preheader.
|
|
HBasicBlock* TransformLoopForVectorization(HBasicBlock* header,
|
|
HBasicBlock* body,
|
|
HBasicBlock* exit);
|
|
|
|
// Removes `block` from the graph. Assumes `block` has been disconnected from
|
|
// other blocks and has no instructions or phis.
|
|
void DeleteDeadEmptyBlock(HBasicBlock* block);
|
|
|
|
// Splits the edge between `block` and `successor` while preserving the
|
|
// indices in the predecessor/successor lists. If there are multiple edges
|
|
// between the blocks, the lowest indices are used.
|
|
// Returns the new block which is empty and has the same dex pc as `successor`.
|
|
HBasicBlock* SplitEdge(HBasicBlock* block, HBasicBlock* successor);
|
|
|
|
void SplitCriticalEdge(HBasicBlock* block, HBasicBlock* successor);
|
|
void SimplifyLoop(HBasicBlock* header);
|
|
|
|
int32_t GetNextInstructionId() {
|
|
CHECK_NE(current_instruction_id_, INT32_MAX);
|
|
return current_instruction_id_++;
|
|
}
|
|
|
|
int32_t GetCurrentInstructionId() const {
|
|
return current_instruction_id_;
|
|
}
|
|
|
|
void SetCurrentInstructionId(int32_t id) {
|
|
CHECK_GE(id, current_instruction_id_);
|
|
current_instruction_id_ = id;
|
|
}
|
|
|
|
uint16_t GetMaximumNumberOfOutVRegs() const {
|
|
return maximum_number_of_out_vregs_;
|
|
}
|
|
|
|
void SetMaximumNumberOfOutVRegs(uint16_t new_value) {
|
|
maximum_number_of_out_vregs_ = new_value;
|
|
}
|
|
|
|
void UpdateMaximumNumberOfOutVRegs(uint16_t other_value) {
|
|
maximum_number_of_out_vregs_ = std::max(maximum_number_of_out_vregs_, other_value);
|
|
}
|
|
|
|
void UpdateTemporariesVRegSlots(size_t slots) {
|
|
temporaries_vreg_slots_ = std::max(slots, temporaries_vreg_slots_);
|
|
}
|
|
|
|
size_t GetTemporariesVRegSlots() const {
|
|
DCHECK(!in_ssa_form_);
|
|
return temporaries_vreg_slots_;
|
|
}
|
|
|
|
void SetNumberOfVRegs(uint16_t number_of_vregs) {
|
|
number_of_vregs_ = number_of_vregs;
|
|
}
|
|
|
|
uint16_t GetNumberOfVRegs() const {
|
|
return number_of_vregs_;
|
|
}
|
|
|
|
void SetNumberOfInVRegs(uint16_t value) {
|
|
number_of_in_vregs_ = value;
|
|
}
|
|
|
|
uint16_t GetNumberOfInVRegs() const {
|
|
return number_of_in_vregs_;
|
|
}
|
|
|
|
uint16_t GetNumberOfLocalVRegs() const {
|
|
DCHECK(!in_ssa_form_);
|
|
return number_of_vregs_ - number_of_in_vregs_;
|
|
}
|
|
|
|
const ArenaVector<HBasicBlock*>& GetReversePostOrder() const {
|
|
return reverse_post_order_;
|
|
}
|
|
|
|
ArrayRef<HBasicBlock* const> GetReversePostOrderSkipEntryBlock() {
|
|
DCHECK(GetReversePostOrder()[0] == entry_block_);
|
|
return ArrayRef<HBasicBlock* const>(GetReversePostOrder()).SubArray(1);
|
|
}
|
|
|
|
IterationRange<ArenaVector<HBasicBlock*>::const_reverse_iterator> GetPostOrder() const {
|
|
return ReverseRange(GetReversePostOrder());
|
|
}
|
|
|
|
const ArenaVector<HBasicBlock*>& GetLinearOrder() const {
|
|
return linear_order_;
|
|
}
|
|
|
|
IterationRange<ArenaVector<HBasicBlock*>::const_reverse_iterator> GetLinearPostOrder() const {
|
|
return ReverseRange(GetLinearOrder());
|
|
}
|
|
|
|
bool HasBoundsChecks() const {
|
|
return has_bounds_checks_;
|
|
}
|
|
|
|
void SetHasBoundsChecks(bool value) {
|
|
has_bounds_checks_ = value;
|
|
}
|
|
|
|
bool IsDebuggable() const { return debuggable_; }
|
|
|
|
// Returns a constant of the given type and value. If it does not exist
|
|
// already, it is created and inserted into the graph. This method is only for
|
|
// integral types.
|
|
HConstant* GetConstant(Primitive::Type type, int64_t value, uint32_t dex_pc = kNoDexPc);
|
|
|
|
// TODO: This is problematic for the consistency of reference type propagation
|
|
// because it can be created anytime after the pass and thus it will be left
|
|
// with an invalid type.
|
|
HNullConstant* GetNullConstant(uint32_t dex_pc = kNoDexPc);
|
|
|
|
HIntConstant* GetIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc) {
|
|
return CreateConstant(value, &cached_int_constants_, dex_pc);
|
|
}
|
|
HLongConstant* GetLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc) {
|
|
return CreateConstant(value, &cached_long_constants_, dex_pc);
|
|
}
|
|
HFloatConstant* GetFloatConstant(float value, uint32_t dex_pc = kNoDexPc) {
|
|
return CreateConstant(bit_cast<int32_t, float>(value), &cached_float_constants_, dex_pc);
|
|
}
|
|
HDoubleConstant* GetDoubleConstant(double value, uint32_t dex_pc = kNoDexPc) {
|
|
return CreateConstant(bit_cast<int64_t, double>(value), &cached_double_constants_, dex_pc);
|
|
}
|
|
|
|
HCurrentMethod* GetCurrentMethod();
|
|
|
|
const DexFile& GetDexFile() const {
|
|
return dex_file_;
|
|
}
|
|
|
|
uint32_t GetMethodIdx() const {
|
|
return method_idx_;
|
|
}
|
|
|
|
// Get the method name (without the signature), e.g. "<init>"
|
|
const char* GetMethodName() const;
|
|
|
|
// Get the pretty method name (class + name + optionally signature).
|
|
std::string PrettyMethod(bool with_signature = true) const;
|
|
|
|
InvokeType GetInvokeType() const {
|
|
return invoke_type_;
|
|
}
|
|
|
|
InstructionSet GetInstructionSet() const {
|
|
return instruction_set_;
|
|
}
|
|
|
|
bool IsCompilingOsr() const { return osr_; }
|
|
|
|
ArenaSet<ArtMethod*>& GetCHASingleImplementationList() {
|
|
return cha_single_implementation_list_;
|
|
}
|
|
|
|
void AddCHASingleImplementationDependency(ArtMethod* method) {
|
|
cha_single_implementation_list_.insert(method);
|
|
}
|
|
|
|
bool HasShouldDeoptimizeFlag() const {
|
|
return number_of_cha_guards_ != 0;
|
|
}
|
|
|
|
bool HasTryCatch() const { return has_try_catch_; }
|
|
void SetHasTryCatch(bool value) { has_try_catch_ = value; }
|
|
|
|
bool HasSIMD() const { return has_simd_; }
|
|
void SetHasSIMD(bool value) { has_simd_ = value; }
|
|
|
|
bool HasLoops() const { return has_loops_; }
|
|
void SetHasLoops(bool value) { has_loops_ = value; }
|
|
|
|
bool HasIrreducibleLoops() const { return has_irreducible_loops_; }
|
|
void SetHasIrreducibleLoops(bool value) { has_irreducible_loops_ = value; }
|
|
|
|
ArtMethod* GetArtMethod() const { return art_method_; }
|
|
void SetArtMethod(ArtMethod* method) { art_method_ = method; }
|
|
|
|
// Returns an instruction with the opposite Boolean value from 'cond'.
|
|
// The instruction has been inserted into the graph, either as a constant, or
|
|
// before cursor.
|
|
HInstruction* InsertOppositeCondition(HInstruction* cond, HInstruction* cursor);
|
|
|
|
ReferenceTypeInfo GetInexactObjectRti() const { return inexact_object_rti_; }
|
|
|
|
uint32_t GetNumberOfCHAGuards() { return number_of_cha_guards_; }
|
|
void SetNumberOfCHAGuards(uint32_t num) { number_of_cha_guards_ = num; }
|
|
void IncrementNumberOfCHAGuards() { number_of_cha_guards_++; }
|
|
|
|
private:
|
|
void RemoveInstructionsAsUsersFromDeadBlocks(const ArenaBitVector& visited) const;
|
|
void RemoveDeadBlocks(const ArenaBitVector& visited);
|
|
|
|
template <class InstructionType, typename ValueType>
|
|
InstructionType* CreateConstant(ValueType value,
|
|
ArenaSafeMap<ValueType, InstructionType*>* cache,
|
|
uint32_t dex_pc = kNoDexPc) {
|
|
// Try to find an existing constant of the given value.
|
|
InstructionType* constant = nullptr;
|
|
auto cached_constant = cache->find(value);
|
|
if (cached_constant != cache->end()) {
|
|
constant = cached_constant->second;
|
|
}
|
|
|
|
// If not found or previously deleted, create and cache a new instruction.
|
|
// Don't bother reviving a previously deleted instruction, for simplicity.
|
|
if (constant == nullptr || constant->GetBlock() == nullptr) {
|
|
constant = new (arena_) InstructionType(value, dex_pc);
|
|
cache->Overwrite(value, constant);
|
|
InsertConstant(constant);
|
|
}
|
|
return constant;
|
|
}
|
|
|
|
void InsertConstant(HConstant* instruction);
|
|
|
|
// Cache a float constant into the graph. This method should only be
|
|
// called by the SsaBuilder when creating "equivalent" instructions.
|
|
void CacheFloatConstant(HFloatConstant* constant);
|
|
|
|
// See CacheFloatConstant comment.
|
|
void CacheDoubleConstant(HDoubleConstant* constant);
|
|
|
|
ArenaAllocator* const arena_;
|
|
|
|
// List of blocks in insertion order.
|
|
ArenaVector<HBasicBlock*> blocks_;
|
|
|
|
// List of blocks to perform a reverse post order tree traversal.
|
|
ArenaVector<HBasicBlock*> reverse_post_order_;
|
|
|
|
// List of blocks to perform a linear order tree traversal. Unlike the reverse
|
|
// post order, this order is not incrementally kept up-to-date.
|
|
ArenaVector<HBasicBlock*> linear_order_;
|
|
|
|
HBasicBlock* entry_block_;
|
|
HBasicBlock* exit_block_;
|
|
|
|
// The maximum number of virtual registers arguments passed to a HInvoke in this graph.
|
|
uint16_t maximum_number_of_out_vregs_;
|
|
|
|
// The number of virtual registers in this method. Contains the parameters.
|
|
uint16_t number_of_vregs_;
|
|
|
|
// The number of virtual registers used by parameters of this method.
|
|
uint16_t number_of_in_vregs_;
|
|
|
|
// Number of vreg size slots that the temporaries use (used in baseline compiler).
|
|
size_t temporaries_vreg_slots_;
|
|
|
|
// Flag whether there are bounds checks in the graph. We can skip
|
|
// BCE if it's false. It's only best effort to keep it up to date in
|
|
// the presence of code elimination so there might be false positives.
|
|
bool has_bounds_checks_;
|
|
|
|
// Flag whether there are try/catch blocks in the graph. We will skip
|
|
// try/catch-related passes if it's false. It's only best effort to keep
|
|
// it up to date in the presence of code elimination so there might be
|
|
// false positives.
|
|
bool has_try_catch_;
|
|
|
|
// Flag whether SIMD instructions appear in the graph. If true, the
|
|
// code generators may have to be more careful spilling the wider
|
|
// contents of SIMD registers.
|
|
bool has_simd_;
|
|
|
|
// Flag whether there are any loops in the graph. We can skip loop
|
|
// optimization if it's false. It's only best effort to keep it up
|
|
// to date in the presence of code elimination so there might be false
|
|
// positives.
|
|
bool has_loops_;
|
|
|
|
// Flag whether there are any irreducible loops in the graph. It's only
|
|
// best effort to keep it up to date in the presence of code elimination
|
|
// so there might be false positives.
|
|
bool has_irreducible_loops_;
|
|
|
|
// Indicates whether the graph should be compiled in a way that
|
|
// ensures full debuggability. If false, we can apply more
|
|
// aggressive optimizations that may limit the level of debugging.
|
|
const bool debuggable_;
|
|
|
|
// The current id to assign to a newly added instruction. See HInstruction.id_.
|
|
int32_t current_instruction_id_;
|
|
|
|
// The dex file from which the method is from.
|
|
const DexFile& dex_file_;
|
|
|
|
// The method index in the dex file.
|
|
const uint32_t method_idx_;
|
|
|
|
// If inlined, this encodes how the callee is being invoked.
|
|
const InvokeType invoke_type_;
|
|
|
|
// Whether the graph has been transformed to SSA form. Only used
|
|
// in debug mode to ensure we are not using properties only valid
|
|
// for non-SSA form (like the number of temporaries).
|
|
bool in_ssa_form_;
|
|
|
|
// Number of CHA guards in the graph. Used to short-circuit the
|
|
// CHA guard optimization pass when there is no CHA guard left.
|
|
uint32_t number_of_cha_guards_;
|
|
|
|
const InstructionSet instruction_set_;
|
|
|
|
// Cached constants.
|
|
HNullConstant* cached_null_constant_;
|
|
ArenaSafeMap<int32_t, HIntConstant*> cached_int_constants_;
|
|
ArenaSafeMap<int32_t, HFloatConstant*> cached_float_constants_;
|
|
ArenaSafeMap<int64_t, HLongConstant*> cached_long_constants_;
|
|
ArenaSafeMap<int64_t, HDoubleConstant*> cached_double_constants_;
|
|
|
|
HCurrentMethod* cached_current_method_;
|
|
|
|
// The ArtMethod this graph is for. Note that for AOT, it may be null,
|
|
// for example for methods whose declaring class could not be resolved
|
|
// (such as when the superclass could not be found).
|
|
ArtMethod* art_method_;
|
|
|
|
// Keep the RTI of inexact Object to avoid having to pass stack handle
|
|
// collection pointer to passes which may create NullConstant.
|
|
ReferenceTypeInfo inexact_object_rti_;
|
|
|
|
// Whether we are compiling this graph for on stack replacement: this will
|
|
// make all loops seen as irreducible and emit special stack maps to mark
|
|
// compiled code entries which the interpreter can directly jump to.
|
|
const bool osr_;
|
|
|
|
// List of methods that are assumed to have single implementation.
|
|
ArenaSet<ArtMethod*> cha_single_implementation_list_;
|
|
|
|
friend class SsaBuilder; // For caching constants.
|
|
friend class SsaLivenessAnalysis; // For the linear order.
|
|
friend class HInliner; // For the reverse post order.
|
|
ART_FRIEND_TEST(GraphTest, IfSuccessorSimpleJoinBlock1);
|
|
DISALLOW_COPY_AND_ASSIGN(HGraph);
|
|
};
|
|
|
|
class HLoopInformation : public ArenaObject<kArenaAllocLoopInfo> {
|
|
public:
|
|
HLoopInformation(HBasicBlock* header, HGraph* graph)
|
|
: header_(header),
|
|
suspend_check_(nullptr),
|
|
irreducible_(false),
|
|
contains_irreducible_loop_(false),
|
|
back_edges_(graph->GetArena()->Adapter(kArenaAllocLoopInfoBackEdges)),
|
|
// Make bit vector growable, as the number of blocks may change.
|
|
blocks_(graph->GetArena(), graph->GetBlocks().size(), true, kArenaAllocLoopInfoBackEdges) {
|
|
back_edges_.reserve(kDefaultNumberOfBackEdges);
|
|
}
|
|
|
|
bool IsIrreducible() const { return irreducible_; }
|
|
bool ContainsIrreducibleLoop() const { return contains_irreducible_loop_; }
|
|
|
|
void Dump(std::ostream& os);
|
|
|
|
HBasicBlock* GetHeader() const {
|
|
return header_;
|
|
}
|
|
|
|
void SetHeader(HBasicBlock* block) {
|
|
header_ = block;
|
|
}
|
|
|
|
HSuspendCheck* GetSuspendCheck() const { return suspend_check_; }
|
|
void SetSuspendCheck(HSuspendCheck* check) { suspend_check_ = check; }
|
|
bool HasSuspendCheck() const { return suspend_check_ != nullptr; }
|
|
|
|
void AddBackEdge(HBasicBlock* back_edge) {
|
|
back_edges_.push_back(back_edge);
|
|
}
|
|
|
|
void RemoveBackEdge(HBasicBlock* back_edge) {
|
|
RemoveElement(back_edges_, back_edge);
|
|
}
|
|
|
|
bool IsBackEdge(const HBasicBlock& block) const {
|
|
return ContainsElement(back_edges_, &block);
|
|
}
|
|
|
|
size_t NumberOfBackEdges() const {
|
|
return back_edges_.size();
|
|
}
|
|
|
|
HBasicBlock* GetPreHeader() const;
|
|
|
|
const ArenaVector<HBasicBlock*>& GetBackEdges() const {
|
|
return back_edges_;
|
|
}
|
|
|
|
// Returns the lifetime position of the back edge that has the
|
|
// greatest lifetime position.
|
|
size_t GetLifetimeEnd() const;
|
|
|
|
void ReplaceBackEdge(HBasicBlock* existing, HBasicBlock* new_back_edge) {
|
|
ReplaceElement(back_edges_, existing, new_back_edge);
|
|
}
|
|
|
|
// Finds blocks that are part of this loop.
|
|
void Populate();
|
|
|
|
// Returns whether this loop information contains `block`.
|
|
// Note that this loop information *must* be populated before entering this function.
|
|
bool Contains(const HBasicBlock& block) const;
|
|
|
|
// Returns whether this loop information is an inner loop of `other`.
|
|
// Note that `other` *must* be populated before entering this function.
|
|
bool IsIn(const HLoopInformation& other) const;
|
|
|
|
// Returns true if instruction is not defined within this loop.
|
|
bool IsDefinedOutOfTheLoop(HInstruction* instruction) const;
|
|
|
|
const ArenaBitVector& GetBlocks() const { return blocks_; }
|
|
|
|
void Add(HBasicBlock* block);
|
|
void Remove(HBasicBlock* block);
|
|
|
|
void ClearAllBlocks() {
|
|
blocks_.ClearAllBits();
|
|
}
|
|
|
|
bool HasBackEdgeNotDominatedByHeader() const;
|
|
|
|
bool IsPopulated() const {
|
|
return blocks_.GetHighestBitSet() != -1;
|
|
}
|
|
|
|
bool DominatesAllBackEdges(HBasicBlock* block);
|
|
|
|
bool HasExitEdge() const;
|
|
|
|
private:
|
|
// Internal recursive implementation of `Populate`.
|
|
void PopulateRecursive(HBasicBlock* block);
|
|
void PopulateIrreducibleRecursive(HBasicBlock* block, ArenaBitVector* finalized);
|
|
|
|
HBasicBlock* header_;
|
|
HSuspendCheck* suspend_check_;
|
|
bool irreducible_;
|
|
bool contains_irreducible_loop_;
|
|
ArenaVector<HBasicBlock*> back_edges_;
|
|
ArenaBitVector blocks_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HLoopInformation);
|
|
};
|
|
|
|
// Stores try/catch information for basic blocks.
|
|
// Note that HGraph is constructed so that catch blocks cannot simultaneously
|
|
// be try blocks.
|
|
class TryCatchInformation : public ArenaObject<kArenaAllocTryCatchInfo> {
|
|
public:
|
|
// Try block information constructor.
|
|
explicit TryCatchInformation(const HTryBoundary& try_entry)
|
|
: try_entry_(&try_entry),
|
|
catch_dex_file_(nullptr),
|
|
catch_type_index_(DexFile::kDexNoIndex16) {
|
|
DCHECK(try_entry_ != nullptr);
|
|
}
|
|
|
|
// Catch block information constructor.
|
|
TryCatchInformation(dex::TypeIndex catch_type_index, const DexFile& dex_file)
|
|
: try_entry_(nullptr),
|
|
catch_dex_file_(&dex_file),
|
|
catch_type_index_(catch_type_index) {}
|
|
|
|
bool IsTryBlock() const { return try_entry_ != nullptr; }
|
|
|
|
const HTryBoundary& GetTryEntry() const {
|
|
DCHECK(IsTryBlock());
|
|
return *try_entry_;
|
|
}
|
|
|
|
bool IsCatchBlock() const { return catch_dex_file_ != nullptr; }
|
|
|
|
bool IsCatchAllTypeIndex() const {
|
|
DCHECK(IsCatchBlock());
|
|
return !catch_type_index_.IsValid();
|
|
}
|
|
|
|
dex::TypeIndex GetCatchTypeIndex() const {
|
|
DCHECK(IsCatchBlock());
|
|
return catch_type_index_;
|
|
}
|
|
|
|
const DexFile& GetCatchDexFile() const {
|
|
DCHECK(IsCatchBlock());
|
|
return *catch_dex_file_;
|
|
}
|
|
|
|
private:
|
|
// One of possibly several TryBoundary instructions entering the block's try.
|
|
// Only set for try blocks.
|
|
const HTryBoundary* try_entry_;
|
|
|
|
// Exception type information. Only set for catch blocks.
|
|
const DexFile* catch_dex_file_;
|
|
const dex::TypeIndex catch_type_index_;
|
|
};
|
|
|
|
static constexpr size_t kNoLifetime = -1;
|
|
static constexpr uint32_t kInvalidBlockId = static_cast<uint32_t>(-1);
|
|
|
|
// A block in a method. Contains the list of instructions represented
|
|
// as a double linked list. Each block knows its predecessors and
|
|
// successors.
|
|
|
|
class HBasicBlock : public ArenaObject<kArenaAllocBasicBlock> {
|
|
public:
|
|
explicit HBasicBlock(HGraph* graph, uint32_t dex_pc = kNoDexPc)
|
|
: graph_(graph),
|
|
predecessors_(graph->GetArena()->Adapter(kArenaAllocPredecessors)),
|
|
successors_(graph->GetArena()->Adapter(kArenaAllocSuccessors)),
|
|
loop_information_(nullptr),
|
|
dominator_(nullptr),
|
|
dominated_blocks_(graph->GetArena()->Adapter(kArenaAllocDominated)),
|
|
block_id_(kInvalidBlockId),
|
|
dex_pc_(dex_pc),
|
|
lifetime_start_(kNoLifetime),
|
|
lifetime_end_(kNoLifetime),
|
|
try_catch_information_(nullptr) {
|
|
predecessors_.reserve(kDefaultNumberOfPredecessors);
|
|
successors_.reserve(kDefaultNumberOfSuccessors);
|
|
dominated_blocks_.reserve(kDefaultNumberOfDominatedBlocks);
|
|
}
|
|
|
|
const ArenaVector<HBasicBlock*>& GetPredecessors() const {
|
|
return predecessors_;
|
|
}
|
|
|
|
const ArenaVector<HBasicBlock*>& GetSuccessors() const {
|
|
return successors_;
|
|
}
|
|
|
|
ArrayRef<HBasicBlock* const> GetNormalSuccessors() const;
|
|
ArrayRef<HBasicBlock* const> GetExceptionalSuccessors() const;
|
|
|
|
bool HasSuccessor(const HBasicBlock* block, size_t start_from = 0u) {
|
|
return ContainsElement(successors_, block, start_from);
|
|
}
|
|
|
|
const ArenaVector<HBasicBlock*>& GetDominatedBlocks() const {
|
|
return dominated_blocks_;
|
|
}
|
|
|
|
bool IsEntryBlock() const {
|
|
return graph_->GetEntryBlock() == this;
|
|
}
|
|
|
|
bool IsExitBlock() const {
|
|
return graph_->GetExitBlock() == this;
|
|
}
|
|
|
|
bool IsSingleGoto() const;
|
|
bool IsSingleTryBoundary() const;
|
|
|
|
// Returns true if this block emits nothing but a jump.
|
|
bool IsSingleJump() const {
|
|
HLoopInformation* loop_info = GetLoopInformation();
|
|
return (IsSingleGoto() || IsSingleTryBoundary())
|
|
// Back edges generate a suspend check.
|
|
&& (loop_info == nullptr || !loop_info->IsBackEdge(*this));
|
|
}
|
|
|
|
void AddBackEdge(HBasicBlock* back_edge) {
|
|
if (loop_information_ == nullptr) {
|
|
loop_information_ = new (graph_->GetArena()) HLoopInformation(this, graph_);
|
|
}
|
|
DCHECK_EQ(loop_information_->GetHeader(), this);
|
|
loop_information_->AddBackEdge(back_edge);
|
|
}
|
|
|
|
HGraph* GetGraph() const { return graph_; }
|
|
void SetGraph(HGraph* graph) { graph_ = graph; }
|
|
|
|
uint32_t GetBlockId() const { return block_id_; }
|
|
void SetBlockId(int id) { block_id_ = id; }
|
|
uint32_t GetDexPc() const { return dex_pc_; }
|
|
|
|
HBasicBlock* GetDominator() const { return dominator_; }
|
|
void SetDominator(HBasicBlock* dominator) { dominator_ = dominator; }
|
|
void AddDominatedBlock(HBasicBlock* block) { dominated_blocks_.push_back(block); }
|
|
|
|
void RemoveDominatedBlock(HBasicBlock* block) {
|
|
RemoveElement(dominated_blocks_, block);
|
|
}
|
|
|
|
void ReplaceDominatedBlock(HBasicBlock* existing, HBasicBlock* new_block) {
|
|
ReplaceElement(dominated_blocks_, existing, new_block);
|
|
}
|
|
|
|
void ClearDominanceInformation();
|
|
|
|
int NumberOfBackEdges() const {
|
|
return IsLoopHeader() ? loop_information_->NumberOfBackEdges() : 0;
|
|
}
|
|
|
|
HInstruction* GetFirstInstruction() const { return instructions_.first_instruction_; }
|
|
HInstruction* GetLastInstruction() const { return instructions_.last_instruction_; }
|
|
const HInstructionList& GetInstructions() const { return instructions_; }
|
|
HInstruction* GetFirstPhi() const { return phis_.first_instruction_; }
|
|
HInstruction* GetLastPhi() const { return phis_.last_instruction_; }
|
|
const HInstructionList& GetPhis() const { return phis_; }
|
|
|
|
HInstruction* GetFirstInstructionDisregardMoves() const;
|
|
|
|
void AddSuccessor(HBasicBlock* block) {
|
|
successors_.push_back(block);
|
|
block->predecessors_.push_back(this);
|
|
}
|
|
|
|
void ReplaceSuccessor(HBasicBlock* existing, HBasicBlock* new_block) {
|
|
size_t successor_index = GetSuccessorIndexOf(existing);
|
|
existing->RemovePredecessor(this);
|
|
new_block->predecessors_.push_back(this);
|
|
successors_[successor_index] = new_block;
|
|
}
|
|
|
|
void ReplacePredecessor(HBasicBlock* existing, HBasicBlock* new_block) {
|
|
size_t predecessor_index = GetPredecessorIndexOf(existing);
|
|
existing->RemoveSuccessor(this);
|
|
new_block->successors_.push_back(this);
|
|
predecessors_[predecessor_index] = new_block;
|
|
}
|
|
|
|
// Insert `this` between `predecessor` and `successor. This method
|
|
// preserves the indicies, and will update the first edge found between
|
|
// `predecessor` and `successor`.
|
|
void InsertBetween(HBasicBlock* predecessor, HBasicBlock* successor) {
|
|
size_t predecessor_index = successor->GetPredecessorIndexOf(predecessor);
|
|
size_t successor_index = predecessor->GetSuccessorIndexOf(successor);
|
|
successor->predecessors_[predecessor_index] = this;
|
|
predecessor->successors_[successor_index] = this;
|
|
successors_.push_back(successor);
|
|
predecessors_.push_back(predecessor);
|
|
}
|
|
|
|
void RemovePredecessor(HBasicBlock* block) {
|
|
predecessors_.erase(predecessors_.begin() + GetPredecessorIndexOf(block));
|
|
}
|
|
|
|
void RemoveSuccessor(HBasicBlock* block) {
|
|
successors_.erase(successors_.begin() + GetSuccessorIndexOf(block));
|
|
}
|
|
|
|
void ClearAllPredecessors() {
|
|
predecessors_.clear();
|
|
}
|
|
|
|
void AddPredecessor(HBasicBlock* block) {
|
|
predecessors_.push_back(block);
|
|
block->successors_.push_back(this);
|
|
}
|
|
|
|
void SwapPredecessors() {
|
|
DCHECK_EQ(predecessors_.size(), 2u);
|
|
std::swap(predecessors_[0], predecessors_[1]);
|
|
}
|
|
|
|
void SwapSuccessors() {
|
|
DCHECK_EQ(successors_.size(), 2u);
|
|
std::swap(successors_[0], successors_[1]);
|
|
}
|
|
|
|
size_t GetPredecessorIndexOf(HBasicBlock* predecessor) const {
|
|
return IndexOfElement(predecessors_, predecessor);
|
|
}
|
|
|
|
size_t GetSuccessorIndexOf(HBasicBlock* successor) const {
|
|
return IndexOfElement(successors_, successor);
|
|
}
|
|
|
|
HBasicBlock* GetSinglePredecessor() const {
|
|
DCHECK_EQ(GetPredecessors().size(), 1u);
|
|
return GetPredecessors()[0];
|
|
}
|
|
|
|
HBasicBlock* GetSingleSuccessor() const {
|
|
DCHECK_EQ(GetSuccessors().size(), 1u);
|
|
return GetSuccessors()[0];
|
|
}
|
|
|
|
// Returns whether the first occurrence of `predecessor` in the list of
|
|
// predecessors is at index `idx`.
|
|
bool IsFirstIndexOfPredecessor(HBasicBlock* predecessor, size_t idx) const {
|
|
DCHECK_EQ(GetPredecessors()[idx], predecessor);
|
|
return GetPredecessorIndexOf(predecessor) == idx;
|
|
}
|
|
|
|
// Create a new block between this block and its predecessors. The new block
|
|
// is added to the graph, all predecessor edges are relinked to it and an edge
|
|
// is created to `this`. Returns the new empty block. Reverse post order or
|
|
// loop and try/catch information are not updated.
|
|
HBasicBlock* CreateImmediateDominator();
|
|
|
|
// Split the block into two blocks just before `cursor`. Returns the newly
|
|
// created, latter block. Note that this method will add the block to the
|
|
// graph, create a Goto at the end of the former block and will create an edge
|
|
// between the blocks. It will not, however, update the reverse post order or
|
|
// loop and try/catch information.
|
|
HBasicBlock* SplitBefore(HInstruction* cursor);
|
|
|
|
// Split the block into two blocks just before `cursor`. Returns the newly
|
|
// created block. Note that this method just updates raw block information,
|
|
// like predecessors, successors, dominators, and instruction list. It does not
|
|
// update the graph, reverse post order, loop information, nor make sure the
|
|
// blocks are consistent (for example ending with a control flow instruction).
|
|
HBasicBlock* SplitBeforeForInlining(HInstruction* cursor);
|
|
|
|
// Similar to `SplitBeforeForInlining` but does it after `cursor`.
|
|
HBasicBlock* SplitAfterForInlining(HInstruction* cursor);
|
|
|
|
// Merge `other` at the end of `this`. Successors and dominated blocks of
|
|
// `other` are changed to be successors and dominated blocks of `this`. Note
|
|
// that this method does not update the graph, reverse post order, loop
|
|
// information, nor make sure the blocks are consistent (for example ending
|
|
// with a control flow instruction).
|
|
void MergeWithInlined(HBasicBlock* other);
|
|
|
|
// Replace `this` with `other`. Predecessors, successors, and dominated blocks
|
|
// of `this` are moved to `other`.
|
|
// Note that this method does not update the graph, reverse post order, loop
|
|
// information, nor make sure the blocks are consistent (for example ending
|
|
// with a control flow instruction).
|
|
void ReplaceWith(HBasicBlock* other);
|
|
|
|
// Merges the instructions of `other` at the end of `this`.
|
|
void MergeInstructionsWith(HBasicBlock* other);
|
|
|
|
// Merge `other` at the end of `this`. This method updates loops, reverse post
|
|
// order, links to predecessors, successors, dominators and deletes the block
|
|
// from the graph. The two blocks must be successive, i.e. `this` the only
|
|
// predecessor of `other` and vice versa.
|
|
void MergeWith(HBasicBlock* other);
|
|
|
|
// Disconnects `this` from all its predecessors, successors and dominator,
|
|
// removes it from all loops it is included in and eventually from the graph.
|
|
// The block must not dominate any other block. Predecessors and successors
|
|
// are safely updated.
|
|
void DisconnectAndDelete();
|
|
|
|
void AddInstruction(HInstruction* instruction);
|
|
// Insert `instruction` before/after an existing instruction `cursor`.
|
|
void InsertInstructionBefore(HInstruction* instruction, HInstruction* cursor);
|
|
void InsertInstructionAfter(HInstruction* instruction, HInstruction* cursor);
|
|
// Replace instruction `initial` with `replacement` within this block.
|
|
void ReplaceAndRemoveInstructionWith(HInstruction* initial,
|
|
HInstruction* replacement);
|
|
void AddPhi(HPhi* phi);
|
|
void InsertPhiAfter(HPhi* instruction, HPhi* cursor);
|
|
// RemoveInstruction and RemovePhi delete a given instruction from the respective
|
|
// instruction list. With 'ensure_safety' set to true, it verifies that the
|
|
// instruction is not in use and removes it from the use lists of its inputs.
|
|
void RemoveInstruction(HInstruction* instruction, bool ensure_safety = true);
|
|
void RemovePhi(HPhi* phi, bool ensure_safety = true);
|
|
void RemoveInstructionOrPhi(HInstruction* instruction, bool ensure_safety = true);
|
|
|
|
bool IsLoopHeader() const {
|
|
return IsInLoop() && (loop_information_->GetHeader() == this);
|
|
}
|
|
|
|
bool IsLoopPreHeaderFirstPredecessor() const {
|
|
DCHECK(IsLoopHeader());
|
|
return GetPredecessors()[0] == GetLoopInformation()->GetPreHeader();
|
|
}
|
|
|
|
bool IsFirstPredecessorBackEdge() const {
|
|
DCHECK(IsLoopHeader());
|
|
return GetLoopInformation()->IsBackEdge(*GetPredecessors()[0]);
|
|
}
|
|
|
|
HLoopInformation* GetLoopInformation() const {
|
|
return loop_information_;
|
|
}
|
|
|
|
// Set the loop_information_ on this block. Overrides the current
|
|
// loop_information if it is an outer loop of the passed loop information.
|
|
// Note that this method is called while creating the loop information.
|
|
void SetInLoop(HLoopInformation* info) {
|
|
if (IsLoopHeader()) {
|
|
// Nothing to do. This just means `info` is an outer loop.
|
|
} else if (!IsInLoop()) {
|
|
loop_information_ = info;
|
|
} else if (loop_information_->Contains(*info->GetHeader())) {
|
|
// Block is currently part of an outer loop. Make it part of this inner loop.
|
|
// Note that a non loop header having a loop information means this loop information
|
|
// has already been populated
|
|
loop_information_ = info;
|
|
} else {
|
|
// Block is part of an inner loop. Do not update the loop information.
|
|
// Note that we cannot do the check `info->Contains(loop_information_)->GetHeader()`
|
|
// at this point, because this method is being called while populating `info`.
|
|
}
|
|
}
|
|
|
|
// Raw update of the loop information.
|
|
void SetLoopInformation(HLoopInformation* info) {
|
|
loop_information_ = info;
|
|
}
|
|
|
|
bool IsInLoop() const { return loop_information_ != nullptr; }
|
|
|
|
TryCatchInformation* GetTryCatchInformation() const { return try_catch_information_; }
|
|
|
|
void SetTryCatchInformation(TryCatchInformation* try_catch_information) {
|
|
try_catch_information_ = try_catch_information;
|
|
}
|
|
|
|
bool IsTryBlock() const {
|
|
return try_catch_information_ != nullptr && try_catch_information_->IsTryBlock();
|
|
}
|
|
|
|
bool IsCatchBlock() const {
|
|
return try_catch_information_ != nullptr && try_catch_information_->IsCatchBlock();
|
|
}
|
|
|
|
// Returns the try entry that this block's successors should have. They will
|
|
// be in the same try, unless the block ends in a try boundary. In that case,
|
|
// the appropriate try entry will be returned.
|
|
const HTryBoundary* ComputeTryEntryOfSuccessors() const;
|
|
|
|
bool HasThrowingInstructions() const;
|
|
|
|
// Returns whether this block dominates the blocked passed as parameter.
|
|
bool Dominates(HBasicBlock* block) const;
|
|
|
|
size_t GetLifetimeStart() const { return lifetime_start_; }
|
|
size_t GetLifetimeEnd() const { return lifetime_end_; }
|
|
|
|
void SetLifetimeStart(size_t start) { lifetime_start_ = start; }
|
|
void SetLifetimeEnd(size_t end) { lifetime_end_ = end; }
|
|
|
|
bool EndsWithControlFlowInstruction() const;
|
|
bool EndsWithIf() const;
|
|
bool EndsWithTryBoundary() const;
|
|
bool HasSinglePhi() const;
|
|
|
|
private:
|
|
HGraph* graph_;
|
|
ArenaVector<HBasicBlock*> predecessors_;
|
|
ArenaVector<HBasicBlock*> successors_;
|
|
HInstructionList instructions_;
|
|
HInstructionList phis_;
|
|
HLoopInformation* loop_information_;
|
|
HBasicBlock* dominator_;
|
|
ArenaVector<HBasicBlock*> dominated_blocks_;
|
|
uint32_t block_id_;
|
|
// The dex program counter of the first instruction of this block.
|
|
const uint32_t dex_pc_;
|
|
size_t lifetime_start_;
|
|
size_t lifetime_end_;
|
|
TryCatchInformation* try_catch_information_;
|
|
|
|
friend class HGraph;
|
|
friend class HInstruction;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HBasicBlock);
|
|
};
|
|
|
|
// Iterates over the LoopInformation of all loops which contain 'block'
|
|
// from the innermost to the outermost.
|
|
class HLoopInformationOutwardIterator : public ValueObject {
|
|
public:
|
|
explicit HLoopInformationOutwardIterator(const HBasicBlock& block)
|
|
: current_(block.GetLoopInformation()) {}
|
|
|
|
bool Done() const { return current_ == nullptr; }
|
|
|
|
void Advance() {
|
|
DCHECK(!Done());
|
|
current_ = current_->GetPreHeader()->GetLoopInformation();
|
|
}
|
|
|
|
HLoopInformation* Current() const {
|
|
DCHECK(!Done());
|
|
return current_;
|
|
}
|
|
|
|
private:
|
|
HLoopInformation* current_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HLoopInformationOutwardIterator);
|
|
};
|
|
|
|
#define FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M) \
|
|
M(Above, Condition) \
|
|
M(AboveOrEqual, Condition) \
|
|
M(Add, BinaryOperation) \
|
|
M(And, BinaryOperation) \
|
|
M(ArrayGet, Instruction) \
|
|
M(ArrayLength, Instruction) \
|
|
M(ArraySet, Instruction) \
|
|
M(Below, Condition) \
|
|
M(BelowOrEqual, Condition) \
|
|
M(BooleanNot, UnaryOperation) \
|
|
M(BoundsCheck, Instruction) \
|
|
M(BoundType, Instruction) \
|
|
M(CheckCast, Instruction) \
|
|
M(ClassTableGet, Instruction) \
|
|
M(ClearException, Instruction) \
|
|
M(ClinitCheck, Instruction) \
|
|
M(Compare, BinaryOperation) \
|
|
M(ConstructorFence, Instruction) \
|
|
M(CurrentMethod, Instruction) \
|
|
M(ShouldDeoptimizeFlag, Instruction) \
|
|
M(Deoptimize, Instruction) \
|
|
M(Div, BinaryOperation) \
|
|
M(DivZeroCheck, Instruction) \
|
|
M(DoubleConstant, Constant) \
|
|
M(Equal, Condition) \
|
|
M(Exit, Instruction) \
|
|
M(FloatConstant, Constant) \
|
|
M(Goto, Instruction) \
|
|
M(GreaterThan, Condition) \
|
|
M(GreaterThanOrEqual, Condition) \
|
|
M(If, Instruction) \
|
|
M(InstanceFieldGet, Instruction) \
|
|
M(InstanceFieldSet, Instruction) \
|
|
M(InstanceOf, Instruction) \
|
|
M(IntConstant, Constant) \
|
|
M(InvokeUnresolved, Invoke) \
|
|
M(InvokeInterface, Invoke) \
|
|
M(InvokeStaticOrDirect, Invoke) \
|
|
M(InvokeVirtual, Invoke) \
|
|
M(InvokePolymorphic, Invoke) \
|
|
M(LessThan, Condition) \
|
|
M(LessThanOrEqual, Condition) \
|
|
M(LoadClass, Instruction) \
|
|
M(LoadException, Instruction) \
|
|
M(LoadString, Instruction) \
|
|
M(LongConstant, Constant) \
|
|
M(MemoryBarrier, Instruction) \
|
|
M(MonitorOperation, Instruction) \
|
|
M(Mul, BinaryOperation) \
|
|
M(NativeDebugInfo, Instruction) \
|
|
M(Neg, UnaryOperation) \
|
|
M(NewArray, Instruction) \
|
|
M(NewInstance, Instruction) \
|
|
M(Not, UnaryOperation) \
|
|
M(NotEqual, Condition) \
|
|
M(NullConstant, Instruction) \
|
|
M(NullCheck, Instruction) \
|
|
M(Or, BinaryOperation) \
|
|
M(PackedSwitch, Instruction) \
|
|
M(ParallelMove, Instruction) \
|
|
M(ParameterValue, Instruction) \
|
|
M(Phi, Instruction) \
|
|
M(Rem, BinaryOperation) \
|
|
M(Return, Instruction) \
|
|
M(ReturnVoid, Instruction) \
|
|
M(Ror, BinaryOperation) \
|
|
M(Shl, BinaryOperation) \
|
|
M(Shr, BinaryOperation) \
|
|
M(StaticFieldGet, Instruction) \
|
|
M(StaticFieldSet, Instruction) \
|
|
M(UnresolvedInstanceFieldGet, Instruction) \
|
|
M(UnresolvedInstanceFieldSet, Instruction) \
|
|
M(UnresolvedStaticFieldGet, Instruction) \
|
|
M(UnresolvedStaticFieldSet, Instruction) \
|
|
M(Select, Instruction) \
|
|
M(Sub, BinaryOperation) \
|
|
M(SuspendCheck, Instruction) \
|
|
M(Throw, Instruction) \
|
|
M(TryBoundary, Instruction) \
|
|
M(TypeConversion, Instruction) \
|
|
M(UShr, BinaryOperation) \
|
|
M(Xor, BinaryOperation) \
|
|
M(VecReplicateScalar, VecUnaryOperation) \
|
|
M(VecSumReduce, VecUnaryOperation) \
|
|
M(VecCnv, VecUnaryOperation) \
|
|
M(VecNeg, VecUnaryOperation) \
|
|
M(VecAbs, VecUnaryOperation) \
|
|
M(VecNot, VecUnaryOperation) \
|
|
M(VecAdd, VecBinaryOperation) \
|
|
M(VecHalvingAdd, VecBinaryOperation) \
|
|
M(VecSub, VecBinaryOperation) \
|
|
M(VecMul, VecBinaryOperation) \
|
|
M(VecDiv, VecBinaryOperation) \
|
|
M(VecMin, VecBinaryOperation) \
|
|
M(VecMax, VecBinaryOperation) \
|
|
M(VecAnd, VecBinaryOperation) \
|
|
M(VecAndNot, VecBinaryOperation) \
|
|
M(VecOr, VecBinaryOperation) \
|
|
M(VecXor, VecBinaryOperation) \
|
|
M(VecShl, VecBinaryOperation) \
|
|
M(VecShr, VecBinaryOperation) \
|
|
M(VecUShr, VecBinaryOperation) \
|
|
M(VecSetScalars, VecOperation) \
|
|
M(VecMultiplyAccumulate, VecOperation) \
|
|
M(VecLoad, VecMemoryOperation) \
|
|
M(VecStore, VecMemoryOperation) \
|
|
|
|
/*
|
|
* Instructions, shared across several (not all) architectures.
|
|
*/
|
|
#if !defined(ART_ENABLE_CODEGEN_arm) && !defined(ART_ENABLE_CODEGEN_arm64)
|
|
#define FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M)
|
|
#else
|
|
#define FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M) \
|
|
M(BitwiseNegatedRight, Instruction) \
|
|
M(DataProcWithShifterOp, Instruction) \
|
|
M(MultiplyAccumulate, Instruction) \
|
|
M(IntermediateAddress, Instruction) \
|
|
M(IntermediateAddressIndex, Instruction)
|
|
#endif
|
|
|
|
#define FOR_EACH_CONCRETE_INSTRUCTION_ARM(M)
|
|
|
|
#define FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M)
|
|
|
|
#ifndef ART_ENABLE_CODEGEN_mips
|
|
#define FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M)
|
|
#else
|
|
#define FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M) \
|
|
M(MipsComputeBaseMethodAddress, Instruction) \
|
|
M(MipsPackedSwitch, Instruction)
|
|
#endif
|
|
|
|
#define FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M)
|
|
|
|
#ifndef ART_ENABLE_CODEGEN_x86
|
|
#define FOR_EACH_CONCRETE_INSTRUCTION_X86(M)
|
|
#else
|
|
#define FOR_EACH_CONCRETE_INSTRUCTION_X86(M) \
|
|
M(X86ComputeBaseMethodAddress, Instruction) \
|
|
M(X86LoadFromConstantTable, Instruction) \
|
|
M(X86FPNeg, Instruction) \
|
|
M(X86PackedSwitch, Instruction)
|
|
#endif
|
|
|
|
#define FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
|
|
|
|
#define FOR_EACH_CONCRETE_INSTRUCTION(M) \
|
|
FOR_EACH_CONCRETE_INSTRUCTION_COMMON(M) \
|
|
FOR_EACH_CONCRETE_INSTRUCTION_SHARED(M) \
|
|
FOR_EACH_CONCRETE_INSTRUCTION_ARM(M) \
|
|
FOR_EACH_CONCRETE_INSTRUCTION_ARM64(M) \
|
|
FOR_EACH_CONCRETE_INSTRUCTION_MIPS(M) \
|
|
FOR_EACH_CONCRETE_INSTRUCTION_MIPS64(M) \
|
|
FOR_EACH_CONCRETE_INSTRUCTION_X86(M) \
|
|
FOR_EACH_CONCRETE_INSTRUCTION_X86_64(M)
|
|
|
|
#define FOR_EACH_ABSTRACT_INSTRUCTION(M) \
|
|
M(Condition, BinaryOperation) \
|
|
M(Constant, Instruction) \
|
|
M(UnaryOperation, Instruction) \
|
|
M(BinaryOperation, Instruction) \
|
|
M(Invoke, Instruction) \
|
|
M(VecOperation, Instruction) \
|
|
M(VecUnaryOperation, VecOperation) \
|
|
M(VecBinaryOperation, VecOperation) \
|
|
M(VecMemoryOperation, VecOperation)
|
|
|
|
#define FOR_EACH_INSTRUCTION(M) \
|
|
FOR_EACH_CONCRETE_INSTRUCTION(M) \
|
|
FOR_EACH_ABSTRACT_INSTRUCTION(M)
|
|
|
|
#define FORWARD_DECLARATION(type, super) class H##type;
|
|
FOR_EACH_INSTRUCTION(FORWARD_DECLARATION)
|
|
#undef FORWARD_DECLARATION
|
|
|
|
#define DECLARE_INSTRUCTION(type) \
|
|
InstructionKind GetKindInternal() const OVERRIDE { return k##type; } \
|
|
const char* DebugName() const OVERRIDE { return #type; } \
|
|
bool InstructionTypeEquals(const HInstruction* other) const OVERRIDE { \
|
|
return other->Is##type(); \
|
|
} \
|
|
void Accept(HGraphVisitor* visitor) OVERRIDE
|
|
|
|
#define DECLARE_ABSTRACT_INSTRUCTION(type) \
|
|
bool Is##type() const { return As##type() != nullptr; } \
|
|
const H##type* As##type() const { return this; } \
|
|
H##type* As##type() { return this; }
|
|
|
|
template <typename T>
|
|
class HUseListNode : public ArenaObject<kArenaAllocUseListNode>,
|
|
public IntrusiveForwardListNode<HUseListNode<T>> {
|
|
public:
|
|
// Get the instruction which has this use as one of the inputs.
|
|
T GetUser() const { return user_; }
|
|
// Get the position of the input record that this use corresponds to.
|
|
size_t GetIndex() const { return index_; }
|
|
// Set the position of the input record that this use corresponds to.
|
|
void SetIndex(size_t index) { index_ = index; }
|
|
|
|
private:
|
|
HUseListNode(T user, size_t index)
|
|
: user_(user), index_(index) {}
|
|
|
|
T const user_;
|
|
size_t index_;
|
|
|
|
friend class HInstruction;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HUseListNode);
|
|
};
|
|
|
|
template <typename T>
|
|
using HUseList = IntrusiveForwardList<HUseListNode<T>>;
|
|
|
|
// This class is used by HEnvironment and HInstruction classes to record the
|
|
// instructions they use and pointers to the corresponding HUseListNodes kept
|
|
// by the used instructions.
|
|
template <typename T>
|
|
class HUserRecord : public ValueObject {
|
|
public:
|
|
HUserRecord() : instruction_(nullptr), before_use_node_() {}
|
|
explicit HUserRecord(HInstruction* instruction) : instruction_(instruction), before_use_node_() {}
|
|
|
|
HUserRecord(const HUserRecord<T>& old_record, typename HUseList<T>::iterator before_use_node)
|
|
: HUserRecord(old_record.instruction_, before_use_node) {}
|
|
HUserRecord(HInstruction* instruction, typename HUseList<T>::iterator before_use_node)
|
|
: instruction_(instruction), before_use_node_(before_use_node) {
|
|
DCHECK(instruction_ != nullptr);
|
|
}
|
|
|
|
HInstruction* GetInstruction() const { return instruction_; }
|
|
typename HUseList<T>::iterator GetBeforeUseNode() const { return before_use_node_; }
|
|
typename HUseList<T>::iterator GetUseNode() const { return ++GetBeforeUseNode(); }
|
|
|
|
private:
|
|
// Instruction used by the user.
|
|
HInstruction* instruction_;
|
|
|
|
// Iterator before the corresponding entry in the use list kept by 'instruction_'.
|
|
typename HUseList<T>::iterator before_use_node_;
|
|
};
|
|
|
|
// Helper class that extracts the input instruction from HUserRecord<HInstruction*>.
|
|
// This is used for HInstruction::GetInputs() to return a container wrapper providing
|
|
// HInstruction* values even though the underlying container has HUserRecord<>s.
|
|
struct HInputExtractor {
|
|
HInstruction* operator()(HUserRecord<HInstruction*>& record) const {
|
|
return record.GetInstruction();
|
|
}
|
|
const HInstruction* operator()(const HUserRecord<HInstruction*>& record) const {
|
|
return record.GetInstruction();
|
|
}
|
|
};
|
|
|
|
using HInputsRef = TransformArrayRef<HUserRecord<HInstruction*>, HInputExtractor>;
|
|
using HConstInputsRef = TransformArrayRef<const HUserRecord<HInstruction*>, HInputExtractor>;
|
|
|
|
/**
|
|
* Side-effects representation.
|
|
*
|
|
* For write/read dependences on fields/arrays, the dependence analysis uses
|
|
* type disambiguation (e.g. a float field write cannot modify the value of an
|
|
* integer field read) and the access type (e.g. a reference array write cannot
|
|
* modify the value of a reference field read [although it may modify the
|
|
* reference fetch prior to reading the field, which is represented by its own
|
|
* write/read dependence]). The analysis makes conservative points-to
|
|
* assumptions on reference types (e.g. two same typed arrays are assumed to be
|
|
* the same, and any reference read depends on any reference read without
|
|
* further regard of its type).
|
|
*
|
|
* The internal representation uses 38-bit and is described in the table below.
|
|
* The first line indicates the side effect, and for field/array accesses the
|
|
* second line indicates the type of the access (in the order of the
|
|
* Primitive::Type enum).
|
|
* The two numbered lines below indicate the bit position in the bitfield (read
|
|
* vertically).
|
|
*
|
|
* |Depends on GC|ARRAY-R |FIELD-R |Can trigger GC|ARRAY-W |FIELD-W |
|
|
* +-------------+---------+---------+--------------+---------+---------+
|
|
* | |DFJISCBZL|DFJISCBZL| |DFJISCBZL|DFJISCBZL|
|
|
* | 3 |333333322|222222221| 1 |111111110|000000000|
|
|
* | 7 |654321098|765432109| 8 |765432109|876543210|
|
|
*
|
|
* Note that, to ease the implementation, 'changes' bits are least significant
|
|
* bits, while 'dependency' bits are most significant bits.
|
|
*/
|
|
class SideEffects : public ValueObject {
|
|
public:
|
|
SideEffects() : flags_(0) {}
|
|
|
|
static SideEffects None() {
|
|
return SideEffects(0);
|
|
}
|
|
|
|
static SideEffects All() {
|
|
return SideEffects(kAllChangeBits | kAllDependOnBits);
|
|
}
|
|
|
|
static SideEffects AllChanges() {
|
|
return SideEffects(kAllChangeBits);
|
|
}
|
|
|
|
static SideEffects AllDependencies() {
|
|
return SideEffects(kAllDependOnBits);
|
|
}
|
|
|
|
static SideEffects AllExceptGCDependency() {
|
|
return AllWritesAndReads().Union(SideEffects::CanTriggerGC());
|
|
}
|
|
|
|
static SideEffects AllWritesAndReads() {
|
|
return SideEffects(kAllWrites | kAllReads);
|
|
}
|
|
|
|
static SideEffects AllWrites() {
|
|
return SideEffects(kAllWrites);
|
|
}
|
|
|
|
static SideEffects AllReads() {
|
|
return SideEffects(kAllReads);
|
|
}
|
|
|
|
static SideEffects FieldWriteOfType(Primitive::Type type, bool is_volatile) {
|
|
return is_volatile
|
|
? AllWritesAndReads()
|
|
: SideEffects(TypeFlag(type, kFieldWriteOffset));
|
|
}
|
|
|
|
static SideEffects ArrayWriteOfType(Primitive::Type type) {
|
|
return SideEffects(TypeFlag(type, kArrayWriteOffset));
|
|
}
|
|
|
|
static SideEffects FieldReadOfType(Primitive::Type type, bool is_volatile) {
|
|
return is_volatile
|
|
? AllWritesAndReads()
|
|
: SideEffects(TypeFlag(type, kFieldReadOffset));
|
|
}
|
|
|
|
static SideEffects ArrayReadOfType(Primitive::Type type) {
|
|
return SideEffects(TypeFlag(type, kArrayReadOffset));
|
|
}
|
|
|
|
static SideEffects CanTriggerGC() {
|
|
return SideEffects(1ULL << kCanTriggerGCBit);
|
|
}
|
|
|
|
static SideEffects DependsOnGC() {
|
|
return SideEffects(1ULL << kDependsOnGCBit);
|
|
}
|
|
|
|
// Combines the side-effects of this and the other.
|
|
SideEffects Union(SideEffects other) const {
|
|
return SideEffects(flags_ | other.flags_);
|
|
}
|
|
|
|
SideEffects Exclusion(SideEffects other) const {
|
|
return SideEffects(flags_ & ~other.flags_);
|
|
}
|
|
|
|
void Add(SideEffects other) {
|
|
flags_ |= other.flags_;
|
|
}
|
|
|
|
bool Includes(SideEffects other) const {
|
|
return (other.flags_ & flags_) == other.flags_;
|
|
}
|
|
|
|
bool HasSideEffects() const {
|
|
return (flags_ & kAllChangeBits);
|
|
}
|
|
|
|
bool HasDependencies() const {
|
|
return (flags_ & kAllDependOnBits);
|
|
}
|
|
|
|
// Returns true if there are no side effects or dependencies.
|
|
bool DoesNothing() const {
|
|
return flags_ == 0;
|
|
}
|
|
|
|
// Returns true if something is written.
|
|
bool DoesAnyWrite() const {
|
|
return (flags_ & kAllWrites);
|
|
}
|
|
|
|
// Returns true if something is read.
|
|
bool DoesAnyRead() const {
|
|
return (flags_ & kAllReads);
|
|
}
|
|
|
|
// Returns true if potentially everything is written and read
|
|
// (every type and every kind of access).
|
|
bool DoesAllReadWrite() const {
|
|
return (flags_ & (kAllWrites | kAllReads)) == (kAllWrites | kAllReads);
|
|
}
|
|
|
|
bool DoesAll() const {
|
|
return flags_ == (kAllChangeBits | kAllDependOnBits);
|
|
}
|
|
|
|
// Returns true if `this` may read something written by `other`.
|
|
bool MayDependOn(SideEffects other) const {
|
|
const uint64_t depends_on_flags = (flags_ & kAllDependOnBits) >> kChangeBits;
|
|
return (other.flags_ & depends_on_flags);
|
|
}
|
|
|
|
// Returns string representation of flags (for debugging only).
|
|
// Format: |x|DFJISCBZL|DFJISCBZL|y|DFJISCBZL|DFJISCBZL|
|
|
std::string ToString() const {
|
|
std::string flags = "|";
|
|
for (int s = kLastBit; s >= 0; s--) {
|
|
bool current_bit_is_set = ((flags_ >> s) & 1) != 0;
|
|
if ((s == kDependsOnGCBit) || (s == kCanTriggerGCBit)) {
|
|
// This is a bit for the GC side effect.
|
|
if (current_bit_is_set) {
|
|
flags += "GC";
|
|
}
|
|
flags += "|";
|
|
} else {
|
|
// This is a bit for the array/field analysis.
|
|
// The underscore character stands for the 'can trigger GC' bit.
|
|
static const char *kDebug = "LZBCSIJFDLZBCSIJFD_LZBCSIJFDLZBCSIJFD";
|
|
if (current_bit_is_set) {
|
|
flags += kDebug[s];
|
|
}
|
|
if ((s == kFieldWriteOffset) || (s == kArrayWriteOffset) ||
|
|
(s == kFieldReadOffset) || (s == kArrayReadOffset)) {
|
|
flags += "|";
|
|
}
|
|
}
|
|
}
|
|
return flags;
|
|
}
|
|
|
|
bool Equals(const SideEffects& other) const { return flags_ == other.flags_; }
|
|
|
|
private:
|
|
static constexpr int kFieldArrayAnalysisBits = 9;
|
|
|
|
static constexpr int kFieldWriteOffset = 0;
|
|
static constexpr int kArrayWriteOffset = kFieldWriteOffset + kFieldArrayAnalysisBits;
|
|
static constexpr int kLastBitForWrites = kArrayWriteOffset + kFieldArrayAnalysisBits - 1;
|
|
static constexpr int kCanTriggerGCBit = kLastBitForWrites + 1;
|
|
|
|
static constexpr int kChangeBits = kCanTriggerGCBit + 1;
|
|
|
|
static constexpr int kFieldReadOffset = kCanTriggerGCBit + 1;
|
|
static constexpr int kArrayReadOffset = kFieldReadOffset + kFieldArrayAnalysisBits;
|
|
static constexpr int kLastBitForReads = kArrayReadOffset + kFieldArrayAnalysisBits - 1;
|
|
static constexpr int kDependsOnGCBit = kLastBitForReads + 1;
|
|
|
|
static constexpr int kLastBit = kDependsOnGCBit;
|
|
static constexpr int kDependOnBits = kLastBit + 1 - kChangeBits;
|
|
|
|
// Aliases.
|
|
|
|
static_assert(kChangeBits == kDependOnBits,
|
|
"the 'change' bits should match the 'depend on' bits.");
|
|
|
|
static constexpr uint64_t kAllChangeBits = ((1ULL << kChangeBits) - 1);
|
|
static constexpr uint64_t kAllDependOnBits = ((1ULL << kDependOnBits) - 1) << kChangeBits;
|
|
static constexpr uint64_t kAllWrites =
|
|
((1ULL << (kLastBitForWrites + 1 - kFieldWriteOffset)) - 1) << kFieldWriteOffset;
|
|
static constexpr uint64_t kAllReads =
|
|
((1ULL << (kLastBitForReads + 1 - kFieldReadOffset)) - 1) << kFieldReadOffset;
|
|
|
|
// Translates type to bit flag.
|
|
static uint64_t TypeFlag(Primitive::Type type, int offset) {
|
|
CHECK_NE(type, Primitive::kPrimVoid);
|
|
const uint64_t one = 1;
|
|
const int shift = type; // 0-based consecutive enum
|
|
DCHECK_LE(kFieldWriteOffset, shift);
|
|
DCHECK_LT(shift, kArrayWriteOffset);
|
|
return one << (type + offset);
|
|
}
|
|
|
|
// Private constructor on direct flags value.
|
|
explicit SideEffects(uint64_t flags) : flags_(flags) {}
|
|
|
|
uint64_t flags_;
|
|
};
|
|
|
|
// A HEnvironment object contains the values of virtual registers at a given location.
|
|
class HEnvironment : public ArenaObject<kArenaAllocEnvironment> {
|
|
public:
|
|
ALWAYS_INLINE HEnvironment(ArenaAllocator* arena,
|
|
size_t number_of_vregs,
|
|
ArtMethod* method,
|
|
uint32_t dex_pc,
|
|
HInstruction* holder)
|
|
: vregs_(number_of_vregs, arena->Adapter(kArenaAllocEnvironmentVRegs)),
|
|
locations_(arena->Adapter(kArenaAllocEnvironmentLocations)),
|
|
parent_(nullptr),
|
|
method_(method),
|
|
dex_pc_(dex_pc),
|
|
holder_(holder) {
|
|
}
|
|
|
|
ALWAYS_INLINE HEnvironment(ArenaAllocator* arena, const HEnvironment& to_copy, HInstruction* holder)
|
|
: HEnvironment(arena,
|
|
to_copy.Size(),
|
|
to_copy.GetMethod(),
|
|
to_copy.GetDexPc(),
|
|
holder) {}
|
|
|
|
void AllocateLocations() {
|
|
DCHECK(locations_.empty());
|
|
locations_.resize(vregs_.size());
|
|
}
|
|
|
|
void SetAndCopyParentChain(ArenaAllocator* allocator, HEnvironment* parent) {
|
|
if (parent_ != nullptr) {
|
|
parent_->SetAndCopyParentChain(allocator, parent);
|
|
} else {
|
|
parent_ = new (allocator) HEnvironment(allocator, *parent, holder_);
|
|
parent_->CopyFrom(parent);
|
|
if (parent->GetParent() != nullptr) {
|
|
parent_->SetAndCopyParentChain(allocator, parent->GetParent());
|
|
}
|
|
}
|
|
}
|
|
|
|
void CopyFrom(const ArenaVector<HInstruction*>& locals);
|
|
void CopyFrom(HEnvironment* environment);
|
|
|
|
// Copy from `env`. If it's a loop phi for `loop_header`, copy the first
|
|
// input to the loop phi instead. This is for inserting instructions that
|
|
// require an environment (like HDeoptimization) in the loop pre-header.
|
|
void CopyFromWithLoopPhiAdjustment(HEnvironment* env, HBasicBlock* loop_header);
|
|
|
|
void SetRawEnvAt(size_t index, HInstruction* instruction) {
|
|
vregs_[index] = HUserRecord<HEnvironment*>(instruction);
|
|
}
|
|
|
|
HInstruction* GetInstructionAt(size_t index) const {
|
|
return vregs_[index].GetInstruction();
|
|
}
|
|
|
|
void RemoveAsUserOfInput(size_t index) const;
|
|
|
|
size_t Size() const { return vregs_.size(); }
|
|
|
|
HEnvironment* GetParent() const { return parent_; }
|
|
|
|
void SetLocationAt(size_t index, Location location) {
|
|
locations_[index] = location;
|
|
}
|
|
|
|
Location GetLocationAt(size_t index) const {
|
|
return locations_[index];
|
|
}
|
|
|
|
uint32_t GetDexPc() const {
|
|
return dex_pc_;
|
|
}
|
|
|
|
ArtMethod* GetMethod() const {
|
|
return method_;
|
|
}
|
|
|
|
HInstruction* GetHolder() const {
|
|
return holder_;
|
|
}
|
|
|
|
|
|
bool IsFromInlinedInvoke() const {
|
|
return GetParent() != nullptr;
|
|
}
|
|
|
|
private:
|
|
ArenaVector<HUserRecord<HEnvironment*>> vregs_;
|
|
ArenaVector<Location> locations_;
|
|
HEnvironment* parent_;
|
|
ArtMethod* method_;
|
|
const uint32_t dex_pc_;
|
|
|
|
// The instruction that holds this environment.
|
|
HInstruction* const holder_;
|
|
|
|
friend class HInstruction;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HEnvironment);
|
|
};
|
|
|
|
class HInstruction : public ArenaObject<kArenaAllocInstruction> {
|
|
public:
|
|
HInstruction(SideEffects side_effects, uint32_t dex_pc)
|
|
: previous_(nullptr),
|
|
next_(nullptr),
|
|
block_(nullptr),
|
|
dex_pc_(dex_pc),
|
|
id_(-1),
|
|
ssa_index_(-1),
|
|
packed_fields_(0u),
|
|
environment_(nullptr),
|
|
locations_(nullptr),
|
|
live_interval_(nullptr),
|
|
lifetime_position_(kNoLifetime),
|
|
side_effects_(side_effects),
|
|
reference_type_handle_(ReferenceTypeInfo::CreateInvalid().GetTypeHandle()) {
|
|
SetPackedFlag<kFlagReferenceTypeIsExact>(ReferenceTypeInfo::CreateInvalid().IsExact());
|
|
}
|
|
|
|
virtual ~HInstruction() {}
|
|
|
|
#define DECLARE_KIND(type, super) k##type,
|
|
enum InstructionKind {
|
|
FOR_EACH_INSTRUCTION(DECLARE_KIND)
|
|
};
|
|
#undef DECLARE_KIND
|
|
|
|
HInstruction* GetNext() const { return next_; }
|
|
HInstruction* GetPrevious() const { return previous_; }
|
|
|
|
HInstruction* GetNextDisregardingMoves() const;
|
|
HInstruction* GetPreviousDisregardingMoves() const;
|
|
|
|
HBasicBlock* GetBlock() const { return block_; }
|
|
ArenaAllocator* GetArena() const { return block_->GetGraph()->GetArena(); }
|
|
void SetBlock(HBasicBlock* block) { block_ = block; }
|
|
bool IsInBlock() const { return block_ != nullptr; }
|
|
bool IsInLoop() const { return block_->IsInLoop(); }
|
|
bool IsLoopHeaderPhi() const { return IsPhi() && block_->IsLoopHeader(); }
|
|
bool IsIrreducibleLoopHeaderPhi() const {
|
|
return IsLoopHeaderPhi() && GetBlock()->GetLoopInformation()->IsIrreducible();
|
|
}
|
|
|
|
virtual ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() = 0;
|
|
|
|
ArrayRef<const HUserRecord<HInstruction*>> GetInputRecords() const {
|
|
// One virtual method is enough, just const_cast<> and then re-add the const.
|
|
return ArrayRef<const HUserRecord<HInstruction*>>(
|
|
const_cast<HInstruction*>(this)->GetInputRecords());
|
|
}
|
|
|
|
HInputsRef GetInputs() {
|
|
return MakeTransformArrayRef(GetInputRecords(), HInputExtractor());
|
|
}
|
|
|
|
HConstInputsRef GetInputs() const {
|
|
return MakeTransformArrayRef(GetInputRecords(), HInputExtractor());
|
|
}
|
|
|
|
size_t InputCount() const { return GetInputRecords().size(); }
|
|
HInstruction* InputAt(size_t i) const { return InputRecordAt(i).GetInstruction(); }
|
|
|
|
bool HasInput(HInstruction* input) const {
|
|
for (const HInstruction* i : GetInputs()) {
|
|
if (i == input) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void SetRawInputAt(size_t index, HInstruction* input) {
|
|
SetRawInputRecordAt(index, HUserRecord<HInstruction*>(input));
|
|
}
|
|
|
|
virtual void Accept(HGraphVisitor* visitor) = 0;
|
|
virtual const char* DebugName() const = 0;
|
|
|
|
virtual Primitive::Type GetType() const { return Primitive::kPrimVoid; }
|
|
|
|
virtual bool NeedsEnvironment() const { return false; }
|
|
|
|
uint32_t GetDexPc() const { return dex_pc_; }
|
|
|
|
virtual bool IsControlFlow() const { return false; }
|
|
|
|
// Can the instruction throw?
|
|
// TODO: We should rename to CanVisiblyThrow, as some instructions (like HNewInstance),
|
|
// could throw OOME, but it is still OK to remove them if they are unused.
|
|
virtual bool CanThrow() const { return false; }
|
|
bool CanThrowIntoCatchBlock() const { return CanThrow() && block_->IsTryBlock(); }
|
|
|
|
bool HasSideEffects() const { return side_effects_.HasSideEffects(); }
|
|
bool DoesAnyWrite() const { return side_effects_.DoesAnyWrite(); }
|
|
|
|
// Does not apply for all instructions, but having this at top level greatly
|
|
// simplifies the null check elimination.
|
|
// TODO: Consider merging can_be_null into ReferenceTypeInfo.
|
|
virtual bool CanBeNull() const {
|
|
DCHECK_EQ(GetType(), Primitive::kPrimNot) << "CanBeNull only applies to reference types";
|
|
return true;
|
|
}
|
|
|
|
virtual bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const {
|
|
return false;
|
|
}
|
|
|
|
virtual bool IsActualObject() const {
|
|
return GetType() == Primitive::kPrimNot;
|
|
}
|
|
|
|
void SetReferenceTypeInfo(ReferenceTypeInfo rti);
|
|
|
|
ReferenceTypeInfo GetReferenceTypeInfo() const {
|
|
DCHECK_EQ(GetType(), Primitive::kPrimNot);
|
|
return ReferenceTypeInfo::CreateUnchecked(reference_type_handle_,
|
|
GetPackedFlag<kFlagReferenceTypeIsExact>());
|
|
}
|
|
|
|
void AddUseAt(HInstruction* user, size_t index) {
|
|
DCHECK(user != nullptr);
|
|
// Note: fixup_end remains valid across push_front().
|
|
auto fixup_end = uses_.empty() ? uses_.begin() : ++uses_.begin();
|
|
HUseListNode<HInstruction*>* new_node =
|
|
new (GetBlock()->GetGraph()->GetArena()) HUseListNode<HInstruction*>(user, index);
|
|
uses_.push_front(*new_node);
|
|
FixUpUserRecordsAfterUseInsertion(fixup_end);
|
|
}
|
|
|
|
void AddEnvUseAt(HEnvironment* user, size_t index) {
|
|
DCHECK(user != nullptr);
|
|
// Note: env_fixup_end remains valid across push_front().
|
|
auto env_fixup_end = env_uses_.empty() ? env_uses_.begin() : ++env_uses_.begin();
|
|
HUseListNode<HEnvironment*>* new_node =
|
|
new (GetBlock()->GetGraph()->GetArena()) HUseListNode<HEnvironment*>(user, index);
|
|
env_uses_.push_front(*new_node);
|
|
FixUpUserRecordsAfterEnvUseInsertion(env_fixup_end);
|
|
}
|
|
|
|
void RemoveAsUserOfInput(size_t input) {
|
|
HUserRecord<HInstruction*> input_use = InputRecordAt(input);
|
|
HUseList<HInstruction*>::iterator before_use_node = input_use.GetBeforeUseNode();
|
|
input_use.GetInstruction()->uses_.erase_after(before_use_node);
|
|
input_use.GetInstruction()->FixUpUserRecordsAfterUseRemoval(before_use_node);
|
|
}
|
|
|
|
void RemoveAsUserOfAllInputs() {
|
|
for (const HUserRecord<HInstruction*>& input_use : GetInputRecords()) {
|
|
HUseList<HInstruction*>::iterator before_use_node = input_use.GetBeforeUseNode();
|
|
input_use.GetInstruction()->uses_.erase_after(before_use_node);
|
|
input_use.GetInstruction()->FixUpUserRecordsAfterUseRemoval(before_use_node);
|
|
}
|
|
}
|
|
|
|
const HUseList<HInstruction*>& GetUses() const { return uses_; }
|
|
const HUseList<HEnvironment*>& GetEnvUses() const { return env_uses_; }
|
|
|
|
bool HasUses() const { return !uses_.empty() || !env_uses_.empty(); }
|
|
bool HasEnvironmentUses() const { return !env_uses_.empty(); }
|
|
bool HasNonEnvironmentUses() const { return !uses_.empty(); }
|
|
bool HasOnlyOneNonEnvironmentUse() const {
|
|
return !HasEnvironmentUses() && GetUses().HasExactlyOneElement();
|
|
}
|
|
|
|
bool IsRemovable() const {
|
|
return
|
|
!DoesAnyWrite() &&
|
|
!CanThrow() &&
|
|
!IsSuspendCheck() &&
|
|
!IsControlFlow() &&
|
|
!IsNativeDebugInfo() &&
|
|
!IsParameterValue() &&
|
|
// If we added an explicit barrier then we should keep it.
|
|
!IsMemoryBarrier() &&
|
|
!IsConstructorFence();
|
|
}
|
|
|
|
bool IsDeadAndRemovable() const {
|
|
return IsRemovable() && !HasUses();
|
|
}
|
|
|
|
// Does this instruction strictly dominate `other_instruction`?
|
|
// Returns false if this instruction and `other_instruction` are the same.
|
|
// Aborts if this instruction and `other_instruction` are both phis.
|
|
bool StrictlyDominates(HInstruction* other_instruction) const;
|
|
|
|
int GetId() const { return id_; }
|
|
void SetId(int id) { id_ = id; }
|
|
|
|
int GetSsaIndex() const { return ssa_index_; }
|
|
void SetSsaIndex(int ssa_index) { ssa_index_ = ssa_index; }
|
|
bool HasSsaIndex() const { return ssa_index_ != -1; }
|
|
|
|
bool HasEnvironment() const { return environment_ != nullptr; }
|
|
HEnvironment* GetEnvironment() const { return environment_; }
|
|
// Set the `environment_` field. Raw because this method does not
|
|
// update the uses lists.
|
|
void SetRawEnvironment(HEnvironment* environment) {
|
|
DCHECK(environment_ == nullptr);
|
|
DCHECK_EQ(environment->GetHolder(), this);
|
|
environment_ = environment;
|
|
}
|
|
|
|
void InsertRawEnvironment(HEnvironment* environment) {
|
|
DCHECK(environment_ != nullptr);
|
|
DCHECK_EQ(environment->GetHolder(), this);
|
|
DCHECK(environment->GetParent() == nullptr);
|
|
environment->parent_ = environment_;
|
|
environment_ = environment;
|
|
}
|
|
|
|
void RemoveEnvironment();
|
|
|
|
// Set the environment of this instruction, copying it from `environment`. While
|
|
// copying, the uses lists are being updated.
|
|
void CopyEnvironmentFrom(HEnvironment* environment) {
|
|
DCHECK(environment_ == nullptr);
|
|
ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
|
|
environment_ = new (allocator) HEnvironment(allocator, *environment, this);
|
|
environment_->CopyFrom(environment);
|
|
if (environment->GetParent() != nullptr) {
|
|
environment_->SetAndCopyParentChain(allocator, environment->GetParent());
|
|
}
|
|
}
|
|
|
|
void CopyEnvironmentFromWithLoopPhiAdjustment(HEnvironment* environment,
|
|
HBasicBlock* block) {
|
|
DCHECK(environment_ == nullptr);
|
|
ArenaAllocator* allocator = GetBlock()->GetGraph()->GetArena();
|
|
environment_ = new (allocator) HEnvironment(allocator, *environment, this);
|
|
environment_->CopyFromWithLoopPhiAdjustment(environment, block);
|
|
if (environment->GetParent() != nullptr) {
|
|
environment_->SetAndCopyParentChain(allocator, environment->GetParent());
|
|
}
|
|
}
|
|
|
|
// Returns the number of entries in the environment. Typically, that is the
|
|
// number of dex registers in a method. It could be more in case of inlining.
|
|
size_t EnvironmentSize() const;
|
|
|
|
LocationSummary* GetLocations() const { return locations_; }
|
|
void SetLocations(LocationSummary* locations) { locations_ = locations; }
|
|
|
|
void ReplaceWith(HInstruction* instruction);
|
|
void ReplaceUsesDominatedBy(HInstruction* dominator, HInstruction* replacement);
|
|
void ReplaceInput(HInstruction* replacement, size_t index);
|
|
|
|
// This is almost the same as doing `ReplaceWith()`. But in this helper, the
|
|
// uses of this instruction by `other` are *not* updated.
|
|
void ReplaceWithExceptInReplacementAtIndex(HInstruction* other, size_t use_index) {
|
|
ReplaceWith(other);
|
|
other->ReplaceInput(this, use_index);
|
|
}
|
|
|
|
// Move `this` instruction before `cursor`
|
|
void MoveBefore(HInstruction* cursor, bool do_checks = true);
|
|
|
|
// Move `this` before its first user and out of any loops. If there is no
|
|
// out-of-loop user that dominates all other users, move the instruction
|
|
// to the end of the out-of-loop common dominator of the user's blocks.
|
|
//
|
|
// This can be used only on non-throwing instructions with no side effects that
|
|
// have at least one use but no environment uses.
|
|
void MoveBeforeFirstUserAndOutOfLoops();
|
|
|
|
#define INSTRUCTION_TYPE_CHECK(type, super) \
|
|
bool Is##type() const; \
|
|
const H##type* As##type() const; \
|
|
H##type* As##type();
|
|
|
|
FOR_EACH_CONCRETE_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
|
|
#undef INSTRUCTION_TYPE_CHECK
|
|
|
|
#define INSTRUCTION_TYPE_CHECK(type, super) \
|
|
bool Is##type() const { return (As##type() != nullptr); } \
|
|
virtual const H##type* As##type() const { return nullptr; } \
|
|
virtual H##type* As##type() { return nullptr; }
|
|
FOR_EACH_ABSTRACT_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
|
|
#undef INSTRUCTION_TYPE_CHECK
|
|
|
|
// Returns whether the instruction can be moved within the graph.
|
|
// TODO: this method is used by LICM and GVN with possibly different
|
|
// meanings? split and rename?
|
|
virtual bool CanBeMoved() const { return false; }
|
|
|
|
// Returns whether the two instructions are of the same kind.
|
|
virtual bool InstructionTypeEquals(const HInstruction* other ATTRIBUTE_UNUSED) const {
|
|
return false;
|
|
}
|
|
|
|
// Returns whether any data encoded in the two instructions is equal.
|
|
// This method does not look at the inputs. Both instructions must be
|
|
// of the same type, otherwise the method has undefined behavior.
|
|
virtual bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const {
|
|
return false;
|
|
}
|
|
|
|
// Returns whether two instructions are equal, that is:
|
|
// 1) They have the same type and contain the same data (InstructionDataEquals).
|
|
// 2) Their inputs are identical.
|
|
bool Equals(const HInstruction* other) const;
|
|
|
|
// TODO: Remove this indirection when the [[pure]] attribute proposal (n3744)
|
|
// is adopted and implemented by our C++ compiler(s). Fow now, we need to hide
|
|
// the virtual function because the __attribute__((__pure__)) doesn't really
|
|
// apply the strong requirement for virtual functions, preventing optimizations.
|
|
InstructionKind GetKind() const PURE;
|
|
virtual InstructionKind GetKindInternal() const = 0;
|
|
|
|
virtual size_t ComputeHashCode() const {
|
|
size_t result = GetKind();
|
|
for (const HInstruction* input : GetInputs()) {
|
|
result = (result * 31) + input->GetId();
|
|
}
|
|
return result;
|
|
}
|
|
|
|
SideEffects GetSideEffects() const { return side_effects_; }
|
|
void SetSideEffects(SideEffects other) { side_effects_ = other; }
|
|
void AddSideEffects(SideEffects other) { side_effects_.Add(other); }
|
|
|
|
size_t GetLifetimePosition() const { return lifetime_position_; }
|
|
void SetLifetimePosition(size_t position) { lifetime_position_ = position; }
|
|
LiveInterval* GetLiveInterval() const { return live_interval_; }
|
|
void SetLiveInterval(LiveInterval* interval) { live_interval_ = interval; }
|
|
bool HasLiveInterval() const { return live_interval_ != nullptr; }
|
|
|
|
bool IsSuspendCheckEntry() const { return IsSuspendCheck() && GetBlock()->IsEntryBlock(); }
|
|
|
|
// Returns whether the code generation of the instruction will require to have access
|
|
// to the current method. Such instructions are:
|
|
// (1): Instructions that require an environment, as calling the runtime requires
|
|
// to walk the stack and have the current method stored at a specific stack address.
|
|
// (2): HCurrentMethod, potentially used by HInvokeStaticOrDirect, HLoadString, or HLoadClass
|
|
// to access the dex cache.
|
|
bool NeedsCurrentMethod() const {
|
|
return NeedsEnvironment() || IsCurrentMethod();
|
|
}
|
|
|
|
// Returns whether the code generation of the instruction will require to have access
|
|
// to the dex cache of the current method's declaring class via the current method.
|
|
virtual bool NeedsDexCacheOfDeclaringClass() const { return false; }
|
|
|
|
// Does this instruction have any use in an environment before
|
|
// control flow hits 'other'?
|
|
bool HasAnyEnvironmentUseBefore(HInstruction* other);
|
|
|
|
// Remove all references to environment uses of this instruction.
|
|
// The caller must ensure that this is safe to do.
|
|
void RemoveEnvironmentUsers();
|
|
|
|
bool IsEmittedAtUseSite() const { return GetPackedFlag<kFlagEmittedAtUseSite>(); }
|
|
void MarkEmittedAtUseSite() { SetPackedFlag<kFlagEmittedAtUseSite>(true); }
|
|
|
|
protected:
|
|
// If set, the machine code for this instruction is assumed to be generated by
|
|
// its users. Used by liveness analysis to compute use positions accordingly.
|
|
static constexpr size_t kFlagEmittedAtUseSite = 0u;
|
|
static constexpr size_t kFlagReferenceTypeIsExact = kFlagEmittedAtUseSite + 1;
|
|
static constexpr size_t kNumberOfGenericPackedBits = kFlagReferenceTypeIsExact + 1;
|
|
static constexpr size_t kMaxNumberOfPackedBits = sizeof(uint32_t) * kBitsPerByte;
|
|
|
|
const HUserRecord<HInstruction*> InputRecordAt(size_t i) const {
|
|
return GetInputRecords()[i];
|
|
}
|
|
|
|
void SetRawInputRecordAt(size_t index, const HUserRecord<HInstruction*>& input) {
|
|
ArrayRef<HUserRecord<HInstruction*>> input_records = GetInputRecords();
|
|
input_records[index] = input;
|
|
}
|
|
|
|
uint32_t GetPackedFields() const {
|
|
return packed_fields_;
|
|
}
|
|
|
|
template <size_t flag>
|
|
bool GetPackedFlag() const {
|
|
return (packed_fields_ & (1u << flag)) != 0u;
|
|
}
|
|
|
|
template <size_t flag>
|
|
void SetPackedFlag(bool value = true) {
|
|
packed_fields_ = (packed_fields_ & ~(1u << flag)) | ((value ? 1u : 0u) << flag);
|
|
}
|
|
|
|
template <typename BitFieldType>
|
|
typename BitFieldType::value_type GetPackedField() const {
|
|
return BitFieldType::Decode(packed_fields_);
|
|
}
|
|
|
|
template <typename BitFieldType>
|
|
void SetPackedField(typename BitFieldType::value_type value) {
|
|
DCHECK(IsUint<BitFieldType::size>(static_cast<uintptr_t>(value)));
|
|
packed_fields_ = BitFieldType::Update(value, packed_fields_);
|
|
}
|
|
|
|
private:
|
|
void FixUpUserRecordsAfterUseInsertion(HUseList<HInstruction*>::iterator fixup_end) {
|
|
auto before_use_node = uses_.before_begin();
|
|
for (auto use_node = uses_.begin(); use_node != fixup_end; ++use_node) {
|
|
HInstruction* user = use_node->GetUser();
|
|
size_t input_index = use_node->GetIndex();
|
|
user->SetRawInputRecordAt(input_index, HUserRecord<HInstruction*>(this, before_use_node));
|
|
before_use_node = use_node;
|
|
}
|
|
}
|
|
|
|
void FixUpUserRecordsAfterUseRemoval(HUseList<HInstruction*>::iterator before_use_node) {
|
|
auto next = ++HUseList<HInstruction*>::iterator(before_use_node);
|
|
if (next != uses_.end()) {
|
|
HInstruction* next_user = next->GetUser();
|
|
size_t next_index = next->GetIndex();
|
|
DCHECK(next_user->InputRecordAt(next_index).GetInstruction() == this);
|
|
next_user->SetRawInputRecordAt(next_index, HUserRecord<HInstruction*>(this, before_use_node));
|
|
}
|
|
}
|
|
|
|
void FixUpUserRecordsAfterEnvUseInsertion(HUseList<HEnvironment*>::iterator env_fixup_end) {
|
|
auto before_env_use_node = env_uses_.before_begin();
|
|
for (auto env_use_node = env_uses_.begin(); env_use_node != env_fixup_end; ++env_use_node) {
|
|
HEnvironment* user = env_use_node->GetUser();
|
|
size_t input_index = env_use_node->GetIndex();
|
|
user->vregs_[input_index] = HUserRecord<HEnvironment*>(this, before_env_use_node);
|
|
before_env_use_node = env_use_node;
|
|
}
|
|
}
|
|
|
|
void FixUpUserRecordsAfterEnvUseRemoval(HUseList<HEnvironment*>::iterator before_env_use_node) {
|
|
auto next = ++HUseList<HEnvironment*>::iterator(before_env_use_node);
|
|
if (next != env_uses_.end()) {
|
|
HEnvironment* next_user = next->GetUser();
|
|
size_t next_index = next->GetIndex();
|
|
DCHECK(next_user->vregs_[next_index].GetInstruction() == this);
|
|
next_user->vregs_[next_index] = HUserRecord<HEnvironment*>(this, before_env_use_node);
|
|
}
|
|
}
|
|
|
|
HInstruction* previous_;
|
|
HInstruction* next_;
|
|
HBasicBlock* block_;
|
|
const uint32_t dex_pc_;
|
|
|
|
// An instruction gets an id when it is added to the graph.
|
|
// It reflects creation order. A negative id means the instruction
|
|
// has not been added to the graph.
|
|
int id_;
|
|
|
|
// When doing liveness analysis, instructions that have uses get an SSA index.
|
|
int ssa_index_;
|
|
|
|
// Packed fields.
|
|
uint32_t packed_fields_;
|
|
|
|
// List of instructions that have this instruction as input.
|
|
HUseList<HInstruction*> uses_;
|
|
|
|
// List of environments that contain this instruction.
|
|
HUseList<HEnvironment*> env_uses_;
|
|
|
|
// The environment associated with this instruction. Not null if the instruction
|
|
// might jump out of the method.
|
|
HEnvironment* environment_;
|
|
|
|
// Set by the code generator.
|
|
LocationSummary* locations_;
|
|
|
|
// Set by the liveness analysis.
|
|
LiveInterval* live_interval_;
|
|
|
|
// Set by the liveness analysis, this is the position in a linear
|
|
// order of blocks where this instruction's live interval start.
|
|
size_t lifetime_position_;
|
|
|
|
SideEffects side_effects_;
|
|
|
|
// The reference handle part of the reference type info.
|
|
// The IsExact() flag is stored in packed fields.
|
|
// TODO: for primitive types this should be marked as invalid.
|
|
ReferenceTypeInfo::TypeHandle reference_type_handle_;
|
|
|
|
friend class GraphChecker;
|
|
friend class HBasicBlock;
|
|
friend class HEnvironment;
|
|
friend class HGraph;
|
|
friend class HInstructionList;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HInstruction);
|
|
};
|
|
std::ostream& operator<<(std::ostream& os, const HInstruction::InstructionKind& rhs);
|
|
|
|
// Iterates over the instructions, while preserving the next instruction
|
|
// in case the current instruction gets removed from the list by the user
|
|
// of this iterator.
|
|
class HInstructionIterator : public ValueObject {
|
|
public:
|
|
explicit HInstructionIterator(const HInstructionList& instructions)
|
|
: instruction_(instructions.first_instruction_) {
|
|
next_ = Done() ? nullptr : instruction_->GetNext();
|
|
}
|
|
|
|
bool Done() const { return instruction_ == nullptr; }
|
|
HInstruction* Current() const { return instruction_; }
|
|
void Advance() {
|
|
instruction_ = next_;
|
|
next_ = Done() ? nullptr : instruction_->GetNext();
|
|
}
|
|
|
|
private:
|
|
HInstruction* instruction_;
|
|
HInstruction* next_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HInstructionIterator);
|
|
};
|
|
|
|
// Iterates over the instructions without saving the next instruction,
|
|
// therefore handling changes in the graph potentially made by the user
|
|
// of this iterator.
|
|
class HInstructionIteratorHandleChanges : public ValueObject {
|
|
public:
|
|
explicit HInstructionIteratorHandleChanges(const HInstructionList& instructions)
|
|
: instruction_(instructions.first_instruction_) {
|
|
}
|
|
|
|
bool Done() const { return instruction_ == nullptr; }
|
|
HInstruction* Current() const { return instruction_; }
|
|
void Advance() {
|
|
instruction_ = instruction_->GetNext();
|
|
}
|
|
|
|
private:
|
|
HInstruction* instruction_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HInstructionIteratorHandleChanges);
|
|
};
|
|
|
|
|
|
class HBackwardInstructionIterator : public ValueObject {
|
|
public:
|
|
explicit HBackwardInstructionIterator(const HInstructionList& instructions)
|
|
: instruction_(instructions.last_instruction_) {
|
|
next_ = Done() ? nullptr : instruction_->GetPrevious();
|
|
}
|
|
|
|
bool Done() const { return instruction_ == nullptr; }
|
|
HInstruction* Current() const { return instruction_; }
|
|
void Advance() {
|
|
instruction_ = next_;
|
|
next_ = Done() ? nullptr : instruction_->GetPrevious();
|
|
}
|
|
|
|
private:
|
|
HInstruction* instruction_;
|
|
HInstruction* next_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HBackwardInstructionIterator);
|
|
};
|
|
|
|
class HVariableInputSizeInstruction : public HInstruction {
|
|
public:
|
|
using HInstruction::GetInputRecords; // Keep the const version visible.
|
|
ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() OVERRIDE {
|
|
return ArrayRef<HUserRecord<HInstruction*>>(inputs_);
|
|
}
|
|
|
|
void AddInput(HInstruction* input);
|
|
void InsertInputAt(size_t index, HInstruction* input);
|
|
void RemoveInputAt(size_t index);
|
|
|
|
// Removes all the inputs.
|
|
// Also removes this instructions from each input's use list
|
|
// (for non-environment uses only).
|
|
void RemoveAllInputs();
|
|
|
|
protected:
|
|
HVariableInputSizeInstruction(SideEffects side_effects,
|
|
uint32_t dex_pc,
|
|
ArenaAllocator* arena,
|
|
size_t number_of_inputs,
|
|
ArenaAllocKind kind)
|
|
: HInstruction(side_effects, dex_pc),
|
|
inputs_(number_of_inputs, arena->Adapter(kind)) {}
|
|
|
|
ArenaVector<HUserRecord<HInstruction*>> inputs_;
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(HVariableInputSizeInstruction);
|
|
};
|
|
|
|
template<size_t N>
|
|
class HTemplateInstruction: public HInstruction {
|
|
public:
|
|
HTemplateInstruction<N>(SideEffects side_effects, uint32_t dex_pc)
|
|
: HInstruction(side_effects, dex_pc), inputs_() {}
|
|
virtual ~HTemplateInstruction() {}
|
|
|
|
using HInstruction::GetInputRecords; // Keep the const version visible.
|
|
ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() OVERRIDE FINAL {
|
|
return ArrayRef<HUserRecord<HInstruction*>>(inputs_);
|
|
}
|
|
|
|
private:
|
|
std::array<HUserRecord<HInstruction*>, N> inputs_;
|
|
|
|
friend class SsaBuilder;
|
|
};
|
|
|
|
// HTemplateInstruction specialization for N=0.
|
|
template<>
|
|
class HTemplateInstruction<0>: public HInstruction {
|
|
public:
|
|
explicit HTemplateInstruction<0>(SideEffects side_effects, uint32_t dex_pc)
|
|
: HInstruction(side_effects, dex_pc) {}
|
|
|
|
virtual ~HTemplateInstruction() {}
|
|
|
|
using HInstruction::GetInputRecords; // Keep the const version visible.
|
|
ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() OVERRIDE FINAL {
|
|
return ArrayRef<HUserRecord<HInstruction*>>();
|
|
}
|
|
|
|
private:
|
|
friend class SsaBuilder;
|
|
};
|
|
|
|
template<intptr_t N>
|
|
class HExpression : public HTemplateInstruction<N> {
|
|
public:
|
|
HExpression<N>(Primitive::Type type, SideEffects side_effects, uint32_t dex_pc)
|
|
: HTemplateInstruction<N>(side_effects, dex_pc) {
|
|
this->template SetPackedField<TypeField>(type);
|
|
}
|
|
virtual ~HExpression() {}
|
|
|
|
Primitive::Type GetType() const OVERRIDE {
|
|
return TypeField::Decode(this->GetPackedFields());
|
|
}
|
|
|
|
protected:
|
|
static constexpr size_t kFieldType = HInstruction::kNumberOfGenericPackedBits;
|
|
static constexpr size_t kFieldTypeSize =
|
|
MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast));
|
|
static constexpr size_t kNumberOfExpressionPackedBits = kFieldType + kFieldTypeSize;
|
|
static_assert(kNumberOfExpressionPackedBits <= HInstruction::kMaxNumberOfPackedBits,
|
|
"Too many packed fields.");
|
|
using TypeField = BitField<Primitive::Type, kFieldType, kFieldTypeSize>;
|
|
};
|
|
|
|
// Represents dex's RETURN_VOID opcode. A HReturnVoid is a control flow
|
|
// instruction that branches to the exit block.
|
|
class HReturnVoid FINAL : public HTemplateInstruction<0> {
|
|
public:
|
|
explicit HReturnVoid(uint32_t dex_pc = kNoDexPc)
|
|
: HTemplateInstruction(SideEffects::None(), dex_pc) {}
|
|
|
|
bool IsControlFlow() const OVERRIDE { return true; }
|
|
|
|
DECLARE_INSTRUCTION(ReturnVoid);
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(HReturnVoid);
|
|
};
|
|
|
|
// Represents dex's RETURN opcodes. A HReturn is a control flow
|
|
// instruction that branches to the exit block.
|
|
class HReturn FINAL : public HTemplateInstruction<1> {
|
|
public:
|
|
explicit HReturn(HInstruction* value, uint32_t dex_pc = kNoDexPc)
|
|
: HTemplateInstruction(SideEffects::None(), dex_pc) {
|
|
SetRawInputAt(0, value);
|
|
}
|
|
|
|
bool IsControlFlow() const OVERRIDE { return true; }
|
|
|
|
DECLARE_INSTRUCTION(Return);
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(HReturn);
|
|
};
|
|
|
|
class HPhi FINAL : public HVariableInputSizeInstruction {
|
|
public:
|
|
HPhi(ArenaAllocator* arena,
|
|
uint32_t reg_number,
|
|
size_t number_of_inputs,
|
|
Primitive::Type type,
|
|
uint32_t dex_pc = kNoDexPc)
|
|
: HVariableInputSizeInstruction(
|
|
SideEffects::None(),
|
|
dex_pc,
|
|
arena,
|
|
number_of_inputs,
|
|
kArenaAllocPhiInputs),
|
|
reg_number_(reg_number) {
|
|
SetPackedField<TypeField>(ToPhiType(type));
|
|
DCHECK_NE(GetType(), Primitive::kPrimVoid);
|
|
// Phis are constructed live and marked dead if conflicting or unused.
|
|
// Individual steps of SsaBuilder should assume that if a phi has been
|
|
// marked dead, it can be ignored and will be removed by SsaPhiElimination.
|
|
SetPackedFlag<kFlagIsLive>(true);
|
|
SetPackedFlag<kFlagCanBeNull>(true);
|
|
}
|
|
|
|
// Returns a type equivalent to the given `type`, but that a `HPhi` can hold.
|
|
static Primitive::Type ToPhiType(Primitive::Type type) {
|
|
return Primitive::PrimitiveKind(type);
|
|
}
|
|
|
|
bool IsCatchPhi() const { return GetBlock()->IsCatchBlock(); }
|
|
|
|
Primitive::Type GetType() const OVERRIDE { return GetPackedField<TypeField>(); }
|
|
void SetType(Primitive::Type new_type) {
|
|
// Make sure that only valid type changes occur. The following are allowed:
|
|
// (1) int -> float/ref (primitive type propagation),
|
|
// (2) long -> double (primitive type propagation).
|
|
DCHECK(GetType() == new_type ||
|
|
(GetType() == Primitive::kPrimInt && new_type == Primitive::kPrimFloat) ||
|
|
(GetType() == Primitive::kPrimInt && new_type == Primitive::kPrimNot) ||
|
|
(GetType() == Primitive::kPrimLong && new_type == Primitive::kPrimDouble));
|
|
SetPackedField<TypeField>(new_type);
|
|
}
|
|
|
|
bool CanBeNull() const OVERRIDE { return GetPackedFlag<kFlagCanBeNull>(); }
|
|
void SetCanBeNull(bool can_be_null) { SetPackedFlag<kFlagCanBeNull>(can_be_null); }
|
|
|
|
uint32_t GetRegNumber() const { return reg_number_; }
|
|
|
|
void SetDead() { SetPackedFlag<kFlagIsLive>(false); }
|
|
void SetLive() { SetPackedFlag<kFlagIsLive>(true); }
|
|
bool IsDead() const { return !IsLive(); }
|
|
bool IsLive() const { return GetPackedFlag<kFlagIsLive>(); }
|
|
|
|
bool IsVRegEquivalentOf(const HInstruction* other) const {
|
|
return other != nullptr
|
|
&& other->IsPhi()
|
|
&& other->AsPhi()->GetBlock() == GetBlock()
|
|
&& other->AsPhi()->GetRegNumber() == GetRegNumber();
|
|
}
|
|
|
|
bool HasEquivalentPhi() const {
|
|
if (GetPrevious() != nullptr && GetPrevious()->AsPhi()->GetRegNumber() == GetRegNumber()) {
|
|
return true;
|
|
}
|
|
if (GetNext() != nullptr && GetNext()->AsPhi()->GetRegNumber() == GetRegNumber()) {
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Returns the next equivalent phi (starting from the current one) or null if there is none.
|
|
// An equivalent phi is a phi having the same dex register and type.
|
|
// It assumes that phis with the same dex register are adjacent.
|
|
HPhi* GetNextEquivalentPhiWithSameType() {
|
|
HInstruction* next = GetNext();
|
|
while (next != nullptr && next->AsPhi()->GetRegNumber() == reg_number_) {
|
|
if (next->GetType() == GetType()) {
|
|
return next->AsPhi();
|
|
}
|
|
next = next->GetNext();
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
DECLARE_INSTRUCTION(Phi);
|
|
|
|
private:
|
|
static constexpr size_t kFieldType = HInstruction::kNumberOfGenericPackedBits;
|
|
static constexpr size_t kFieldTypeSize =
|
|
MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast));
|
|
static constexpr size_t kFlagIsLive = kFieldType + kFieldTypeSize;
|
|
static constexpr size_t kFlagCanBeNull = kFlagIsLive + 1;
|
|
static constexpr size_t kNumberOfPhiPackedBits = kFlagCanBeNull + 1;
|
|
static_assert(kNumberOfPhiPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
|
|
using TypeField = BitField<Primitive::Type, kFieldType, kFieldTypeSize>;
|
|
|
|
const uint32_t reg_number_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HPhi);
|
|
};
|
|
|
|
// The exit instruction is the only instruction of the exit block.
|
|
// Instructions aborting the method (HThrow and HReturn) must branch to the
|
|
// exit block.
|
|
class HExit FINAL : public HTemplateInstruction<0> {
|
|
public:
|
|
explicit HExit(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) {}
|
|
|
|
bool IsControlFlow() const OVERRIDE { return true; }
|
|
|
|
DECLARE_INSTRUCTION(Exit);
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(HExit);
|
|
};
|
|
|
|
// Jumps from one block to another.
|
|
class HGoto FINAL : public HTemplateInstruction<0> {
|
|
public:
|
|
explicit HGoto(uint32_t dex_pc = kNoDexPc) : HTemplateInstruction(SideEffects::None(), dex_pc) {}
|
|
|
|
bool IsControlFlow() const OVERRIDE { return true; }
|
|
|
|
HBasicBlock* GetSuccessor() const {
|
|
return GetBlock()->GetSingleSuccessor();
|
|
}
|
|
|
|
DECLARE_INSTRUCTION(Goto);
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(HGoto);
|
|
};
|
|
|
|
class HConstant : public HExpression<0> {
|
|
public:
|
|
explicit HConstant(Primitive::Type type, uint32_t dex_pc = kNoDexPc)
|
|
: HExpression(type, SideEffects::None(), dex_pc) {}
|
|
|
|
bool CanBeMoved() const OVERRIDE { return true; }
|
|
|
|
// Is this constant -1 in the arithmetic sense?
|
|
virtual bool IsMinusOne() const { return false; }
|
|
// Is this constant 0 in the arithmetic sense?
|
|
virtual bool IsArithmeticZero() const { return false; }
|
|
// Is this constant a 0-bit pattern?
|
|
virtual bool IsZeroBitPattern() const { return false; }
|
|
// Is this constant 1 in the arithmetic sense?
|
|
virtual bool IsOne() const { return false; }
|
|
|
|
virtual uint64_t GetValueAsUint64() const = 0;
|
|
|
|
DECLARE_ABSTRACT_INSTRUCTION(Constant);
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(HConstant);
|
|
};
|
|
|
|
class HNullConstant FINAL : public HConstant {
|
|
public:
|
|
bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
return true;
|
|
}
|
|
|
|
uint64_t GetValueAsUint64() const OVERRIDE { return 0; }
|
|
|
|
size_t ComputeHashCode() const OVERRIDE { return 0; }
|
|
|
|
// The null constant representation is a 0-bit pattern.
|
|
virtual bool IsZeroBitPattern() const { return true; }
|
|
|
|
DECLARE_INSTRUCTION(NullConstant);
|
|
|
|
private:
|
|
explicit HNullConstant(uint32_t dex_pc = kNoDexPc) : HConstant(Primitive::kPrimNot, dex_pc) {}
|
|
|
|
friend class HGraph;
|
|
DISALLOW_COPY_AND_ASSIGN(HNullConstant);
|
|
};
|
|
|
|
// Constants of the type int. Those can be from Dex instructions, or
|
|
// synthesized (for example with the if-eqz instruction).
|
|
class HIntConstant FINAL : public HConstant {
|
|
public:
|
|
int32_t GetValue() const { return value_; }
|
|
|
|
uint64_t GetValueAsUint64() const OVERRIDE {
|
|
return static_cast<uint64_t>(static_cast<uint32_t>(value_));
|
|
}
|
|
|
|
bool InstructionDataEquals(const HInstruction* other) const OVERRIDE {
|
|
DCHECK(other->IsIntConstant()) << other->DebugName();
|
|
return other->AsIntConstant()->value_ == value_;
|
|
}
|
|
|
|
size_t ComputeHashCode() const OVERRIDE { return GetValue(); }
|
|
|
|
bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
|
|
bool IsArithmeticZero() const OVERRIDE { return GetValue() == 0; }
|
|
bool IsZeroBitPattern() const OVERRIDE { return GetValue() == 0; }
|
|
bool IsOne() const OVERRIDE { return GetValue() == 1; }
|
|
|
|
// Integer constants are used to encode Boolean values as well,
|
|
// where 1 means true and 0 means false.
|
|
bool IsTrue() const { return GetValue() == 1; }
|
|
bool IsFalse() const { return GetValue() == 0; }
|
|
|
|
DECLARE_INSTRUCTION(IntConstant);
|
|
|
|
private:
|
|
explicit HIntConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
|
|
: HConstant(Primitive::kPrimInt, dex_pc), value_(value) {}
|
|
explicit HIntConstant(bool value, uint32_t dex_pc = kNoDexPc)
|
|
: HConstant(Primitive::kPrimInt, dex_pc), value_(value ? 1 : 0) {}
|
|
|
|
const int32_t value_;
|
|
|
|
friend class HGraph;
|
|
ART_FRIEND_TEST(GraphTest, InsertInstructionBefore);
|
|
ART_FRIEND_TYPED_TEST(ParallelMoveTest, ConstantLast);
|
|
DISALLOW_COPY_AND_ASSIGN(HIntConstant);
|
|
};
|
|
|
|
class HLongConstant FINAL : public HConstant {
|
|
public:
|
|
int64_t GetValue() const { return value_; }
|
|
|
|
uint64_t GetValueAsUint64() const OVERRIDE { return value_; }
|
|
|
|
bool InstructionDataEquals(const HInstruction* other) const OVERRIDE {
|
|
DCHECK(other->IsLongConstant()) << other->DebugName();
|
|
return other->AsLongConstant()->value_ == value_;
|
|
}
|
|
|
|
size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
|
|
|
|
bool IsMinusOne() const OVERRIDE { return GetValue() == -1; }
|
|
bool IsArithmeticZero() const OVERRIDE { return GetValue() == 0; }
|
|
bool IsZeroBitPattern() const OVERRIDE { return GetValue() == 0; }
|
|
bool IsOne() const OVERRIDE { return GetValue() == 1; }
|
|
|
|
DECLARE_INSTRUCTION(LongConstant);
|
|
|
|
private:
|
|
explicit HLongConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
|
|
: HConstant(Primitive::kPrimLong, dex_pc), value_(value) {}
|
|
|
|
const int64_t value_;
|
|
|
|
friend class HGraph;
|
|
DISALLOW_COPY_AND_ASSIGN(HLongConstant);
|
|
};
|
|
|
|
class HFloatConstant FINAL : public HConstant {
|
|
public:
|
|
float GetValue() const { return value_; }
|
|
|
|
uint64_t GetValueAsUint64() const OVERRIDE {
|
|
return static_cast<uint64_t>(bit_cast<uint32_t, float>(value_));
|
|
}
|
|
|
|
bool InstructionDataEquals(const HInstruction* other) const OVERRIDE {
|
|
DCHECK(other->IsFloatConstant()) << other->DebugName();
|
|
return other->AsFloatConstant()->GetValueAsUint64() == GetValueAsUint64();
|
|
}
|
|
|
|
size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
|
|
|
|
bool IsMinusOne() const OVERRIDE {
|
|
return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>((-1.0f));
|
|
}
|
|
bool IsArithmeticZero() const OVERRIDE {
|
|
return std::fpclassify(value_) == FP_ZERO;
|
|
}
|
|
bool IsArithmeticPositiveZero() const {
|
|
return IsArithmeticZero() && !std::signbit(value_);
|
|
}
|
|
bool IsArithmeticNegativeZero() const {
|
|
return IsArithmeticZero() && std::signbit(value_);
|
|
}
|
|
bool IsZeroBitPattern() const OVERRIDE {
|
|
return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(0.0f);
|
|
}
|
|
bool IsOne() const OVERRIDE {
|
|
return bit_cast<uint32_t, float>(value_) == bit_cast<uint32_t, float>(1.0f);
|
|
}
|
|
bool IsNaN() const {
|
|
return std::isnan(value_);
|
|
}
|
|
|
|
DECLARE_INSTRUCTION(FloatConstant);
|
|
|
|
private:
|
|
explicit HFloatConstant(float value, uint32_t dex_pc = kNoDexPc)
|
|
: HConstant(Primitive::kPrimFloat, dex_pc), value_(value) {}
|
|
explicit HFloatConstant(int32_t value, uint32_t dex_pc = kNoDexPc)
|
|
: HConstant(Primitive::kPrimFloat, dex_pc), value_(bit_cast<float, int32_t>(value)) {}
|
|
|
|
const float value_;
|
|
|
|
// Only the SsaBuilder and HGraph can create floating-point constants.
|
|
friend class SsaBuilder;
|
|
friend class HGraph;
|
|
DISALLOW_COPY_AND_ASSIGN(HFloatConstant);
|
|
};
|
|
|
|
class HDoubleConstant FINAL : public HConstant {
|
|
public:
|
|
double GetValue() const { return value_; }
|
|
|
|
uint64_t GetValueAsUint64() const OVERRIDE { return bit_cast<uint64_t, double>(value_); }
|
|
|
|
bool InstructionDataEquals(const HInstruction* other) const OVERRIDE {
|
|
DCHECK(other->IsDoubleConstant()) << other->DebugName();
|
|
return other->AsDoubleConstant()->GetValueAsUint64() == GetValueAsUint64();
|
|
}
|
|
|
|
size_t ComputeHashCode() const OVERRIDE { return static_cast<size_t>(GetValue()); }
|
|
|
|
bool IsMinusOne() const OVERRIDE {
|
|
return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((-1.0));
|
|
}
|
|
bool IsArithmeticZero() const OVERRIDE {
|
|
return std::fpclassify(value_) == FP_ZERO;
|
|
}
|
|
bool IsArithmeticPositiveZero() const {
|
|
return IsArithmeticZero() && !std::signbit(value_);
|
|
}
|
|
bool IsArithmeticNegativeZero() const {
|
|
return IsArithmeticZero() && std::signbit(value_);
|
|
}
|
|
bool IsZeroBitPattern() const OVERRIDE {
|
|
return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>((0.0));
|
|
}
|
|
bool IsOne() const OVERRIDE {
|
|
return bit_cast<uint64_t, double>(value_) == bit_cast<uint64_t, double>(1.0);
|
|
}
|
|
bool IsNaN() const {
|
|
return std::isnan(value_);
|
|
}
|
|
|
|
DECLARE_INSTRUCTION(DoubleConstant);
|
|
|
|
private:
|
|
explicit HDoubleConstant(double value, uint32_t dex_pc = kNoDexPc)
|
|
: HConstant(Primitive::kPrimDouble, dex_pc), value_(value) {}
|
|
explicit HDoubleConstant(int64_t value, uint32_t dex_pc = kNoDexPc)
|
|
: HConstant(Primitive::kPrimDouble, dex_pc), value_(bit_cast<double, int64_t>(value)) {}
|
|
|
|
const double value_;
|
|
|
|
// Only the SsaBuilder and HGraph can create floating-point constants.
|
|
friend class SsaBuilder;
|
|
friend class HGraph;
|
|
DISALLOW_COPY_AND_ASSIGN(HDoubleConstant);
|
|
};
|
|
|
|
// Conditional branch. A block ending with an HIf instruction must have
|
|
// two successors.
|
|
class HIf FINAL : public HTemplateInstruction<1> {
|
|
public:
|
|
explicit HIf(HInstruction* input, uint32_t dex_pc = kNoDexPc)
|
|
: HTemplateInstruction(SideEffects::None(), dex_pc) {
|
|
SetRawInputAt(0, input);
|
|
}
|
|
|
|
bool IsControlFlow() const OVERRIDE { return true; }
|
|
|
|
HBasicBlock* IfTrueSuccessor() const {
|
|
return GetBlock()->GetSuccessors()[0];
|
|
}
|
|
|
|
HBasicBlock* IfFalseSuccessor() const {
|
|
return GetBlock()->GetSuccessors()[1];
|
|
}
|
|
|
|
DECLARE_INSTRUCTION(If);
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(HIf);
|
|
};
|
|
|
|
|
|
// Abstract instruction which marks the beginning and/or end of a try block and
|
|
// links it to the respective exception handlers. Behaves the same as a Goto in
|
|
// non-exceptional control flow.
|
|
// Normal-flow successor is stored at index zero, exception handlers under
|
|
// higher indices in no particular order.
|
|
class HTryBoundary FINAL : public HTemplateInstruction<0> {
|
|
public:
|
|
enum class BoundaryKind {
|
|
kEntry,
|
|
kExit,
|
|
kLast = kExit
|
|
};
|
|
|
|
explicit HTryBoundary(BoundaryKind kind, uint32_t dex_pc = kNoDexPc)
|
|
: HTemplateInstruction(SideEffects::None(), dex_pc) {
|
|
SetPackedField<BoundaryKindField>(kind);
|
|
}
|
|
|
|
bool IsControlFlow() const OVERRIDE { return true; }
|
|
|
|
// Returns the block's non-exceptional successor (index zero).
|
|
HBasicBlock* GetNormalFlowSuccessor() const { return GetBlock()->GetSuccessors()[0]; }
|
|
|
|
ArrayRef<HBasicBlock* const> GetExceptionHandlers() const {
|
|
return ArrayRef<HBasicBlock* const>(GetBlock()->GetSuccessors()).SubArray(1u);
|
|
}
|
|
|
|
// Returns whether `handler` is among its exception handlers (non-zero index
|
|
// successors).
|
|
bool HasExceptionHandler(const HBasicBlock& handler) const {
|
|
DCHECK(handler.IsCatchBlock());
|
|
return GetBlock()->HasSuccessor(&handler, 1u /* Skip first successor. */);
|
|
}
|
|
|
|
// If not present already, adds `handler` to its block's list of exception
|
|
// handlers.
|
|
void AddExceptionHandler(HBasicBlock* handler) {
|
|
if (!HasExceptionHandler(*handler)) {
|
|
GetBlock()->AddSuccessor(handler);
|
|
}
|
|
}
|
|
|
|
BoundaryKind GetBoundaryKind() const { return GetPackedField<BoundaryKindField>(); }
|
|
bool IsEntry() const { return GetBoundaryKind() == BoundaryKind::kEntry; }
|
|
|
|
bool HasSameExceptionHandlersAs(const HTryBoundary& other) const;
|
|
|
|
DECLARE_INSTRUCTION(TryBoundary);
|
|
|
|
private:
|
|
static constexpr size_t kFieldBoundaryKind = kNumberOfGenericPackedBits;
|
|
static constexpr size_t kFieldBoundaryKindSize =
|
|
MinimumBitsToStore(static_cast<size_t>(BoundaryKind::kLast));
|
|
static constexpr size_t kNumberOfTryBoundaryPackedBits =
|
|
kFieldBoundaryKind + kFieldBoundaryKindSize;
|
|
static_assert(kNumberOfTryBoundaryPackedBits <= kMaxNumberOfPackedBits,
|
|
"Too many packed fields.");
|
|
using BoundaryKindField = BitField<BoundaryKind, kFieldBoundaryKind, kFieldBoundaryKindSize>;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HTryBoundary);
|
|
};
|
|
|
|
// Deoptimize to interpreter, upon checking a condition.
|
|
class HDeoptimize FINAL : public HVariableInputSizeInstruction {
|
|
public:
|
|
// Use this constructor when the `HDeoptimize` acts as a barrier, where no code can move
|
|
// across.
|
|
HDeoptimize(ArenaAllocator* arena, HInstruction* cond, DeoptimizationKind kind, uint32_t dex_pc)
|
|
: HVariableInputSizeInstruction(
|
|
SideEffects::All(),
|
|
dex_pc,
|
|
arena,
|
|
/* number_of_inputs */ 1,
|
|
kArenaAllocMisc) {
|
|
SetPackedFlag<kFieldCanBeMoved>(false);
|
|
SetPackedField<DeoptimizeKindField>(kind);
|
|
SetRawInputAt(0, cond);
|
|
}
|
|
|
|
// Use this constructor when the `HDeoptimize` guards an instruction, and any user
|
|
// that relies on the deoptimization to pass should have its input be the `HDeoptimize`
|
|
// instead of `guard`.
|
|
// We set CanTriggerGC to prevent any intermediate address to be live
|
|
// at the point of the `HDeoptimize`.
|
|
HDeoptimize(ArenaAllocator* arena,
|
|
HInstruction* cond,
|
|
HInstruction* guard,
|
|
DeoptimizationKind kind,
|
|
uint32_t dex_pc)
|
|
: HVariableInputSizeInstruction(
|
|
SideEffects::CanTriggerGC(),
|
|
dex_pc,
|
|
arena,
|
|
/* number_of_inputs */ 2,
|
|
kArenaAllocMisc) {
|
|
SetPackedFlag<kFieldCanBeMoved>(true);
|
|
SetPackedField<DeoptimizeKindField>(kind);
|
|
SetRawInputAt(0, cond);
|
|
SetRawInputAt(1, guard);
|
|
}
|
|
|
|
bool CanBeMoved() const OVERRIDE { return GetPackedFlag<kFieldCanBeMoved>(); }
|
|
|
|
bool InstructionDataEquals(const HInstruction* other) const OVERRIDE {
|
|
return (other->CanBeMoved() == CanBeMoved()) && (other->AsDeoptimize()->GetKind() == GetKind());
|
|
}
|
|
|
|
bool NeedsEnvironment() const OVERRIDE { return true; }
|
|
|
|
bool CanThrow() const OVERRIDE { return true; }
|
|
|
|
DeoptimizationKind GetDeoptimizationKind() const { return GetPackedField<DeoptimizeKindField>(); }
|
|
|
|
Primitive::Type GetType() const OVERRIDE {
|
|
return GuardsAnInput() ? GuardedInput()->GetType() : Primitive::kPrimVoid;
|
|
}
|
|
|
|
bool GuardsAnInput() const {
|
|
return InputCount() == 2;
|
|
}
|
|
|
|
HInstruction* GuardedInput() const {
|
|
DCHECK(GuardsAnInput());
|
|
return InputAt(1);
|
|
}
|
|
|
|
void RemoveGuard() {
|
|
RemoveInputAt(1);
|
|
}
|
|
|
|
DECLARE_INSTRUCTION(Deoptimize);
|
|
|
|
private:
|
|
static constexpr size_t kFieldCanBeMoved = kNumberOfGenericPackedBits;
|
|
static constexpr size_t kFieldDeoptimizeKind = kNumberOfGenericPackedBits + 1;
|
|
static constexpr size_t kFieldDeoptimizeKindSize =
|
|
MinimumBitsToStore(static_cast<size_t>(DeoptimizationKind::kLast));
|
|
static constexpr size_t kNumberOfDeoptimizePackedBits =
|
|
kFieldDeoptimizeKind + kFieldDeoptimizeKindSize;
|
|
static_assert(kNumberOfDeoptimizePackedBits <= kMaxNumberOfPackedBits,
|
|
"Too many packed fields.");
|
|
using DeoptimizeKindField =
|
|
BitField<DeoptimizationKind, kFieldDeoptimizeKind, kFieldDeoptimizeKindSize>;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HDeoptimize);
|
|
};
|
|
|
|
// Represents a should_deoptimize flag. Currently used for CHA-based devirtualization.
|
|
// The compiled code checks this flag value in a guard before devirtualized call and
|
|
// if it's true, starts to do deoptimization.
|
|
// It has a 4-byte slot on stack.
|
|
// TODO: allocate a register for this flag.
|
|
class HShouldDeoptimizeFlag FINAL : public HVariableInputSizeInstruction {
|
|
public:
|
|
// CHA guards are only optimized in a separate pass and it has no side effects
|
|
// with regard to other passes.
|
|
HShouldDeoptimizeFlag(ArenaAllocator* arena, uint32_t dex_pc)
|
|
: HVariableInputSizeInstruction(SideEffects::None(), dex_pc, arena, 0, kArenaAllocCHA) {
|
|
}
|
|
|
|
Primitive::Type GetType() const OVERRIDE { return Primitive::kPrimInt; }
|
|
|
|
// We do all CHA guard elimination/motion in a single pass, after which there is no
|
|
// further guard elimination/motion since a guard might have been used for justification
|
|
// of the elimination of another guard. Therefore, we pretend this guard cannot be moved
|
|
// to avoid other optimizations trying to move it.
|
|
bool CanBeMoved() const OVERRIDE { return false; }
|
|
|
|
DECLARE_INSTRUCTION(ShouldDeoptimizeFlag);
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(HShouldDeoptimizeFlag);
|
|
};
|
|
|
|
// Represents the ArtMethod that was passed as a first argument to
|
|
// the method. It is used by instructions that depend on it, like
|
|
// instructions that work with the dex cache.
|
|
class HCurrentMethod FINAL : public HExpression<0> {
|
|
public:
|
|
explicit HCurrentMethod(Primitive::Type type, uint32_t dex_pc = kNoDexPc)
|
|
: HExpression(type, SideEffects::None(), dex_pc) {}
|
|
|
|
DECLARE_INSTRUCTION(CurrentMethod);
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(HCurrentMethod);
|
|
};
|
|
|
|
// Fetches an ArtMethod from the virtual table or the interface method table
|
|
// of a class.
|
|
class HClassTableGet FINAL : public HExpression<1> {
|
|
public:
|
|
enum class TableKind {
|
|
kVTable,
|
|
kIMTable,
|
|
kLast = kIMTable
|
|
};
|
|
HClassTableGet(HInstruction* cls,
|
|
Primitive::Type type,
|
|
TableKind kind,
|
|
size_t index,
|
|
uint32_t dex_pc)
|
|
: HExpression(type, SideEffects::None(), dex_pc),
|
|
index_(index) {
|
|
SetPackedField<TableKindField>(kind);
|
|
SetRawInputAt(0, cls);
|
|
}
|
|
|
|
bool CanBeMoved() const OVERRIDE { return true; }
|
|
bool InstructionDataEquals(const HInstruction* other) const OVERRIDE {
|
|
return other->AsClassTableGet()->GetIndex() == index_ &&
|
|
other->AsClassTableGet()->GetPackedFields() == GetPackedFields();
|
|
}
|
|
|
|
TableKind GetTableKind() const { return GetPackedField<TableKindField>(); }
|
|
size_t GetIndex() const { return index_; }
|
|
|
|
DECLARE_INSTRUCTION(ClassTableGet);
|
|
|
|
private:
|
|
static constexpr size_t kFieldTableKind = kNumberOfExpressionPackedBits;
|
|
static constexpr size_t kFieldTableKindSize =
|
|
MinimumBitsToStore(static_cast<size_t>(TableKind::kLast));
|
|
static constexpr size_t kNumberOfClassTableGetPackedBits = kFieldTableKind + kFieldTableKindSize;
|
|
static_assert(kNumberOfClassTableGetPackedBits <= kMaxNumberOfPackedBits,
|
|
"Too many packed fields.");
|
|
using TableKindField = BitField<TableKind, kFieldTableKind, kFieldTableKind>;
|
|
|
|
// The index of the ArtMethod in the table.
|
|
const size_t index_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HClassTableGet);
|
|
};
|
|
|
|
// PackedSwitch (jump table). A block ending with a PackedSwitch instruction will
|
|
// have one successor for each entry in the switch table, and the final successor
|
|
// will be the block containing the next Dex opcode.
|
|
class HPackedSwitch FINAL : public HTemplateInstruction<1> {
|
|
public:
|
|
HPackedSwitch(int32_t start_value,
|
|
uint32_t num_entries,
|
|
HInstruction* input,
|
|
uint32_t dex_pc = kNoDexPc)
|
|
: HTemplateInstruction(SideEffects::None(), dex_pc),
|
|
start_value_(start_value),
|
|
num_entries_(num_entries) {
|
|
SetRawInputAt(0, input);
|
|
}
|
|
|
|
bool IsControlFlow() const OVERRIDE { return true; }
|
|
|
|
int32_t GetStartValue() const { return start_value_; }
|
|
|
|
uint32_t GetNumEntries() const { return num_entries_; }
|
|
|
|
HBasicBlock* GetDefaultBlock() const {
|
|
// Last entry is the default block.
|
|
return GetBlock()->GetSuccessors()[num_entries_];
|
|
}
|
|
DECLARE_INSTRUCTION(PackedSwitch);
|
|
|
|
private:
|
|
const int32_t start_value_;
|
|
const uint32_t num_entries_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HPackedSwitch);
|
|
};
|
|
|
|
class HUnaryOperation : public HExpression<1> {
|
|
public:
|
|
HUnaryOperation(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
|
|
: HExpression(result_type, SideEffects::None(), dex_pc) {
|
|
SetRawInputAt(0, input);
|
|
}
|
|
|
|
HInstruction* GetInput() const { return InputAt(0); }
|
|
Primitive::Type GetResultType() const { return GetType(); }
|
|
|
|
bool CanBeMoved() const OVERRIDE { return true; }
|
|
bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
return true;
|
|
}
|
|
|
|
// Try to statically evaluate `this` and return a HConstant
|
|
// containing the result of this evaluation. If `this` cannot
|
|
// be evaluated as a constant, return null.
|
|
HConstant* TryStaticEvaluation() const;
|
|
|
|
// Apply this operation to `x`.
|
|
virtual HConstant* Evaluate(HIntConstant* x) const = 0;
|
|
virtual HConstant* Evaluate(HLongConstant* x) const = 0;
|
|
virtual HConstant* Evaluate(HFloatConstant* x) const = 0;
|
|
virtual HConstant* Evaluate(HDoubleConstant* x) const = 0;
|
|
|
|
DECLARE_ABSTRACT_INSTRUCTION(UnaryOperation);
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(HUnaryOperation);
|
|
};
|
|
|
|
class HBinaryOperation : public HExpression<2> {
|
|
public:
|
|
HBinaryOperation(Primitive::Type result_type,
|
|
HInstruction* left,
|
|
HInstruction* right,
|
|
SideEffects side_effects = SideEffects::None(),
|
|
uint32_t dex_pc = kNoDexPc)
|
|
: HExpression(result_type, side_effects, dex_pc) {
|
|
SetRawInputAt(0, left);
|
|
SetRawInputAt(1, right);
|
|
}
|
|
|
|
HInstruction* GetLeft() const { return InputAt(0); }
|
|
HInstruction* GetRight() const { return InputAt(1); }
|
|
Primitive::Type GetResultType() const { return GetType(); }
|
|
|
|
virtual bool IsCommutative() const { return false; }
|
|
|
|
// Put constant on the right.
|
|
// Returns whether order is changed.
|
|
bool OrderInputsWithConstantOnTheRight() {
|
|
HInstruction* left = InputAt(0);
|
|
HInstruction* right = InputAt(1);
|
|
if (left->IsConstant() && !right->IsConstant()) {
|
|
ReplaceInput(right, 0);
|
|
ReplaceInput(left, 1);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Order inputs by instruction id, but favor constant on the right side.
|
|
// This helps GVN for commutative ops.
|
|
void OrderInputs() {
|
|
DCHECK(IsCommutative());
|
|
HInstruction* left = InputAt(0);
|
|
HInstruction* right = InputAt(1);
|
|
if (left == right || (!left->IsConstant() && right->IsConstant())) {
|
|
return;
|
|
}
|
|
if (OrderInputsWithConstantOnTheRight()) {
|
|
return;
|
|
}
|
|
// Order according to instruction id.
|
|
if (left->GetId() > right->GetId()) {
|
|
ReplaceInput(right, 0);
|
|
ReplaceInput(left, 1);
|
|
}
|
|
}
|
|
|
|
bool CanBeMoved() const OVERRIDE { return true; }
|
|
bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
return true;
|
|
}
|
|
|
|
// Try to statically evaluate `this` and return a HConstant
|
|
// containing the result of this evaluation. If `this` cannot
|
|
// be evaluated as a constant, return null.
|
|
HConstant* TryStaticEvaluation() const;
|
|
|
|
// Apply this operation to `x` and `y`.
|
|
virtual HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
|
|
HNullConstant* y ATTRIBUTE_UNUSED) const {
|
|
LOG(FATAL) << DebugName() << " is not defined for the (null, null) case.";
|
|
UNREACHABLE();
|
|
}
|
|
virtual HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const = 0;
|
|
virtual HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const = 0;
|
|
virtual HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED,
|
|
HIntConstant* y ATTRIBUTE_UNUSED) const {
|
|
LOG(FATAL) << DebugName() << " is not defined for the (long, int) case.";
|
|
UNREACHABLE();
|
|
}
|
|
virtual HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const = 0;
|
|
virtual HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const = 0;
|
|
|
|
// Returns an input that can legally be used as the right input and is
|
|
// constant, or null.
|
|
HConstant* GetConstantRight() const;
|
|
|
|
// If `GetConstantRight()` returns one of the input, this returns the other
|
|
// one. Otherwise it returns null.
|
|
HInstruction* GetLeastConstantLeft() const;
|
|
|
|
DECLARE_ABSTRACT_INSTRUCTION(BinaryOperation);
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(HBinaryOperation);
|
|
};
|
|
|
|
// The comparison bias applies for floating point operations and indicates how NaN
|
|
// comparisons are treated:
|
|
enum class ComparisonBias {
|
|
kNoBias, // bias is not applicable (i.e. for long operation)
|
|
kGtBias, // return 1 for NaN comparisons
|
|
kLtBias, // return -1 for NaN comparisons
|
|
kLast = kLtBias
|
|
};
|
|
|
|
std::ostream& operator<<(std::ostream& os, const ComparisonBias& rhs);
|
|
|
|
class HCondition : public HBinaryOperation {
|
|
public:
|
|
HCondition(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
|
|
: HBinaryOperation(Primitive::kPrimBoolean, first, second, SideEffects::None(), dex_pc) {
|
|
SetPackedField<ComparisonBiasField>(ComparisonBias::kNoBias);
|
|
}
|
|
|
|
// For code generation purposes, returns whether this instruction is just before
|
|
// `instruction`, and disregard moves in between.
|
|
bool IsBeforeWhenDisregardMoves(HInstruction* instruction) const;
|
|
|
|
DECLARE_ABSTRACT_INSTRUCTION(Condition);
|
|
|
|
virtual IfCondition GetCondition() const = 0;
|
|
|
|
virtual IfCondition GetOppositeCondition() const = 0;
|
|
|
|
bool IsGtBias() const { return GetBias() == ComparisonBias::kGtBias; }
|
|
bool IsLtBias() const { return GetBias() == ComparisonBias::kLtBias; }
|
|
|
|
ComparisonBias GetBias() const { return GetPackedField<ComparisonBiasField>(); }
|
|
void SetBias(ComparisonBias bias) { SetPackedField<ComparisonBiasField>(bias); }
|
|
|
|
bool InstructionDataEquals(const HInstruction* other) const OVERRIDE {
|
|
return GetPackedFields() == other->AsCondition()->GetPackedFields();
|
|
}
|
|
|
|
bool IsFPConditionTrueIfNaN() const {
|
|
DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
|
|
IfCondition if_cond = GetCondition();
|
|
if (if_cond == kCondNE) {
|
|
return true;
|
|
} else if (if_cond == kCondEQ) {
|
|
return false;
|
|
}
|
|
return ((if_cond == kCondGT) || (if_cond == kCondGE)) && IsGtBias();
|
|
}
|
|
|
|
bool IsFPConditionFalseIfNaN() const {
|
|
DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
|
|
IfCondition if_cond = GetCondition();
|
|
if (if_cond == kCondEQ) {
|
|
return true;
|
|
} else if (if_cond == kCondNE) {
|
|
return false;
|
|
}
|
|
return ((if_cond == kCondLT) || (if_cond == kCondLE)) && IsGtBias();
|
|
}
|
|
|
|
protected:
|
|
// Needed if we merge a HCompare into a HCondition.
|
|
static constexpr size_t kFieldComparisonBias = kNumberOfExpressionPackedBits;
|
|
static constexpr size_t kFieldComparisonBiasSize =
|
|
MinimumBitsToStore(static_cast<size_t>(ComparisonBias::kLast));
|
|
static constexpr size_t kNumberOfConditionPackedBits =
|
|
kFieldComparisonBias + kFieldComparisonBiasSize;
|
|
static_assert(kNumberOfConditionPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
|
|
using ComparisonBiasField =
|
|
BitField<ComparisonBias, kFieldComparisonBias, kFieldComparisonBiasSize>;
|
|
|
|
template <typename T>
|
|
int32_t Compare(T x, T y) const { return x > y ? 1 : (x < y ? -1 : 0); }
|
|
|
|
template <typename T>
|
|
int32_t CompareFP(T x, T y) const {
|
|
DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
|
|
DCHECK_NE(GetBias(), ComparisonBias::kNoBias);
|
|
// Handle the bias.
|
|
return std::isunordered(x, y) ? (IsGtBias() ? 1 : -1) : Compare(x, y);
|
|
}
|
|
|
|
// Return an integer constant containing the result of a condition evaluated at compile time.
|
|
HIntConstant* MakeConstantCondition(bool value, uint32_t dex_pc) const {
|
|
return GetBlock()->GetGraph()->GetIntConstant(value, dex_pc);
|
|
}
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(HCondition);
|
|
};
|
|
|
|
// Instruction to check if two inputs are equal to each other.
|
|
class HEqual FINAL : public HCondition {
|
|
public:
|
|
HEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
|
|
: HCondition(first, second, dex_pc) {}
|
|
|
|
bool IsCommutative() const OVERRIDE { return true; }
|
|
|
|
HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
|
|
HNullConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
return MakeConstantCondition(true, GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
|
|
return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
|
|
}
|
|
// In the following Evaluate methods, a HCompare instruction has
|
|
// been merged into this HEqual instruction; evaluate it as
|
|
// `Compare(x, y) == 0`.
|
|
HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
|
|
return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0),
|
|
GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
|
|
return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
|
|
return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
|
|
}
|
|
|
|
DECLARE_INSTRUCTION(Equal);
|
|
|
|
IfCondition GetCondition() const OVERRIDE {
|
|
return kCondEQ;
|
|
}
|
|
|
|
IfCondition GetOppositeCondition() const OVERRIDE {
|
|
return kCondNE;
|
|
}
|
|
|
|
private:
|
|
template <typename T> static bool Compute(T x, T y) { return x == y; }
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HEqual);
|
|
};
|
|
|
|
class HNotEqual FINAL : public HCondition {
|
|
public:
|
|
HNotEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
|
|
: HCondition(first, second, dex_pc) {}
|
|
|
|
bool IsCommutative() const OVERRIDE { return true; }
|
|
|
|
HConstant* Evaluate(HNullConstant* x ATTRIBUTE_UNUSED,
|
|
HNullConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
return MakeConstantCondition(false, GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
|
|
return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
|
|
}
|
|
// In the following Evaluate methods, a HCompare instruction has
|
|
// been merged into this HNotEqual instruction; evaluate it as
|
|
// `Compare(x, y) != 0`.
|
|
HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
|
|
return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
|
|
return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
|
|
return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
|
|
}
|
|
|
|
DECLARE_INSTRUCTION(NotEqual);
|
|
|
|
IfCondition GetCondition() const OVERRIDE {
|
|
return kCondNE;
|
|
}
|
|
|
|
IfCondition GetOppositeCondition() const OVERRIDE {
|
|
return kCondEQ;
|
|
}
|
|
|
|
private:
|
|
template <typename T> static bool Compute(T x, T y) { return x != y; }
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HNotEqual);
|
|
};
|
|
|
|
class HLessThan FINAL : public HCondition {
|
|
public:
|
|
HLessThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
|
|
: HCondition(first, second, dex_pc) {}
|
|
|
|
HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
|
|
return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
|
|
}
|
|
// In the following Evaluate methods, a HCompare instruction has
|
|
// been merged into this HLessThan instruction; evaluate it as
|
|
// `Compare(x, y) < 0`.
|
|
HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
|
|
return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
|
|
return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
|
|
return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
|
|
}
|
|
|
|
DECLARE_INSTRUCTION(LessThan);
|
|
|
|
IfCondition GetCondition() const OVERRIDE {
|
|
return kCondLT;
|
|
}
|
|
|
|
IfCondition GetOppositeCondition() const OVERRIDE {
|
|
return kCondGE;
|
|
}
|
|
|
|
private:
|
|
template <typename T> static bool Compute(T x, T y) { return x < y; }
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HLessThan);
|
|
};
|
|
|
|
class HLessThanOrEqual FINAL : public HCondition {
|
|
public:
|
|
HLessThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
|
|
: HCondition(first, second, dex_pc) {}
|
|
|
|
HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
|
|
return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
|
|
}
|
|
// In the following Evaluate methods, a HCompare instruction has
|
|
// been merged into this HLessThanOrEqual instruction; evaluate it as
|
|
// `Compare(x, y) <= 0`.
|
|
HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
|
|
return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
|
|
return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
|
|
return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
|
|
}
|
|
|
|
DECLARE_INSTRUCTION(LessThanOrEqual);
|
|
|
|
IfCondition GetCondition() const OVERRIDE {
|
|
return kCondLE;
|
|
}
|
|
|
|
IfCondition GetOppositeCondition() const OVERRIDE {
|
|
return kCondGT;
|
|
}
|
|
|
|
private:
|
|
template <typename T> static bool Compute(T x, T y) { return x <= y; }
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HLessThanOrEqual);
|
|
};
|
|
|
|
class HGreaterThan FINAL : public HCondition {
|
|
public:
|
|
HGreaterThan(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
|
|
: HCondition(first, second, dex_pc) {}
|
|
|
|
HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
|
|
return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
|
|
}
|
|
// In the following Evaluate methods, a HCompare instruction has
|
|
// been merged into this HGreaterThan instruction; evaluate it as
|
|
// `Compare(x, y) > 0`.
|
|
HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
|
|
return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
|
|
return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
|
|
return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
|
|
}
|
|
|
|
DECLARE_INSTRUCTION(GreaterThan);
|
|
|
|
IfCondition GetCondition() const OVERRIDE {
|
|
return kCondGT;
|
|
}
|
|
|
|
IfCondition GetOppositeCondition() const OVERRIDE {
|
|
return kCondLE;
|
|
}
|
|
|
|
private:
|
|
template <typename T> static bool Compute(T x, T y) { return x > y; }
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HGreaterThan);
|
|
};
|
|
|
|
class HGreaterThanOrEqual FINAL : public HCondition {
|
|
public:
|
|
HGreaterThanOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
|
|
: HCondition(first, second, dex_pc) {}
|
|
|
|
HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
|
|
return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
|
|
}
|
|
// In the following Evaluate methods, a HCompare instruction has
|
|
// been merged into this HGreaterThanOrEqual instruction; evaluate it as
|
|
// `Compare(x, y) >= 0`.
|
|
HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
|
|
return MakeConstantCondition(Compute(Compare(x->GetValue(), y->GetValue()), 0), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
|
|
return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
|
|
return MakeConstantCondition(Compute(CompareFP(x->GetValue(), y->GetValue()), 0), GetDexPc());
|
|
}
|
|
|
|
DECLARE_INSTRUCTION(GreaterThanOrEqual);
|
|
|
|
IfCondition GetCondition() const OVERRIDE {
|
|
return kCondGE;
|
|
}
|
|
|
|
IfCondition GetOppositeCondition() const OVERRIDE {
|
|
return kCondLT;
|
|
}
|
|
|
|
private:
|
|
template <typename T> static bool Compute(T x, T y) { return x >= y; }
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HGreaterThanOrEqual);
|
|
};
|
|
|
|
class HBelow FINAL : public HCondition {
|
|
public:
|
|
HBelow(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
|
|
: HCondition(first, second, dex_pc) {}
|
|
|
|
HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
|
|
return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
|
|
return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
|
|
HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
LOG(FATAL) << DebugName() << " is not defined for float values";
|
|
UNREACHABLE();
|
|
}
|
|
HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
|
|
HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
LOG(FATAL) << DebugName() << " is not defined for double values";
|
|
UNREACHABLE();
|
|
}
|
|
|
|
DECLARE_INSTRUCTION(Below);
|
|
|
|
IfCondition GetCondition() const OVERRIDE {
|
|
return kCondB;
|
|
}
|
|
|
|
IfCondition GetOppositeCondition() const OVERRIDE {
|
|
return kCondAE;
|
|
}
|
|
|
|
private:
|
|
template <typename T> static bool Compute(T x, T y) {
|
|
return MakeUnsigned(x) < MakeUnsigned(y);
|
|
}
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HBelow);
|
|
};
|
|
|
|
class HBelowOrEqual FINAL : public HCondition {
|
|
public:
|
|
HBelowOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
|
|
: HCondition(first, second, dex_pc) {}
|
|
|
|
HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
|
|
return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
|
|
return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
|
|
HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
LOG(FATAL) << DebugName() << " is not defined for float values";
|
|
UNREACHABLE();
|
|
}
|
|
HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
|
|
HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
LOG(FATAL) << DebugName() << " is not defined for double values";
|
|
UNREACHABLE();
|
|
}
|
|
|
|
DECLARE_INSTRUCTION(BelowOrEqual);
|
|
|
|
IfCondition GetCondition() const OVERRIDE {
|
|
return kCondBE;
|
|
}
|
|
|
|
IfCondition GetOppositeCondition() const OVERRIDE {
|
|
return kCondA;
|
|
}
|
|
|
|
private:
|
|
template <typename T> static bool Compute(T x, T y) {
|
|
return MakeUnsigned(x) <= MakeUnsigned(y);
|
|
}
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HBelowOrEqual);
|
|
};
|
|
|
|
class HAbove FINAL : public HCondition {
|
|
public:
|
|
HAbove(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
|
|
: HCondition(first, second, dex_pc) {}
|
|
|
|
HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
|
|
return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
|
|
return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
|
|
HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
LOG(FATAL) << DebugName() << " is not defined for float values";
|
|
UNREACHABLE();
|
|
}
|
|
HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
|
|
HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
LOG(FATAL) << DebugName() << " is not defined for double values";
|
|
UNREACHABLE();
|
|
}
|
|
|
|
DECLARE_INSTRUCTION(Above);
|
|
|
|
IfCondition GetCondition() const OVERRIDE {
|
|
return kCondA;
|
|
}
|
|
|
|
IfCondition GetOppositeCondition() const OVERRIDE {
|
|
return kCondBE;
|
|
}
|
|
|
|
private:
|
|
template <typename T> static bool Compute(T x, T y) {
|
|
return MakeUnsigned(x) > MakeUnsigned(y);
|
|
}
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HAbove);
|
|
};
|
|
|
|
class HAboveOrEqual FINAL : public HCondition {
|
|
public:
|
|
HAboveOrEqual(HInstruction* first, HInstruction* second, uint32_t dex_pc = kNoDexPc)
|
|
: HCondition(first, second, dex_pc) {}
|
|
|
|
HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
|
|
return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
|
|
return MakeConstantCondition(Compute(x->GetValue(), y->GetValue()), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
|
|
HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
LOG(FATAL) << DebugName() << " is not defined for float values";
|
|
UNREACHABLE();
|
|
}
|
|
HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
|
|
HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
LOG(FATAL) << DebugName() << " is not defined for double values";
|
|
UNREACHABLE();
|
|
}
|
|
|
|
DECLARE_INSTRUCTION(AboveOrEqual);
|
|
|
|
IfCondition GetCondition() const OVERRIDE {
|
|
return kCondAE;
|
|
}
|
|
|
|
IfCondition GetOppositeCondition() const OVERRIDE {
|
|
return kCondB;
|
|
}
|
|
|
|
private:
|
|
template <typename T> static bool Compute(T x, T y) {
|
|
return MakeUnsigned(x) >= MakeUnsigned(y);
|
|
}
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HAboveOrEqual);
|
|
};
|
|
|
|
// Instruction to check how two inputs compare to each other.
|
|
// Result is 0 if input0 == input1, 1 if input0 > input1, or -1 if input0 < input1.
|
|
class HCompare FINAL : public HBinaryOperation {
|
|
public:
|
|
// Note that `comparison_type` is the type of comparison performed
|
|
// between the comparison's inputs, not the type of the instantiated
|
|
// HCompare instruction (which is always Primitive::kPrimInt).
|
|
HCompare(Primitive::Type comparison_type,
|
|
HInstruction* first,
|
|
HInstruction* second,
|
|
ComparisonBias bias,
|
|
uint32_t dex_pc)
|
|
: HBinaryOperation(Primitive::kPrimInt,
|
|
first,
|
|
second,
|
|
SideEffectsForArchRuntimeCalls(comparison_type),
|
|
dex_pc) {
|
|
SetPackedField<ComparisonBiasField>(bias);
|
|
DCHECK_EQ(comparison_type, Primitive::PrimitiveKind(first->GetType()));
|
|
DCHECK_EQ(comparison_type, Primitive::PrimitiveKind(second->GetType()));
|
|
}
|
|
|
|
template <typename T>
|
|
int32_t Compute(T x, T y) const { return x > y ? 1 : (x < y ? -1 : 0); }
|
|
|
|
template <typename T>
|
|
int32_t ComputeFP(T x, T y) const {
|
|
DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
|
|
DCHECK_NE(GetBias(), ComparisonBias::kNoBias);
|
|
// Handle the bias.
|
|
return std::isunordered(x, y) ? (IsGtBias() ? 1 : -1) : Compute(x, y);
|
|
}
|
|
|
|
HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
|
|
// Note that there is no "cmp-int" Dex instruction so we shouldn't
|
|
// reach this code path when processing a freshly built HIR
|
|
// graph. However HCompare integer instructions can be synthesized
|
|
// by the instruction simplifier to implement IntegerCompare and
|
|
// IntegerSignum intrinsics, so we have to handle this case.
|
|
return MakeConstantComparison(Compute(x->GetValue(), y->GetValue()), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
|
|
return MakeConstantComparison(Compute(x->GetValue(), y->GetValue()), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
|
|
return MakeConstantComparison(ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
|
|
return MakeConstantComparison(ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
|
|
}
|
|
|
|
bool InstructionDataEquals(const HInstruction* other) const OVERRIDE {
|
|
return GetPackedFields() == other->AsCompare()->GetPackedFields();
|
|
}
|
|
|
|
ComparisonBias GetBias() const { return GetPackedField<ComparisonBiasField>(); }
|
|
|
|
// Does this compare instruction have a "gt bias" (vs an "lt bias")?
|
|
// Only meaningful for floating-point comparisons.
|
|
bool IsGtBias() const {
|
|
DCHECK(Primitive::IsFloatingPointType(InputAt(0)->GetType())) << InputAt(0)->GetType();
|
|
return GetBias() == ComparisonBias::kGtBias;
|
|
}
|
|
|
|
static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type type ATTRIBUTE_UNUSED) {
|
|
// Comparisons do not require a runtime call in any back end.
|
|
return SideEffects::None();
|
|
}
|
|
|
|
DECLARE_INSTRUCTION(Compare);
|
|
|
|
protected:
|
|
static constexpr size_t kFieldComparisonBias = kNumberOfExpressionPackedBits;
|
|
static constexpr size_t kFieldComparisonBiasSize =
|
|
MinimumBitsToStore(static_cast<size_t>(ComparisonBias::kLast));
|
|
static constexpr size_t kNumberOfComparePackedBits =
|
|
kFieldComparisonBias + kFieldComparisonBiasSize;
|
|
static_assert(kNumberOfComparePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
|
|
using ComparisonBiasField =
|
|
BitField<ComparisonBias, kFieldComparisonBias, kFieldComparisonBiasSize>;
|
|
|
|
// Return an integer constant containing the result of a comparison evaluated at compile time.
|
|
HIntConstant* MakeConstantComparison(int32_t value, uint32_t dex_pc) const {
|
|
DCHECK(value == -1 || value == 0 || value == 1) << value;
|
|
return GetBlock()->GetGraph()->GetIntConstant(value, dex_pc);
|
|
}
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(HCompare);
|
|
};
|
|
|
|
class HNewInstance FINAL : public HExpression<1> {
|
|
public:
|
|
HNewInstance(HInstruction* cls,
|
|
uint32_t dex_pc,
|
|
dex::TypeIndex type_index,
|
|
const DexFile& dex_file,
|
|
bool finalizable,
|
|
QuickEntrypointEnum entrypoint)
|
|
: HExpression(Primitive::kPrimNot, SideEffects::CanTriggerGC(), dex_pc),
|
|
type_index_(type_index),
|
|
dex_file_(dex_file),
|
|
entrypoint_(entrypoint) {
|
|
SetPackedFlag<kFlagFinalizable>(finalizable);
|
|
SetRawInputAt(0, cls);
|
|
}
|
|
|
|
dex::TypeIndex GetTypeIndex() const { return type_index_; }
|
|
const DexFile& GetDexFile() const { return dex_file_; }
|
|
|
|
// Calls runtime so needs an environment.
|
|
bool NeedsEnvironment() const OVERRIDE { return true; }
|
|
|
|
// Can throw errors when out-of-memory or if it's not instantiable/accessible.
|
|
bool CanThrow() const OVERRIDE { return true; }
|
|
|
|
bool NeedsChecks() const {
|
|
return entrypoint_ == kQuickAllocObjectWithChecks;
|
|
}
|
|
|
|
bool IsFinalizable() const { return GetPackedFlag<kFlagFinalizable>(); }
|
|
|
|
bool CanBeNull() const OVERRIDE { return false; }
|
|
|
|
QuickEntrypointEnum GetEntrypoint() const { return entrypoint_; }
|
|
|
|
void SetEntrypoint(QuickEntrypointEnum entrypoint) {
|
|
entrypoint_ = entrypoint;
|
|
}
|
|
|
|
HLoadClass* GetLoadClass() const {
|
|
HInstruction* input = InputAt(0);
|
|
if (input->IsClinitCheck()) {
|
|
input = input->InputAt(0);
|
|
}
|
|
DCHECK(input->IsLoadClass());
|
|
return input->AsLoadClass();
|
|
}
|
|
|
|
bool IsStringAlloc() const;
|
|
|
|
DECLARE_INSTRUCTION(NewInstance);
|
|
|
|
private:
|
|
static constexpr size_t kFlagFinalizable = kNumberOfExpressionPackedBits;
|
|
static constexpr size_t kNumberOfNewInstancePackedBits = kFlagFinalizable + 1;
|
|
static_assert(kNumberOfNewInstancePackedBits <= kMaxNumberOfPackedBits,
|
|
"Too many packed fields.");
|
|
|
|
const dex::TypeIndex type_index_;
|
|
const DexFile& dex_file_;
|
|
QuickEntrypointEnum entrypoint_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HNewInstance);
|
|
};
|
|
|
|
enum IntrinsicNeedsEnvironmentOrCache {
|
|
kNoEnvironmentOrCache, // Intrinsic does not require an environment or dex cache.
|
|
kNeedsEnvironmentOrCache // Intrinsic requires an environment or requires a dex cache.
|
|
};
|
|
|
|
enum IntrinsicSideEffects {
|
|
kNoSideEffects, // Intrinsic does not have any heap memory side effects.
|
|
kReadSideEffects, // Intrinsic may read heap memory.
|
|
kWriteSideEffects, // Intrinsic may write heap memory.
|
|
kAllSideEffects // Intrinsic may read or write heap memory, or trigger GC.
|
|
};
|
|
|
|
enum IntrinsicExceptions {
|
|
kNoThrow, // Intrinsic does not throw any exceptions.
|
|
kCanThrow // Intrinsic may throw exceptions.
|
|
};
|
|
|
|
class HInvoke : public HVariableInputSizeInstruction {
|
|
public:
|
|
bool NeedsEnvironment() const OVERRIDE;
|
|
|
|
void SetArgumentAt(size_t index, HInstruction* argument) {
|
|
SetRawInputAt(index, argument);
|
|
}
|
|
|
|
// Return the number of arguments. This number can be lower than
|
|
// the number of inputs returned by InputCount(), as some invoke
|
|
// instructions (e.g. HInvokeStaticOrDirect) can have non-argument
|
|
// inputs at the end of their list of inputs.
|
|
uint32_t GetNumberOfArguments() const { return number_of_arguments_; }
|
|
|
|
Primitive::Type GetType() const OVERRIDE { return GetPackedField<ReturnTypeField>(); }
|
|
|
|
uint32_t GetDexMethodIndex() const { return dex_method_index_; }
|
|
|
|
InvokeType GetInvokeType() const {
|
|
return GetPackedField<InvokeTypeField>();
|
|
}
|
|
|
|
Intrinsics GetIntrinsic() const {
|
|
return intrinsic_;
|
|
}
|
|
|
|
void SetIntrinsic(Intrinsics intrinsic,
|
|
IntrinsicNeedsEnvironmentOrCache needs_env_or_cache,
|
|
IntrinsicSideEffects side_effects,
|
|
IntrinsicExceptions exceptions);
|
|
|
|
bool IsFromInlinedInvoke() const {
|
|
return GetEnvironment()->IsFromInlinedInvoke();
|
|
}
|
|
|
|
void SetCanThrow(bool can_throw) { SetPackedFlag<kFlagCanThrow>(can_throw); }
|
|
|
|
bool CanThrow() const OVERRIDE { return GetPackedFlag<kFlagCanThrow>(); }
|
|
|
|
bool CanBeMoved() const OVERRIDE { return IsIntrinsic() && !DoesAnyWrite(); }
|
|
|
|
bool InstructionDataEquals(const HInstruction* other) const OVERRIDE {
|
|
return intrinsic_ != Intrinsics::kNone && intrinsic_ == other->AsInvoke()->intrinsic_;
|
|
}
|
|
|
|
uint32_t* GetIntrinsicOptimizations() {
|
|
return &intrinsic_optimizations_;
|
|
}
|
|
|
|
const uint32_t* GetIntrinsicOptimizations() const {
|
|
return &intrinsic_optimizations_;
|
|
}
|
|
|
|
bool IsIntrinsic() const { return intrinsic_ != Intrinsics::kNone; }
|
|
|
|
ArtMethod* GetResolvedMethod() const { return resolved_method_; }
|
|
void SetResolvedMethod(ArtMethod* method) { resolved_method_ = method; }
|
|
|
|
DECLARE_ABSTRACT_INSTRUCTION(Invoke);
|
|
|
|
protected:
|
|
static constexpr size_t kFieldInvokeType = kNumberOfGenericPackedBits;
|
|
static constexpr size_t kFieldInvokeTypeSize =
|
|
MinimumBitsToStore(static_cast<size_t>(kMaxInvokeType));
|
|
static constexpr size_t kFieldReturnType =
|
|
kFieldInvokeType + kFieldInvokeTypeSize;
|
|
static constexpr size_t kFieldReturnTypeSize =
|
|
MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast));
|
|
static constexpr size_t kFlagCanThrow = kFieldReturnType + kFieldReturnTypeSize;
|
|
static constexpr size_t kNumberOfInvokePackedBits = kFlagCanThrow + 1;
|
|
static_assert(kNumberOfInvokePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
|
|
using InvokeTypeField = BitField<InvokeType, kFieldInvokeType, kFieldInvokeTypeSize>;
|
|
using ReturnTypeField = BitField<Primitive::Type, kFieldReturnType, kFieldReturnTypeSize>;
|
|
|
|
HInvoke(ArenaAllocator* arena,
|
|
uint32_t number_of_arguments,
|
|
uint32_t number_of_other_inputs,
|
|
Primitive::Type return_type,
|
|
uint32_t dex_pc,
|
|
uint32_t dex_method_index,
|
|
ArtMethod* resolved_method,
|
|
InvokeType invoke_type)
|
|
: HVariableInputSizeInstruction(
|
|
SideEffects::AllExceptGCDependency(), // Assume write/read on all fields/arrays.
|
|
dex_pc,
|
|
arena,
|
|
number_of_arguments + number_of_other_inputs,
|
|
kArenaAllocInvokeInputs),
|
|
number_of_arguments_(number_of_arguments),
|
|
resolved_method_(resolved_method),
|
|
dex_method_index_(dex_method_index),
|
|
intrinsic_(Intrinsics::kNone),
|
|
intrinsic_optimizations_(0) {
|
|
SetPackedField<ReturnTypeField>(return_type);
|
|
SetPackedField<InvokeTypeField>(invoke_type);
|
|
SetPackedFlag<kFlagCanThrow>(true);
|
|
}
|
|
|
|
uint32_t number_of_arguments_;
|
|
ArtMethod* resolved_method_;
|
|
const uint32_t dex_method_index_;
|
|
Intrinsics intrinsic_;
|
|
|
|
// A magic word holding optimizations for intrinsics. See intrinsics.h.
|
|
uint32_t intrinsic_optimizations_;
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(HInvoke);
|
|
};
|
|
|
|
class HInvokeUnresolved FINAL : public HInvoke {
|
|
public:
|
|
HInvokeUnresolved(ArenaAllocator* arena,
|
|
uint32_t number_of_arguments,
|
|
Primitive::Type return_type,
|
|
uint32_t dex_pc,
|
|
uint32_t dex_method_index,
|
|
InvokeType invoke_type)
|
|
: HInvoke(arena,
|
|
number_of_arguments,
|
|
0u /* number_of_other_inputs */,
|
|
return_type,
|
|
dex_pc,
|
|
dex_method_index,
|
|
nullptr,
|
|
invoke_type) {
|
|
}
|
|
|
|
DECLARE_INSTRUCTION(InvokeUnresolved);
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(HInvokeUnresolved);
|
|
};
|
|
|
|
class HInvokePolymorphic FINAL : public HInvoke {
|
|
public:
|
|
HInvokePolymorphic(ArenaAllocator* arena,
|
|
uint32_t number_of_arguments,
|
|
Primitive::Type return_type,
|
|
uint32_t dex_pc,
|
|
uint32_t dex_method_index)
|
|
: HInvoke(arena,
|
|
number_of_arguments,
|
|
0u /* number_of_other_inputs */,
|
|
return_type,
|
|
dex_pc,
|
|
dex_method_index,
|
|
nullptr,
|
|
kVirtual) {}
|
|
|
|
DECLARE_INSTRUCTION(InvokePolymorphic);
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(HInvokePolymorphic);
|
|
};
|
|
|
|
class HInvokeStaticOrDirect FINAL : public HInvoke {
|
|
public:
|
|
// Requirements of this method call regarding the class
|
|
// initialization (clinit) check of its declaring class.
|
|
enum class ClinitCheckRequirement {
|
|
kNone, // Class already initialized.
|
|
kExplicit, // Static call having explicit clinit check as last input.
|
|
kImplicit, // Static call implicitly requiring a clinit check.
|
|
kLast = kImplicit
|
|
};
|
|
|
|
// Determines how to load the target ArtMethod*.
|
|
enum class MethodLoadKind {
|
|
// Use a String init ArtMethod* loaded from Thread entrypoints.
|
|
kStringInit,
|
|
|
|
// Use the method's own ArtMethod* loaded by the register allocator.
|
|
kRecursive,
|
|
|
|
// Use PC-relative boot image ArtMethod* address that will be known at link time.
|
|
// Used for boot image methods referenced by boot image code.
|
|
kBootImageLinkTimePcRelative,
|
|
|
|
// Use ArtMethod* at a known address, embed the direct address in the code.
|
|
// Used for app->boot calls with non-relocatable image and for JIT-compiled calls.
|
|
kDirectAddress,
|
|
|
|
// Load from an entry in the .bss section using a PC-relative load.
|
|
// Used for classes outside boot image when .bss is accessible with a PC-relative load.
|
|
kBssEntry,
|
|
|
|
// Make a runtime call to resolve and call the method. This is the last-resort-kind
|
|
// used when other kinds are unimplemented on a particular architecture.
|
|
kRuntimeCall,
|
|
};
|
|
|
|
// Determines the location of the code pointer.
|
|
enum class CodePtrLocation {
|
|
// Recursive call, use local PC-relative call instruction.
|
|
kCallSelf,
|
|
|
|
// Use code pointer from the ArtMethod*.
|
|
// Used when we don't know the target code. This is also the last-resort-kind used when
|
|
// other kinds are unimplemented or impractical (i.e. slow) on a particular architecture.
|
|
kCallArtMethod,
|
|
};
|
|
|
|
struct DispatchInfo {
|
|
MethodLoadKind method_load_kind;
|
|
CodePtrLocation code_ptr_location;
|
|
// The method load data holds
|
|
// - thread entrypoint offset for kStringInit method if this is a string init invoke.
|
|
// Note that there are multiple string init methods, each having its own offset.
|
|
// - the method address for kDirectAddress
|
|
uint64_t method_load_data;
|
|
};
|
|
|
|
HInvokeStaticOrDirect(ArenaAllocator* arena,
|
|
uint32_t number_of_arguments,
|
|
Primitive::Type return_type,
|
|
uint32_t dex_pc,
|
|
uint32_t method_index,
|
|
ArtMethod* resolved_method,
|
|
DispatchInfo dispatch_info,
|
|
InvokeType invoke_type,
|
|
MethodReference target_method,
|
|
ClinitCheckRequirement clinit_check_requirement)
|
|
: HInvoke(arena,
|
|
number_of_arguments,
|
|
// There is potentially one extra argument for the HCurrentMethod node, and
|
|
// potentially one other if the clinit check is explicit, and potentially
|
|
// one other if the method is a string factory.
|
|
(NeedsCurrentMethodInput(dispatch_info.method_load_kind) ? 1u : 0u) +
|
|
(clinit_check_requirement == ClinitCheckRequirement::kExplicit ? 1u : 0u),
|
|
return_type,
|
|
dex_pc,
|
|
method_index,
|
|
resolved_method,
|
|
invoke_type),
|
|
target_method_(target_method),
|
|
dispatch_info_(dispatch_info) {
|
|
SetPackedField<ClinitCheckRequirementField>(clinit_check_requirement);
|
|
}
|
|
|
|
void SetDispatchInfo(const DispatchInfo& dispatch_info) {
|
|
bool had_current_method_input = HasCurrentMethodInput();
|
|
bool needs_current_method_input = NeedsCurrentMethodInput(dispatch_info.method_load_kind);
|
|
|
|
// Using the current method is the default and once we find a better
|
|
// method load kind, we should not go back to using the current method.
|
|
DCHECK(had_current_method_input || !needs_current_method_input);
|
|
|
|
if (had_current_method_input && !needs_current_method_input) {
|
|
DCHECK_EQ(InputAt(GetSpecialInputIndex()), GetBlock()->GetGraph()->GetCurrentMethod());
|
|
RemoveInputAt(GetSpecialInputIndex());
|
|
}
|
|
dispatch_info_ = dispatch_info;
|
|
}
|
|
|
|
DispatchInfo GetDispatchInfo() const {
|
|
return dispatch_info_;
|
|
}
|
|
|
|
void AddSpecialInput(HInstruction* input) {
|
|
// We allow only one special input.
|
|
DCHECK(!IsStringInit() && !HasCurrentMethodInput());
|
|
DCHECK(InputCount() == GetSpecialInputIndex() ||
|
|
(InputCount() == GetSpecialInputIndex() + 1 && IsStaticWithExplicitClinitCheck()));
|
|
InsertInputAt(GetSpecialInputIndex(), input);
|
|
}
|
|
|
|
using HInstruction::GetInputRecords; // Keep the const version visible.
|
|
ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() OVERRIDE {
|
|
ArrayRef<HUserRecord<HInstruction*>> input_records = HInvoke::GetInputRecords();
|
|
if (kIsDebugBuild && IsStaticWithExplicitClinitCheck()) {
|
|
DCHECK(!input_records.empty());
|
|
DCHECK_GT(input_records.size(), GetNumberOfArguments());
|
|
HInstruction* last_input = input_records.back().GetInstruction();
|
|
// Note: `last_input` may be null during arguments setup.
|
|
if (last_input != nullptr) {
|
|
// `last_input` is the last input of a static invoke marked as having
|
|
// an explicit clinit check. It must either be:
|
|
// - an art::HClinitCheck instruction, set by art::HGraphBuilder; or
|
|
// - an art::HLoadClass instruction, set by art::PrepareForRegisterAllocation.
|
|
DCHECK(last_input->IsClinitCheck() || last_input->IsLoadClass()) << last_input->DebugName();
|
|
}
|
|
}
|
|
return input_records;
|
|
}
|
|
|
|
bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
// We access the method via the dex cache so we can't do an implicit null check.
|
|
// TODO: for intrinsics we can generate implicit null checks.
|
|
return false;
|
|
}
|
|
|
|
bool CanBeNull() const OVERRIDE {
|
|
return GetPackedField<ReturnTypeField>() == Primitive::kPrimNot && !IsStringInit();
|
|
}
|
|
|
|
// Get the index of the special input, if any.
|
|
//
|
|
// If the invoke HasCurrentMethodInput(), the "special input" is the current
|
|
// method pointer; otherwise there may be one platform-specific special input,
|
|
// such as PC-relative addressing base.
|
|
uint32_t GetSpecialInputIndex() const { return GetNumberOfArguments(); }
|
|
bool HasSpecialInput() const { return GetNumberOfArguments() != InputCount(); }
|
|
|
|
MethodLoadKind GetMethodLoadKind() const { return dispatch_info_.method_load_kind; }
|
|
CodePtrLocation GetCodePtrLocation() const { return dispatch_info_.code_ptr_location; }
|
|
bool IsRecursive() const { return GetMethodLoadKind() == MethodLoadKind::kRecursive; }
|
|
bool NeedsDexCacheOfDeclaringClass() const OVERRIDE;
|
|
bool IsStringInit() const { return GetMethodLoadKind() == MethodLoadKind::kStringInit; }
|
|
bool HasMethodAddress() const { return GetMethodLoadKind() == MethodLoadKind::kDirectAddress; }
|
|
bool HasPcRelativeMethodLoadKind() const {
|
|
return GetMethodLoadKind() == MethodLoadKind::kBootImageLinkTimePcRelative ||
|
|
GetMethodLoadKind() == MethodLoadKind::kBssEntry;
|
|
}
|
|
bool HasCurrentMethodInput() const {
|
|
// This function can be called only after the invoke has been fully initialized by the builder.
|
|
if (NeedsCurrentMethodInput(GetMethodLoadKind())) {
|
|
DCHECK(InputAt(GetSpecialInputIndex())->IsCurrentMethod());
|
|
return true;
|
|
} else {
|
|
DCHECK(InputCount() == GetSpecialInputIndex() ||
|
|
!InputAt(GetSpecialInputIndex())->IsCurrentMethod());
|
|
return false;
|
|
}
|
|
}
|
|
|
|
QuickEntrypointEnum GetStringInitEntryPoint() const {
|
|
DCHECK(IsStringInit());
|
|
return static_cast<QuickEntrypointEnum>(dispatch_info_.method_load_data);
|
|
}
|
|
|
|
uint64_t GetMethodAddress() const {
|
|
DCHECK(HasMethodAddress());
|
|
return dispatch_info_.method_load_data;
|
|
}
|
|
|
|
const DexFile& GetDexFileForPcRelativeDexCache() const;
|
|
|
|
ClinitCheckRequirement GetClinitCheckRequirement() const {
|
|
return GetPackedField<ClinitCheckRequirementField>();
|
|
}
|
|
|
|
// Is this instruction a call to a static method?
|
|
bool IsStatic() const {
|
|
return GetInvokeType() == kStatic;
|
|
}
|
|
|
|
MethodReference GetTargetMethod() const {
|
|
return target_method_;
|
|
}
|
|
|
|
// Remove the HClinitCheck or the replacement HLoadClass (set as last input by
|
|
// PrepareForRegisterAllocation::VisitClinitCheck() in lieu of the initial HClinitCheck)
|
|
// instruction; only relevant for static calls with explicit clinit check.
|
|
void RemoveExplicitClinitCheck(ClinitCheckRequirement new_requirement) {
|
|
DCHECK(IsStaticWithExplicitClinitCheck());
|
|
size_t last_input_index = inputs_.size() - 1u;
|
|
HInstruction* last_input = inputs_.back().GetInstruction();
|
|
DCHECK(last_input != nullptr);
|
|
DCHECK(last_input->IsLoadClass() || last_input->IsClinitCheck()) << last_input->DebugName();
|
|
RemoveAsUserOfInput(last_input_index);
|
|
inputs_.pop_back();
|
|
SetPackedField<ClinitCheckRequirementField>(new_requirement);
|
|
DCHECK(!IsStaticWithExplicitClinitCheck());
|
|
}
|
|
|
|
// Is this a call to a static method whose declaring class has an
|
|
// explicit initialization check in the graph?
|
|
bool IsStaticWithExplicitClinitCheck() const {
|
|
return IsStatic() && (GetClinitCheckRequirement() == ClinitCheckRequirement::kExplicit);
|
|
}
|
|
|
|
// Is this a call to a static method whose declaring class has an
|
|
// implicit intialization check requirement?
|
|
bool IsStaticWithImplicitClinitCheck() const {
|
|
return IsStatic() && (GetClinitCheckRequirement() == ClinitCheckRequirement::kImplicit);
|
|
}
|
|
|
|
// Does this method load kind need the current method as an input?
|
|
static bool NeedsCurrentMethodInput(MethodLoadKind kind) {
|
|
return kind == MethodLoadKind::kRecursive || kind == MethodLoadKind::kRuntimeCall;
|
|
}
|
|
|
|
DECLARE_INSTRUCTION(InvokeStaticOrDirect);
|
|
|
|
private:
|
|
static constexpr size_t kFieldClinitCheckRequirement = kNumberOfInvokePackedBits;
|
|
static constexpr size_t kFieldClinitCheckRequirementSize =
|
|
MinimumBitsToStore(static_cast<size_t>(ClinitCheckRequirement::kLast));
|
|
static constexpr size_t kNumberOfInvokeStaticOrDirectPackedBits =
|
|
kFieldClinitCheckRequirement + kFieldClinitCheckRequirementSize;
|
|
static_assert(kNumberOfInvokeStaticOrDirectPackedBits <= kMaxNumberOfPackedBits,
|
|
"Too many packed fields.");
|
|
using ClinitCheckRequirementField = BitField<ClinitCheckRequirement,
|
|
kFieldClinitCheckRequirement,
|
|
kFieldClinitCheckRequirementSize>;
|
|
|
|
// Cached values of the resolved method, to avoid needing the mutator lock.
|
|
MethodReference target_method_;
|
|
DispatchInfo dispatch_info_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HInvokeStaticOrDirect);
|
|
};
|
|
std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::MethodLoadKind rhs);
|
|
std::ostream& operator<<(std::ostream& os, HInvokeStaticOrDirect::ClinitCheckRequirement rhs);
|
|
|
|
class HInvokeVirtual FINAL : public HInvoke {
|
|
public:
|
|
HInvokeVirtual(ArenaAllocator* arena,
|
|
uint32_t number_of_arguments,
|
|
Primitive::Type return_type,
|
|
uint32_t dex_pc,
|
|
uint32_t dex_method_index,
|
|
ArtMethod* resolved_method,
|
|
uint32_t vtable_index)
|
|
: HInvoke(arena,
|
|
number_of_arguments,
|
|
0u,
|
|
return_type,
|
|
dex_pc,
|
|
dex_method_index,
|
|
resolved_method,
|
|
kVirtual),
|
|
vtable_index_(vtable_index) {}
|
|
|
|
bool CanBeNull() const OVERRIDE {
|
|
switch (GetIntrinsic()) {
|
|
case Intrinsics::kThreadCurrentThread:
|
|
case Intrinsics::kStringBufferAppend:
|
|
case Intrinsics::kStringBufferToString:
|
|
case Intrinsics::kStringBuilderAppend:
|
|
case Intrinsics::kStringBuilderToString:
|
|
return false;
|
|
default:
|
|
return HInvoke::CanBeNull();
|
|
}
|
|
}
|
|
|
|
bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
|
|
// TODO: Add implicit null checks in intrinsics.
|
|
return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
|
|
}
|
|
|
|
uint32_t GetVTableIndex() const { return vtable_index_; }
|
|
|
|
DECLARE_INSTRUCTION(InvokeVirtual);
|
|
|
|
private:
|
|
// Cached value of the resolved method, to avoid needing the mutator lock.
|
|
const uint32_t vtable_index_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HInvokeVirtual);
|
|
};
|
|
|
|
class HInvokeInterface FINAL : public HInvoke {
|
|
public:
|
|
HInvokeInterface(ArenaAllocator* arena,
|
|
uint32_t number_of_arguments,
|
|
Primitive::Type return_type,
|
|
uint32_t dex_pc,
|
|
uint32_t dex_method_index,
|
|
ArtMethod* resolved_method,
|
|
uint32_t imt_index)
|
|
: HInvoke(arena,
|
|
number_of_arguments,
|
|
0u,
|
|
return_type,
|
|
dex_pc,
|
|
dex_method_index,
|
|
resolved_method,
|
|
kInterface),
|
|
imt_index_(imt_index) {}
|
|
|
|
bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
|
|
// TODO: Add implicit null checks in intrinsics.
|
|
return (obj == InputAt(0)) && !GetLocations()->Intrinsified();
|
|
}
|
|
|
|
bool NeedsDexCacheOfDeclaringClass() const OVERRIDE {
|
|
// The assembly stub currently needs it.
|
|
return true;
|
|
}
|
|
|
|
uint32_t GetImtIndex() const { return imt_index_; }
|
|
uint32_t GetDexMethodIndex() const { return dex_method_index_; }
|
|
|
|
DECLARE_INSTRUCTION(InvokeInterface);
|
|
|
|
private:
|
|
// Cached value of the resolved method, to avoid needing the mutator lock.
|
|
const uint32_t imt_index_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HInvokeInterface);
|
|
};
|
|
|
|
class HNeg FINAL : public HUnaryOperation {
|
|
public:
|
|
HNeg(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
|
|
: HUnaryOperation(result_type, input, dex_pc) {
|
|
DCHECK_EQ(result_type, Primitive::PrimitiveKind(input->GetType()));
|
|
}
|
|
|
|
template <typename T> static T Compute(T x) { return -x; }
|
|
|
|
HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
|
|
return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HLongConstant* x) const OVERRIDE {
|
|
return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HFloatConstant* x) const OVERRIDE {
|
|
return GetBlock()->GetGraph()->GetFloatConstant(Compute(x->GetValue()), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HDoubleConstant* x) const OVERRIDE {
|
|
return GetBlock()->GetGraph()->GetDoubleConstant(Compute(x->GetValue()), GetDexPc());
|
|
}
|
|
|
|
DECLARE_INSTRUCTION(Neg);
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(HNeg);
|
|
};
|
|
|
|
class HNewArray FINAL : public HExpression<2> {
|
|
public:
|
|
HNewArray(HInstruction* cls, HInstruction* length, uint32_t dex_pc)
|
|
: HExpression(Primitive::kPrimNot, SideEffects::CanTriggerGC(), dex_pc) {
|
|
SetRawInputAt(0, cls);
|
|
SetRawInputAt(1, length);
|
|
}
|
|
|
|
// Calls runtime so needs an environment.
|
|
bool NeedsEnvironment() const OVERRIDE { return true; }
|
|
|
|
// May throw NegativeArraySizeException, OutOfMemoryError, etc.
|
|
bool CanThrow() const OVERRIDE { return true; }
|
|
|
|
bool CanBeNull() const OVERRIDE { return false; }
|
|
|
|
HLoadClass* GetLoadClass() const {
|
|
DCHECK(InputAt(0)->IsLoadClass());
|
|
return InputAt(0)->AsLoadClass();
|
|
}
|
|
|
|
HInstruction* GetLength() const {
|
|
return InputAt(1);
|
|
}
|
|
|
|
DECLARE_INSTRUCTION(NewArray);
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(HNewArray);
|
|
};
|
|
|
|
class HAdd FINAL : public HBinaryOperation {
|
|
public:
|
|
HAdd(Primitive::Type result_type,
|
|
HInstruction* left,
|
|
HInstruction* right,
|
|
uint32_t dex_pc = kNoDexPc)
|
|
: HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
|
|
|
|
bool IsCommutative() const OVERRIDE { return true; }
|
|
|
|
template <typename T> static T Compute(T x, T y) { return x + y; }
|
|
|
|
HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
|
|
return GetBlock()->GetGraph()->GetIntConstant(
|
|
Compute(x->GetValue(), y->GetValue()), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
|
|
return GetBlock()->GetGraph()->GetLongConstant(
|
|
Compute(x->GetValue(), y->GetValue()), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
|
|
return GetBlock()->GetGraph()->GetFloatConstant(
|
|
Compute(x->GetValue(), y->GetValue()), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
|
|
return GetBlock()->GetGraph()->GetDoubleConstant(
|
|
Compute(x->GetValue(), y->GetValue()), GetDexPc());
|
|
}
|
|
|
|
DECLARE_INSTRUCTION(Add);
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(HAdd);
|
|
};
|
|
|
|
class HSub FINAL : public HBinaryOperation {
|
|
public:
|
|
HSub(Primitive::Type result_type,
|
|
HInstruction* left,
|
|
HInstruction* right,
|
|
uint32_t dex_pc = kNoDexPc)
|
|
: HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
|
|
|
|
template <typename T> static T Compute(T x, T y) { return x - y; }
|
|
|
|
HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
|
|
return GetBlock()->GetGraph()->GetIntConstant(
|
|
Compute(x->GetValue(), y->GetValue()), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
|
|
return GetBlock()->GetGraph()->GetLongConstant(
|
|
Compute(x->GetValue(), y->GetValue()), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
|
|
return GetBlock()->GetGraph()->GetFloatConstant(
|
|
Compute(x->GetValue(), y->GetValue()), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
|
|
return GetBlock()->GetGraph()->GetDoubleConstant(
|
|
Compute(x->GetValue(), y->GetValue()), GetDexPc());
|
|
}
|
|
|
|
DECLARE_INSTRUCTION(Sub);
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(HSub);
|
|
};
|
|
|
|
class HMul FINAL : public HBinaryOperation {
|
|
public:
|
|
HMul(Primitive::Type result_type,
|
|
HInstruction* left,
|
|
HInstruction* right,
|
|
uint32_t dex_pc = kNoDexPc)
|
|
: HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
|
|
|
|
bool IsCommutative() const OVERRIDE { return true; }
|
|
|
|
template <typename T> static T Compute(T x, T y) { return x * y; }
|
|
|
|
HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
|
|
return GetBlock()->GetGraph()->GetIntConstant(
|
|
Compute(x->GetValue(), y->GetValue()), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
|
|
return GetBlock()->GetGraph()->GetLongConstant(
|
|
Compute(x->GetValue(), y->GetValue()), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
|
|
return GetBlock()->GetGraph()->GetFloatConstant(
|
|
Compute(x->GetValue(), y->GetValue()), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
|
|
return GetBlock()->GetGraph()->GetDoubleConstant(
|
|
Compute(x->GetValue(), y->GetValue()), GetDexPc());
|
|
}
|
|
|
|
DECLARE_INSTRUCTION(Mul);
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(HMul);
|
|
};
|
|
|
|
class HDiv FINAL : public HBinaryOperation {
|
|
public:
|
|
HDiv(Primitive::Type result_type,
|
|
HInstruction* left,
|
|
HInstruction* right,
|
|
uint32_t dex_pc)
|
|
: HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
|
|
|
|
template <typename T>
|
|
T ComputeIntegral(T x, T y) const {
|
|
DCHECK(!Primitive::IsFloatingPointType(GetType())) << GetType();
|
|
// Our graph structure ensures we never have 0 for `y` during
|
|
// constant folding.
|
|
DCHECK_NE(y, 0);
|
|
// Special case -1 to avoid getting a SIGFPE on x86(_64).
|
|
return (y == -1) ? -x : x / y;
|
|
}
|
|
|
|
template <typename T>
|
|
T ComputeFP(T x, T y) const {
|
|
DCHECK(Primitive::IsFloatingPointType(GetType())) << GetType();
|
|
return x / y;
|
|
}
|
|
|
|
HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
|
|
return GetBlock()->GetGraph()->GetIntConstant(
|
|
ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
|
|
return GetBlock()->GetGraph()->GetLongConstant(
|
|
ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
|
|
return GetBlock()->GetGraph()->GetFloatConstant(
|
|
ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
|
|
return GetBlock()->GetGraph()->GetDoubleConstant(
|
|
ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
|
|
}
|
|
|
|
DECLARE_INSTRUCTION(Div);
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(HDiv);
|
|
};
|
|
|
|
class HRem FINAL : public HBinaryOperation {
|
|
public:
|
|
HRem(Primitive::Type result_type,
|
|
HInstruction* left,
|
|
HInstruction* right,
|
|
uint32_t dex_pc)
|
|
: HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
|
|
|
|
template <typename T>
|
|
T ComputeIntegral(T x, T y) const {
|
|
DCHECK(!Primitive::IsFloatingPointType(GetType())) << GetType();
|
|
// Our graph structure ensures we never have 0 for `y` during
|
|
// constant folding.
|
|
DCHECK_NE(y, 0);
|
|
// Special case -1 to avoid getting a SIGFPE on x86(_64).
|
|
return (y == -1) ? 0 : x % y;
|
|
}
|
|
|
|
template <typename T>
|
|
T ComputeFP(T x, T y) const {
|
|
DCHECK(Primitive::IsFloatingPointType(GetType())) << GetType();
|
|
return std::fmod(x, y);
|
|
}
|
|
|
|
HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
|
|
return GetBlock()->GetGraph()->GetIntConstant(
|
|
ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
|
|
return GetBlock()->GetGraph()->GetLongConstant(
|
|
ComputeIntegral(x->GetValue(), y->GetValue()), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HFloatConstant* x, HFloatConstant* y) const OVERRIDE {
|
|
return GetBlock()->GetGraph()->GetFloatConstant(
|
|
ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HDoubleConstant* x, HDoubleConstant* y) const OVERRIDE {
|
|
return GetBlock()->GetGraph()->GetDoubleConstant(
|
|
ComputeFP(x->GetValue(), y->GetValue()), GetDexPc());
|
|
}
|
|
|
|
DECLARE_INSTRUCTION(Rem);
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(HRem);
|
|
};
|
|
|
|
class HDivZeroCheck FINAL : public HExpression<1> {
|
|
public:
|
|
// `HDivZeroCheck` can trigger GC, as it may call the `ArithmeticException`
|
|
// constructor.
|
|
HDivZeroCheck(HInstruction* value, uint32_t dex_pc)
|
|
: HExpression(value->GetType(), SideEffects::CanTriggerGC(), dex_pc) {
|
|
SetRawInputAt(0, value);
|
|
}
|
|
|
|
Primitive::Type GetType() const OVERRIDE { return InputAt(0)->GetType(); }
|
|
|
|
bool CanBeMoved() const OVERRIDE { return true; }
|
|
|
|
bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
return true;
|
|
}
|
|
|
|
bool NeedsEnvironment() const OVERRIDE { return true; }
|
|
bool CanThrow() const OVERRIDE { return true; }
|
|
|
|
DECLARE_INSTRUCTION(DivZeroCheck);
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(HDivZeroCheck);
|
|
};
|
|
|
|
class HShl FINAL : public HBinaryOperation {
|
|
public:
|
|
HShl(Primitive::Type result_type,
|
|
HInstruction* value,
|
|
HInstruction* distance,
|
|
uint32_t dex_pc = kNoDexPc)
|
|
: HBinaryOperation(result_type, value, distance, SideEffects::None(), dex_pc) {
|
|
DCHECK_EQ(result_type, Primitive::PrimitiveKind(value->GetType()));
|
|
DCHECK_EQ(Primitive::kPrimInt, Primitive::PrimitiveKind(distance->GetType()));
|
|
}
|
|
|
|
template <typename T>
|
|
static T Compute(T value, int32_t distance, int32_t max_shift_distance) {
|
|
return value << (distance & max_shift_distance);
|
|
}
|
|
|
|
HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const OVERRIDE {
|
|
return GetBlock()->GetGraph()->GetIntConstant(
|
|
Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const OVERRIDE {
|
|
return GetBlock()->GetGraph()->GetLongConstant(
|
|
Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED,
|
|
HLongConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
LOG(FATAL) << DebugName() << " is not defined for the (long, long) case.";
|
|
UNREACHABLE();
|
|
}
|
|
HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED,
|
|
HFloatConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
LOG(FATAL) << DebugName() << " is not defined for float values";
|
|
UNREACHABLE();
|
|
}
|
|
HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED,
|
|
HDoubleConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
LOG(FATAL) << DebugName() << " is not defined for double values";
|
|
UNREACHABLE();
|
|
}
|
|
|
|
DECLARE_INSTRUCTION(Shl);
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(HShl);
|
|
};
|
|
|
|
class HShr FINAL : public HBinaryOperation {
|
|
public:
|
|
HShr(Primitive::Type result_type,
|
|
HInstruction* value,
|
|
HInstruction* distance,
|
|
uint32_t dex_pc = kNoDexPc)
|
|
: HBinaryOperation(result_type, value, distance, SideEffects::None(), dex_pc) {
|
|
DCHECK_EQ(result_type, Primitive::PrimitiveKind(value->GetType()));
|
|
DCHECK_EQ(Primitive::kPrimInt, Primitive::PrimitiveKind(distance->GetType()));
|
|
}
|
|
|
|
template <typename T>
|
|
static T Compute(T value, int32_t distance, int32_t max_shift_distance) {
|
|
return value >> (distance & max_shift_distance);
|
|
}
|
|
|
|
HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const OVERRIDE {
|
|
return GetBlock()->GetGraph()->GetIntConstant(
|
|
Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const OVERRIDE {
|
|
return GetBlock()->GetGraph()->GetLongConstant(
|
|
Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED,
|
|
HLongConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
LOG(FATAL) << DebugName() << " is not defined for the (long, long) case.";
|
|
UNREACHABLE();
|
|
}
|
|
HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED,
|
|
HFloatConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
LOG(FATAL) << DebugName() << " is not defined for float values";
|
|
UNREACHABLE();
|
|
}
|
|
HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED,
|
|
HDoubleConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
LOG(FATAL) << DebugName() << " is not defined for double values";
|
|
UNREACHABLE();
|
|
}
|
|
|
|
DECLARE_INSTRUCTION(Shr);
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(HShr);
|
|
};
|
|
|
|
class HUShr FINAL : public HBinaryOperation {
|
|
public:
|
|
HUShr(Primitive::Type result_type,
|
|
HInstruction* value,
|
|
HInstruction* distance,
|
|
uint32_t dex_pc = kNoDexPc)
|
|
: HBinaryOperation(result_type, value, distance, SideEffects::None(), dex_pc) {
|
|
DCHECK_EQ(result_type, Primitive::PrimitiveKind(value->GetType()));
|
|
DCHECK_EQ(Primitive::kPrimInt, Primitive::PrimitiveKind(distance->GetType()));
|
|
}
|
|
|
|
template <typename T>
|
|
static T Compute(T value, int32_t distance, int32_t max_shift_distance) {
|
|
typedef typename std::make_unsigned<T>::type V;
|
|
V ux = static_cast<V>(value);
|
|
return static_cast<T>(ux >> (distance & max_shift_distance));
|
|
}
|
|
|
|
HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const OVERRIDE {
|
|
return GetBlock()->GetGraph()->GetIntConstant(
|
|
Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const OVERRIDE {
|
|
return GetBlock()->GetGraph()->GetLongConstant(
|
|
Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED,
|
|
HLongConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
LOG(FATAL) << DebugName() << " is not defined for the (long, long) case.";
|
|
UNREACHABLE();
|
|
}
|
|
HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED,
|
|
HFloatConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
LOG(FATAL) << DebugName() << " is not defined for float values";
|
|
UNREACHABLE();
|
|
}
|
|
HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED,
|
|
HDoubleConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
LOG(FATAL) << DebugName() << " is not defined for double values";
|
|
UNREACHABLE();
|
|
}
|
|
|
|
DECLARE_INSTRUCTION(UShr);
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(HUShr);
|
|
};
|
|
|
|
class HAnd FINAL : public HBinaryOperation {
|
|
public:
|
|
HAnd(Primitive::Type result_type,
|
|
HInstruction* left,
|
|
HInstruction* right,
|
|
uint32_t dex_pc = kNoDexPc)
|
|
: HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
|
|
|
|
bool IsCommutative() const OVERRIDE { return true; }
|
|
|
|
template <typename T> static T Compute(T x, T y) { return x & y; }
|
|
|
|
HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
|
|
return GetBlock()->GetGraph()->GetIntConstant(
|
|
Compute(x->GetValue(), y->GetValue()), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
|
|
return GetBlock()->GetGraph()->GetLongConstant(
|
|
Compute(x->GetValue(), y->GetValue()), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
|
|
HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
LOG(FATAL) << DebugName() << " is not defined for float values";
|
|
UNREACHABLE();
|
|
}
|
|
HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
|
|
HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
LOG(FATAL) << DebugName() << " is not defined for double values";
|
|
UNREACHABLE();
|
|
}
|
|
|
|
DECLARE_INSTRUCTION(And);
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(HAnd);
|
|
};
|
|
|
|
class HOr FINAL : public HBinaryOperation {
|
|
public:
|
|
HOr(Primitive::Type result_type,
|
|
HInstruction* left,
|
|
HInstruction* right,
|
|
uint32_t dex_pc = kNoDexPc)
|
|
: HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
|
|
|
|
bool IsCommutative() const OVERRIDE { return true; }
|
|
|
|
template <typename T> static T Compute(T x, T y) { return x | y; }
|
|
|
|
HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
|
|
return GetBlock()->GetGraph()->GetIntConstant(
|
|
Compute(x->GetValue(), y->GetValue()), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
|
|
return GetBlock()->GetGraph()->GetLongConstant(
|
|
Compute(x->GetValue(), y->GetValue()), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
|
|
HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
LOG(FATAL) << DebugName() << " is not defined for float values";
|
|
UNREACHABLE();
|
|
}
|
|
HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
|
|
HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
LOG(FATAL) << DebugName() << " is not defined for double values";
|
|
UNREACHABLE();
|
|
}
|
|
|
|
DECLARE_INSTRUCTION(Or);
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(HOr);
|
|
};
|
|
|
|
class HXor FINAL : public HBinaryOperation {
|
|
public:
|
|
HXor(Primitive::Type result_type,
|
|
HInstruction* left,
|
|
HInstruction* right,
|
|
uint32_t dex_pc = kNoDexPc)
|
|
: HBinaryOperation(result_type, left, right, SideEffects::None(), dex_pc) {}
|
|
|
|
bool IsCommutative() const OVERRIDE { return true; }
|
|
|
|
template <typename T> static T Compute(T x, T y) { return x ^ y; }
|
|
|
|
HConstant* Evaluate(HIntConstant* x, HIntConstant* y) const OVERRIDE {
|
|
return GetBlock()->GetGraph()->GetIntConstant(
|
|
Compute(x->GetValue(), y->GetValue()), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HLongConstant* x, HLongConstant* y) const OVERRIDE {
|
|
return GetBlock()->GetGraph()->GetLongConstant(
|
|
Compute(x->GetValue(), y->GetValue()), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED,
|
|
HFloatConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
LOG(FATAL) << DebugName() << " is not defined for float values";
|
|
UNREACHABLE();
|
|
}
|
|
HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED,
|
|
HDoubleConstant* y ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
LOG(FATAL) << DebugName() << " is not defined for double values";
|
|
UNREACHABLE();
|
|
}
|
|
|
|
DECLARE_INSTRUCTION(Xor);
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(HXor);
|
|
};
|
|
|
|
class HRor FINAL : public HBinaryOperation {
|
|
public:
|
|
HRor(Primitive::Type result_type, HInstruction* value, HInstruction* distance)
|
|
: HBinaryOperation(result_type, value, distance) {
|
|
DCHECK_EQ(result_type, Primitive::PrimitiveKind(value->GetType()));
|
|
DCHECK_EQ(Primitive::kPrimInt, Primitive::PrimitiveKind(distance->GetType()));
|
|
}
|
|
|
|
template <typename T>
|
|
static T Compute(T value, int32_t distance, int32_t max_shift_value) {
|
|
typedef typename std::make_unsigned<T>::type V;
|
|
V ux = static_cast<V>(value);
|
|
if ((distance & max_shift_value) == 0) {
|
|
return static_cast<T>(ux);
|
|
} else {
|
|
const V reg_bits = sizeof(T) * 8;
|
|
return static_cast<T>(ux >> (distance & max_shift_value)) |
|
|
(value << (reg_bits - (distance & max_shift_value)));
|
|
}
|
|
}
|
|
|
|
HConstant* Evaluate(HIntConstant* value, HIntConstant* distance) const OVERRIDE {
|
|
return GetBlock()->GetGraph()->GetIntConstant(
|
|
Compute(value->GetValue(), distance->GetValue(), kMaxIntShiftDistance), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HLongConstant* value, HIntConstant* distance) const OVERRIDE {
|
|
return GetBlock()->GetGraph()->GetLongConstant(
|
|
Compute(value->GetValue(), distance->GetValue(), kMaxLongShiftDistance), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HLongConstant* value ATTRIBUTE_UNUSED,
|
|
HLongConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
LOG(FATAL) << DebugName() << " is not defined for the (long, long) case.";
|
|
UNREACHABLE();
|
|
}
|
|
HConstant* Evaluate(HFloatConstant* value ATTRIBUTE_UNUSED,
|
|
HFloatConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
LOG(FATAL) << DebugName() << " is not defined for float values";
|
|
UNREACHABLE();
|
|
}
|
|
HConstant* Evaluate(HDoubleConstant* value ATTRIBUTE_UNUSED,
|
|
HDoubleConstant* distance ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
LOG(FATAL) << DebugName() << " is not defined for double values";
|
|
UNREACHABLE();
|
|
}
|
|
|
|
DECLARE_INSTRUCTION(Ror);
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(HRor);
|
|
};
|
|
|
|
// The value of a parameter in this method. Its location depends on
|
|
// the calling convention.
|
|
class HParameterValue FINAL : public HExpression<0> {
|
|
public:
|
|
HParameterValue(const DexFile& dex_file,
|
|
dex::TypeIndex type_index,
|
|
uint8_t index,
|
|
Primitive::Type parameter_type,
|
|
bool is_this = false)
|
|
: HExpression(parameter_type, SideEffects::None(), kNoDexPc),
|
|
dex_file_(dex_file),
|
|
type_index_(type_index),
|
|
index_(index) {
|
|
SetPackedFlag<kFlagIsThis>(is_this);
|
|
SetPackedFlag<kFlagCanBeNull>(!is_this);
|
|
}
|
|
|
|
const DexFile& GetDexFile() const { return dex_file_; }
|
|
dex::TypeIndex GetTypeIndex() const { return type_index_; }
|
|
uint8_t GetIndex() const { return index_; }
|
|
bool IsThis() const { return GetPackedFlag<kFlagIsThis>(); }
|
|
|
|
bool CanBeNull() const OVERRIDE { return GetPackedFlag<kFlagCanBeNull>(); }
|
|
void SetCanBeNull(bool can_be_null) { SetPackedFlag<kFlagCanBeNull>(can_be_null); }
|
|
|
|
DECLARE_INSTRUCTION(ParameterValue);
|
|
|
|
private:
|
|
// Whether or not the parameter value corresponds to 'this' argument.
|
|
static constexpr size_t kFlagIsThis = kNumberOfExpressionPackedBits;
|
|
static constexpr size_t kFlagCanBeNull = kFlagIsThis + 1;
|
|
static constexpr size_t kNumberOfParameterValuePackedBits = kFlagCanBeNull + 1;
|
|
static_assert(kNumberOfParameterValuePackedBits <= kMaxNumberOfPackedBits,
|
|
"Too many packed fields.");
|
|
|
|
const DexFile& dex_file_;
|
|
const dex::TypeIndex type_index_;
|
|
// The index of this parameter in the parameters list. Must be less
|
|
// than HGraph::number_of_in_vregs_.
|
|
const uint8_t index_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HParameterValue);
|
|
};
|
|
|
|
class HNot FINAL : public HUnaryOperation {
|
|
public:
|
|
HNot(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc = kNoDexPc)
|
|
: HUnaryOperation(result_type, input, dex_pc) {}
|
|
|
|
bool CanBeMoved() const OVERRIDE { return true; }
|
|
bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
return true;
|
|
}
|
|
|
|
template <typename T> static T Compute(T x) { return ~x; }
|
|
|
|
HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
|
|
return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HLongConstant* x) const OVERRIDE {
|
|
return GetBlock()->GetGraph()->GetLongConstant(Compute(x->GetValue()), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
LOG(FATAL) << DebugName() << " is not defined for float values";
|
|
UNREACHABLE();
|
|
}
|
|
HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
LOG(FATAL) << DebugName() << " is not defined for double values";
|
|
UNREACHABLE();
|
|
}
|
|
|
|
DECLARE_INSTRUCTION(Not);
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(HNot);
|
|
};
|
|
|
|
class HBooleanNot FINAL : public HUnaryOperation {
|
|
public:
|
|
explicit HBooleanNot(HInstruction* input, uint32_t dex_pc = kNoDexPc)
|
|
: HUnaryOperation(Primitive::Type::kPrimBoolean, input, dex_pc) {}
|
|
|
|
bool CanBeMoved() const OVERRIDE { return true; }
|
|
bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
return true;
|
|
}
|
|
|
|
template <typename T> static bool Compute(T x) {
|
|
DCHECK(IsUint<1>(x)) << x;
|
|
return !x;
|
|
}
|
|
|
|
HConstant* Evaluate(HIntConstant* x) const OVERRIDE {
|
|
return GetBlock()->GetGraph()->GetIntConstant(Compute(x->GetValue()), GetDexPc());
|
|
}
|
|
HConstant* Evaluate(HLongConstant* x ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
LOG(FATAL) << DebugName() << " is not defined for long values";
|
|
UNREACHABLE();
|
|
}
|
|
HConstant* Evaluate(HFloatConstant* x ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
LOG(FATAL) << DebugName() << " is not defined for float values";
|
|
UNREACHABLE();
|
|
}
|
|
HConstant* Evaluate(HDoubleConstant* x ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
LOG(FATAL) << DebugName() << " is not defined for double values";
|
|
UNREACHABLE();
|
|
}
|
|
|
|
DECLARE_INSTRUCTION(BooleanNot);
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(HBooleanNot);
|
|
};
|
|
|
|
class HTypeConversion FINAL : public HExpression<1> {
|
|
public:
|
|
// Instantiate a type conversion of `input` to `result_type`.
|
|
HTypeConversion(Primitive::Type result_type, HInstruction* input, uint32_t dex_pc)
|
|
: HExpression(result_type, SideEffects::None(), dex_pc) {
|
|
SetRawInputAt(0, input);
|
|
// Invariant: We should never generate a conversion to a Boolean value.
|
|
DCHECK_NE(Primitive::kPrimBoolean, result_type);
|
|
}
|
|
|
|
HInstruction* GetInput() const { return InputAt(0); }
|
|
Primitive::Type GetInputType() const { return GetInput()->GetType(); }
|
|
Primitive::Type GetResultType() const { return GetType(); }
|
|
|
|
bool CanBeMoved() const OVERRIDE { return true; }
|
|
bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
return true;
|
|
}
|
|
|
|
// Try to statically evaluate the conversion and return a HConstant
|
|
// containing the result. If the input cannot be converted, return nullptr.
|
|
HConstant* TryStaticEvaluation() const;
|
|
|
|
DECLARE_INSTRUCTION(TypeConversion);
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(HTypeConversion);
|
|
};
|
|
|
|
static constexpr uint32_t kNoRegNumber = -1;
|
|
|
|
class HNullCheck FINAL : public HExpression<1> {
|
|
public:
|
|
// `HNullCheck` can trigger GC, as it may call the `NullPointerException`
|
|
// constructor.
|
|
HNullCheck(HInstruction* value, uint32_t dex_pc)
|
|
: HExpression(value->GetType(), SideEffects::CanTriggerGC(), dex_pc) {
|
|
SetRawInputAt(0, value);
|
|
}
|
|
|
|
bool CanBeMoved() const OVERRIDE { return true; }
|
|
bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
return true;
|
|
}
|
|
|
|
bool NeedsEnvironment() const OVERRIDE { return true; }
|
|
|
|
bool CanThrow() const OVERRIDE { return true; }
|
|
|
|
bool CanBeNull() const OVERRIDE { return false; }
|
|
|
|
|
|
DECLARE_INSTRUCTION(NullCheck);
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(HNullCheck);
|
|
};
|
|
|
|
// Embeds an ArtField and all the information required by the compiler. We cache
|
|
// that information to avoid requiring the mutator lock every time we need it.
|
|
class FieldInfo : public ValueObject {
|
|
public:
|
|
FieldInfo(ArtField* field,
|
|
MemberOffset field_offset,
|
|
Primitive::Type field_type,
|
|
bool is_volatile,
|
|
uint32_t index,
|
|
uint16_t declaring_class_def_index,
|
|
const DexFile& dex_file)
|
|
: field_(field),
|
|
field_offset_(field_offset),
|
|
field_type_(field_type),
|
|
is_volatile_(is_volatile),
|
|
index_(index),
|
|
declaring_class_def_index_(declaring_class_def_index),
|
|
dex_file_(dex_file) {}
|
|
|
|
ArtField* GetField() const { return field_; }
|
|
MemberOffset GetFieldOffset() const { return field_offset_; }
|
|
Primitive::Type GetFieldType() const { return field_type_; }
|
|
uint32_t GetFieldIndex() const { return index_; }
|
|
uint16_t GetDeclaringClassDefIndex() const { return declaring_class_def_index_;}
|
|
const DexFile& GetDexFile() const { return dex_file_; }
|
|
bool IsVolatile() const { return is_volatile_; }
|
|
|
|
private:
|
|
ArtField* const field_;
|
|
const MemberOffset field_offset_;
|
|
const Primitive::Type field_type_;
|
|
const bool is_volatile_;
|
|
const uint32_t index_;
|
|
const uint16_t declaring_class_def_index_;
|
|
const DexFile& dex_file_;
|
|
};
|
|
|
|
class HInstanceFieldGet FINAL : public HExpression<1> {
|
|
public:
|
|
HInstanceFieldGet(HInstruction* value,
|
|
ArtField* field,
|
|
Primitive::Type field_type,
|
|
MemberOffset field_offset,
|
|
bool is_volatile,
|
|
uint32_t field_idx,
|
|
uint16_t declaring_class_def_index,
|
|
const DexFile& dex_file,
|
|
uint32_t dex_pc)
|
|
: HExpression(field_type, SideEffects::FieldReadOfType(field_type, is_volatile), dex_pc),
|
|
field_info_(field,
|
|
field_offset,
|
|
field_type,
|
|
is_volatile,
|
|
field_idx,
|
|
declaring_class_def_index,
|
|
dex_file) {
|
|
SetRawInputAt(0, value);
|
|
}
|
|
|
|
bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
|
|
|
|
bool InstructionDataEquals(const HInstruction* other) const OVERRIDE {
|
|
const HInstanceFieldGet* other_get = other->AsInstanceFieldGet();
|
|
return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
|
|
}
|
|
|
|
bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
|
|
return (obj == InputAt(0)) && art::CanDoImplicitNullCheckOn(GetFieldOffset().Uint32Value());
|
|
}
|
|
|
|
size_t ComputeHashCode() const OVERRIDE {
|
|
return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
|
|
}
|
|
|
|
const FieldInfo& GetFieldInfo() const { return field_info_; }
|
|
MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
|
|
Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
|
|
bool IsVolatile() const { return field_info_.IsVolatile(); }
|
|
|
|
DECLARE_INSTRUCTION(InstanceFieldGet);
|
|
|
|
private:
|
|
const FieldInfo field_info_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HInstanceFieldGet);
|
|
};
|
|
|
|
class HInstanceFieldSet FINAL : public HTemplateInstruction<2> {
|
|
public:
|
|
HInstanceFieldSet(HInstruction* object,
|
|
HInstruction* value,
|
|
ArtField* field,
|
|
Primitive::Type field_type,
|
|
MemberOffset field_offset,
|
|
bool is_volatile,
|
|
uint32_t field_idx,
|
|
uint16_t declaring_class_def_index,
|
|
const DexFile& dex_file,
|
|
uint32_t dex_pc)
|
|
: HTemplateInstruction(SideEffects::FieldWriteOfType(field_type, is_volatile), dex_pc),
|
|
field_info_(field,
|
|
field_offset,
|
|
field_type,
|
|
is_volatile,
|
|
field_idx,
|
|
declaring_class_def_index,
|
|
dex_file) {
|
|
SetPackedFlag<kFlagValueCanBeNull>(true);
|
|
SetRawInputAt(0, object);
|
|
SetRawInputAt(1, value);
|
|
}
|
|
|
|
bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
|
|
return (obj == InputAt(0)) && art::CanDoImplicitNullCheckOn(GetFieldOffset().Uint32Value());
|
|
}
|
|
|
|
const FieldInfo& GetFieldInfo() const { return field_info_; }
|
|
MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
|
|
Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
|
|
bool IsVolatile() const { return field_info_.IsVolatile(); }
|
|
HInstruction* GetValue() const { return InputAt(1); }
|
|
bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); }
|
|
void ClearValueCanBeNull() { SetPackedFlag<kFlagValueCanBeNull>(false); }
|
|
|
|
DECLARE_INSTRUCTION(InstanceFieldSet);
|
|
|
|
private:
|
|
static constexpr size_t kFlagValueCanBeNull = kNumberOfGenericPackedBits;
|
|
static constexpr size_t kNumberOfInstanceFieldSetPackedBits = kFlagValueCanBeNull + 1;
|
|
static_assert(kNumberOfInstanceFieldSetPackedBits <= kMaxNumberOfPackedBits,
|
|
"Too many packed fields.");
|
|
|
|
const FieldInfo field_info_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HInstanceFieldSet);
|
|
};
|
|
|
|
class HArrayGet FINAL : public HExpression<2> {
|
|
public:
|
|
HArrayGet(HInstruction* array,
|
|
HInstruction* index,
|
|
Primitive::Type type,
|
|
uint32_t dex_pc,
|
|
bool is_string_char_at = false)
|
|
: HExpression(type, SideEffects::ArrayReadOfType(type), dex_pc) {
|
|
SetPackedFlag<kFlagIsStringCharAt>(is_string_char_at);
|
|
SetRawInputAt(0, array);
|
|
SetRawInputAt(1, index);
|
|
}
|
|
|
|
bool CanBeMoved() const OVERRIDE { return true; }
|
|
bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
return true;
|
|
}
|
|
bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
// TODO: We can be smarter here.
|
|
// Currently, unless the array is the result of NewArray, the array access is always
|
|
// preceded by some form of null NullCheck necessary for the bounds check, usually
|
|
// implicit null check on the ArrayLength input to BoundsCheck or Deoptimize for
|
|
// dynamic BCE. There are cases when these could be removed to produce better code.
|
|
// If we ever add optimizations to do so we should allow an implicit check here
|
|
// (as long as the address falls in the first page).
|
|
//
|
|
// As an example of such fancy optimization, we could eliminate BoundsCheck for
|
|
// a = cond ? new int[1] : null;
|
|
// a[0]; // The Phi does not need bounds check for either input.
|
|
return false;
|
|
}
|
|
|
|
bool IsEquivalentOf(HArrayGet* other) const {
|
|
bool result = (GetDexPc() == other->GetDexPc());
|
|
if (kIsDebugBuild && result) {
|
|
DCHECK_EQ(GetBlock(), other->GetBlock());
|
|
DCHECK_EQ(GetArray(), other->GetArray());
|
|
DCHECK_EQ(GetIndex(), other->GetIndex());
|
|
if (Primitive::IsIntOrLongType(GetType())) {
|
|
DCHECK(Primitive::IsFloatingPointType(other->GetType())) << other->GetType();
|
|
} else {
|
|
DCHECK(Primitive::IsFloatingPointType(GetType())) << GetType();
|
|
DCHECK(Primitive::IsIntOrLongType(other->GetType())) << other->GetType();
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
bool IsStringCharAt() const { return GetPackedFlag<kFlagIsStringCharAt>(); }
|
|
|
|
HInstruction* GetArray() const { return InputAt(0); }
|
|
HInstruction* GetIndex() const { return InputAt(1); }
|
|
|
|
DECLARE_INSTRUCTION(ArrayGet);
|
|
|
|
private:
|
|
// We treat a String as an array, creating the HArrayGet from String.charAt()
|
|
// intrinsic in the instruction simplifier. We can always determine whether
|
|
// a particular HArrayGet is actually a String.charAt() by looking at the type
|
|
// of the input but that requires holding the mutator lock, so we prefer to use
|
|
// a flag, so that code generators don't need to do the locking.
|
|
static constexpr size_t kFlagIsStringCharAt = kNumberOfExpressionPackedBits;
|
|
static constexpr size_t kNumberOfArrayGetPackedBits = kFlagIsStringCharAt + 1;
|
|
static_assert(kNumberOfArrayGetPackedBits <= HInstruction::kMaxNumberOfPackedBits,
|
|
"Too many packed fields.");
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HArrayGet);
|
|
};
|
|
|
|
class HArraySet FINAL : public HTemplateInstruction<3> {
|
|
public:
|
|
HArraySet(HInstruction* array,
|
|
HInstruction* index,
|
|
HInstruction* value,
|
|
Primitive::Type expected_component_type,
|
|
uint32_t dex_pc)
|
|
: HTemplateInstruction(SideEffects::None(), dex_pc) {
|
|
SetPackedField<ExpectedComponentTypeField>(expected_component_type);
|
|
SetPackedFlag<kFlagNeedsTypeCheck>(value->GetType() == Primitive::kPrimNot);
|
|
SetPackedFlag<kFlagValueCanBeNull>(true);
|
|
SetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>(false);
|
|
SetRawInputAt(0, array);
|
|
SetRawInputAt(1, index);
|
|
SetRawInputAt(2, value);
|
|
// Make a best guess now, may be refined during SSA building.
|
|
ComputeSideEffects();
|
|
}
|
|
|
|
bool NeedsEnvironment() const OVERRIDE {
|
|
// We call a runtime method to throw ArrayStoreException.
|
|
return NeedsTypeCheck();
|
|
}
|
|
|
|
// Can throw ArrayStoreException.
|
|
bool CanThrow() const OVERRIDE { return NeedsTypeCheck(); }
|
|
|
|
bool CanDoImplicitNullCheckOn(HInstruction* obj ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
// TODO: Same as for ArrayGet.
|
|
return false;
|
|
}
|
|
|
|
void ClearNeedsTypeCheck() {
|
|
SetPackedFlag<kFlagNeedsTypeCheck>(false);
|
|
}
|
|
|
|
void ClearValueCanBeNull() {
|
|
SetPackedFlag<kFlagValueCanBeNull>(false);
|
|
}
|
|
|
|
void SetStaticTypeOfArrayIsObjectArray() {
|
|
SetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>(true);
|
|
}
|
|
|
|
bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); }
|
|
bool NeedsTypeCheck() const { return GetPackedFlag<kFlagNeedsTypeCheck>(); }
|
|
bool StaticTypeOfArrayIsObjectArray() const {
|
|
return GetPackedFlag<kFlagStaticTypeOfArrayIsObjectArray>();
|
|
}
|
|
|
|
HInstruction* GetArray() const { return InputAt(0); }
|
|
HInstruction* GetIndex() const { return InputAt(1); }
|
|
HInstruction* GetValue() const { return InputAt(2); }
|
|
|
|
Primitive::Type GetComponentType() const {
|
|
// The Dex format does not type floating point index operations. Since the
|
|
// `expected_component_type_` is set during building and can therefore not
|
|
// be correct, we also check what is the value type. If it is a floating
|
|
// point type, we must use that type.
|
|
Primitive::Type value_type = GetValue()->GetType();
|
|
return ((value_type == Primitive::kPrimFloat) || (value_type == Primitive::kPrimDouble))
|
|
? value_type
|
|
: GetRawExpectedComponentType();
|
|
}
|
|
|
|
Primitive::Type GetRawExpectedComponentType() const {
|
|
return GetPackedField<ExpectedComponentTypeField>();
|
|
}
|
|
|
|
void ComputeSideEffects() {
|
|
Primitive::Type type = GetComponentType();
|
|
SetSideEffects(SideEffects::ArrayWriteOfType(type).Union(
|
|
SideEffectsForArchRuntimeCalls(type)));
|
|
}
|
|
|
|
static SideEffects SideEffectsForArchRuntimeCalls(Primitive::Type value_type) {
|
|
return (value_type == Primitive::kPrimNot) ? SideEffects::CanTriggerGC() : SideEffects::None();
|
|
}
|
|
|
|
DECLARE_INSTRUCTION(ArraySet);
|
|
|
|
private:
|
|
static constexpr size_t kFieldExpectedComponentType = kNumberOfGenericPackedBits;
|
|
static constexpr size_t kFieldExpectedComponentTypeSize =
|
|
MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast));
|
|
static constexpr size_t kFlagNeedsTypeCheck =
|
|
kFieldExpectedComponentType + kFieldExpectedComponentTypeSize;
|
|
static constexpr size_t kFlagValueCanBeNull = kFlagNeedsTypeCheck + 1;
|
|
// Cached information for the reference_type_info_ so that codegen
|
|
// does not need to inspect the static type.
|
|
static constexpr size_t kFlagStaticTypeOfArrayIsObjectArray = kFlagValueCanBeNull + 1;
|
|
static constexpr size_t kNumberOfArraySetPackedBits =
|
|
kFlagStaticTypeOfArrayIsObjectArray + 1;
|
|
static_assert(kNumberOfArraySetPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
|
|
using ExpectedComponentTypeField =
|
|
BitField<Primitive::Type, kFieldExpectedComponentType, kFieldExpectedComponentTypeSize>;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HArraySet);
|
|
};
|
|
|
|
class HArrayLength FINAL : public HExpression<1> {
|
|
public:
|
|
HArrayLength(HInstruction* array, uint32_t dex_pc, bool is_string_length = false)
|
|
: HExpression(Primitive::kPrimInt, SideEffects::None(), dex_pc) {
|
|
SetPackedFlag<kFlagIsStringLength>(is_string_length);
|
|
// Note that arrays do not change length, so the instruction does not
|
|
// depend on any write.
|
|
SetRawInputAt(0, array);
|
|
}
|
|
|
|
bool CanBeMoved() const OVERRIDE { return true; }
|
|
bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
return true;
|
|
}
|
|
bool CanDoImplicitNullCheckOn(HInstruction* obj) const OVERRIDE {
|
|
return obj == InputAt(0);
|
|
}
|
|
|
|
bool IsStringLength() const { return GetPackedFlag<kFlagIsStringLength>(); }
|
|
|
|
DECLARE_INSTRUCTION(ArrayLength);
|
|
|
|
private:
|
|
// We treat a String as an array, creating the HArrayLength from String.length()
|
|
// or String.isEmpty() intrinsic in the instruction simplifier. We can always
|
|
// determine whether a particular HArrayLength is actually a String.length() by
|
|
// looking at the type of the input but that requires holding the mutator lock, so
|
|
// we prefer to use a flag, so that code generators don't need to do the locking.
|
|
static constexpr size_t kFlagIsStringLength = kNumberOfExpressionPackedBits;
|
|
static constexpr size_t kNumberOfArrayLengthPackedBits = kFlagIsStringLength + 1;
|
|
static_assert(kNumberOfArrayLengthPackedBits <= HInstruction::kMaxNumberOfPackedBits,
|
|
"Too many packed fields.");
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HArrayLength);
|
|
};
|
|
|
|
class HBoundsCheck FINAL : public HExpression<2> {
|
|
public:
|
|
// `HBoundsCheck` can trigger GC, as it may call the `IndexOutOfBoundsException`
|
|
// constructor.
|
|
HBoundsCheck(HInstruction* index,
|
|
HInstruction* length,
|
|
uint32_t dex_pc,
|
|
bool string_char_at = false)
|
|
: HExpression(index->GetType(), SideEffects::CanTriggerGC(), dex_pc) {
|
|
DCHECK_EQ(Primitive::kPrimInt, Primitive::PrimitiveKind(index->GetType()));
|
|
SetPackedFlag<kFlagIsStringCharAt>(string_char_at);
|
|
SetRawInputAt(0, index);
|
|
SetRawInputAt(1, length);
|
|
}
|
|
|
|
bool CanBeMoved() const OVERRIDE { return true; }
|
|
bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
return true;
|
|
}
|
|
|
|
bool NeedsEnvironment() const OVERRIDE { return true; }
|
|
|
|
bool CanThrow() const OVERRIDE { return true; }
|
|
|
|
bool IsStringCharAt() const { return GetPackedFlag<kFlagIsStringCharAt>(); }
|
|
|
|
HInstruction* GetIndex() const { return InputAt(0); }
|
|
|
|
DECLARE_INSTRUCTION(BoundsCheck);
|
|
|
|
private:
|
|
static constexpr size_t kFlagIsStringCharAt = kNumberOfExpressionPackedBits;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HBoundsCheck);
|
|
};
|
|
|
|
class HSuspendCheck FINAL : public HTemplateInstruction<0> {
|
|
public:
|
|
explicit HSuspendCheck(uint32_t dex_pc = kNoDexPc)
|
|
: HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc), slow_path_(nullptr) {}
|
|
|
|
bool NeedsEnvironment() const OVERRIDE {
|
|
return true;
|
|
}
|
|
|
|
void SetSlowPath(SlowPathCode* slow_path) { slow_path_ = slow_path; }
|
|
SlowPathCode* GetSlowPath() const { return slow_path_; }
|
|
|
|
DECLARE_INSTRUCTION(SuspendCheck);
|
|
|
|
private:
|
|
// Only used for code generation, in order to share the same slow path between back edges
|
|
// of a same loop.
|
|
SlowPathCode* slow_path_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HSuspendCheck);
|
|
};
|
|
|
|
// Pseudo-instruction which provides the native debugger with mapping information.
|
|
// It ensures that we can generate line number and local variables at this point.
|
|
class HNativeDebugInfo : public HTemplateInstruction<0> {
|
|
public:
|
|
explicit HNativeDebugInfo(uint32_t dex_pc)
|
|
: HTemplateInstruction<0>(SideEffects::None(), dex_pc) {}
|
|
|
|
bool NeedsEnvironment() const OVERRIDE {
|
|
return true;
|
|
}
|
|
|
|
DECLARE_INSTRUCTION(NativeDebugInfo);
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(HNativeDebugInfo);
|
|
};
|
|
|
|
/**
|
|
* Instruction to load a Class object.
|
|
*/
|
|
class HLoadClass FINAL : public HInstruction {
|
|
public:
|
|
// Determines how to load the Class.
|
|
enum class LoadKind {
|
|
// We cannot load this class. See HSharpening::SharpenLoadClass.
|
|
kInvalid = -1,
|
|
|
|
// Use the Class* from the method's own ArtMethod*.
|
|
kReferrersClass,
|
|
|
|
// Use PC-relative boot image Class* address that will be known at link time.
|
|
// Used for boot image classes referenced by boot image code.
|
|
kBootImageLinkTimePcRelative,
|
|
|
|
// Use a known boot image Class* address, embedded in the code by the codegen.
|
|
// Used for boot image classes referenced by apps in AOT- and JIT-compiled code.
|
|
kBootImageAddress,
|
|
|
|
// Load from an entry in the .bss section using a PC-relative load.
|
|
// Used for classes outside boot image when .bss is accessible with a PC-relative load.
|
|
kBssEntry,
|
|
|
|
// Load from the root table associated with the JIT compiled method.
|
|
kJitTableAddress,
|
|
|
|
// Load using a simple runtime call. This is the fall-back load kind when
|
|
// the codegen is unable to use another appropriate kind.
|
|
kRuntimeCall,
|
|
|
|
kLast = kRuntimeCall
|
|
};
|
|
|
|
HLoadClass(HCurrentMethod* current_method,
|
|
dex::TypeIndex type_index,
|
|
const DexFile& dex_file,
|
|
Handle<mirror::Class> klass,
|
|
bool is_referrers_class,
|
|
uint32_t dex_pc,
|
|
bool needs_access_check)
|
|
: HInstruction(SideEffectsForArchRuntimeCalls(), dex_pc),
|
|
special_input_(HUserRecord<HInstruction*>(current_method)),
|
|
type_index_(type_index),
|
|
dex_file_(dex_file),
|
|
klass_(klass),
|
|
loaded_class_rti_(ReferenceTypeInfo::CreateInvalid()) {
|
|
// Referrers class should not need access check. We never inline unverified
|
|
// methods so we can't possibly end up in this situation.
|
|
DCHECK(!is_referrers_class || !needs_access_check);
|
|
|
|
SetPackedField<LoadKindField>(
|
|
is_referrers_class ? LoadKind::kReferrersClass : LoadKind::kRuntimeCall);
|
|
SetPackedFlag<kFlagNeedsAccessCheck>(needs_access_check);
|
|
SetPackedFlag<kFlagIsInBootImage>(false);
|
|
SetPackedFlag<kFlagGenerateClInitCheck>(false);
|
|
}
|
|
|
|
void SetLoadKind(LoadKind load_kind);
|
|
|
|
LoadKind GetLoadKind() const {
|
|
return GetPackedField<LoadKindField>();
|
|
}
|
|
|
|
bool CanBeMoved() const OVERRIDE { return true; }
|
|
|
|
bool InstructionDataEquals(const HInstruction* other) const;
|
|
|
|
size_t ComputeHashCode() const OVERRIDE { return type_index_.index_; }
|
|
|
|
bool CanBeNull() const OVERRIDE { return false; }
|
|
|
|
bool NeedsEnvironment() const OVERRIDE {
|
|
return CanCallRuntime();
|
|
}
|
|
|
|
void SetMustGenerateClinitCheck(bool generate_clinit_check) {
|
|
// The entrypoint the code generator is going to call does not do
|
|
// clinit of the class.
|
|
DCHECK(!NeedsAccessCheck());
|
|
SetPackedFlag<kFlagGenerateClInitCheck>(generate_clinit_check);
|
|
}
|
|
|
|
bool CanCallRuntime() const {
|
|
return NeedsAccessCheck() ||
|
|
MustGenerateClinitCheck() ||
|
|
GetLoadKind() == LoadKind::kRuntimeCall ||
|
|
GetLoadKind() == LoadKind::kBssEntry;
|
|
}
|
|
|
|
bool CanThrow() const OVERRIDE {
|
|
return NeedsAccessCheck() ||
|
|
MustGenerateClinitCheck() ||
|
|
// If the class is in the boot image, the lookup in the runtime call cannot throw.
|
|
// This keeps CanThrow() consistent between non-PIC (using kBootImageAddress) and
|
|
// PIC and subsequently avoids a DCE behavior dependency on the PIC option.
|
|
((GetLoadKind() == LoadKind::kRuntimeCall ||
|
|
GetLoadKind() == LoadKind::kBssEntry) &&
|
|
!IsInBootImage());
|
|
}
|
|
|
|
ReferenceTypeInfo GetLoadedClassRTI() {
|
|
return loaded_class_rti_;
|
|
}
|
|
|
|
void SetLoadedClassRTI(ReferenceTypeInfo rti) {
|
|
// Make sure we only set exact types (the loaded class should never be merged).
|
|
DCHECK(rti.IsExact());
|
|
loaded_class_rti_ = rti;
|
|
}
|
|
|
|
dex::TypeIndex GetTypeIndex() const { return type_index_; }
|
|
const DexFile& GetDexFile() const { return dex_file_; }
|
|
|
|
bool NeedsDexCacheOfDeclaringClass() const OVERRIDE {
|
|
return GetLoadKind() == LoadKind::kRuntimeCall;
|
|
}
|
|
|
|
static SideEffects SideEffectsForArchRuntimeCalls() {
|
|
return SideEffects::CanTriggerGC();
|
|
}
|
|
|
|
bool IsReferrersClass() const { return GetLoadKind() == LoadKind::kReferrersClass; }
|
|
bool NeedsAccessCheck() const { return GetPackedFlag<kFlagNeedsAccessCheck>(); }
|
|
bool IsInBootImage() const { return GetPackedFlag<kFlagIsInBootImage>(); }
|
|
bool MustGenerateClinitCheck() const { return GetPackedFlag<kFlagGenerateClInitCheck>(); }
|
|
|
|
void MarkInBootImage() {
|
|
SetPackedFlag<kFlagIsInBootImage>(true);
|
|
}
|
|
|
|
void AddSpecialInput(HInstruction* special_input);
|
|
|
|
using HInstruction::GetInputRecords; // Keep the const version visible.
|
|
ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() OVERRIDE FINAL {
|
|
return ArrayRef<HUserRecord<HInstruction*>>(
|
|
&special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u);
|
|
}
|
|
|
|
Primitive::Type GetType() const OVERRIDE {
|
|
return Primitive::kPrimNot;
|
|
}
|
|
|
|
Handle<mirror::Class> GetClass() const {
|
|
return klass_;
|
|
}
|
|
|
|
DECLARE_INSTRUCTION(LoadClass);
|
|
|
|
private:
|
|
static constexpr size_t kFlagNeedsAccessCheck = kNumberOfGenericPackedBits;
|
|
static constexpr size_t kFlagIsInBootImage = kFlagNeedsAccessCheck + 1;
|
|
// Whether this instruction must generate the initialization check.
|
|
// Used for code generation.
|
|
static constexpr size_t kFlagGenerateClInitCheck = kFlagIsInBootImage + 1;
|
|
static constexpr size_t kFieldLoadKind = kFlagGenerateClInitCheck + 1;
|
|
static constexpr size_t kFieldLoadKindSize =
|
|
MinimumBitsToStore(static_cast<size_t>(LoadKind::kLast));
|
|
static constexpr size_t kNumberOfLoadClassPackedBits = kFieldLoadKind + kFieldLoadKindSize;
|
|
static_assert(kNumberOfLoadClassPackedBits < kMaxNumberOfPackedBits, "Too many packed fields.");
|
|
using LoadKindField = BitField<LoadKind, kFieldLoadKind, kFieldLoadKindSize>;
|
|
|
|
static bool HasTypeReference(LoadKind load_kind) {
|
|
return load_kind == LoadKind::kReferrersClass ||
|
|
load_kind == LoadKind::kBootImageLinkTimePcRelative ||
|
|
load_kind == LoadKind::kBssEntry ||
|
|
load_kind == LoadKind::kRuntimeCall;
|
|
}
|
|
|
|
void SetLoadKindInternal(LoadKind load_kind);
|
|
|
|
// The special input is the HCurrentMethod for kRuntimeCall or kReferrersClass.
|
|
// For other load kinds it's empty or possibly some architecture-specific instruction
|
|
// for PC-relative loads, i.e. kBssEntry or kBootImageLinkTimePcRelative.
|
|
HUserRecord<HInstruction*> special_input_;
|
|
|
|
// A type index and dex file where the class can be accessed. The dex file can be:
|
|
// - The compiling method's dex file if the class is defined there too.
|
|
// - The compiling method's dex file if the class is referenced there.
|
|
// - The dex file where the class is defined. When the load kind can only be
|
|
// kBssEntry or kRuntimeCall, we cannot emit code for this `HLoadClass`.
|
|
const dex::TypeIndex type_index_;
|
|
const DexFile& dex_file_;
|
|
|
|
Handle<mirror::Class> klass_;
|
|
|
|
ReferenceTypeInfo loaded_class_rti_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HLoadClass);
|
|
};
|
|
std::ostream& operator<<(std::ostream& os, HLoadClass::LoadKind rhs);
|
|
|
|
// Note: defined outside class to see operator<<(., HLoadClass::LoadKind).
|
|
inline void HLoadClass::AddSpecialInput(HInstruction* special_input) {
|
|
// The special input is used for PC-relative loads on some architectures,
|
|
// including literal pool loads, which are PC-relative too.
|
|
DCHECK(GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative ||
|
|
GetLoadKind() == LoadKind::kBootImageAddress ||
|
|
GetLoadKind() == LoadKind::kBssEntry) << GetLoadKind();
|
|
DCHECK(special_input_.GetInstruction() == nullptr);
|
|
special_input_ = HUserRecord<HInstruction*>(special_input);
|
|
special_input->AddUseAt(this, 0);
|
|
}
|
|
|
|
class HLoadString FINAL : public HInstruction {
|
|
public:
|
|
// Determines how to load the String.
|
|
enum class LoadKind {
|
|
// Use PC-relative boot image String* address that will be known at link time.
|
|
// Used for boot image strings referenced by boot image code.
|
|
kBootImageLinkTimePcRelative,
|
|
|
|
// Use a known boot image String* address, embedded in the code by the codegen.
|
|
// Used for boot image strings referenced by apps in AOT- and JIT-compiled code.
|
|
kBootImageAddress,
|
|
|
|
// Load from an entry in the .bss section using a PC-relative load.
|
|
// Used for strings outside boot image when .bss is accessible with a PC-relative load.
|
|
kBssEntry,
|
|
|
|
// Load from the root table associated with the JIT compiled method.
|
|
kJitTableAddress,
|
|
|
|
// Load using a simple runtime call. This is the fall-back load kind when
|
|
// the codegen is unable to use another appropriate kind.
|
|
kRuntimeCall,
|
|
|
|
kLast = kRuntimeCall,
|
|
};
|
|
|
|
HLoadString(HCurrentMethod* current_method,
|
|
dex::StringIndex string_index,
|
|
const DexFile& dex_file,
|
|
uint32_t dex_pc)
|
|
: HInstruction(SideEffectsForArchRuntimeCalls(), dex_pc),
|
|
special_input_(HUserRecord<HInstruction*>(current_method)),
|
|
string_index_(string_index),
|
|
dex_file_(dex_file) {
|
|
SetPackedField<LoadKindField>(LoadKind::kRuntimeCall);
|
|
}
|
|
|
|
void SetLoadKind(LoadKind load_kind);
|
|
|
|
LoadKind GetLoadKind() const {
|
|
return GetPackedField<LoadKindField>();
|
|
}
|
|
|
|
const DexFile& GetDexFile() const {
|
|
return dex_file_;
|
|
}
|
|
|
|
dex::StringIndex GetStringIndex() const {
|
|
return string_index_;
|
|
}
|
|
|
|
Handle<mirror::String> GetString() const {
|
|
return string_;
|
|
}
|
|
|
|
void SetString(Handle<mirror::String> str) {
|
|
string_ = str;
|
|
}
|
|
|
|
bool CanBeMoved() const OVERRIDE { return true; }
|
|
|
|
bool InstructionDataEquals(const HInstruction* other) const OVERRIDE;
|
|
|
|
size_t ComputeHashCode() const OVERRIDE { return string_index_.index_; }
|
|
|
|
// Will call the runtime if we need to load the string through
|
|
// the dex cache and the string is not guaranteed to be there yet.
|
|
bool NeedsEnvironment() const OVERRIDE {
|
|
LoadKind load_kind = GetLoadKind();
|
|
if (load_kind == LoadKind::kBootImageLinkTimePcRelative ||
|
|
load_kind == LoadKind::kBootImageAddress ||
|
|
load_kind == LoadKind::kJitTableAddress) {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool NeedsDexCacheOfDeclaringClass() const OVERRIDE {
|
|
return GetLoadKind() == LoadKind::kRuntimeCall;
|
|
}
|
|
|
|
bool CanBeNull() const OVERRIDE { return false; }
|
|
bool CanThrow() const OVERRIDE { return NeedsEnvironment(); }
|
|
|
|
static SideEffects SideEffectsForArchRuntimeCalls() {
|
|
return SideEffects::CanTriggerGC();
|
|
}
|
|
|
|
void AddSpecialInput(HInstruction* special_input);
|
|
|
|
using HInstruction::GetInputRecords; // Keep the const version visible.
|
|
ArrayRef<HUserRecord<HInstruction*>> GetInputRecords() OVERRIDE FINAL {
|
|
return ArrayRef<HUserRecord<HInstruction*>>(
|
|
&special_input_, (special_input_.GetInstruction() != nullptr) ? 1u : 0u);
|
|
}
|
|
|
|
Primitive::Type GetType() const OVERRIDE {
|
|
return Primitive::kPrimNot;
|
|
}
|
|
|
|
DECLARE_INSTRUCTION(LoadString);
|
|
|
|
private:
|
|
static constexpr size_t kFieldLoadKind = kNumberOfGenericPackedBits;
|
|
static constexpr size_t kFieldLoadKindSize =
|
|
MinimumBitsToStore(static_cast<size_t>(LoadKind::kLast));
|
|
static constexpr size_t kNumberOfLoadStringPackedBits = kFieldLoadKind + kFieldLoadKindSize;
|
|
static_assert(kNumberOfLoadStringPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
|
|
using LoadKindField = BitField<LoadKind, kFieldLoadKind, kFieldLoadKindSize>;
|
|
|
|
void SetLoadKindInternal(LoadKind load_kind);
|
|
|
|
// The special input is the HCurrentMethod for kRuntimeCall.
|
|
// For other load kinds it's empty or possibly some architecture-specific instruction
|
|
// for PC-relative loads, i.e. kBssEntry or kBootImageLinkTimePcRelative.
|
|
HUserRecord<HInstruction*> special_input_;
|
|
|
|
dex::StringIndex string_index_;
|
|
const DexFile& dex_file_;
|
|
|
|
Handle<mirror::String> string_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HLoadString);
|
|
};
|
|
std::ostream& operator<<(std::ostream& os, HLoadString::LoadKind rhs);
|
|
|
|
// Note: defined outside class to see operator<<(., HLoadString::LoadKind).
|
|
inline void HLoadString::AddSpecialInput(HInstruction* special_input) {
|
|
// The special input is used for PC-relative loads on some architectures,
|
|
// including literal pool loads, which are PC-relative too.
|
|
DCHECK(GetLoadKind() == LoadKind::kBootImageLinkTimePcRelative ||
|
|
GetLoadKind() == LoadKind::kBssEntry ||
|
|
GetLoadKind() == LoadKind::kBootImageAddress) << GetLoadKind();
|
|
// HLoadString::GetInputRecords() returns an empty array at this point,
|
|
// so use the GetInputRecords() from the base class to set the input record.
|
|
DCHECK(special_input_.GetInstruction() == nullptr);
|
|
special_input_ = HUserRecord<HInstruction*>(special_input);
|
|
special_input->AddUseAt(this, 0);
|
|
}
|
|
|
|
/**
|
|
* Performs an initialization check on its Class object input.
|
|
*/
|
|
class HClinitCheck FINAL : public HExpression<1> {
|
|
public:
|
|
HClinitCheck(HLoadClass* constant, uint32_t dex_pc)
|
|
: HExpression(
|
|
Primitive::kPrimNot,
|
|
SideEffects::AllChanges(), // Assume write/read on all fields/arrays.
|
|
dex_pc) {
|
|
SetRawInputAt(0, constant);
|
|
}
|
|
|
|
bool CanBeMoved() const OVERRIDE { return true; }
|
|
bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
return true;
|
|
}
|
|
|
|
bool NeedsEnvironment() const OVERRIDE {
|
|
// May call runtime to initialize the class.
|
|
return true;
|
|
}
|
|
|
|
bool CanThrow() const OVERRIDE { return true; }
|
|
|
|
HLoadClass* GetLoadClass() const {
|
|
DCHECK(InputAt(0)->IsLoadClass());
|
|
return InputAt(0)->AsLoadClass();
|
|
}
|
|
|
|
DECLARE_INSTRUCTION(ClinitCheck);
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(HClinitCheck);
|
|
};
|
|
|
|
class HStaticFieldGet FINAL : public HExpression<1> {
|
|
public:
|
|
HStaticFieldGet(HInstruction* cls,
|
|
ArtField* field,
|
|
Primitive::Type field_type,
|
|
MemberOffset field_offset,
|
|
bool is_volatile,
|
|
uint32_t field_idx,
|
|
uint16_t declaring_class_def_index,
|
|
const DexFile& dex_file,
|
|
uint32_t dex_pc)
|
|
: HExpression(field_type, SideEffects::FieldReadOfType(field_type, is_volatile), dex_pc),
|
|
field_info_(field,
|
|
field_offset,
|
|
field_type,
|
|
is_volatile,
|
|
field_idx,
|
|
declaring_class_def_index,
|
|
dex_file) {
|
|
SetRawInputAt(0, cls);
|
|
}
|
|
|
|
|
|
bool CanBeMoved() const OVERRIDE { return !IsVolatile(); }
|
|
|
|
bool InstructionDataEquals(const HInstruction* other) const OVERRIDE {
|
|
const HStaticFieldGet* other_get = other->AsStaticFieldGet();
|
|
return GetFieldOffset().SizeValue() == other_get->GetFieldOffset().SizeValue();
|
|
}
|
|
|
|
size_t ComputeHashCode() const OVERRIDE {
|
|
return (HInstruction::ComputeHashCode() << 7) | GetFieldOffset().SizeValue();
|
|
}
|
|
|
|
const FieldInfo& GetFieldInfo() const { return field_info_; }
|
|
MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
|
|
Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
|
|
bool IsVolatile() const { return field_info_.IsVolatile(); }
|
|
|
|
DECLARE_INSTRUCTION(StaticFieldGet);
|
|
|
|
private:
|
|
const FieldInfo field_info_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HStaticFieldGet);
|
|
};
|
|
|
|
class HStaticFieldSet FINAL : public HTemplateInstruction<2> {
|
|
public:
|
|
HStaticFieldSet(HInstruction* cls,
|
|
HInstruction* value,
|
|
ArtField* field,
|
|
Primitive::Type field_type,
|
|
MemberOffset field_offset,
|
|
bool is_volatile,
|
|
uint32_t field_idx,
|
|
uint16_t declaring_class_def_index,
|
|
const DexFile& dex_file,
|
|
uint32_t dex_pc)
|
|
: HTemplateInstruction(SideEffects::FieldWriteOfType(field_type, is_volatile), dex_pc),
|
|
field_info_(field,
|
|
field_offset,
|
|
field_type,
|
|
is_volatile,
|
|
field_idx,
|
|
declaring_class_def_index,
|
|
dex_file) {
|
|
SetPackedFlag<kFlagValueCanBeNull>(true);
|
|
SetRawInputAt(0, cls);
|
|
SetRawInputAt(1, value);
|
|
}
|
|
|
|
const FieldInfo& GetFieldInfo() const { return field_info_; }
|
|
MemberOffset GetFieldOffset() const { return field_info_.GetFieldOffset(); }
|
|
Primitive::Type GetFieldType() const { return field_info_.GetFieldType(); }
|
|
bool IsVolatile() const { return field_info_.IsVolatile(); }
|
|
|
|
HInstruction* GetValue() const { return InputAt(1); }
|
|
bool GetValueCanBeNull() const { return GetPackedFlag<kFlagValueCanBeNull>(); }
|
|
void ClearValueCanBeNull() { SetPackedFlag<kFlagValueCanBeNull>(false); }
|
|
|
|
DECLARE_INSTRUCTION(StaticFieldSet);
|
|
|
|
private:
|
|
static constexpr size_t kFlagValueCanBeNull = kNumberOfGenericPackedBits;
|
|
static constexpr size_t kNumberOfStaticFieldSetPackedBits = kFlagValueCanBeNull + 1;
|
|
static_assert(kNumberOfStaticFieldSetPackedBits <= kMaxNumberOfPackedBits,
|
|
"Too many packed fields.");
|
|
|
|
const FieldInfo field_info_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HStaticFieldSet);
|
|
};
|
|
|
|
class HUnresolvedInstanceFieldGet FINAL : public HExpression<1> {
|
|
public:
|
|
HUnresolvedInstanceFieldGet(HInstruction* obj,
|
|
Primitive::Type field_type,
|
|
uint32_t field_index,
|
|
uint32_t dex_pc)
|
|
: HExpression(field_type, SideEffects::AllExceptGCDependency(), dex_pc),
|
|
field_index_(field_index) {
|
|
SetRawInputAt(0, obj);
|
|
}
|
|
|
|
bool NeedsEnvironment() const OVERRIDE { return true; }
|
|
bool CanThrow() const OVERRIDE { return true; }
|
|
|
|
Primitive::Type GetFieldType() const { return GetType(); }
|
|
uint32_t GetFieldIndex() const { return field_index_; }
|
|
|
|
DECLARE_INSTRUCTION(UnresolvedInstanceFieldGet);
|
|
|
|
private:
|
|
const uint32_t field_index_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HUnresolvedInstanceFieldGet);
|
|
};
|
|
|
|
class HUnresolvedInstanceFieldSet FINAL : public HTemplateInstruction<2> {
|
|
public:
|
|
HUnresolvedInstanceFieldSet(HInstruction* obj,
|
|
HInstruction* value,
|
|
Primitive::Type field_type,
|
|
uint32_t field_index,
|
|
uint32_t dex_pc)
|
|
: HTemplateInstruction(SideEffects::AllExceptGCDependency(), dex_pc),
|
|
field_index_(field_index) {
|
|
SetPackedField<FieldTypeField>(field_type);
|
|
DCHECK_EQ(Primitive::PrimitiveKind(field_type), Primitive::PrimitiveKind(value->GetType()));
|
|
SetRawInputAt(0, obj);
|
|
SetRawInputAt(1, value);
|
|
}
|
|
|
|
bool NeedsEnvironment() const OVERRIDE { return true; }
|
|
bool CanThrow() const OVERRIDE { return true; }
|
|
|
|
Primitive::Type GetFieldType() const { return GetPackedField<FieldTypeField>(); }
|
|
uint32_t GetFieldIndex() const { return field_index_; }
|
|
|
|
DECLARE_INSTRUCTION(UnresolvedInstanceFieldSet);
|
|
|
|
private:
|
|
static constexpr size_t kFieldFieldType = HInstruction::kNumberOfGenericPackedBits;
|
|
static constexpr size_t kFieldFieldTypeSize =
|
|
MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast));
|
|
static constexpr size_t kNumberOfUnresolvedStaticFieldSetPackedBits =
|
|
kFieldFieldType + kFieldFieldTypeSize;
|
|
static_assert(kNumberOfUnresolvedStaticFieldSetPackedBits <= HInstruction::kMaxNumberOfPackedBits,
|
|
"Too many packed fields.");
|
|
using FieldTypeField = BitField<Primitive::Type, kFieldFieldType, kFieldFieldTypeSize>;
|
|
|
|
const uint32_t field_index_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HUnresolvedInstanceFieldSet);
|
|
};
|
|
|
|
class HUnresolvedStaticFieldGet FINAL : public HExpression<0> {
|
|
public:
|
|
HUnresolvedStaticFieldGet(Primitive::Type field_type,
|
|
uint32_t field_index,
|
|
uint32_t dex_pc)
|
|
: HExpression(field_type, SideEffects::AllExceptGCDependency(), dex_pc),
|
|
field_index_(field_index) {
|
|
}
|
|
|
|
bool NeedsEnvironment() const OVERRIDE { return true; }
|
|
bool CanThrow() const OVERRIDE { return true; }
|
|
|
|
Primitive::Type GetFieldType() const { return GetType(); }
|
|
uint32_t GetFieldIndex() const { return field_index_; }
|
|
|
|
DECLARE_INSTRUCTION(UnresolvedStaticFieldGet);
|
|
|
|
private:
|
|
const uint32_t field_index_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HUnresolvedStaticFieldGet);
|
|
};
|
|
|
|
class HUnresolvedStaticFieldSet FINAL : public HTemplateInstruction<1> {
|
|
public:
|
|
HUnresolvedStaticFieldSet(HInstruction* value,
|
|
Primitive::Type field_type,
|
|
uint32_t field_index,
|
|
uint32_t dex_pc)
|
|
: HTemplateInstruction(SideEffects::AllExceptGCDependency(), dex_pc),
|
|
field_index_(field_index) {
|
|
SetPackedField<FieldTypeField>(field_type);
|
|
DCHECK_EQ(Primitive::PrimitiveKind(field_type), Primitive::PrimitiveKind(value->GetType()));
|
|
SetRawInputAt(0, value);
|
|
}
|
|
|
|
bool NeedsEnvironment() const OVERRIDE { return true; }
|
|
bool CanThrow() const OVERRIDE { return true; }
|
|
|
|
Primitive::Type GetFieldType() const { return GetPackedField<FieldTypeField>(); }
|
|
uint32_t GetFieldIndex() const { return field_index_; }
|
|
|
|
DECLARE_INSTRUCTION(UnresolvedStaticFieldSet);
|
|
|
|
private:
|
|
static constexpr size_t kFieldFieldType = HInstruction::kNumberOfGenericPackedBits;
|
|
static constexpr size_t kFieldFieldTypeSize =
|
|
MinimumBitsToStore(static_cast<size_t>(Primitive::kPrimLast));
|
|
static constexpr size_t kNumberOfUnresolvedStaticFieldSetPackedBits =
|
|
kFieldFieldType + kFieldFieldTypeSize;
|
|
static_assert(kNumberOfUnresolvedStaticFieldSetPackedBits <= HInstruction::kMaxNumberOfPackedBits,
|
|
"Too many packed fields.");
|
|
using FieldTypeField = BitField<Primitive::Type, kFieldFieldType, kFieldFieldTypeSize>;
|
|
|
|
const uint32_t field_index_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HUnresolvedStaticFieldSet);
|
|
};
|
|
|
|
// Implement the move-exception DEX instruction.
|
|
class HLoadException FINAL : public HExpression<0> {
|
|
public:
|
|
explicit HLoadException(uint32_t dex_pc = kNoDexPc)
|
|
: HExpression(Primitive::kPrimNot, SideEffects::None(), dex_pc) {}
|
|
|
|
bool CanBeNull() const OVERRIDE { return false; }
|
|
|
|
DECLARE_INSTRUCTION(LoadException);
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(HLoadException);
|
|
};
|
|
|
|
// Implicit part of move-exception which clears thread-local exception storage.
|
|
// Must not be removed because the runtime expects the TLS to get cleared.
|
|
class HClearException FINAL : public HTemplateInstruction<0> {
|
|
public:
|
|
explicit HClearException(uint32_t dex_pc = kNoDexPc)
|
|
: HTemplateInstruction(SideEffects::AllWrites(), dex_pc) {}
|
|
|
|
DECLARE_INSTRUCTION(ClearException);
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(HClearException);
|
|
};
|
|
|
|
class HThrow FINAL : public HTemplateInstruction<1> {
|
|
public:
|
|
HThrow(HInstruction* exception, uint32_t dex_pc)
|
|
: HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc) {
|
|
SetRawInputAt(0, exception);
|
|
}
|
|
|
|
bool IsControlFlow() const OVERRIDE { return true; }
|
|
|
|
bool NeedsEnvironment() const OVERRIDE { return true; }
|
|
|
|
bool CanThrow() const OVERRIDE { return true; }
|
|
|
|
|
|
DECLARE_INSTRUCTION(Throw);
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(HThrow);
|
|
};
|
|
|
|
/**
|
|
* Implementation strategies for the code generator of a HInstanceOf
|
|
* or `HCheckCast`.
|
|
*/
|
|
enum class TypeCheckKind {
|
|
kUnresolvedCheck, // Check against an unresolved type.
|
|
kExactCheck, // Can do a single class compare.
|
|
kClassHierarchyCheck, // Can just walk the super class chain.
|
|
kAbstractClassCheck, // Can just walk the super class chain, starting one up.
|
|
kInterfaceCheck, // No optimization yet when checking against an interface.
|
|
kArrayObjectCheck, // Can just check if the array is not primitive.
|
|
kArrayCheck, // No optimization yet when checking against a generic array.
|
|
kLast = kArrayCheck
|
|
};
|
|
|
|
std::ostream& operator<<(std::ostream& os, TypeCheckKind rhs);
|
|
|
|
class HInstanceOf FINAL : public HExpression<2> {
|
|
public:
|
|
HInstanceOf(HInstruction* object,
|
|
HLoadClass* constant,
|
|
TypeCheckKind check_kind,
|
|
uint32_t dex_pc)
|
|
: HExpression(Primitive::kPrimBoolean,
|
|
SideEffectsForArchRuntimeCalls(check_kind),
|
|
dex_pc) {
|
|
SetPackedField<TypeCheckKindField>(check_kind);
|
|
SetPackedFlag<kFlagMustDoNullCheck>(true);
|
|
SetRawInputAt(0, object);
|
|
SetRawInputAt(1, constant);
|
|
}
|
|
|
|
bool CanBeMoved() const OVERRIDE { return true; }
|
|
|
|
bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
return true;
|
|
}
|
|
|
|
bool NeedsEnvironment() const OVERRIDE {
|
|
return CanCallRuntime(GetTypeCheckKind());
|
|
}
|
|
|
|
// Used only in code generation.
|
|
bool MustDoNullCheck() const { return GetPackedFlag<kFlagMustDoNullCheck>(); }
|
|
void ClearMustDoNullCheck() { SetPackedFlag<kFlagMustDoNullCheck>(false); }
|
|
TypeCheckKind GetTypeCheckKind() const { return GetPackedField<TypeCheckKindField>(); }
|
|
bool IsExactCheck() const { return GetTypeCheckKind() == TypeCheckKind::kExactCheck; }
|
|
|
|
static bool CanCallRuntime(TypeCheckKind check_kind) {
|
|
// Mips currently does runtime calls for any other checks.
|
|
return check_kind != TypeCheckKind::kExactCheck;
|
|
}
|
|
|
|
static SideEffects SideEffectsForArchRuntimeCalls(TypeCheckKind check_kind) {
|
|
return CanCallRuntime(check_kind) ? SideEffects::CanTriggerGC() : SideEffects::None();
|
|
}
|
|
|
|
DECLARE_INSTRUCTION(InstanceOf);
|
|
|
|
private:
|
|
static constexpr size_t kFieldTypeCheckKind = kNumberOfExpressionPackedBits;
|
|
static constexpr size_t kFieldTypeCheckKindSize =
|
|
MinimumBitsToStore(static_cast<size_t>(TypeCheckKind::kLast));
|
|
static constexpr size_t kFlagMustDoNullCheck = kFieldTypeCheckKind + kFieldTypeCheckKindSize;
|
|
static constexpr size_t kNumberOfInstanceOfPackedBits = kFlagMustDoNullCheck + 1;
|
|
static_assert(kNumberOfInstanceOfPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
|
|
using TypeCheckKindField = BitField<TypeCheckKind, kFieldTypeCheckKind, kFieldTypeCheckKindSize>;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HInstanceOf);
|
|
};
|
|
|
|
class HBoundType FINAL : public HExpression<1> {
|
|
public:
|
|
explicit HBoundType(HInstruction* input, uint32_t dex_pc = kNoDexPc)
|
|
: HExpression(Primitive::kPrimNot, SideEffects::None(), dex_pc),
|
|
upper_bound_(ReferenceTypeInfo::CreateInvalid()) {
|
|
SetPackedFlag<kFlagUpperCanBeNull>(true);
|
|
SetPackedFlag<kFlagCanBeNull>(true);
|
|
DCHECK_EQ(input->GetType(), Primitive::kPrimNot);
|
|
SetRawInputAt(0, input);
|
|
}
|
|
|
|
// {Get,Set}Upper* should only be used in reference type propagation.
|
|
const ReferenceTypeInfo& GetUpperBound() const { return upper_bound_; }
|
|
bool GetUpperCanBeNull() const { return GetPackedFlag<kFlagUpperCanBeNull>(); }
|
|
void SetUpperBound(const ReferenceTypeInfo& upper_bound, bool can_be_null);
|
|
|
|
void SetCanBeNull(bool can_be_null) {
|
|
DCHECK(GetUpperCanBeNull() || !can_be_null);
|
|
SetPackedFlag<kFlagCanBeNull>(can_be_null);
|
|
}
|
|
|
|
bool CanBeNull() const OVERRIDE { return GetPackedFlag<kFlagCanBeNull>(); }
|
|
|
|
DECLARE_INSTRUCTION(BoundType);
|
|
|
|
private:
|
|
// Represents the top constraint that can_be_null_ cannot exceed (i.e. if this
|
|
// is false then CanBeNull() cannot be true).
|
|
static constexpr size_t kFlagUpperCanBeNull = kNumberOfExpressionPackedBits;
|
|
static constexpr size_t kFlagCanBeNull = kFlagUpperCanBeNull + 1;
|
|
static constexpr size_t kNumberOfBoundTypePackedBits = kFlagCanBeNull + 1;
|
|
static_assert(kNumberOfBoundTypePackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
|
|
|
|
// Encodes the most upper class that this instruction can have. In other words
|
|
// it is always the case that GetUpperBound().IsSupertypeOf(GetReferenceType()).
|
|
// It is used to bound the type in cases like:
|
|
// if (x instanceof ClassX) {
|
|
// // uper_bound_ will be ClassX
|
|
// }
|
|
ReferenceTypeInfo upper_bound_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HBoundType);
|
|
};
|
|
|
|
class HCheckCast FINAL : public HTemplateInstruction<2> {
|
|
public:
|
|
HCheckCast(HInstruction* object,
|
|
HLoadClass* constant,
|
|
TypeCheckKind check_kind,
|
|
uint32_t dex_pc)
|
|
: HTemplateInstruction(SideEffects::CanTriggerGC(), dex_pc) {
|
|
SetPackedField<TypeCheckKindField>(check_kind);
|
|
SetPackedFlag<kFlagMustDoNullCheck>(true);
|
|
SetRawInputAt(0, object);
|
|
SetRawInputAt(1, constant);
|
|
}
|
|
|
|
bool CanBeMoved() const OVERRIDE { return true; }
|
|
|
|
bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
return true;
|
|
}
|
|
|
|
bool NeedsEnvironment() const OVERRIDE {
|
|
// Instruction may throw a CheckCastError.
|
|
return true;
|
|
}
|
|
|
|
bool CanThrow() const OVERRIDE { return true; }
|
|
|
|
bool MustDoNullCheck() const { return GetPackedFlag<kFlagMustDoNullCheck>(); }
|
|
void ClearMustDoNullCheck() { SetPackedFlag<kFlagMustDoNullCheck>(false); }
|
|
TypeCheckKind GetTypeCheckKind() const { return GetPackedField<TypeCheckKindField>(); }
|
|
bool IsExactCheck() const { return GetTypeCheckKind() == TypeCheckKind::kExactCheck; }
|
|
|
|
DECLARE_INSTRUCTION(CheckCast);
|
|
|
|
private:
|
|
static constexpr size_t kFieldTypeCheckKind = kNumberOfGenericPackedBits;
|
|
static constexpr size_t kFieldTypeCheckKindSize =
|
|
MinimumBitsToStore(static_cast<size_t>(TypeCheckKind::kLast));
|
|
static constexpr size_t kFlagMustDoNullCheck = kFieldTypeCheckKind + kFieldTypeCheckKindSize;
|
|
static constexpr size_t kNumberOfCheckCastPackedBits = kFlagMustDoNullCheck + 1;
|
|
static_assert(kNumberOfCheckCastPackedBits <= kMaxNumberOfPackedBits, "Too many packed fields.");
|
|
using TypeCheckKindField = BitField<TypeCheckKind, kFieldTypeCheckKind, kFieldTypeCheckKindSize>;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HCheckCast);
|
|
};
|
|
|
|
/**
|
|
* @brief Memory barrier types (see "The JSR-133 Cookbook for Compiler Writers").
|
|
* @details We define the combined barrier types that are actually required
|
|
* by the Java Memory Model, rather than using exactly the terminology from
|
|
* the JSR-133 cookbook. These should, in many cases, be replaced by acquire/release
|
|
* primitives. Note that the JSR-133 cookbook generally does not deal with
|
|
* store atomicity issues, and the recipes there are not always entirely sufficient.
|
|
* The current recipe is as follows:
|
|
* -# Use AnyStore ~= (LoadStore | StoreStore) ~= release barrier before volatile store.
|
|
* -# Use AnyAny barrier after volatile store. (StoreLoad is as expensive.)
|
|
* -# Use LoadAny barrier ~= (LoadLoad | LoadStore) ~= acquire barrier after each volatile load.
|
|
* -# Use StoreStore barrier after all stores but before return from any constructor whose
|
|
* class has final fields.
|
|
* -# Use NTStoreStore to order non-temporal stores with respect to all later
|
|
* store-to-memory instructions. Only generated together with non-temporal stores.
|
|
*/
|
|
enum MemBarrierKind {
|
|
kAnyStore,
|
|
kLoadAny,
|
|
kStoreStore,
|
|
kAnyAny,
|
|
kNTStoreStore,
|
|
kLastBarrierKind = kNTStoreStore
|
|
};
|
|
std::ostream& operator<<(std::ostream& os, const MemBarrierKind& kind);
|
|
|
|
class HMemoryBarrier FINAL : public HTemplateInstruction<0> {
|
|
public:
|
|
explicit HMemoryBarrier(MemBarrierKind barrier_kind, uint32_t dex_pc = kNoDexPc)
|
|
: HTemplateInstruction(
|
|
SideEffects::AllWritesAndReads(), dex_pc) { // Assume write/read on all fields/arrays.
|
|
SetPackedField<BarrierKindField>(barrier_kind);
|
|
}
|
|
|
|
MemBarrierKind GetBarrierKind() { return GetPackedField<BarrierKindField>(); }
|
|
|
|
DECLARE_INSTRUCTION(MemoryBarrier);
|
|
|
|
private:
|
|
static constexpr size_t kFieldBarrierKind = HInstruction::kNumberOfGenericPackedBits;
|
|
static constexpr size_t kFieldBarrierKindSize =
|
|
MinimumBitsToStore(static_cast<size_t>(kLastBarrierKind));
|
|
static constexpr size_t kNumberOfMemoryBarrierPackedBits =
|
|
kFieldBarrierKind + kFieldBarrierKindSize;
|
|
static_assert(kNumberOfMemoryBarrierPackedBits <= kMaxNumberOfPackedBits,
|
|
"Too many packed fields.");
|
|
using BarrierKindField = BitField<MemBarrierKind, kFieldBarrierKind, kFieldBarrierKindSize>;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HMemoryBarrier);
|
|
};
|
|
|
|
// A constructor fence orders all prior stores to fields that could be accessed via a final field of
|
|
// the specified object(s), with respect to any subsequent store that might "publish"
|
|
// (i.e. make visible) the specified object to another thread.
|
|
//
|
|
// JLS 17.5.1 "Semantics of final fields" states that a freeze action happens
|
|
// for all final fields (that were set) at the end of the invoked constructor.
|
|
//
|
|
// The constructor fence models the freeze actions for the final fields of an object
|
|
// being constructed (semantically at the end of the constructor). Constructor fences
|
|
// have a per-object affinity; two separate objects being constructed get two separate
|
|
// constructor fences.
|
|
//
|
|
// (Note: that if calling a super-constructor or forwarding to another constructor,
|
|
// the freezes would happen at the end of *that* constructor being invoked).
|
|
//
|
|
// The memory model guarantees that when the object being constructed is "published" after
|
|
// constructor completion (i.e. escapes the current thread via a store), then any final field
|
|
// writes must be observable on other threads (once they observe that publication).
|
|
//
|
|
// Further, anything written before the freeze, and read by dereferencing through the final field,
|
|
// must also be visible (so final object field could itself have an object with non-final fields;
|
|
// yet the freeze must also extend to them).
|
|
//
|
|
// Constructor example:
|
|
//
|
|
// class HasFinal {
|
|
// final int field; Optimizing IR for <init>()V:
|
|
// HasFinal() {
|
|
// field = 123; HInstanceFieldSet(this, HasFinal.field, 123)
|
|
// // freeze(this.field); HConstructorFence(this)
|
|
// } HReturn
|
|
// }
|
|
//
|
|
// HConstructorFence can serve double duty as a fence for new-instance/new-array allocations of
|
|
// already-initialized classes; in that case the allocation must act as a "default-initializer"
|
|
// of the object which effectively writes the class pointer "final field".
|
|
//
|
|
// For example, we can model default-initialiation as roughly the equivalent of the following:
|
|
//
|
|
// class Object {
|
|
// private final Class header;
|
|
// }
|
|
//
|
|
// Java code: Optimizing IR:
|
|
//
|
|
// T new_instance<T>() {
|
|
// Object obj = allocate_memory(T.class.size); obj = HInvoke(art_quick_alloc_object, T)
|
|
// obj.header = T.class; // header write is done by above call.
|
|
// // freeze(obj.header) HConstructorFence(obj)
|
|
// return (T)obj;
|
|
// }
|
|
//
|
|
// See also:
|
|
// * CompilerDriver::RequiresConstructorBarrier
|
|
// * QuasiAtomic::ThreadFenceForConstructor
|
|
//
|
|
class HConstructorFence FINAL : public HVariableInputSizeInstruction {
|
|
// A fence has variable inputs because the inputs can be removed
|
|
// after prepare_for_register_allocation phase.
|
|
// (TODO: In the future a fence could freeze multiple objects
|
|
// after merging two fences together.)
|
|
public:
|
|
// `fence_object` is the reference that needs to be protected for correct publication.
|
|
//
|
|
// It makes sense in the following situations:
|
|
// * <init> constructors, it's the "this" parameter (i.e. HParameterValue, s.t. IsThis() == true).
|
|
// * new-instance-like instructions, it's the return value (i.e. HNewInstance).
|
|
//
|
|
// After construction the `fence_object` becomes the 0th input.
|
|
// This is not an input in a real sense, but just a convenient place to stash the information
|
|
// about the associated object.
|
|
HConstructorFence(HInstruction* fence_object,
|
|
uint32_t dex_pc,
|
|
ArenaAllocator* arena)
|
|
// We strongly suspect there is not a more accurate way to describe the fine-grained reordering
|
|
// constraints described in the class header. We claim that these SideEffects constraints
|
|
// enforce a superset of the real constraints.
|
|
//
|
|
// The ordering described above is conservatively modeled with SideEffects as follows:
|
|
//
|
|
// * To prevent reordering of the publication stores:
|
|
// ----> "Reads of objects" is the initial SideEffect.
|
|
// * For every primitive final field store in the constructor:
|
|
// ----> Union that field's type as a read (e.g. "Read of T") into the SideEffect.
|
|
// * If there are any stores to reference final fields in the constructor:
|
|
// ----> Use a more conservative "AllReads" SideEffect because any stores to any references
|
|
// that are reachable from `fence_object` also need to be prevented for reordering
|
|
// (and we do not want to do alias analysis to figure out what those stores are).
|
|
//
|
|
// In the implementation, this initially starts out as an "all reads" side effect; this is an
|
|
// even more conservative approach than the one described above, and prevents all of the
|
|
// above reordering without analyzing any of the instructions in the constructor.
|
|
//
|
|
// If in a later phase we discover that there are no writes to reference final fields,
|
|
// we can refine the side effect to a smaller set of type reads (see above constraints).
|
|
: HVariableInputSizeInstruction(SideEffects::AllReads(),
|
|
dex_pc,
|
|
arena,
|
|
/* number_of_inputs */ 1,
|
|
kArenaAllocConstructorFenceInputs) {
|
|
DCHECK(fence_object != nullptr);
|
|
SetRawInputAt(0, fence_object);
|
|
}
|
|
|
|
// The object associated with this constructor fence.
|
|
//
|
|
// (Note: This will be null after the prepare_for_register_allocation phase,
|
|
// as all constructor fence inputs are removed there).
|
|
HInstruction* GetFenceObject() const {
|
|
return InputAt(0);
|
|
}
|
|
|
|
// Find all the HConstructorFence uses (`fence_use`) for `this` and:
|
|
// - Delete `fence_use` from `this`'s use list.
|
|
// - Delete `this` from `fence_use`'s inputs list.
|
|
// - If the `fence_use` is dead, remove it from the graph.
|
|
//
|
|
// A fence is considered dead once it no longer has any uses
|
|
// and all of the inputs are dead.
|
|
//
|
|
// This must *not* be called during/after prepare_for_register_allocation,
|
|
// because that removes all the inputs to the fences but the fence is actually
|
|
// still considered live.
|
|
static void RemoveConstructorFences(HInstruction* instruction);
|
|
|
|
// Check if this constructor fence is protecting
|
|
// an HNewInstance or HNewArray that is also the immediate
|
|
// predecessor of `this`.
|
|
//
|
|
// Returns the associated HNewArray or HNewInstance,
|
|
// or null otherwise.
|
|
HInstruction* GetAssociatedAllocation();
|
|
|
|
DECLARE_INSTRUCTION(ConstructorFence);
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(HConstructorFence);
|
|
};
|
|
|
|
class HMonitorOperation FINAL : public HTemplateInstruction<1> {
|
|
public:
|
|
enum class OperationKind {
|
|
kEnter,
|
|
kExit,
|
|
kLast = kExit
|
|
};
|
|
|
|
HMonitorOperation(HInstruction* object, OperationKind kind, uint32_t dex_pc)
|
|
: HTemplateInstruction(
|
|
SideEffects::AllExceptGCDependency(), // Assume write/read on all fields/arrays.
|
|
dex_pc) {
|
|
SetPackedField<OperationKindField>(kind);
|
|
SetRawInputAt(0, object);
|
|
}
|
|
|
|
// Instruction may go into runtime, so we need an environment.
|
|
bool NeedsEnvironment() const OVERRIDE { return true; }
|
|
|
|
bool CanThrow() const OVERRIDE {
|
|
// Verifier guarantees that monitor-exit cannot throw.
|
|
// This is important because it allows the HGraphBuilder to remove
|
|
// a dead throw-catch loop generated for `synchronized` blocks/methods.
|
|
return IsEnter();
|
|
}
|
|
|
|
OperationKind GetOperationKind() const { return GetPackedField<OperationKindField>(); }
|
|
bool IsEnter() const { return GetOperationKind() == OperationKind::kEnter; }
|
|
|
|
DECLARE_INSTRUCTION(MonitorOperation);
|
|
|
|
private:
|
|
static constexpr size_t kFieldOperationKind = HInstruction::kNumberOfGenericPackedBits;
|
|
static constexpr size_t kFieldOperationKindSize =
|
|
MinimumBitsToStore(static_cast<size_t>(OperationKind::kLast));
|
|
static constexpr size_t kNumberOfMonitorOperationPackedBits =
|
|
kFieldOperationKind + kFieldOperationKindSize;
|
|
static_assert(kNumberOfMonitorOperationPackedBits <= HInstruction::kMaxNumberOfPackedBits,
|
|
"Too many packed fields.");
|
|
using OperationKindField = BitField<OperationKind, kFieldOperationKind, kFieldOperationKindSize>;
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(HMonitorOperation);
|
|
};
|
|
|
|
class HSelect FINAL : public HExpression<3> {
|
|
public:
|
|
HSelect(HInstruction* condition,
|
|
HInstruction* true_value,
|
|
HInstruction* false_value,
|
|
uint32_t dex_pc)
|
|
: HExpression(HPhi::ToPhiType(true_value->GetType()), SideEffects::None(), dex_pc) {
|
|
DCHECK_EQ(HPhi::ToPhiType(true_value->GetType()), HPhi::ToPhiType(false_value->GetType()));
|
|
|
|
// First input must be `true_value` or `false_value` to allow codegens to
|
|
// use the SameAsFirstInput allocation policy. We make it `false_value`, so
|
|
// that architectures which implement HSelect as a conditional move also
|
|
// will not need to invert the condition.
|
|
SetRawInputAt(0, false_value);
|
|
SetRawInputAt(1, true_value);
|
|
SetRawInputAt(2, condition);
|
|
}
|
|
|
|
HInstruction* GetFalseValue() const { return InputAt(0); }
|
|
HInstruction* GetTrueValue() const { return InputAt(1); }
|
|
HInstruction* GetCondition() const { return InputAt(2); }
|
|
|
|
bool CanBeMoved() const OVERRIDE { return true; }
|
|
bool InstructionDataEquals(const HInstruction* other ATTRIBUTE_UNUSED) const OVERRIDE {
|
|
return true;
|
|
}
|
|
|
|
bool CanBeNull() const OVERRIDE {
|
|
return GetTrueValue()->CanBeNull() || GetFalseValue()->CanBeNull();
|
|
}
|
|
|
|
DECLARE_INSTRUCTION(Select);
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(HSelect);
|
|
};
|
|
|
|
class MoveOperands : public ArenaObject<kArenaAllocMoveOperands> {
|
|
public:
|
|
MoveOperands(Location source,
|
|
Location destination,
|
|
Primitive::Type type,
|
|
HInstruction* instruction)
|
|
: source_(source), destination_(destination), type_(type), instruction_(instruction) {}
|
|
|
|
Location GetSource() const { return source_; }
|
|
Location GetDestination() const { return destination_; }
|
|
|
|
void SetSource(Location value) { source_ = value; }
|
|
void SetDestination(Location value) { destination_ = value; }
|
|
|
|
// The parallel move resolver marks moves as "in-progress" by clearing the
|
|
// destination (but not the source).
|
|
Location MarkPending() {
|
|
DCHECK(!IsPending());
|
|
Location dest = destination_;
|
|
destination_ = Location::NoLocation();
|
|
return dest;
|
|
}
|
|
|
|
void ClearPending(Location dest) {
|
|
DCHECK(IsPending());
|
|
destination_ = dest;
|
|
}
|
|
|
|
bool IsPending() const {
|
|
DCHECK(source_.IsValid() || destination_.IsInvalid());
|
|
return destination_.IsInvalid() && source_.IsValid();
|
|
}
|
|
|
|
// True if this blocks a move from the given location.
|
|
bool Blocks(Location loc) const {
|
|
return !IsEliminated() && source_.OverlapsWith(loc);
|
|
}
|
|
|
|
// A move is redundant if it's been eliminated, if its source and
|
|
// destination are the same, or if its destination is unneeded.
|
|
bool IsRedundant() const {
|
|
return IsEliminated() || destination_.IsInvalid() || source_.Equals(destination_);
|
|
}
|
|
|
|
// We clear both operands to indicate move that's been eliminated.
|
|
void Eliminate() {
|
|
source_ = destination_ = Location::NoLocation();
|
|
}
|
|
|
|
bool IsEliminated() const {
|
|
DCHECK(!source_.IsInvalid() || destination_.IsInvalid());
|
|
return source_.IsInvalid();
|
|
}
|
|
|
|
Primitive::Type GetType() const { return type_; }
|
|
|
|
bool Is64BitMove() const {
|
|
return Primitive::Is64BitType(type_);
|
|
}
|
|
|
|
HInstruction* GetInstruction() const { return instruction_; }
|
|
|
|
private:
|
|
Location source_;
|
|
Location destination_;
|
|
// The type this move is for.
|
|
Primitive::Type type_;
|
|
// The instruction this move is assocatied with. Null when this move is
|
|
// for moving an input in the expected locations of user (including a phi user).
|
|
// This is only used in debug mode, to ensure we do not connect interval siblings
|
|
// in the same parallel move.
|
|
HInstruction* instruction_;
|
|
};
|
|
|
|
std::ostream& operator<<(std::ostream& os, const MoveOperands& rhs);
|
|
|
|
static constexpr size_t kDefaultNumberOfMoves = 4;
|
|
|
|
class HParallelMove FINAL : public HTemplateInstruction<0> {
|
|
public:
|
|
explicit HParallelMove(ArenaAllocator* arena, uint32_t dex_pc = kNoDexPc)
|
|
: HTemplateInstruction(SideEffects::None(), dex_pc),
|
|
moves_(arena->Adapter(kArenaAllocMoveOperands)) {
|
|
moves_.reserve(kDefaultNumberOfMoves);
|
|
}
|
|
|
|
void AddMove(Location source,
|
|
Location destination,
|
|
Primitive::Type type,
|
|
HInstruction* instruction) {
|
|
DCHECK(source.IsValid());
|
|
DCHECK(destination.IsValid());
|
|
if (kIsDebugBuild) {
|
|
if (instruction != nullptr) {
|
|
for (const MoveOperands& move : moves_) {
|
|
if (move.GetInstruction() == instruction) {
|
|
// Special case the situation where the move is for the spill slot
|
|
// of the instruction.
|
|
if ((GetPrevious() == instruction)
|
|
|| ((GetPrevious() == nullptr)
|
|
&& instruction->IsPhi()
|
|
&& instruction->GetBlock() == GetBlock())) {
|
|
DCHECK_NE(destination.GetKind(), move.GetDestination().GetKind())
|
|
<< "Doing parallel moves for the same instruction.";
|
|
} else {
|
|
DCHECK(false) << "Doing parallel moves for the same instruction.";
|
|
}
|
|
}
|
|
}
|
|
}
|
|
for (const MoveOperands& move : moves_) {
|
|
DCHECK(!destination.OverlapsWith(move.GetDestination()))
|
|
<< "Overlapped destination for two moves in a parallel move: "
|
|
<< move.GetSource() << " ==> " << move.GetDestination() << " and "
|
|
<< source << " ==> " << destination;
|
|
}
|
|
}
|
|
moves_.emplace_back(source, destination, type, instruction);
|
|
}
|
|
|
|
MoveOperands* MoveOperandsAt(size_t index) {
|
|
return &moves_[index];
|
|
}
|
|
|
|
size_t NumMoves() const { return moves_.size(); }
|
|
|
|
DECLARE_INSTRUCTION(ParallelMove);
|
|
|
|
private:
|
|
ArenaVector<MoveOperands> moves_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HParallelMove);
|
|
};
|
|
|
|
} // namespace art
|
|
|
|
#include "nodes_vector.h"
|
|
|
|
#if defined(ART_ENABLE_CODEGEN_arm) || defined(ART_ENABLE_CODEGEN_arm64)
|
|
#include "nodes_shared.h"
|
|
#endif
|
|
#ifdef ART_ENABLE_CODEGEN_mips
|
|
#include "nodes_mips.h"
|
|
#endif
|
|
#ifdef ART_ENABLE_CODEGEN_x86
|
|
#include "nodes_x86.h"
|
|
#endif
|
|
|
|
namespace art {
|
|
|
|
class HGraphVisitor : public ValueObject {
|
|
public:
|
|
explicit HGraphVisitor(HGraph* graph) : graph_(graph) {}
|
|
virtual ~HGraphVisitor() {}
|
|
|
|
virtual void VisitInstruction(HInstruction* instruction ATTRIBUTE_UNUSED) {}
|
|
virtual void VisitBasicBlock(HBasicBlock* block);
|
|
|
|
// Visit the graph following basic block insertion order.
|
|
void VisitInsertionOrder();
|
|
|
|
// Visit the graph following dominator tree reverse post-order.
|
|
void VisitReversePostOrder();
|
|
|
|
HGraph* GetGraph() const { return graph_; }
|
|
|
|
// Visit functions for instruction classes.
|
|
#define DECLARE_VISIT_INSTRUCTION(name, super) \
|
|
virtual void Visit##name(H##name* instr) { VisitInstruction(instr); }
|
|
|
|
FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
|
|
|
|
#undef DECLARE_VISIT_INSTRUCTION
|
|
|
|
private:
|
|
HGraph* const graph_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HGraphVisitor);
|
|
};
|
|
|
|
class HGraphDelegateVisitor : public HGraphVisitor {
|
|
public:
|
|
explicit HGraphDelegateVisitor(HGraph* graph) : HGraphVisitor(graph) {}
|
|
virtual ~HGraphDelegateVisitor() {}
|
|
|
|
// Visit functions that delegate to to super class.
|
|
#define DECLARE_VISIT_INSTRUCTION(name, super) \
|
|
void Visit##name(H##name* instr) OVERRIDE { Visit##super(instr); }
|
|
|
|
FOR_EACH_INSTRUCTION(DECLARE_VISIT_INSTRUCTION)
|
|
|
|
#undef DECLARE_VISIT_INSTRUCTION
|
|
|
|
private:
|
|
DISALLOW_COPY_AND_ASSIGN(HGraphDelegateVisitor);
|
|
};
|
|
|
|
// Iterator over the blocks that art part of the loop. Includes blocks part
|
|
// of an inner loop. The order in which the blocks are iterated is on their
|
|
// block id.
|
|
class HBlocksInLoopIterator : public ValueObject {
|
|
public:
|
|
explicit HBlocksInLoopIterator(const HLoopInformation& info)
|
|
: blocks_in_loop_(info.GetBlocks()),
|
|
blocks_(info.GetHeader()->GetGraph()->GetBlocks()),
|
|
index_(0) {
|
|
if (!blocks_in_loop_.IsBitSet(index_)) {
|
|
Advance();
|
|
}
|
|
}
|
|
|
|
bool Done() const { return index_ == blocks_.size(); }
|
|
HBasicBlock* Current() const { return blocks_[index_]; }
|
|
void Advance() {
|
|
++index_;
|
|
for (size_t e = blocks_.size(); index_ < e; ++index_) {
|
|
if (blocks_in_loop_.IsBitSet(index_)) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
const BitVector& blocks_in_loop_;
|
|
const ArenaVector<HBasicBlock*>& blocks_;
|
|
size_t index_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopIterator);
|
|
};
|
|
|
|
// Iterator over the blocks that art part of the loop. Includes blocks part
|
|
// of an inner loop. The order in which the blocks are iterated is reverse
|
|
// post order.
|
|
class HBlocksInLoopReversePostOrderIterator : public ValueObject {
|
|
public:
|
|
explicit HBlocksInLoopReversePostOrderIterator(const HLoopInformation& info)
|
|
: blocks_in_loop_(info.GetBlocks()),
|
|
blocks_(info.GetHeader()->GetGraph()->GetReversePostOrder()),
|
|
index_(0) {
|
|
if (!blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) {
|
|
Advance();
|
|
}
|
|
}
|
|
|
|
bool Done() const { return index_ == blocks_.size(); }
|
|
HBasicBlock* Current() const { return blocks_[index_]; }
|
|
void Advance() {
|
|
++index_;
|
|
for (size_t e = blocks_.size(); index_ < e; ++index_) {
|
|
if (blocks_in_loop_.IsBitSet(blocks_[index_]->GetBlockId())) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
private:
|
|
const BitVector& blocks_in_loop_;
|
|
const ArenaVector<HBasicBlock*>& blocks_;
|
|
size_t index_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(HBlocksInLoopReversePostOrderIterator);
|
|
};
|
|
|
|
// Returns int64_t value of a properly typed constant.
|
|
inline int64_t Int64FromConstant(HConstant* constant) {
|
|
if (constant->IsIntConstant()) {
|
|
return constant->AsIntConstant()->GetValue();
|
|
} else if (constant->IsLongConstant()) {
|
|
return constant->AsLongConstant()->GetValue();
|
|
} else {
|
|
DCHECK(constant->IsNullConstant()) << constant->DebugName();
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
// Returns true iff instruction is an integral constant (and sets value on success).
|
|
inline bool IsInt64AndGet(HInstruction* instruction, /*out*/ int64_t* value) {
|
|
if (instruction->IsIntConstant()) {
|
|
*value = instruction->AsIntConstant()->GetValue();
|
|
return true;
|
|
} else if (instruction->IsLongConstant()) {
|
|
*value = instruction->AsLongConstant()->GetValue();
|
|
return true;
|
|
} else if (instruction->IsNullConstant()) {
|
|
*value = 0;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
#define INSTRUCTION_TYPE_CHECK(type, super) \
|
|
inline bool HInstruction::Is##type() const { return GetKind() == k##type; } \
|
|
inline const H##type* HInstruction::As##type() const { \
|
|
return Is##type() ? down_cast<const H##type*>(this) : nullptr; \
|
|
} \
|
|
inline H##type* HInstruction::As##type() { \
|
|
return Is##type() ? static_cast<H##type*>(this) : nullptr; \
|
|
}
|
|
|
|
FOR_EACH_CONCRETE_INSTRUCTION(INSTRUCTION_TYPE_CHECK)
|
|
#undef INSTRUCTION_TYPE_CHECK
|
|
|
|
// Create space in `blocks` for adding `number_of_new_blocks` entries
|
|
// starting at location `at`. Blocks after `at` are moved accordingly.
|
|
inline void MakeRoomFor(ArenaVector<HBasicBlock*>* blocks,
|
|
size_t number_of_new_blocks,
|
|
size_t after) {
|
|
DCHECK_LT(after, blocks->size());
|
|
size_t old_size = blocks->size();
|
|
size_t new_size = old_size + number_of_new_blocks;
|
|
blocks->resize(new_size);
|
|
std::copy_backward(blocks->begin() + after + 1u, blocks->begin() + old_size, blocks->end());
|
|
}
|
|
|
|
/*
|
|
* Hunt "under the hood" of array lengths (leading to array references),
|
|
* null checks (also leading to array references), and new arrays
|
|
* (leading to the actual length). This makes it more likely related
|
|
* instructions become actually comparable.
|
|
*/
|
|
inline HInstruction* HuntForDeclaration(HInstruction* instruction) {
|
|
while (instruction->IsArrayLength() ||
|
|
instruction->IsNullCheck() ||
|
|
instruction->IsNewArray()) {
|
|
instruction = instruction->IsNewArray()
|
|
? instruction->AsNewArray()->GetLength()
|
|
: instruction->InputAt(0);
|
|
}
|
|
return instruction;
|
|
}
|
|
|
|
} // namespace art
|
|
|
|
#endif // ART_COMPILER_OPTIMIZING_NODES_H_
|