325 lines
11 KiB
C++
Executable file
325 lines
11 KiB
C++
Executable file
/*
|
|
* Copyright (C) 2017 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#ifndef LIBTEXTCLASSIFIER_COMMON_EMBEDDING_NETWORK_PARAMS_H_
|
|
#define LIBTEXTCLASSIFIER_COMMON_EMBEDDING_NETWORK_PARAMS_H_
|
|
|
|
#include <algorithm>
|
|
#include <string>
|
|
|
|
#include "common/float16.h"
|
|
#include "common/task-context.h"
|
|
#include "common/task-spec.pb.h"
|
|
#include "util/base/logging.h"
|
|
|
|
namespace libtextclassifier {
|
|
namespace nlp_core {
|
|
|
|
enum class QuantizationType { NONE = 0, UINT8 };
|
|
|
|
// API for accessing parameters for a feed-forward neural network with
|
|
// embeddings.
|
|
//
|
|
// Note: this API is closely related to embedding-network.proto. The reason we
|
|
// have a separate API is that the proto may not be the only way of packaging
|
|
// these parameters.
|
|
class EmbeddingNetworkParams {
|
|
public:
|
|
virtual ~EmbeddingNetworkParams() {}
|
|
|
|
// **** High-level API.
|
|
|
|
// Simple representation of a matrix. This small struct that doesn't own any
|
|
// resource intentionally supports copy / assign, to simplify our APIs.
|
|
struct Matrix {
|
|
// Number of rows.
|
|
int rows;
|
|
|
|
// Number of columns.
|
|
int cols;
|
|
|
|
QuantizationType quant_type;
|
|
|
|
// Pointer to matrix elements, in row-major order
|
|
// (https://en.wikipedia.org/wiki/Row-major_order) Not owned.
|
|
const void *elements;
|
|
|
|
// Quantization scales: one scale for each row.
|
|
const float16 *quant_scales;
|
|
};
|
|
|
|
// Returns number of embedding spaces.
|
|
int GetNumEmbeddingSpaces() const {
|
|
if (embeddings_size() != embedding_num_features_size()) {
|
|
TC_LOG(ERROR) << "Embedding spaces mismatch " << embeddings_size()
|
|
<< " != " << embedding_num_features_size();
|
|
}
|
|
return std::max(0,
|
|
std::min(embeddings_size(), embedding_num_features_size()));
|
|
}
|
|
|
|
// Returns embedding matrix for the i-th embedding space.
|
|
//
|
|
// NOTE: i must be in [0, GetNumEmbeddingSpaces()). Undefined behavior
|
|
// otherwise.
|
|
Matrix GetEmbeddingMatrix(int i) const {
|
|
TC_DCHECK(InRange(i, embeddings_size()));
|
|
Matrix matrix;
|
|
matrix.rows = embeddings_num_rows(i);
|
|
matrix.cols = embeddings_num_cols(i);
|
|
matrix.elements = embeddings_weights(i);
|
|
matrix.quant_type = embeddings_quant_type(i);
|
|
matrix.quant_scales = embeddings_quant_scales(i);
|
|
return matrix;
|
|
}
|
|
|
|
// Returns number of features in i-th embedding space.
|
|
//
|
|
// NOTE: i must be in [0, GetNumEmbeddingSpaces()). Undefined behavior
|
|
// otherwise.
|
|
int GetNumFeaturesInEmbeddingSpace(int i) const {
|
|
TC_DCHECK(InRange(i, embedding_num_features_size()));
|
|
return std::max(0, embedding_num_features(i));
|
|
}
|
|
|
|
// Returns number of hidden layers in the neural network. Each such layer has
|
|
// weight matrix and a bias vector (a matrix with one column).
|
|
int GetNumHiddenLayers() const {
|
|
if (hidden_size() != hidden_bias_size()) {
|
|
TC_LOG(ERROR) << "Hidden layer mismatch " << hidden_size()
|
|
<< " != " << hidden_bias_size();
|
|
}
|
|
return std::max(0, std::min(hidden_size(), hidden_bias_size()));
|
|
}
|
|
|
|
// Returns weight matrix for i-th hidden layer.
|
|
//
|
|
// NOTE: i must be in [0, GetNumHiddenLayers()). Undefined behavior
|
|
// otherwise.
|
|
Matrix GetHiddenLayerMatrix(int i) const {
|
|
TC_DCHECK(InRange(i, hidden_size()));
|
|
Matrix matrix;
|
|
matrix.rows = hidden_num_rows(i);
|
|
matrix.cols = hidden_num_cols(i);
|
|
|
|
// Quantization not supported here.
|
|
matrix.quant_type = QuantizationType::NONE;
|
|
matrix.elements = hidden_weights(i);
|
|
return matrix;
|
|
}
|
|
|
|
// Returns bias matrix for i-th hidden layer. Technically a Matrix, but we
|
|
// expect it to be a vector (i.e., num cols is 1).
|
|
//
|
|
// NOTE: i must be in [0, GetNumHiddenLayers()). Undefined behavior
|
|
// otherwise.
|
|
Matrix GetHiddenLayerBias(int i) const {
|
|
TC_DCHECK(InRange(i, hidden_bias_size()));
|
|
Matrix matrix;
|
|
matrix.rows = hidden_bias_num_rows(i);
|
|
matrix.cols = hidden_bias_num_cols(i);
|
|
|
|
// Quantization not supported here.
|
|
matrix.quant_type = QuantizationType::NONE;
|
|
matrix.elements = hidden_bias_weights(i);
|
|
return matrix;
|
|
}
|
|
|
|
// Returns true if a softmax layer exists.
|
|
bool HasSoftmaxLayer() const {
|
|
if (softmax_size() != softmax_bias_size()) {
|
|
TC_LOG(ERROR) << "Softmax layer mismatch " << softmax_size()
|
|
<< " != " << softmax_bias_size();
|
|
}
|
|
return (softmax_size() == 1) && (softmax_bias_size() == 1);
|
|
}
|
|
|
|
// Returns weight matrix for the softmax layer.
|
|
//
|
|
// NOTE: Should be called only if HasSoftmaxLayer() is true. Undefined
|
|
// behavior otherwise.
|
|
Matrix GetSoftmaxMatrix() const {
|
|
TC_DCHECK(softmax_size() == 1);
|
|
Matrix matrix;
|
|
matrix.rows = softmax_num_rows(0);
|
|
matrix.cols = softmax_num_cols(0);
|
|
|
|
// Quantization not supported here.
|
|
matrix.quant_type = QuantizationType::NONE;
|
|
matrix.elements = softmax_weights(0);
|
|
return matrix;
|
|
}
|
|
|
|
// Returns bias for the softmax layer. Technically a Matrix, but we expect it
|
|
// to be a row/column vector (i.e., num cols is 1).
|
|
//
|
|
// NOTE: Should be called only if HasSoftmaxLayer() is true. Undefined
|
|
// behavior otherwise.
|
|
Matrix GetSoftmaxBias() const {
|
|
TC_DCHECK(softmax_bias_size() == 1);
|
|
Matrix matrix;
|
|
matrix.rows = softmax_bias_num_rows(0);
|
|
matrix.cols = softmax_bias_num_cols(0);
|
|
|
|
// Quantization not supported here.
|
|
matrix.quant_type = QuantizationType::NONE;
|
|
matrix.elements = softmax_bias_weights(0);
|
|
return matrix;
|
|
}
|
|
|
|
// Updates the EmbeddingNetwork-related parameters from task_context. Returns
|
|
// true on success, false on error.
|
|
virtual bool UpdateTaskContextParameters(TaskContext *task_context) {
|
|
const TaskSpec *task_spec = GetTaskSpec();
|
|
if (task_spec == nullptr) {
|
|
TC_LOG(ERROR) << "Unable to get TaskSpec";
|
|
return false;
|
|
}
|
|
for (const TaskSpec::Parameter ¶meter : task_spec->parameter()) {
|
|
task_context->SetParameter(parameter.name(), parameter.value());
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Returns a pointer to a TaskSpec with the EmbeddingNetwork-related
|
|
// parameters. Returns nullptr in case of problems. Ownership with the
|
|
// returned pointer is *not* transfered to the caller.
|
|
virtual const TaskSpec *GetTaskSpec() {
|
|
TC_LOG(ERROR) << "Not implemented";
|
|
return nullptr;
|
|
}
|
|
|
|
protected:
|
|
// **** Low-level API.
|
|
//
|
|
// * Most low-level API methods are documented by giving an equivalent
|
|
// function call on proto, the original proto (of type
|
|
// EmbeddingNetworkProto) which was used to generate the C++ code.
|
|
//
|
|
// * To simplify our generation code, optional proto fields of message type
|
|
// are treated as repeated fields with 0 or 1 instances. As such, we have
|
|
// *_size() methods for such optional fields: they return 0 or 1.
|
|
//
|
|
// * "transpose(M)" denotes the transpose of a matrix M.
|
|
//
|
|
// * Behavior is undefined when trying to retrieve a piece of data that does
|
|
// not exist: e.g., embeddings_num_rows(5) if embeddings_size() == 2.
|
|
|
|
// ** Access methods for repeated MatrixParams embeddings.
|
|
//
|
|
// Returns proto.embeddings_size().
|
|
virtual int embeddings_size() const = 0;
|
|
|
|
// Returns number of rows of transpose(proto.embeddings(i)).
|
|
virtual int embeddings_num_rows(int i) const = 0;
|
|
|
|
// Returns number of columns of transpose(proto.embeddings(i)).
|
|
virtual int embeddings_num_cols(int i) const = 0;
|
|
|
|
// Returns pointer to elements of transpose(proto.embeddings(i)), in row-major
|
|
// order. NOTE: for unquantized embeddings, this returns a pointer to float;
|
|
// for quantized embeddings, this returns a pointer to uint8.
|
|
virtual const void *embeddings_weights(int i) const = 0;
|
|
|
|
virtual QuantizationType embeddings_quant_type(int i) const {
|
|
return QuantizationType::NONE;
|
|
}
|
|
|
|
virtual const float16 *embeddings_quant_scales(int i) const {
|
|
return nullptr;
|
|
}
|
|
|
|
// ** Access methods for repeated MatrixParams hidden.
|
|
//
|
|
// Returns embedding_network_proto.hidden_size().
|
|
virtual int hidden_size() const = 0;
|
|
|
|
// Returns embedding_network_proto.hidden(i).rows().
|
|
virtual int hidden_num_rows(int i) const = 0;
|
|
|
|
// Returns embedding_network_proto.hidden(i).rows().
|
|
virtual int hidden_num_cols(int i) const = 0;
|
|
|
|
// Returns pointer to beginning of array of floats with all values from
|
|
// embedding_network_proto.hidden(i).
|
|
virtual const void *hidden_weights(int i) const = 0;
|
|
|
|
// ** Access methods for repeated MatrixParams hidden_bias.
|
|
//
|
|
// Returns proto.hidden_bias_size().
|
|
virtual int hidden_bias_size() const = 0;
|
|
|
|
// Returns number of rows of proto.hidden_bias(i).
|
|
virtual int hidden_bias_num_rows(int i) const = 0;
|
|
|
|
// Returns number of columns of proto.hidden_bias(i).
|
|
virtual int hidden_bias_num_cols(int i) const = 0;
|
|
|
|
// Returns pointer to elements of proto.hidden_bias(i), in row-major order.
|
|
virtual const void *hidden_bias_weights(int i) const = 0;
|
|
|
|
// ** Access methods for optional MatrixParams softmax.
|
|
//
|
|
// Returns 1 if proto has optional field softmax, 0 otherwise.
|
|
virtual int softmax_size() const = 0;
|
|
|
|
// Returns number of rows of transpose(proto.softmax()).
|
|
virtual int softmax_num_rows(int i) const = 0;
|
|
|
|
// Returns number of columns of transpose(proto.softmax()).
|
|
virtual int softmax_num_cols(int i) const = 0;
|
|
|
|
// Returns pointer to elements of transpose(proto.softmax()), in row-major
|
|
// order.
|
|
virtual const void *softmax_weights(int i) const = 0;
|
|
|
|
// ** Access methods for optional MatrixParams softmax_bias.
|
|
//
|
|
// Returns 1 if proto has optional field softmax_bias, 0 otherwise.
|
|
virtual int softmax_bias_size() const = 0;
|
|
|
|
// Returns number of rows of proto.softmax_bias().
|
|
virtual int softmax_bias_num_rows(int i) const = 0;
|
|
|
|
// Returns number of columns of proto.softmax_bias().
|
|
virtual int softmax_bias_num_cols(int i) const = 0;
|
|
|
|
// Returns pointer to elements of proto.softmax_bias(), in row-major order.
|
|
virtual const void *softmax_bias_weights(int i) const = 0;
|
|
|
|
// ** Access methods for repeated int32 embedding_num_features.
|
|
//
|
|
// Returns proto.embedding_num_features_size().
|
|
virtual int embedding_num_features_size() const = 0;
|
|
|
|
// Returns proto.embedding_num_features(i).
|
|
virtual int embedding_num_features(int i) const = 0;
|
|
|
|
// Returns true if and only if index is in range [0, size). Log an error
|
|
// message otherwise.
|
|
static bool InRange(int index, int size) {
|
|
if ((index < 0) || (index >= size)) {
|
|
TC_LOG(ERROR) << "Index " << index << " outside [0, " << size << ")";
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
}; // class EmbeddingNetworkParams
|
|
|
|
} // namespace nlp_core
|
|
} // namespace libtextclassifier
|
|
|
|
#endif // LIBTEXTCLASSIFIER_COMMON_EMBEDDING_NETWORK_PARAMS_H_
|