475 lines
18 KiB
C++
475 lines
18 KiB
C++
/*
|
|
* Copyright (C) 2011 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#ifndef ART_RUNTIME_MIRROR_ARRAY_INL_H_
|
|
#define ART_RUNTIME_MIRROR_ARRAY_INL_H_
|
|
|
|
#include "array.h"
|
|
|
|
#include "android-base/stringprintf.h"
|
|
|
|
#include "base/bit_utils.h"
|
|
#include "base/casts.h"
|
|
#include "base/logging.h"
|
|
#include "class.h"
|
|
#include "gc/heap-inl.h"
|
|
#include "object-inl.h"
|
|
#include "obj_ptr-inl.h"
|
|
#include "thread.h"
|
|
|
|
namespace art {
|
|
namespace mirror {
|
|
|
|
inline uint32_t Array::ClassSize(PointerSize pointer_size) {
|
|
uint32_t vtable_entries = Object::kVTableLength;
|
|
return Class::ComputeClassSize(true, vtable_entries, 0, 0, 0, 0, 0, pointer_size);
|
|
}
|
|
|
|
template<VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption>
|
|
inline size_t Array::SizeOf() {
|
|
// This is safe from overflow because the array was already allocated, so we know it's sane.
|
|
size_t component_size_shift = GetClass<kVerifyFlags, kReadBarrierOption>()->
|
|
template GetComponentSizeShift<kReadBarrierOption>();
|
|
// Don't need to check this since we already check this in GetClass.
|
|
int32_t component_count =
|
|
GetLength<static_cast<VerifyObjectFlags>(kVerifyFlags & ~kVerifyThis)>();
|
|
size_t header_size = DataOffset(1U << component_size_shift).SizeValue();
|
|
size_t data_size = component_count << component_size_shift;
|
|
return header_size + data_size;
|
|
}
|
|
|
|
inline MemberOffset Array::DataOffset(size_t component_size) {
|
|
DCHECK(IsPowerOfTwo(component_size)) << component_size;
|
|
size_t data_offset = RoundUp(OFFSETOF_MEMBER(Array, first_element_), component_size);
|
|
DCHECK_EQ(RoundUp(data_offset, component_size), data_offset)
|
|
<< "Array data offset isn't aligned with component size";
|
|
return MemberOffset(data_offset);
|
|
}
|
|
|
|
template<VerifyObjectFlags kVerifyFlags>
|
|
inline bool Array::CheckIsValidIndex(int32_t index) {
|
|
if (UNLIKELY(static_cast<uint32_t>(index) >=
|
|
static_cast<uint32_t>(GetLength<kVerifyFlags>()))) {
|
|
ThrowArrayIndexOutOfBoundsException(index);
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
static inline size_t ComputeArraySize(int32_t component_count, size_t component_size_shift) {
|
|
DCHECK_GE(component_count, 0);
|
|
|
|
size_t component_size = 1U << component_size_shift;
|
|
size_t header_size = Array::DataOffset(component_size).SizeValue();
|
|
size_t data_size = static_cast<size_t>(component_count) << component_size_shift;
|
|
size_t size = header_size + data_size;
|
|
|
|
// Check for size_t overflow if this was an unreasonable request
|
|
// but let the caller throw OutOfMemoryError.
|
|
#ifdef __LP64__
|
|
// 64-bit. No overflow as component_count is 32-bit and the maximum
|
|
// component size is 8.
|
|
DCHECK_LE((1U << component_size_shift), 8U);
|
|
#else
|
|
// 32-bit.
|
|
DCHECK_NE(header_size, 0U);
|
|
DCHECK_EQ(RoundUp(header_size, component_size), header_size);
|
|
// The array length limit (exclusive).
|
|
const size_t length_limit = (0U - header_size) >> component_size_shift;
|
|
if (UNLIKELY(length_limit <= static_cast<size_t>(component_count))) {
|
|
return 0; // failure
|
|
}
|
|
#endif
|
|
return size;
|
|
}
|
|
|
|
// Used for setting the array length in the allocation code path to ensure it is guarded by a
|
|
// StoreStore fence.
|
|
class SetLengthVisitor {
|
|
public:
|
|
explicit SetLengthVisitor(int32_t length) : length_(length) {
|
|
}
|
|
|
|
void operator()(ObjPtr<Object> obj, size_t usable_size ATTRIBUTE_UNUSED) const
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
// Avoid AsArray as object is not yet in live bitmap or allocation stack.
|
|
ObjPtr<Array> array = ObjPtr<Array>::DownCast(obj);
|
|
// DCHECK(array->IsArrayInstance());
|
|
array->SetLength(length_);
|
|
}
|
|
|
|
private:
|
|
const int32_t length_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(SetLengthVisitor);
|
|
};
|
|
|
|
// Similar to SetLengthVisitor, used for setting the array length to fill the usable size of an
|
|
// array.
|
|
class SetLengthToUsableSizeVisitor {
|
|
public:
|
|
SetLengthToUsableSizeVisitor(int32_t min_length, size_t header_size,
|
|
size_t component_size_shift) :
|
|
minimum_length_(min_length), header_size_(header_size),
|
|
component_size_shift_(component_size_shift) {
|
|
}
|
|
|
|
void operator()(ObjPtr<Object> obj, size_t usable_size) const
|
|
REQUIRES_SHARED(Locks::mutator_lock_) {
|
|
// Avoid AsArray as object is not yet in live bitmap or allocation stack.
|
|
ObjPtr<Array> array = ObjPtr<Array>::DownCast(obj);
|
|
// DCHECK(array->IsArrayInstance());
|
|
int32_t length = (usable_size - header_size_) >> component_size_shift_;
|
|
DCHECK_GE(length, minimum_length_);
|
|
uint8_t* old_end = reinterpret_cast<uint8_t*>(array->GetRawData(1U << component_size_shift_,
|
|
minimum_length_));
|
|
uint8_t* new_end = reinterpret_cast<uint8_t*>(array->GetRawData(1U << component_size_shift_,
|
|
length));
|
|
// Ensure space beyond original allocation is zeroed.
|
|
memset(old_end, 0, new_end - old_end);
|
|
array->SetLength(length);
|
|
}
|
|
|
|
private:
|
|
const int32_t minimum_length_;
|
|
const size_t header_size_;
|
|
const size_t component_size_shift_;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(SetLengthToUsableSizeVisitor);
|
|
};
|
|
|
|
template <bool kIsInstrumented, bool kFillUsable>
|
|
inline Array* Array::Alloc(Thread* self,
|
|
ObjPtr<Class> array_class,
|
|
int32_t component_count,
|
|
size_t component_size_shift,
|
|
gc::AllocatorType allocator_type) {
|
|
DCHECK(allocator_type != gc::kAllocatorTypeLOS);
|
|
DCHECK(array_class != nullptr);
|
|
DCHECK(array_class->IsArrayClass());
|
|
DCHECK_EQ(array_class->GetComponentSizeShift(), component_size_shift);
|
|
DCHECK_EQ(array_class->GetComponentSize(), (1U << component_size_shift));
|
|
size_t size = ComputeArraySize(component_count, component_size_shift);
|
|
#ifdef __LP64__
|
|
// 64-bit. No size_t overflow.
|
|
DCHECK_NE(size, 0U);
|
|
#else
|
|
// 32-bit.
|
|
if (UNLIKELY(size == 0)) {
|
|
self->ThrowOutOfMemoryError(android::base::StringPrintf("%s of length %d would overflow",
|
|
array_class->PrettyDescriptor().c_str(),
|
|
component_count).c_str());
|
|
return nullptr;
|
|
}
|
|
#endif
|
|
gc::Heap* heap = Runtime::Current()->GetHeap();
|
|
Array* result;
|
|
if (!kFillUsable) {
|
|
SetLengthVisitor visitor(component_count);
|
|
result = down_cast<Array*>(
|
|
heap->AllocObjectWithAllocator<kIsInstrumented, true>(self, array_class, size,
|
|
allocator_type, visitor));
|
|
} else {
|
|
SetLengthToUsableSizeVisitor visitor(component_count,
|
|
DataOffset(1U << component_size_shift).SizeValue(),
|
|
component_size_shift);
|
|
result = down_cast<Array*>(
|
|
heap->AllocObjectWithAllocator<kIsInstrumented, true>(self, array_class, size,
|
|
allocator_type, visitor));
|
|
}
|
|
if (kIsDebugBuild && result != nullptr && Runtime::Current()->IsStarted()) {
|
|
array_class = result->GetClass(); // In case the array class moved.
|
|
CHECK_EQ(array_class->GetComponentSize(), 1U << component_size_shift);
|
|
if (!kFillUsable) {
|
|
CHECK_EQ(result->SizeOf(), size);
|
|
} else {
|
|
CHECK_GE(result->SizeOf(), size);
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
template<class T>
|
|
inline void PrimitiveArray<T>::VisitRoots(RootVisitor* visitor) {
|
|
array_class_.VisitRootIfNonNull(visitor, RootInfo(kRootStickyClass));
|
|
}
|
|
|
|
template<typename T>
|
|
inline PrimitiveArray<T>* PrimitiveArray<T>::AllocateAndFill(Thread* self,
|
|
const T* data,
|
|
size_t length) {
|
|
StackHandleScope<1> hs(self);
|
|
Handle<PrimitiveArray<T>> arr(hs.NewHandle(PrimitiveArray<T>::Alloc(self, length)));
|
|
if (!arr.IsNull()) {
|
|
// Copy it in. Just skip if it's null
|
|
memcpy(arr->GetData(), data, sizeof(T) * length);
|
|
}
|
|
return arr.Get();
|
|
}
|
|
|
|
template<typename T>
|
|
inline PrimitiveArray<T>* PrimitiveArray<T>::Alloc(Thread* self, size_t length) {
|
|
Array* raw_array = Array::Alloc<true>(self,
|
|
GetArrayClass(),
|
|
length,
|
|
ComponentSizeShiftWidth(sizeof(T)),
|
|
Runtime::Current()->GetHeap()->GetCurrentAllocator());
|
|
return down_cast<PrimitiveArray<T>*>(raw_array);
|
|
}
|
|
|
|
template<typename T>
|
|
inline T PrimitiveArray<T>::Get(int32_t i) {
|
|
if (!CheckIsValidIndex(i)) {
|
|
DCHECK(Thread::Current()->IsExceptionPending());
|
|
return T(0);
|
|
}
|
|
return GetWithoutChecks(i);
|
|
}
|
|
|
|
template<typename T>
|
|
inline void PrimitiveArray<T>::Set(int32_t i, T value) {
|
|
if (Runtime::Current()->IsActiveTransaction()) {
|
|
Set<true>(i, value);
|
|
} else {
|
|
Set<false>(i, value);
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
template<bool kTransactionActive, bool kCheckTransaction>
|
|
inline void PrimitiveArray<T>::Set(int32_t i, T value) {
|
|
if (CheckIsValidIndex(i)) {
|
|
SetWithoutChecks<kTransactionActive, kCheckTransaction>(i, value);
|
|
} else {
|
|
DCHECK(Thread::Current()->IsExceptionPending());
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
template<bool kTransactionActive, bool kCheckTransaction, VerifyObjectFlags kVerifyFlags>
|
|
inline void PrimitiveArray<T>::SetWithoutChecks(int32_t i, T value) {
|
|
if (kCheckTransaction) {
|
|
DCHECK_EQ(kTransactionActive, Runtime::Current()->IsActiveTransaction());
|
|
}
|
|
if (kTransactionActive) {
|
|
Runtime::Current()->RecordWriteArray(this, i, GetWithoutChecks(i));
|
|
}
|
|
DCHECK(CheckIsValidIndex<kVerifyFlags>(i));
|
|
GetData()[i] = value;
|
|
}
|
|
// Backward copy where elements are of aligned appropriately for T. Count is in T sized units.
|
|
// Copies are guaranteed not to tear when the sizeof T is less-than 64bit.
|
|
template<typename T>
|
|
static inline void ArrayBackwardCopy(T* d, const T* s, int32_t count) {
|
|
d += count;
|
|
s += count;
|
|
for (int32_t i = 0; i < count; ++i) {
|
|
d--;
|
|
s--;
|
|
*d = *s;
|
|
}
|
|
}
|
|
|
|
// Forward copy where elements are of aligned appropriately for T. Count is in T sized units.
|
|
// Copies are guaranteed not to tear when the sizeof T is less-than 64bit.
|
|
template<typename T>
|
|
static inline void ArrayForwardCopy(T* d, const T* s, int32_t count) {
|
|
for (int32_t i = 0; i < count; ++i) {
|
|
*d = *s;
|
|
d++;
|
|
s++;
|
|
}
|
|
}
|
|
|
|
template<class T>
|
|
inline void PrimitiveArray<T>::Memmove(int32_t dst_pos,
|
|
ObjPtr<PrimitiveArray<T>> src,
|
|
int32_t src_pos,
|
|
int32_t count) {
|
|
if (UNLIKELY(count == 0)) {
|
|
return;
|
|
}
|
|
DCHECK_GE(dst_pos, 0);
|
|
DCHECK_GE(src_pos, 0);
|
|
DCHECK_GT(count, 0);
|
|
DCHECK(src != nullptr);
|
|
DCHECK_LT(dst_pos, GetLength());
|
|
DCHECK_LE(dst_pos, GetLength() - count);
|
|
DCHECK_LT(src_pos, src->GetLength());
|
|
DCHECK_LE(src_pos, src->GetLength() - count);
|
|
|
|
// Note for non-byte copies we can't rely on standard libc functions like memcpy(3) and memmove(3)
|
|
// in our implementation, because they may copy byte-by-byte.
|
|
if (LIKELY(src != this)) {
|
|
// Memcpy ok for guaranteed non-overlapping distinct arrays.
|
|
Memcpy(dst_pos, src, src_pos, count);
|
|
} else {
|
|
// Handle copies within the same array using the appropriate direction copy.
|
|
void* dst_raw = GetRawData(sizeof(T), dst_pos);
|
|
const void* src_raw = src->GetRawData(sizeof(T), src_pos);
|
|
if (sizeof(T) == sizeof(uint8_t)) {
|
|
uint8_t* d = reinterpret_cast<uint8_t*>(dst_raw);
|
|
const uint8_t* s = reinterpret_cast<const uint8_t*>(src_raw);
|
|
memmove(d, s, count);
|
|
} else {
|
|
const bool copy_forward = (dst_pos < src_pos) || (dst_pos - src_pos >= count);
|
|
if (sizeof(T) == sizeof(uint16_t)) {
|
|
uint16_t* d = reinterpret_cast<uint16_t*>(dst_raw);
|
|
const uint16_t* s = reinterpret_cast<const uint16_t*>(src_raw);
|
|
if (copy_forward) {
|
|
ArrayForwardCopy<uint16_t>(d, s, count);
|
|
} else {
|
|
ArrayBackwardCopy<uint16_t>(d, s, count);
|
|
}
|
|
} else if (sizeof(T) == sizeof(uint32_t)) {
|
|
uint32_t* d = reinterpret_cast<uint32_t*>(dst_raw);
|
|
const uint32_t* s = reinterpret_cast<const uint32_t*>(src_raw);
|
|
if (copy_forward) {
|
|
ArrayForwardCopy<uint32_t>(d, s, count);
|
|
} else {
|
|
ArrayBackwardCopy<uint32_t>(d, s, count);
|
|
}
|
|
} else {
|
|
DCHECK_EQ(sizeof(T), sizeof(uint64_t));
|
|
uint64_t* d = reinterpret_cast<uint64_t*>(dst_raw);
|
|
const uint64_t* s = reinterpret_cast<const uint64_t*>(src_raw);
|
|
if (copy_forward) {
|
|
ArrayForwardCopy<uint64_t>(d, s, count);
|
|
} else {
|
|
ArrayBackwardCopy<uint64_t>(d, s, count);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
template<class T>
|
|
inline void PrimitiveArray<T>::Memcpy(int32_t dst_pos,
|
|
ObjPtr<PrimitiveArray<T>> src,
|
|
int32_t src_pos,
|
|
int32_t count) {
|
|
if (UNLIKELY(count == 0)) {
|
|
return;
|
|
}
|
|
DCHECK_GE(dst_pos, 0);
|
|
DCHECK_GE(src_pos, 0);
|
|
DCHECK_GT(count, 0);
|
|
DCHECK(src != nullptr);
|
|
DCHECK_LT(dst_pos, GetLength());
|
|
DCHECK_LE(dst_pos, GetLength() - count);
|
|
DCHECK_LT(src_pos, src->GetLength());
|
|
DCHECK_LE(src_pos, src->GetLength() - count);
|
|
|
|
// Note for non-byte copies we can't rely on standard libc functions like memcpy(3) and memmove(3)
|
|
// in our implementation, because they may copy byte-by-byte.
|
|
void* dst_raw = GetRawData(sizeof(T), dst_pos);
|
|
const void* src_raw = src->GetRawData(sizeof(T), src_pos);
|
|
if (sizeof(T) == sizeof(uint8_t)) {
|
|
memcpy(dst_raw, src_raw, count);
|
|
} else if (sizeof(T) == sizeof(uint16_t)) {
|
|
uint16_t* d = reinterpret_cast<uint16_t*>(dst_raw);
|
|
const uint16_t* s = reinterpret_cast<const uint16_t*>(src_raw);
|
|
ArrayForwardCopy<uint16_t>(d, s, count);
|
|
} else if (sizeof(T) == sizeof(uint32_t)) {
|
|
uint32_t* d = reinterpret_cast<uint32_t*>(dst_raw);
|
|
const uint32_t* s = reinterpret_cast<const uint32_t*>(src_raw);
|
|
ArrayForwardCopy<uint32_t>(d, s, count);
|
|
} else {
|
|
DCHECK_EQ(sizeof(T), sizeof(uint64_t));
|
|
uint64_t* d = reinterpret_cast<uint64_t*>(dst_raw);
|
|
const uint64_t* s = reinterpret_cast<const uint64_t*>(src_raw);
|
|
ArrayForwardCopy<uint64_t>(d, s, count);
|
|
}
|
|
}
|
|
|
|
template<typename T, VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption>
|
|
inline T PointerArray::GetElementPtrSize(uint32_t idx, PointerSize ptr_size) {
|
|
// C style casts here since we sometimes have T be a pointer, or sometimes an integer
|
|
// (for stack traces).
|
|
if (ptr_size == PointerSize::k64) {
|
|
return (T)static_cast<uintptr_t>(
|
|
AsLongArray<kVerifyFlags, kReadBarrierOption>()->GetWithoutChecks(idx));
|
|
}
|
|
return (T)static_cast<uintptr_t>(static_cast<uint32_t>(
|
|
AsIntArray<kVerifyFlags, kReadBarrierOption>()->GetWithoutChecks(idx)));
|
|
}
|
|
|
|
template<bool kTransactionActive, bool kUnchecked>
|
|
inline void PointerArray::SetElementPtrSize(uint32_t idx, uint64_t element, PointerSize ptr_size) {
|
|
if (ptr_size == PointerSize::k64) {
|
|
(kUnchecked ? down_cast<LongArray*>(static_cast<Object*>(this)) : AsLongArray())->
|
|
SetWithoutChecks<kTransactionActive>(idx, element);
|
|
} else {
|
|
DCHECK_LE(element, static_cast<uint64_t>(0xFFFFFFFFu));
|
|
(kUnchecked ? down_cast<IntArray*>(static_cast<Object*>(this)) : AsIntArray())
|
|
->SetWithoutChecks<kTransactionActive>(idx, static_cast<uint32_t>(element));
|
|
}
|
|
}
|
|
|
|
template<bool kTransactionActive, bool kUnchecked, typename T>
|
|
inline void PointerArray::SetElementPtrSize(uint32_t idx, T* element, PointerSize ptr_size) {
|
|
SetElementPtrSize<kTransactionActive, kUnchecked>(idx,
|
|
reinterpret_cast<uintptr_t>(element),
|
|
ptr_size);
|
|
}
|
|
|
|
template <VerifyObjectFlags kVerifyFlags, ReadBarrierOption kReadBarrierOption, typename Visitor>
|
|
inline void PointerArray::Fixup(mirror::PointerArray* dest,
|
|
PointerSize pointer_size,
|
|
const Visitor& visitor) {
|
|
for (size_t i = 0, count = GetLength(); i < count; ++i) {
|
|
void* ptr = GetElementPtrSize<void*, kVerifyFlags, kReadBarrierOption>(i, pointer_size);
|
|
void* new_ptr = visitor(ptr);
|
|
if (ptr != new_ptr) {
|
|
dest->SetElementPtrSize<false, true>(i, new_ptr, pointer_size);
|
|
}
|
|
}
|
|
}
|
|
|
|
template<bool kUnchecked>
|
|
void PointerArray::Memcpy(int32_t dst_pos,
|
|
ObjPtr<PointerArray> src,
|
|
int32_t src_pos,
|
|
int32_t count,
|
|
PointerSize ptr_size) {
|
|
DCHECK(!Runtime::Current()->IsActiveTransaction());
|
|
DCHECK(!src.IsNull());
|
|
if (ptr_size == PointerSize::k64) {
|
|
LongArray* l_this = (kUnchecked ? down_cast<LongArray*>(static_cast<Object*>(this))
|
|
: AsLongArray());
|
|
LongArray* l_src = (kUnchecked ? down_cast<LongArray*>(static_cast<Object*>(src.Ptr()))
|
|
: src->AsLongArray());
|
|
l_this->Memcpy(dst_pos, l_src, src_pos, count);
|
|
} else {
|
|
IntArray* i_this = (kUnchecked ? down_cast<IntArray*>(static_cast<Object*>(this))
|
|
: AsIntArray());
|
|
IntArray* i_src = (kUnchecked ? down_cast<IntArray*>(static_cast<Object*>(src.Ptr()))
|
|
: src->AsIntArray());
|
|
i_this->Memcpy(dst_pos, i_src, src_pos, count);
|
|
}
|
|
}
|
|
|
|
template<typename T>
|
|
inline void PrimitiveArray<T>::SetArrayClass(ObjPtr<Class> array_class) {
|
|
CHECK(array_class_.IsNull());
|
|
CHECK(array_class != nullptr);
|
|
array_class_ = GcRoot<Class>(array_class);
|
|
}
|
|
|
|
} // namespace mirror
|
|
} // namespace art
|
|
|
|
#endif // ART_RUNTIME_MIRROR_ARRAY_INL_H_
|