349 lines
13 KiB
C++
349 lines
13 KiB
C++
/*
|
|
* Copyright (C) 2016 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#define LOG_TAG "connect_benchmark"
|
|
|
|
/*
|
|
* See README.md for general notes.
|
|
*
|
|
* This set of benchmarks measures the throughput of connect() calls on a single thread for IPv4 and
|
|
* IPv6 under the following scenarios:
|
|
*
|
|
* - FWmark disabled (::ANDROID_NO_USE_FWMARK_CLIENT).
|
|
*
|
|
* The control case for other high load benchmarks. Essentially just testing performance of
|
|
* the kernel connect call. In real world use fwmark should stay on in order for traffic to
|
|
* be routed properly.
|
|
*
|
|
* - FWmark enabled only for metrics (::ANDROID_FWMARK_METRICS_ONLY).
|
|
*
|
|
* The default mode up to and including 7.1. Every time connect() is called on an AF_INET or
|
|
* AF_INET6 socket, netdclient sends a synchronous message to fwmarkserver to get the socket
|
|
* marked. Only the fields that are useful for marking or for metrics are sent in this mode;
|
|
* other fields are set to null for the RPC and ignored.
|
|
*
|
|
* - FWmark enabled for all events.
|
|
*
|
|
* The default mode starting from 7.1.2. As well as the normal connect() reporting, extra
|
|
* fields are filled in to log the IP and port of the connection.
|
|
*
|
|
* A second synchronous message is sent to fwmarkserver after the connection completes, to
|
|
* record latency. This message is forwarded to the system server over a oneway binder call.
|
|
*
|
|
* Realtime timed tests
|
|
* ====================
|
|
*
|
|
* The tests named *_high_load record the following useful information:
|
|
*
|
|
* - real_time: the mean roundtrip time for one connect() call under load
|
|
*
|
|
* - iterations: the number of times the test was run within the timelimit --- approximately
|
|
* MinTime / real_time
|
|
*
|
|
* Manually timed tests
|
|
* ====================
|
|
*
|
|
* All other sets of tests apart from *_high_load run with manual timing. The purpose of these is to
|
|
* measure 90th-percentile latency for connect() calls compared to mean latency.
|
|
*
|
|
* (TODO: ideally this should be against median latency, but google-benchmark only supports one
|
|
* custom 'label' output for graphing. Stddev isn't appropriate because the latency
|
|
* distribution is usually spiky, not in a nice neat normal-like distribution.)
|
|
*
|
|
* The manually timed tests record the following useful information:
|
|
*
|
|
* - real_time: the average time taken to complete a test run. Unlike the real_time used in high
|
|
* load tests, this is calculated from before-and-after values of the realtime clock
|
|
* over many iterations so may be less accurate than the under-load times.
|
|
*
|
|
* - iterations: the number of times the test was run within the timelimit --- approximately
|
|
* MinTime / real_time, although as explained, may not be as meaningful because of
|
|
* overhead from timing.
|
|
*
|
|
* - label: a manually-recorded time giving the 90th-percentile value of real_time over all
|
|
* individual runs. Should be compared to real_time.
|
|
*
|
|
*/
|
|
|
|
#include <arpa/inet.h>
|
|
#include <cutils/sockets.h>
|
|
#include <errno.h>
|
|
#include <netinet/in.h>
|
|
#include <time.h>
|
|
|
|
#include <map>
|
|
#include <functional>
|
|
#include <thread>
|
|
|
|
#include <android-base/stringprintf.h>
|
|
#include <benchmark/benchmark.h>
|
|
#include <log/log.h>
|
|
#include <utils/StrongPointer.h>
|
|
|
|
#include "FwmarkClient.h"
|
|
#include "SockDiag.h"
|
|
#include "Stopwatch.h"
|
|
#include "android/net/metrics/INetdEventListener.h"
|
|
|
|
using android::base::StringPrintf;
|
|
using android::net::metrics::INetdEventListener;
|
|
|
|
static int bindAndListen(int s) {
|
|
sockaddr_in6 sin6 = { .sin6_family = AF_INET6 };
|
|
if (bind(s, (sockaddr*) &sin6, sizeof(sin6)) == 0) {
|
|
if (listen(s, 1)) {
|
|
return -1;
|
|
}
|
|
sockaddr_in sin = {};
|
|
socklen_t len = sizeof(sin);
|
|
if (getsockname(s, (sockaddr*) &sin, &len)) {
|
|
return -1;
|
|
}
|
|
return ntohs(sin.sin_port);
|
|
} else {
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
static void ipv4_loopback(benchmark::State& state, const bool waitBetweenRuns) {
|
|
const int listensocket = socket(AF_INET6, SOCK_STREAM, 0);
|
|
const int port = bindAndListen(listensocket);
|
|
if (port == -1) {
|
|
state.SkipWithError("Unable to bind server socket");
|
|
return;
|
|
}
|
|
|
|
// ALOGW("Listening on port = %d", port);
|
|
std::vector<uint64_t> latencies(state.max_iterations);
|
|
uint64_t iterations = 0;
|
|
|
|
while (state.KeepRunning()) {
|
|
int sock = socket(AF_INET, SOCK_STREAM, 0);
|
|
if (sock < 0) {
|
|
state.SkipWithError(StringPrintf("socket() failed with errno=%d", errno).c_str());
|
|
break;
|
|
}
|
|
|
|
const Stopwatch stopwatch;
|
|
|
|
sockaddr_in server = { .sin_family = AF_INET, .sin_port = htons(port) };
|
|
if (connect(sock, (sockaddr*) &server, sizeof(server))) {
|
|
state.SkipWithError(StringPrintf("connect() failed with errno=%d", errno).c_str());
|
|
close(sock);
|
|
break;
|
|
}
|
|
|
|
if (waitBetweenRuns) {
|
|
latencies[iterations] = stopwatch.timeTaken() * 1e6L;
|
|
state.SetIterationTime(latencies[iterations] / 1e9L);
|
|
std::this_thread::sleep_for(std::chrono::milliseconds(10));
|
|
++iterations;
|
|
}
|
|
|
|
sockaddr_in6 client;
|
|
socklen_t clientlen = sizeof(client);
|
|
int accepted = accept(listensocket, (sockaddr *) &client, &clientlen);
|
|
if (accepted < 0) {
|
|
state.SkipWithError(StringPrintf("accept() failed with errno=%d", errno).c_str());
|
|
close(sock);
|
|
break;
|
|
}
|
|
|
|
close(accepted);
|
|
close(sock);
|
|
}
|
|
close(listensocket);
|
|
// ALOGI("Finished test on port = %d", port);
|
|
|
|
if (iterations > 0) {
|
|
latencies.resize(iterations);
|
|
sort(latencies.begin(), latencies.end());
|
|
state.SetLabel(StringPrintf("%lld", (long long) latencies[iterations * 9 / 10]));
|
|
}
|
|
}
|
|
|
|
static void ipv6_loopback(benchmark::State& state, const bool waitBetweenRuns) {
|
|
const int listensocket = socket(AF_INET6, SOCK_STREAM, 0);
|
|
const int port = bindAndListen(listensocket);
|
|
if (port == -1) {
|
|
state.SkipWithError("Unable to bind server socket");
|
|
return;
|
|
}
|
|
|
|
// ALOGW("Listening on port = %d", port);
|
|
std::vector<uint64_t> latencies(state.max_iterations);
|
|
uint64_t iterations = 0;
|
|
|
|
while (state.KeepRunning()) {
|
|
int sock = socket(AF_INET6, SOCK_STREAM, 0);
|
|
if (sock < 0) {
|
|
state.SkipWithError(StringPrintf("socket() failed with errno=%d", errno).c_str());
|
|
break;
|
|
}
|
|
|
|
const Stopwatch stopwatch;
|
|
|
|
sockaddr_in6 server = { .sin6_family = AF_INET6, .sin6_port = htons(port) };
|
|
if (connect(sock, (sockaddr*) &server, sizeof(server))) {
|
|
state.SkipWithError(StringPrintf("connect() failed with errno=%d", errno).c_str());
|
|
close(sock);
|
|
break;
|
|
}
|
|
|
|
if (waitBetweenRuns) {
|
|
latencies[iterations] = stopwatch.timeTaken() * 1e6L;
|
|
state.SetIterationTime(latencies[iterations] / 1e9L);
|
|
std::this_thread::sleep_for(std::chrono::milliseconds(10));
|
|
++iterations;
|
|
}
|
|
|
|
sockaddr_in6 client;
|
|
socklen_t clientlen = sizeof(client);
|
|
int accepted = accept(listensocket, (sockaddr *) &client, &clientlen);
|
|
if (accepted < 0) {
|
|
state.SkipWithError(StringPrintf("accept() failed with errno=%d", errno).c_str());
|
|
close(sock);
|
|
break;
|
|
}
|
|
|
|
close(accepted);
|
|
close(sock);
|
|
}
|
|
close(listensocket);
|
|
// ALOGI("Finished test on port = %d", port);
|
|
|
|
if (iterations > 0) {
|
|
latencies.resize(iterations);
|
|
sort(latencies.begin(), latencies.end());
|
|
state.SetLabel(StringPrintf("%lld", (long long) latencies[iterations * 9 / 10]));
|
|
}
|
|
}
|
|
|
|
static void run_at_reporting_level(decltype(ipv4_loopback) benchmarkFunction,
|
|
::benchmark::State& state, const int reportingLevel,
|
|
const bool waitBetweenRuns) {
|
|
// Our master thread (thread_index == 0) will control setup and teardown for other threads.
|
|
const bool isMaster = (state.thread_index == 0);
|
|
|
|
// Previous values of env variables used by fwmarkclient (only read/written by master thread)
|
|
const std::string savedSettings[] = {
|
|
FwmarkClient::ANDROID_NO_USE_FWMARK_CLIENT,
|
|
FwmarkClient::ANDROID_FWMARK_METRICS_ONLY
|
|
};
|
|
std::map<std::string, std::string> prevSettings;
|
|
|
|
// SETUP
|
|
if (isMaster) {
|
|
for (const auto setting : savedSettings) {
|
|
const char* prevEnvStr = getenv(setting.c_str());
|
|
if (prevEnvStr != nullptr) {
|
|
prevSettings[setting.c_str()] = prevEnvStr;
|
|
}
|
|
}
|
|
switch (reportingLevel) {
|
|
case INetdEventListener::REPORTING_LEVEL_NONE:
|
|
setenv(FwmarkClient::ANDROID_NO_USE_FWMARK_CLIENT, "", 1);
|
|
break;
|
|
case INetdEventListener::REPORTING_LEVEL_METRICS:
|
|
unsetenv(FwmarkClient::ANDROID_NO_USE_FWMARK_CLIENT);
|
|
setenv(FwmarkClient::ANDROID_FWMARK_METRICS_ONLY, "", 1);
|
|
break;
|
|
case INetdEventListener::REPORTING_LEVEL_FULL:
|
|
unsetenv(FwmarkClient::ANDROID_NO_USE_FWMARK_CLIENT);
|
|
unsetenv(FwmarkClient::ANDROID_FWMARK_METRICS_ONLY);
|
|
break;
|
|
}
|
|
}
|
|
|
|
// TEST
|
|
benchmarkFunction(state, waitBetweenRuns);
|
|
|
|
// TEARDOWN
|
|
if (isMaster) {
|
|
for (const auto setting : savedSettings) {
|
|
if (prevSettings.count(setting)) {
|
|
setenv(setting.c_str(), prevSettings[setting].c_str(), 1);
|
|
} else {
|
|
unsetenv(setting.c_str());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
constexpr int MIN_THREADS = 1;
|
|
constexpr int MAX_THREADS = 1;
|
|
constexpr double MIN_TIME = 0.5 /* seconds */;
|
|
|
|
static void ipv4_metrics_reporting_no_fwmark(::benchmark::State& state) {
|
|
run_at_reporting_level(ipv4_loopback, state, INetdEventListener::REPORTING_LEVEL_NONE, true);
|
|
}
|
|
BENCHMARK(ipv4_metrics_reporting_no_fwmark)->MinTime(MIN_TIME)->UseManualTime();
|
|
|
|
// IPv4 metrics under low load
|
|
static void ipv4_metrics_reporting_no_load(::benchmark::State& state) {
|
|
run_at_reporting_level(ipv4_loopback, state, INetdEventListener::REPORTING_LEVEL_METRICS, true);
|
|
}
|
|
BENCHMARK(ipv4_metrics_reporting_no_load)->MinTime(MIN_TIME)->UseManualTime();
|
|
|
|
static void ipv4_full_reporting_no_load(::benchmark::State& state) {
|
|
run_at_reporting_level(ipv4_loopback, state, INetdEventListener::REPORTING_LEVEL_FULL, true);
|
|
}
|
|
BENCHMARK(ipv4_full_reporting_no_load)->MinTime(MIN_TIME)->UseManualTime();
|
|
|
|
// IPv4 benchmarks under high load
|
|
static void ipv4_metrics_reporting_high_load(::benchmark::State& state) {
|
|
run_at_reporting_level(ipv4_loopback, state, INetdEventListener::REPORTING_LEVEL_METRICS,
|
|
false);
|
|
}
|
|
BENCHMARK(ipv4_metrics_reporting_high_load)
|
|
->ThreadRange(MIN_THREADS, MAX_THREADS)->MinTime(MIN_TIME)->UseRealTime();
|
|
|
|
static void ipv4_full_reporting_high_load(::benchmark::State& state) {
|
|
run_at_reporting_level(ipv4_loopback, state, INetdEventListener::REPORTING_LEVEL_FULL, false);
|
|
}
|
|
BENCHMARK(ipv4_full_reporting_high_load)
|
|
->ThreadRange(MIN_THREADS, MAX_THREADS)->MinTime(MIN_TIME)->UseRealTime();
|
|
|
|
// IPv6 raw connect() without using fwmark
|
|
static void ipv6_metrics_reporting_no_fwmark(::benchmark::State& state) {
|
|
run_at_reporting_level(ipv6_loopback, state, INetdEventListener::REPORTING_LEVEL_NONE, true);
|
|
}
|
|
BENCHMARK(ipv6_metrics_reporting_no_fwmark)->MinTime(MIN_TIME)->UseManualTime();
|
|
|
|
// IPv6 metrics under low load
|
|
static void ipv6_metrics_reporting_no_load(::benchmark::State& state) {
|
|
run_at_reporting_level(ipv6_loopback, state, INetdEventListener::REPORTING_LEVEL_METRICS, true);
|
|
}
|
|
BENCHMARK(ipv6_metrics_reporting_no_load)->MinTime(MIN_TIME)->UseManualTime();
|
|
|
|
static void ipv6_full_reporting_no_load(::benchmark::State& state) {
|
|
run_at_reporting_level(ipv6_loopback, state, INetdEventListener::REPORTING_LEVEL_FULL, true);
|
|
}
|
|
BENCHMARK(ipv6_full_reporting_no_load)->MinTime(MIN_TIME)->UseManualTime();
|
|
|
|
// IPv6 benchmarks under high load
|
|
static void ipv6_metrics_reporting_high_load(::benchmark::State& state) {
|
|
run_at_reporting_level(ipv6_loopback, state, INetdEventListener::REPORTING_LEVEL_METRICS,
|
|
false);
|
|
}
|
|
BENCHMARK(ipv6_metrics_reporting_high_load)
|
|
->ThreadRange(MIN_THREADS, MAX_THREADS)->MinTime(MIN_TIME)->UseRealTime();
|
|
|
|
static void ipv6_full_reporting_high_load(::benchmark::State& state) {
|
|
run_at_reporting_level(ipv6_loopback, state, INetdEventListener::REPORTING_LEVEL_FULL, false);
|
|
}
|
|
BENCHMARK(ipv6_full_reporting_high_load)
|
|
->ThreadRange(MIN_THREADS, MAX_THREADS)->MinTime(MIN_TIME)->UseRealTime();
|