1268 lines
46 KiB
C++
1268 lines
46 KiB
C++
/*
|
|
* Copyright (C) 2011 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#include "mutex.h"
|
|
|
|
#include <errno.h>
|
|
#include <sys/time.h>
|
|
|
|
#include "android-base/stringprintf.h"
|
|
|
|
#include "atomic.h"
|
|
#include "base/logging.h"
|
|
#include "base/time_utils.h"
|
|
#include "base/systrace.h"
|
|
#include "base/value_object.h"
|
|
#include "mutex-inl.h"
|
|
#include "scoped_thread_state_change-inl.h"
|
|
#include "thread-inl.h"
|
|
|
|
namespace art {
|
|
|
|
using android::base::StringPrintf;
|
|
|
|
static Atomic<Locks::ClientCallback*> safe_to_call_abort_callback(nullptr);
|
|
|
|
Mutex* Locks::abort_lock_ = nullptr;
|
|
Mutex* Locks::alloc_tracker_lock_ = nullptr;
|
|
Mutex* Locks::allocated_monitor_ids_lock_ = nullptr;
|
|
Mutex* Locks::allocated_thread_ids_lock_ = nullptr;
|
|
ReaderWriterMutex* Locks::breakpoint_lock_ = nullptr;
|
|
ReaderWriterMutex* Locks::classlinker_classes_lock_ = nullptr;
|
|
Mutex* Locks::deoptimization_lock_ = nullptr;
|
|
ReaderWriterMutex* Locks::heap_bitmap_lock_ = nullptr;
|
|
Mutex* Locks::instrument_entrypoints_lock_ = nullptr;
|
|
Mutex* Locks::intern_table_lock_ = nullptr;
|
|
Mutex* Locks::jni_function_table_lock_ = nullptr;
|
|
Mutex* Locks::jni_libraries_lock_ = nullptr;
|
|
Mutex* Locks::logging_lock_ = nullptr;
|
|
Mutex* Locks::modify_ldt_lock_ = nullptr;
|
|
MutatorMutex* Locks::mutator_lock_ = nullptr;
|
|
Mutex* Locks::profiler_lock_ = nullptr;
|
|
ReaderWriterMutex* Locks::verifier_deps_lock_ = nullptr;
|
|
ReaderWriterMutex* Locks::oat_file_manager_lock_ = nullptr;
|
|
Mutex* Locks::host_dlopen_handles_lock_ = nullptr;
|
|
Mutex* Locks::reference_processor_lock_ = nullptr;
|
|
Mutex* Locks::reference_queue_cleared_references_lock_ = nullptr;
|
|
Mutex* Locks::reference_queue_finalizer_references_lock_ = nullptr;
|
|
Mutex* Locks::reference_queue_phantom_references_lock_ = nullptr;
|
|
Mutex* Locks::reference_queue_soft_references_lock_ = nullptr;
|
|
Mutex* Locks::reference_queue_weak_references_lock_ = nullptr;
|
|
Mutex* Locks::runtime_shutdown_lock_ = nullptr;
|
|
Mutex* Locks::cha_lock_ = nullptr;
|
|
Mutex* Locks::thread_list_lock_ = nullptr;
|
|
ConditionVariable* Locks::thread_exit_cond_ = nullptr;
|
|
Mutex* Locks::thread_suspend_count_lock_ = nullptr;
|
|
Mutex* Locks::trace_lock_ = nullptr;
|
|
Mutex* Locks::unexpected_signal_lock_ = nullptr;
|
|
Mutex* Locks::user_code_suspension_lock_ = nullptr;
|
|
Uninterruptible Roles::uninterruptible_;
|
|
ReaderWriterMutex* Locks::jni_globals_lock_ = nullptr;
|
|
Mutex* Locks::jni_weak_globals_lock_ = nullptr;
|
|
ReaderWriterMutex* Locks::dex_lock_ = nullptr;
|
|
std::vector<BaseMutex*> Locks::expected_mutexes_on_weak_ref_access_;
|
|
Atomic<const BaseMutex*> Locks::expected_mutexes_on_weak_ref_access_guard_;
|
|
|
|
struct AllMutexData {
|
|
// A guard for all_mutexes_ that's not a mutex (Mutexes must CAS to acquire and busy wait).
|
|
Atomic<const BaseMutex*> all_mutexes_guard;
|
|
// All created mutexes guarded by all_mutexes_guard_.
|
|
std::set<BaseMutex*>* all_mutexes;
|
|
AllMutexData() : all_mutexes(nullptr) {}
|
|
};
|
|
static struct AllMutexData gAllMutexData[kAllMutexDataSize];
|
|
|
|
#if ART_USE_FUTEXES
|
|
static bool ComputeRelativeTimeSpec(timespec* result_ts, const timespec& lhs, const timespec& rhs) {
|
|
const int32_t one_sec = 1000 * 1000 * 1000; // one second in nanoseconds.
|
|
result_ts->tv_sec = lhs.tv_sec - rhs.tv_sec;
|
|
result_ts->tv_nsec = lhs.tv_nsec - rhs.tv_nsec;
|
|
if (result_ts->tv_nsec < 0) {
|
|
result_ts->tv_sec--;
|
|
result_ts->tv_nsec += one_sec;
|
|
} else if (result_ts->tv_nsec > one_sec) {
|
|
result_ts->tv_sec++;
|
|
result_ts->tv_nsec -= one_sec;
|
|
}
|
|
return result_ts->tv_sec < 0;
|
|
}
|
|
#endif
|
|
|
|
class ScopedAllMutexesLock FINAL {
|
|
public:
|
|
explicit ScopedAllMutexesLock(const BaseMutex* mutex) : mutex_(mutex) {
|
|
while (!gAllMutexData->all_mutexes_guard.CompareExchangeWeakAcquire(0, mutex)) {
|
|
NanoSleep(100);
|
|
}
|
|
}
|
|
|
|
~ScopedAllMutexesLock() {
|
|
while (!gAllMutexData->all_mutexes_guard.CompareExchangeWeakRelease(mutex_, 0)) {
|
|
NanoSleep(100);
|
|
}
|
|
}
|
|
|
|
private:
|
|
const BaseMutex* const mutex_;
|
|
};
|
|
|
|
class Locks::ScopedExpectedMutexesOnWeakRefAccessLock FINAL {
|
|
public:
|
|
explicit ScopedExpectedMutexesOnWeakRefAccessLock(const BaseMutex* mutex) : mutex_(mutex) {
|
|
while (!Locks::expected_mutexes_on_weak_ref_access_guard_.CompareExchangeWeakAcquire(0,
|
|
mutex)) {
|
|
NanoSleep(100);
|
|
}
|
|
}
|
|
|
|
~ScopedExpectedMutexesOnWeakRefAccessLock() {
|
|
while (!Locks::expected_mutexes_on_weak_ref_access_guard_.CompareExchangeWeakRelease(mutex_,
|
|
0)) {
|
|
NanoSleep(100);
|
|
}
|
|
}
|
|
|
|
private:
|
|
const BaseMutex* const mutex_;
|
|
};
|
|
|
|
// Scoped class that generates events at the beginning and end of lock contention.
|
|
class ScopedContentionRecorder FINAL : public ValueObject {
|
|
public:
|
|
ScopedContentionRecorder(BaseMutex* mutex, uint64_t blocked_tid, uint64_t owner_tid)
|
|
: mutex_(kLogLockContentions ? mutex : nullptr),
|
|
blocked_tid_(kLogLockContentions ? blocked_tid : 0),
|
|
owner_tid_(kLogLockContentions ? owner_tid : 0),
|
|
start_nano_time_(kLogLockContentions ? NanoTime() : 0) {
|
|
if (ATRACE_ENABLED()) {
|
|
std::string msg = StringPrintf("Lock contention on %s (owner tid: %" PRIu64 ")",
|
|
mutex->GetName(), owner_tid);
|
|
ATRACE_BEGIN(msg.c_str());
|
|
}
|
|
}
|
|
|
|
~ScopedContentionRecorder() {
|
|
ATRACE_END();
|
|
if (kLogLockContentions) {
|
|
uint64_t end_nano_time = NanoTime();
|
|
mutex_->RecordContention(blocked_tid_, owner_tid_, end_nano_time - start_nano_time_);
|
|
}
|
|
}
|
|
|
|
private:
|
|
BaseMutex* const mutex_;
|
|
const uint64_t blocked_tid_;
|
|
const uint64_t owner_tid_;
|
|
const uint64_t start_nano_time_;
|
|
};
|
|
|
|
BaseMutex::BaseMutex(const char* name, LockLevel level)
|
|
: level_(level),
|
|
name_(name),
|
|
should_respond_to_empty_checkpoint_request_(false) {
|
|
if (kLogLockContentions) {
|
|
ScopedAllMutexesLock mu(this);
|
|
std::set<BaseMutex*>** all_mutexes_ptr = &gAllMutexData->all_mutexes;
|
|
if (*all_mutexes_ptr == nullptr) {
|
|
// We leak the global set of all mutexes to avoid ordering issues in global variable
|
|
// construction/destruction.
|
|
*all_mutexes_ptr = new std::set<BaseMutex*>();
|
|
}
|
|
(*all_mutexes_ptr)->insert(this);
|
|
}
|
|
}
|
|
|
|
BaseMutex::~BaseMutex() {
|
|
if (kLogLockContentions) {
|
|
ScopedAllMutexesLock mu(this);
|
|
gAllMutexData->all_mutexes->erase(this);
|
|
}
|
|
}
|
|
|
|
void BaseMutex::DumpAll(std::ostream& os) {
|
|
if (kLogLockContentions) {
|
|
os << "Mutex logging:\n";
|
|
ScopedAllMutexesLock mu(reinterpret_cast<const BaseMutex*>(-1));
|
|
std::set<BaseMutex*>* all_mutexes = gAllMutexData->all_mutexes;
|
|
if (all_mutexes == nullptr) {
|
|
// No mutexes have been created yet during at startup.
|
|
return;
|
|
}
|
|
typedef std::set<BaseMutex*>::const_iterator It;
|
|
os << "(Contended)\n";
|
|
for (It it = all_mutexes->begin(); it != all_mutexes->end(); ++it) {
|
|
BaseMutex* mutex = *it;
|
|
if (mutex->HasEverContended()) {
|
|
mutex->Dump(os);
|
|
os << "\n";
|
|
}
|
|
}
|
|
os << "(Never contented)\n";
|
|
for (It it = all_mutexes->begin(); it != all_mutexes->end(); ++it) {
|
|
BaseMutex* mutex = *it;
|
|
if (!mutex->HasEverContended()) {
|
|
mutex->Dump(os);
|
|
os << "\n";
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void BaseMutex::CheckSafeToWait(Thread* self) {
|
|
if (self == nullptr) {
|
|
CheckUnattachedThread(level_);
|
|
return;
|
|
}
|
|
if (kDebugLocking) {
|
|
CHECK(self->GetHeldMutex(level_) == this || level_ == kMonitorLock)
|
|
<< "Waiting on unacquired mutex: " << name_;
|
|
bool bad_mutexes_held = false;
|
|
for (int i = kLockLevelCount - 1; i >= 0; --i) {
|
|
if (i != level_) {
|
|
BaseMutex* held_mutex = self->GetHeldMutex(static_cast<LockLevel>(i));
|
|
// We allow the thread to wait even if the user_code_suspension_lock_ is held so long as we
|
|
// are some thread's resume_cond_ (level_ == kThreadSuspendCountLock). This just means that
|
|
// gc or some other internal process is suspending the thread while it is trying to suspend
|
|
// some other thread. So long as the current thread is not being suspended by a
|
|
// SuspendReason::kForUserCode (which needs the user_code_suspension_lock_ to clear) this is
|
|
// fine.
|
|
if (held_mutex == Locks::user_code_suspension_lock_ && level_ == kThreadSuspendCountLock) {
|
|
// No thread safety analysis is fine since we have both the user_code_suspension_lock_
|
|
// from the line above and the ThreadSuspendCountLock since it is our level_. We use this
|
|
// lambda to avoid having to annotate the whole function as NO_THREAD_SAFETY_ANALYSIS.
|
|
auto is_suspending_for_user_code = [self]() NO_THREAD_SAFETY_ANALYSIS {
|
|
return self->GetUserCodeSuspendCount() != 0;
|
|
};
|
|
if (is_suspending_for_user_code()) {
|
|
LOG(ERROR) << "Holding \"" << held_mutex->name_ << "\" "
|
|
<< "(level " << LockLevel(i) << ") while performing wait on "
|
|
<< "\"" << name_ << "\" (level " << level_ << ") "
|
|
<< "with SuspendReason::kForUserCode pending suspensions";
|
|
bad_mutexes_held = true;
|
|
}
|
|
} else if (held_mutex != nullptr) {
|
|
LOG(ERROR) << "Holding \"" << held_mutex->name_ << "\" "
|
|
<< "(level " << LockLevel(i) << ") while performing wait on "
|
|
<< "\"" << name_ << "\" (level " << level_ << ")";
|
|
bad_mutexes_held = true;
|
|
}
|
|
}
|
|
}
|
|
if (gAborting == 0) { // Avoid recursive aborts.
|
|
CHECK(!bad_mutexes_held) << this;
|
|
}
|
|
}
|
|
}
|
|
|
|
void BaseMutex::ContentionLogData::AddToWaitTime(uint64_t value) {
|
|
if (kLogLockContentions) {
|
|
// Atomically add value to wait_time.
|
|
wait_time.FetchAndAddSequentiallyConsistent(value);
|
|
}
|
|
}
|
|
|
|
void BaseMutex::RecordContention(uint64_t blocked_tid,
|
|
uint64_t owner_tid,
|
|
uint64_t nano_time_blocked) {
|
|
if (kLogLockContentions) {
|
|
ContentionLogData* data = contention_log_data_;
|
|
++(data->contention_count);
|
|
data->AddToWaitTime(nano_time_blocked);
|
|
ContentionLogEntry* log = data->contention_log;
|
|
// This code is intentionally racy as it is only used for diagnostics.
|
|
uint32_t slot = data->cur_content_log_entry.LoadRelaxed();
|
|
if (log[slot].blocked_tid == blocked_tid &&
|
|
log[slot].owner_tid == blocked_tid) {
|
|
++log[slot].count;
|
|
} else {
|
|
uint32_t new_slot;
|
|
do {
|
|
slot = data->cur_content_log_entry.LoadRelaxed();
|
|
new_slot = (slot + 1) % kContentionLogSize;
|
|
} while (!data->cur_content_log_entry.CompareExchangeWeakRelaxed(slot, new_slot));
|
|
log[new_slot].blocked_tid = blocked_tid;
|
|
log[new_slot].owner_tid = owner_tid;
|
|
log[new_slot].count.StoreRelaxed(1);
|
|
}
|
|
}
|
|
}
|
|
|
|
void BaseMutex::DumpContention(std::ostream& os) const {
|
|
if (kLogLockContentions) {
|
|
const ContentionLogData* data = contention_log_data_;
|
|
const ContentionLogEntry* log = data->contention_log;
|
|
uint64_t wait_time = data->wait_time.LoadRelaxed();
|
|
uint32_t contention_count = data->contention_count.LoadRelaxed();
|
|
if (contention_count == 0) {
|
|
os << "never contended";
|
|
} else {
|
|
os << "contended " << contention_count
|
|
<< " total wait of contender " << PrettyDuration(wait_time)
|
|
<< " average " << PrettyDuration(wait_time / contention_count);
|
|
SafeMap<uint64_t, size_t> most_common_blocker;
|
|
SafeMap<uint64_t, size_t> most_common_blocked;
|
|
for (size_t i = 0; i < kContentionLogSize; ++i) {
|
|
uint64_t blocked_tid = log[i].blocked_tid;
|
|
uint64_t owner_tid = log[i].owner_tid;
|
|
uint32_t count = log[i].count.LoadRelaxed();
|
|
if (count > 0) {
|
|
auto it = most_common_blocked.find(blocked_tid);
|
|
if (it != most_common_blocked.end()) {
|
|
most_common_blocked.Overwrite(blocked_tid, it->second + count);
|
|
} else {
|
|
most_common_blocked.Put(blocked_tid, count);
|
|
}
|
|
it = most_common_blocker.find(owner_tid);
|
|
if (it != most_common_blocker.end()) {
|
|
most_common_blocker.Overwrite(owner_tid, it->second + count);
|
|
} else {
|
|
most_common_blocker.Put(owner_tid, count);
|
|
}
|
|
}
|
|
}
|
|
uint64_t max_tid = 0;
|
|
size_t max_tid_count = 0;
|
|
for (const auto& pair : most_common_blocked) {
|
|
if (pair.second > max_tid_count) {
|
|
max_tid = pair.first;
|
|
max_tid_count = pair.second;
|
|
}
|
|
}
|
|
if (max_tid != 0) {
|
|
os << " sample shows most blocked tid=" << max_tid;
|
|
}
|
|
max_tid = 0;
|
|
max_tid_count = 0;
|
|
for (const auto& pair : most_common_blocker) {
|
|
if (pair.second > max_tid_count) {
|
|
max_tid = pair.first;
|
|
max_tid_count = pair.second;
|
|
}
|
|
}
|
|
if (max_tid != 0) {
|
|
os << " sample shows tid=" << max_tid << " owning during this time";
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
Mutex::Mutex(const char* name, LockLevel level, bool recursive)
|
|
: BaseMutex(name, level), recursive_(recursive), recursion_count_(0) {
|
|
#if ART_USE_FUTEXES
|
|
DCHECK_EQ(0, state_.LoadRelaxed());
|
|
DCHECK_EQ(0, num_contenders_.LoadRelaxed());
|
|
#else
|
|
CHECK_MUTEX_CALL(pthread_mutex_init, (&mutex_, nullptr));
|
|
#endif
|
|
exclusive_owner_ = 0;
|
|
}
|
|
|
|
// Helper to allow checking shutdown while locking for thread safety.
|
|
static bool IsSafeToCallAbortSafe() {
|
|
MutexLock mu(Thread::Current(), *Locks::runtime_shutdown_lock_);
|
|
return Locks::IsSafeToCallAbortRacy();
|
|
}
|
|
|
|
Mutex::~Mutex() {
|
|
bool safe_to_call_abort = Locks::IsSafeToCallAbortRacy();
|
|
#if ART_USE_FUTEXES
|
|
if (state_.LoadRelaxed() != 0) {
|
|
LOG(safe_to_call_abort ? FATAL : WARNING)
|
|
<< "destroying mutex with owner: " << exclusive_owner_;
|
|
} else {
|
|
if (exclusive_owner_ != 0) {
|
|
LOG(safe_to_call_abort ? FATAL : WARNING)
|
|
<< "unexpectedly found an owner on unlocked mutex " << name_;
|
|
}
|
|
if (num_contenders_.LoadSequentiallyConsistent() != 0) {
|
|
LOG(safe_to_call_abort ? FATAL : WARNING)
|
|
<< "unexpectedly found a contender on mutex " << name_;
|
|
}
|
|
}
|
|
#else
|
|
// We can't use CHECK_MUTEX_CALL here because on shutdown a suspended daemon thread
|
|
// may still be using locks.
|
|
int rc = pthread_mutex_destroy(&mutex_);
|
|
if (rc != 0) {
|
|
errno = rc;
|
|
PLOG(safe_to_call_abort ? FATAL : WARNING)
|
|
<< "pthread_mutex_destroy failed for " << name_;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void Mutex::ExclusiveLock(Thread* self) {
|
|
DCHECK(self == nullptr || self == Thread::Current());
|
|
if (kDebugLocking && !recursive_) {
|
|
AssertNotHeld(self);
|
|
}
|
|
if (!recursive_ || !IsExclusiveHeld(self)) {
|
|
#if ART_USE_FUTEXES
|
|
bool done = false;
|
|
do {
|
|
int32_t cur_state = state_.LoadRelaxed();
|
|
if (LIKELY(cur_state == 0)) {
|
|
// Change state from 0 to 1 and impose load/store ordering appropriate for lock acquisition.
|
|
done = state_.CompareExchangeWeakAcquire(0 /* cur_state */, 1 /* new state */);
|
|
} else {
|
|
// Failed to acquire, hang up.
|
|
ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
|
|
num_contenders_++;
|
|
if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
|
|
self->CheckEmptyCheckpointFromMutex();
|
|
}
|
|
if (futex(state_.Address(), FUTEX_WAIT, 1, nullptr, nullptr, 0) != 0) {
|
|
// EAGAIN and EINTR both indicate a spurious failure, try again from the beginning.
|
|
// We don't use TEMP_FAILURE_RETRY so we can intentionally retry to acquire the lock.
|
|
if ((errno != EAGAIN) && (errno != EINTR)) {
|
|
PLOG(FATAL) << "futex wait failed for " << name_;
|
|
}
|
|
}
|
|
num_contenders_--;
|
|
}
|
|
} while (!done);
|
|
DCHECK_EQ(state_.LoadRelaxed(), 1);
|
|
#else
|
|
CHECK_MUTEX_CALL(pthread_mutex_lock, (&mutex_));
|
|
#endif
|
|
DCHECK_EQ(exclusive_owner_, 0U);
|
|
exclusive_owner_ = SafeGetTid(self);
|
|
RegisterAsLocked(self);
|
|
}
|
|
recursion_count_++;
|
|
if (kDebugLocking) {
|
|
CHECK(recursion_count_ == 1 || recursive_) << "Unexpected recursion count on mutex: "
|
|
<< name_ << " " << recursion_count_;
|
|
AssertHeld(self);
|
|
}
|
|
}
|
|
|
|
bool Mutex::ExclusiveTryLock(Thread* self) {
|
|
DCHECK(self == nullptr || self == Thread::Current());
|
|
if (kDebugLocking && !recursive_) {
|
|
AssertNotHeld(self);
|
|
}
|
|
if (!recursive_ || !IsExclusiveHeld(self)) {
|
|
#if ART_USE_FUTEXES
|
|
bool done = false;
|
|
do {
|
|
int32_t cur_state = state_.LoadRelaxed();
|
|
if (cur_state == 0) {
|
|
// Change state from 0 to 1 and impose load/store ordering appropriate for lock acquisition.
|
|
done = state_.CompareExchangeWeakAcquire(0 /* cur_state */, 1 /* new state */);
|
|
} else {
|
|
return false;
|
|
}
|
|
} while (!done);
|
|
DCHECK_EQ(state_.LoadRelaxed(), 1);
|
|
#else
|
|
int result = pthread_mutex_trylock(&mutex_);
|
|
if (result == EBUSY) {
|
|
return false;
|
|
}
|
|
if (result != 0) {
|
|
errno = result;
|
|
PLOG(FATAL) << "pthread_mutex_trylock failed for " << name_;
|
|
}
|
|
#endif
|
|
DCHECK_EQ(exclusive_owner_, 0U);
|
|
exclusive_owner_ = SafeGetTid(self);
|
|
RegisterAsLocked(self);
|
|
}
|
|
recursion_count_++;
|
|
if (kDebugLocking) {
|
|
CHECK(recursion_count_ == 1 || recursive_) << "Unexpected recursion count on mutex: "
|
|
<< name_ << " " << recursion_count_;
|
|
AssertHeld(self);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void Mutex::ExclusiveUnlock(Thread* self) {
|
|
if (kIsDebugBuild && self != nullptr && self != Thread::Current()) {
|
|
std::string name1 = "<null>";
|
|
std::string name2 = "<null>";
|
|
if (self != nullptr) {
|
|
self->GetThreadName(name1);
|
|
}
|
|
if (Thread::Current() != nullptr) {
|
|
Thread::Current()->GetThreadName(name2);
|
|
}
|
|
LOG(FATAL) << GetName() << " level=" << level_ << " self=" << name1
|
|
<< " Thread::Current()=" << name2;
|
|
}
|
|
AssertHeld(self);
|
|
DCHECK_NE(exclusive_owner_, 0U);
|
|
recursion_count_--;
|
|
if (!recursive_ || recursion_count_ == 0) {
|
|
if (kDebugLocking) {
|
|
CHECK(recursion_count_ == 0 || recursive_) << "Unexpected recursion count on mutex: "
|
|
<< name_ << " " << recursion_count_;
|
|
}
|
|
RegisterAsUnlocked(self);
|
|
#if ART_USE_FUTEXES
|
|
bool done = false;
|
|
do {
|
|
int32_t cur_state = state_.LoadRelaxed();
|
|
if (LIKELY(cur_state == 1)) {
|
|
// We're no longer the owner.
|
|
exclusive_owner_ = 0;
|
|
// Change state to 0 and impose load/store ordering appropriate for lock release.
|
|
// Note, the relaxed loads below musn't reorder before the CompareExchange.
|
|
// TODO: the ordering here is non-trivial as state is split across 3 fields, fix by placing
|
|
// a status bit into the state on contention.
|
|
done = state_.CompareExchangeWeakSequentiallyConsistent(cur_state, 0 /* new state */);
|
|
if (LIKELY(done)) { // Spurious fail?
|
|
// Wake a contender.
|
|
if (UNLIKELY(num_contenders_.LoadRelaxed() > 0)) {
|
|
futex(state_.Address(), FUTEX_WAKE, 1, nullptr, nullptr, 0);
|
|
}
|
|
}
|
|
} else {
|
|
// Logging acquires the logging lock, avoid infinite recursion in that case.
|
|
if (this != Locks::logging_lock_) {
|
|
LOG(FATAL) << "Unexpected state_ in unlock " << cur_state << " for " << name_;
|
|
} else {
|
|
LogHelper::LogLineLowStack(__FILE__,
|
|
__LINE__,
|
|
::android::base::FATAL_WITHOUT_ABORT,
|
|
StringPrintf("Unexpected state_ %d in unlock for %s",
|
|
cur_state, name_).c_str());
|
|
_exit(1);
|
|
}
|
|
}
|
|
} while (!done);
|
|
#else
|
|
exclusive_owner_ = 0;
|
|
CHECK_MUTEX_CALL(pthread_mutex_unlock, (&mutex_));
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void Mutex::Dump(std::ostream& os) const {
|
|
os << (recursive_ ? "recursive " : "non-recursive ")
|
|
<< name_
|
|
<< " level=" << static_cast<int>(level_)
|
|
<< " rec=" << recursion_count_
|
|
<< " owner=" << GetExclusiveOwnerTid() << " ";
|
|
DumpContention(os);
|
|
}
|
|
|
|
std::ostream& operator<<(std::ostream& os, const Mutex& mu) {
|
|
mu.Dump(os);
|
|
return os;
|
|
}
|
|
|
|
void Mutex::WakeupToRespondToEmptyCheckpoint() {
|
|
#if ART_USE_FUTEXES
|
|
// Wake up all the waiters so they will respond to the emtpy checkpoint.
|
|
DCHECK(should_respond_to_empty_checkpoint_request_);
|
|
if (UNLIKELY(num_contenders_.LoadRelaxed() > 0)) {
|
|
futex(state_.Address(), FUTEX_WAKE, -1, nullptr, nullptr, 0);
|
|
}
|
|
#else
|
|
LOG(FATAL) << "Non futex case isn't supported.";
|
|
#endif
|
|
}
|
|
|
|
ReaderWriterMutex::ReaderWriterMutex(const char* name, LockLevel level)
|
|
: BaseMutex(name, level)
|
|
#if ART_USE_FUTEXES
|
|
, state_(0), num_pending_readers_(0), num_pending_writers_(0)
|
|
#endif
|
|
{ // NOLINT(whitespace/braces)
|
|
#if !ART_USE_FUTEXES
|
|
CHECK_MUTEX_CALL(pthread_rwlock_init, (&rwlock_, nullptr));
|
|
#endif
|
|
exclusive_owner_ = 0;
|
|
}
|
|
|
|
ReaderWriterMutex::~ReaderWriterMutex() {
|
|
#if ART_USE_FUTEXES
|
|
CHECK_EQ(state_.LoadRelaxed(), 0);
|
|
CHECK_EQ(exclusive_owner_, 0U);
|
|
CHECK_EQ(num_pending_readers_.LoadRelaxed(), 0);
|
|
CHECK_EQ(num_pending_writers_.LoadRelaxed(), 0);
|
|
#else
|
|
// We can't use CHECK_MUTEX_CALL here because on shutdown a suspended daemon thread
|
|
// may still be using locks.
|
|
int rc = pthread_rwlock_destroy(&rwlock_);
|
|
if (rc != 0) {
|
|
errno = rc;
|
|
bool is_safe_to_call_abort = IsSafeToCallAbortSafe();
|
|
PLOG(is_safe_to_call_abort ? FATAL : WARNING) << "pthread_rwlock_destroy failed for " << name_;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void ReaderWriterMutex::ExclusiveLock(Thread* self) {
|
|
DCHECK(self == nullptr || self == Thread::Current());
|
|
AssertNotExclusiveHeld(self);
|
|
#if ART_USE_FUTEXES
|
|
bool done = false;
|
|
do {
|
|
int32_t cur_state = state_.LoadRelaxed();
|
|
if (LIKELY(cur_state == 0)) {
|
|
// Change state from 0 to -1 and impose load/store ordering appropriate for lock acquisition.
|
|
done = state_.CompareExchangeWeakAcquire(0 /* cur_state*/, -1 /* new state */);
|
|
} else {
|
|
// Failed to acquire, hang up.
|
|
ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
|
|
++num_pending_writers_;
|
|
if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
|
|
self->CheckEmptyCheckpointFromMutex();
|
|
}
|
|
if (futex(state_.Address(), FUTEX_WAIT, cur_state, nullptr, nullptr, 0) != 0) {
|
|
// EAGAIN and EINTR both indicate a spurious failure, try again from the beginning.
|
|
// We don't use TEMP_FAILURE_RETRY so we can intentionally retry to acquire the lock.
|
|
if ((errno != EAGAIN) && (errno != EINTR)) {
|
|
PLOG(FATAL) << "futex wait failed for " << name_;
|
|
}
|
|
}
|
|
--num_pending_writers_;
|
|
}
|
|
} while (!done);
|
|
DCHECK_EQ(state_.LoadRelaxed(), -1);
|
|
#else
|
|
CHECK_MUTEX_CALL(pthread_rwlock_wrlock, (&rwlock_));
|
|
#endif
|
|
DCHECK_EQ(exclusive_owner_, 0U);
|
|
exclusive_owner_ = SafeGetTid(self);
|
|
RegisterAsLocked(self);
|
|
AssertExclusiveHeld(self);
|
|
}
|
|
|
|
void ReaderWriterMutex::ExclusiveUnlock(Thread* self) {
|
|
DCHECK(self == nullptr || self == Thread::Current());
|
|
AssertExclusiveHeld(self);
|
|
RegisterAsUnlocked(self);
|
|
DCHECK_NE(exclusive_owner_, 0U);
|
|
#if ART_USE_FUTEXES
|
|
bool done = false;
|
|
do {
|
|
int32_t cur_state = state_.LoadRelaxed();
|
|
if (LIKELY(cur_state == -1)) {
|
|
// We're no longer the owner.
|
|
exclusive_owner_ = 0;
|
|
// Change state from -1 to 0 and impose load/store ordering appropriate for lock release.
|
|
// Note, the relaxed loads below musn't reorder before the CompareExchange.
|
|
// TODO: the ordering here is non-trivial as state is split across 3 fields, fix by placing
|
|
// a status bit into the state on contention.
|
|
done = state_.CompareExchangeWeakSequentiallyConsistent(-1 /* cur_state*/, 0 /* new state */);
|
|
if (LIKELY(done)) { // Weak CAS may fail spuriously.
|
|
// Wake any waiters.
|
|
if (UNLIKELY(num_pending_readers_.LoadRelaxed() > 0 ||
|
|
num_pending_writers_.LoadRelaxed() > 0)) {
|
|
futex(state_.Address(), FUTEX_WAKE, -1, nullptr, nullptr, 0);
|
|
}
|
|
}
|
|
} else {
|
|
LOG(FATAL) << "Unexpected state_:" << cur_state << " for " << name_;
|
|
}
|
|
} while (!done);
|
|
#else
|
|
exclusive_owner_ = 0;
|
|
CHECK_MUTEX_CALL(pthread_rwlock_unlock, (&rwlock_));
|
|
#endif
|
|
}
|
|
|
|
#if HAVE_TIMED_RWLOCK
|
|
bool ReaderWriterMutex::ExclusiveLockWithTimeout(Thread* self, int64_t ms, int32_t ns) {
|
|
DCHECK(self == nullptr || self == Thread::Current());
|
|
#if ART_USE_FUTEXES
|
|
bool done = false;
|
|
timespec end_abs_ts;
|
|
InitTimeSpec(true, CLOCK_MONOTONIC, ms, ns, &end_abs_ts);
|
|
do {
|
|
int32_t cur_state = state_.LoadRelaxed();
|
|
if (cur_state == 0) {
|
|
// Change state from 0 to -1 and impose load/store ordering appropriate for lock acquisition.
|
|
done = state_.CompareExchangeWeakAcquire(0 /* cur_state */, -1 /* new state */);
|
|
} else {
|
|
// Failed to acquire, hang up.
|
|
timespec now_abs_ts;
|
|
InitTimeSpec(true, CLOCK_MONOTONIC, 0, 0, &now_abs_ts);
|
|
timespec rel_ts;
|
|
if (ComputeRelativeTimeSpec(&rel_ts, end_abs_ts, now_abs_ts)) {
|
|
return false; // Timed out.
|
|
}
|
|
ScopedContentionRecorder scr(this, SafeGetTid(self), GetExclusiveOwnerTid());
|
|
++num_pending_writers_;
|
|
if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
|
|
self->CheckEmptyCheckpointFromMutex();
|
|
}
|
|
if (futex(state_.Address(), FUTEX_WAIT, cur_state, &rel_ts, nullptr, 0) != 0) {
|
|
if (errno == ETIMEDOUT) {
|
|
--num_pending_writers_;
|
|
return false; // Timed out.
|
|
} else if ((errno != EAGAIN) && (errno != EINTR)) {
|
|
// EAGAIN and EINTR both indicate a spurious failure,
|
|
// recompute the relative time out from now and try again.
|
|
// We don't use TEMP_FAILURE_RETRY so we can recompute rel_ts;
|
|
PLOG(FATAL) << "timed futex wait failed for " << name_;
|
|
}
|
|
}
|
|
--num_pending_writers_;
|
|
}
|
|
} while (!done);
|
|
#else
|
|
timespec ts;
|
|
InitTimeSpec(true, CLOCK_REALTIME, ms, ns, &ts);
|
|
int result = pthread_rwlock_timedwrlock(&rwlock_, &ts);
|
|
if (result == ETIMEDOUT) {
|
|
return false;
|
|
}
|
|
if (result != 0) {
|
|
errno = result;
|
|
PLOG(FATAL) << "pthread_rwlock_timedwrlock failed for " << name_;
|
|
}
|
|
#endif
|
|
exclusive_owner_ = SafeGetTid(self);
|
|
RegisterAsLocked(self);
|
|
AssertSharedHeld(self);
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
#if ART_USE_FUTEXES
|
|
void ReaderWriterMutex::HandleSharedLockContention(Thread* self, int32_t cur_state) {
|
|
// Owner holds it exclusively, hang up.
|
|
ScopedContentionRecorder scr(this, GetExclusiveOwnerTid(), SafeGetTid(self));
|
|
++num_pending_readers_;
|
|
if (UNLIKELY(should_respond_to_empty_checkpoint_request_)) {
|
|
self->CheckEmptyCheckpointFromMutex();
|
|
}
|
|
if (futex(state_.Address(), FUTEX_WAIT, cur_state, nullptr, nullptr, 0) != 0) {
|
|
if (errno != EAGAIN && errno != EINTR) {
|
|
PLOG(FATAL) << "futex wait failed for " << name_;
|
|
}
|
|
}
|
|
--num_pending_readers_;
|
|
}
|
|
#endif
|
|
|
|
bool ReaderWriterMutex::SharedTryLock(Thread* self) {
|
|
DCHECK(self == nullptr || self == Thread::Current());
|
|
#if ART_USE_FUTEXES
|
|
bool done = false;
|
|
do {
|
|
int32_t cur_state = state_.LoadRelaxed();
|
|
if (cur_state >= 0) {
|
|
// Add as an extra reader and impose load/store ordering appropriate for lock acquisition.
|
|
done = state_.CompareExchangeWeakAcquire(cur_state, cur_state + 1);
|
|
} else {
|
|
// Owner holds it exclusively.
|
|
return false;
|
|
}
|
|
} while (!done);
|
|
#else
|
|
int result = pthread_rwlock_tryrdlock(&rwlock_);
|
|
if (result == EBUSY) {
|
|
return false;
|
|
}
|
|
if (result != 0) {
|
|
errno = result;
|
|
PLOG(FATAL) << "pthread_mutex_trylock failed for " << name_;
|
|
}
|
|
#endif
|
|
RegisterAsLocked(self);
|
|
AssertSharedHeld(self);
|
|
return true;
|
|
}
|
|
|
|
bool ReaderWriterMutex::IsSharedHeld(const Thread* self) const {
|
|
DCHECK(self == nullptr || self == Thread::Current());
|
|
bool result;
|
|
if (UNLIKELY(self == nullptr)) { // Handle unattached threads.
|
|
result = IsExclusiveHeld(self); // TODO: a better best effort here.
|
|
} else {
|
|
result = (self->GetHeldMutex(level_) == this);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void ReaderWriterMutex::Dump(std::ostream& os) const {
|
|
os << name_
|
|
<< " level=" << static_cast<int>(level_)
|
|
<< " owner=" << GetExclusiveOwnerTid()
|
|
#if ART_USE_FUTEXES
|
|
<< " state=" << state_.LoadSequentiallyConsistent()
|
|
<< " num_pending_writers=" << num_pending_writers_.LoadSequentiallyConsistent()
|
|
<< " num_pending_readers=" << num_pending_readers_.LoadSequentiallyConsistent()
|
|
#endif
|
|
<< " ";
|
|
DumpContention(os);
|
|
}
|
|
|
|
std::ostream& operator<<(std::ostream& os, const ReaderWriterMutex& mu) {
|
|
mu.Dump(os);
|
|
return os;
|
|
}
|
|
|
|
std::ostream& operator<<(std::ostream& os, const MutatorMutex& mu) {
|
|
mu.Dump(os);
|
|
return os;
|
|
}
|
|
|
|
void ReaderWriterMutex::WakeupToRespondToEmptyCheckpoint() {
|
|
#if ART_USE_FUTEXES
|
|
// Wake up all the waiters so they will respond to the emtpy checkpoint.
|
|
DCHECK(should_respond_to_empty_checkpoint_request_);
|
|
if (UNLIKELY(num_pending_readers_.LoadRelaxed() > 0 ||
|
|
num_pending_writers_.LoadRelaxed() > 0)) {
|
|
futex(state_.Address(), FUTEX_WAKE, -1, nullptr, nullptr, 0);
|
|
}
|
|
#else
|
|
LOG(FATAL) << "Non futex case isn't supported.";
|
|
#endif
|
|
}
|
|
|
|
ConditionVariable::ConditionVariable(const char* name, Mutex& guard)
|
|
: name_(name), guard_(guard) {
|
|
#if ART_USE_FUTEXES
|
|
DCHECK_EQ(0, sequence_.LoadRelaxed());
|
|
num_waiters_ = 0;
|
|
#else
|
|
pthread_condattr_t cond_attrs;
|
|
CHECK_MUTEX_CALL(pthread_condattr_init, (&cond_attrs));
|
|
#if !defined(__APPLE__)
|
|
// Apple doesn't have CLOCK_MONOTONIC or pthread_condattr_setclock.
|
|
CHECK_MUTEX_CALL(pthread_condattr_setclock, (&cond_attrs, CLOCK_MONOTONIC));
|
|
#endif
|
|
CHECK_MUTEX_CALL(pthread_cond_init, (&cond_, &cond_attrs));
|
|
#endif
|
|
}
|
|
|
|
ConditionVariable::~ConditionVariable() {
|
|
#if ART_USE_FUTEXES
|
|
if (num_waiters_!= 0) {
|
|
bool is_safe_to_call_abort = IsSafeToCallAbortSafe();
|
|
LOG(is_safe_to_call_abort ? FATAL : WARNING)
|
|
<< "ConditionVariable::~ConditionVariable for " << name_
|
|
<< " called with " << num_waiters_ << " waiters.";
|
|
}
|
|
#else
|
|
// We can't use CHECK_MUTEX_CALL here because on shutdown a suspended daemon thread
|
|
// may still be using condition variables.
|
|
int rc = pthread_cond_destroy(&cond_);
|
|
if (rc != 0) {
|
|
errno = rc;
|
|
bool is_safe_to_call_abort = IsSafeToCallAbortSafe();
|
|
PLOG(is_safe_to_call_abort ? FATAL : WARNING) << "pthread_cond_destroy failed for " << name_;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
void ConditionVariable::Broadcast(Thread* self) {
|
|
DCHECK(self == nullptr || self == Thread::Current());
|
|
// TODO: enable below, there's a race in thread creation that causes false failures currently.
|
|
// guard_.AssertExclusiveHeld(self);
|
|
DCHECK_EQ(guard_.GetExclusiveOwnerTid(), SafeGetTid(self));
|
|
#if ART_USE_FUTEXES
|
|
if (num_waiters_ > 0) {
|
|
sequence_++; // Indicate the broadcast occurred.
|
|
bool done = false;
|
|
do {
|
|
int32_t cur_sequence = sequence_.LoadRelaxed();
|
|
// Requeue waiters onto mutex. The waiter holds the contender count on the mutex high ensuring
|
|
// mutex unlocks will awaken the requeued waiter thread.
|
|
done = futex(sequence_.Address(), FUTEX_CMP_REQUEUE, 0,
|
|
reinterpret_cast<const timespec*>(std::numeric_limits<int32_t>::max()),
|
|
guard_.state_.Address(), cur_sequence) != -1;
|
|
if (!done) {
|
|
if (errno != EAGAIN && errno != EINTR) {
|
|
PLOG(FATAL) << "futex cmp requeue failed for " << name_;
|
|
}
|
|
}
|
|
} while (!done);
|
|
}
|
|
#else
|
|
CHECK_MUTEX_CALL(pthread_cond_broadcast, (&cond_));
|
|
#endif
|
|
}
|
|
|
|
void ConditionVariable::Signal(Thread* self) {
|
|
DCHECK(self == nullptr || self == Thread::Current());
|
|
guard_.AssertExclusiveHeld(self);
|
|
#if ART_USE_FUTEXES
|
|
if (num_waiters_ > 0) {
|
|
sequence_++; // Indicate a signal occurred.
|
|
// Futex wake 1 waiter who will then come and in contend on mutex. It'd be nice to requeue them
|
|
// to avoid this, however, requeueing can only move all waiters.
|
|
int num_woken = futex(sequence_.Address(), FUTEX_WAKE, 1, nullptr, nullptr, 0);
|
|
// Check something was woken or else we changed sequence_ before they had chance to wait.
|
|
CHECK((num_woken == 0) || (num_woken == 1));
|
|
}
|
|
#else
|
|
CHECK_MUTEX_CALL(pthread_cond_signal, (&cond_));
|
|
#endif
|
|
}
|
|
|
|
void ConditionVariable::Wait(Thread* self) {
|
|
guard_.CheckSafeToWait(self);
|
|
WaitHoldingLocks(self);
|
|
}
|
|
|
|
void ConditionVariable::WaitHoldingLocks(Thread* self) {
|
|
DCHECK(self == nullptr || self == Thread::Current());
|
|
guard_.AssertExclusiveHeld(self);
|
|
unsigned int old_recursion_count = guard_.recursion_count_;
|
|
#if ART_USE_FUTEXES
|
|
num_waiters_++;
|
|
// Ensure the Mutex is contended so that requeued threads are awoken.
|
|
guard_.num_contenders_++;
|
|
guard_.recursion_count_ = 1;
|
|
int32_t cur_sequence = sequence_.LoadRelaxed();
|
|
guard_.ExclusiveUnlock(self);
|
|
if (futex(sequence_.Address(), FUTEX_WAIT, cur_sequence, nullptr, nullptr, 0) != 0) {
|
|
// Futex failed, check it is an expected error.
|
|
// EAGAIN == EWOULDBLK, so we let the caller try again.
|
|
// EINTR implies a signal was sent to this thread.
|
|
if ((errno != EINTR) && (errno != EAGAIN)) {
|
|
PLOG(FATAL) << "futex wait failed for " << name_;
|
|
}
|
|
}
|
|
if (self != nullptr) {
|
|
JNIEnvExt* const env = self->GetJniEnv();
|
|
if (UNLIKELY(env != nullptr && env->runtime_deleted)) {
|
|
CHECK(self->IsDaemon());
|
|
// If the runtime has been deleted, then we cannot proceed. Just sleep forever. This may
|
|
// occur for user daemon threads that get a spurious wakeup. This occurs for test 132 with
|
|
// --host and --gdb.
|
|
// After we wake up, the runtime may have been shutdown, which means that this condition may
|
|
// have been deleted. It is not safe to retry the wait.
|
|
SleepForever();
|
|
}
|
|
}
|
|
guard_.ExclusiveLock(self);
|
|
CHECK_GE(num_waiters_, 0);
|
|
num_waiters_--;
|
|
// We awoke and so no longer require awakes from the guard_'s unlock.
|
|
CHECK_GE(guard_.num_contenders_.LoadRelaxed(), 0);
|
|
guard_.num_contenders_--;
|
|
#else
|
|
uint64_t old_owner = guard_.exclusive_owner_;
|
|
guard_.exclusive_owner_ = 0;
|
|
guard_.recursion_count_ = 0;
|
|
CHECK_MUTEX_CALL(pthread_cond_wait, (&cond_, &guard_.mutex_));
|
|
guard_.exclusive_owner_ = old_owner;
|
|
#endif
|
|
guard_.recursion_count_ = old_recursion_count;
|
|
}
|
|
|
|
bool ConditionVariable::TimedWait(Thread* self, int64_t ms, int32_t ns) {
|
|
DCHECK(self == nullptr || self == Thread::Current());
|
|
bool timed_out = false;
|
|
guard_.AssertExclusiveHeld(self);
|
|
guard_.CheckSafeToWait(self);
|
|
unsigned int old_recursion_count = guard_.recursion_count_;
|
|
#if ART_USE_FUTEXES
|
|
timespec rel_ts;
|
|
InitTimeSpec(false, CLOCK_REALTIME, ms, ns, &rel_ts);
|
|
num_waiters_++;
|
|
// Ensure the Mutex is contended so that requeued threads are awoken.
|
|
guard_.num_contenders_++;
|
|
guard_.recursion_count_ = 1;
|
|
int32_t cur_sequence = sequence_.LoadRelaxed();
|
|
guard_.ExclusiveUnlock(self);
|
|
if (futex(sequence_.Address(), FUTEX_WAIT, cur_sequence, &rel_ts, nullptr, 0) != 0) {
|
|
if (errno == ETIMEDOUT) {
|
|
// Timed out we're done.
|
|
timed_out = true;
|
|
} else if ((errno == EAGAIN) || (errno == EINTR)) {
|
|
// A signal or ConditionVariable::Signal/Broadcast has come in.
|
|
} else {
|
|
PLOG(FATAL) << "timed futex wait failed for " << name_;
|
|
}
|
|
}
|
|
guard_.ExclusiveLock(self);
|
|
CHECK_GE(num_waiters_, 0);
|
|
num_waiters_--;
|
|
// We awoke and so no longer require awakes from the guard_'s unlock.
|
|
CHECK_GE(guard_.num_contenders_.LoadRelaxed(), 0);
|
|
guard_.num_contenders_--;
|
|
#else
|
|
#if !defined(__APPLE__)
|
|
int clock = CLOCK_MONOTONIC;
|
|
#else
|
|
int clock = CLOCK_REALTIME;
|
|
#endif
|
|
uint64_t old_owner = guard_.exclusive_owner_;
|
|
guard_.exclusive_owner_ = 0;
|
|
guard_.recursion_count_ = 0;
|
|
timespec ts;
|
|
InitTimeSpec(true, clock, ms, ns, &ts);
|
|
int rc = TEMP_FAILURE_RETRY(pthread_cond_timedwait(&cond_, &guard_.mutex_, &ts));
|
|
if (rc == ETIMEDOUT) {
|
|
timed_out = true;
|
|
} else if (rc != 0) {
|
|
errno = rc;
|
|
PLOG(FATAL) << "TimedWait failed for " << name_;
|
|
}
|
|
guard_.exclusive_owner_ = old_owner;
|
|
#endif
|
|
guard_.recursion_count_ = old_recursion_count;
|
|
return timed_out;
|
|
}
|
|
|
|
void Locks::Init() {
|
|
if (logging_lock_ != nullptr) {
|
|
// Already initialized.
|
|
if (kRuntimeISA == kX86 || kRuntimeISA == kX86_64) {
|
|
DCHECK(modify_ldt_lock_ != nullptr);
|
|
} else {
|
|
DCHECK(modify_ldt_lock_ == nullptr);
|
|
}
|
|
DCHECK(abort_lock_ != nullptr);
|
|
DCHECK(alloc_tracker_lock_ != nullptr);
|
|
DCHECK(allocated_monitor_ids_lock_ != nullptr);
|
|
DCHECK(allocated_thread_ids_lock_ != nullptr);
|
|
DCHECK(breakpoint_lock_ != nullptr);
|
|
DCHECK(classlinker_classes_lock_ != nullptr);
|
|
DCHECK(deoptimization_lock_ != nullptr);
|
|
DCHECK(heap_bitmap_lock_ != nullptr);
|
|
DCHECK(oat_file_manager_lock_ != nullptr);
|
|
DCHECK(verifier_deps_lock_ != nullptr);
|
|
DCHECK(host_dlopen_handles_lock_ != nullptr);
|
|
DCHECK(intern_table_lock_ != nullptr);
|
|
DCHECK(jni_function_table_lock_ != nullptr);
|
|
DCHECK(jni_libraries_lock_ != nullptr);
|
|
DCHECK(logging_lock_ != nullptr);
|
|
DCHECK(mutator_lock_ != nullptr);
|
|
DCHECK(profiler_lock_ != nullptr);
|
|
DCHECK(cha_lock_ != nullptr);
|
|
DCHECK(thread_list_lock_ != nullptr);
|
|
DCHECK(thread_suspend_count_lock_ != nullptr);
|
|
DCHECK(trace_lock_ != nullptr);
|
|
DCHECK(unexpected_signal_lock_ != nullptr);
|
|
DCHECK(user_code_suspension_lock_ != nullptr);
|
|
DCHECK(dex_lock_ != nullptr);
|
|
} else {
|
|
// Create global locks in level order from highest lock level to lowest.
|
|
LockLevel current_lock_level = kInstrumentEntrypointsLock;
|
|
DCHECK(instrument_entrypoints_lock_ == nullptr);
|
|
instrument_entrypoints_lock_ = new Mutex("instrument entrypoint lock", current_lock_level);
|
|
|
|
#define UPDATE_CURRENT_LOCK_LEVEL(new_level) \
|
|
if ((new_level) >= current_lock_level) { \
|
|
/* Do not use CHECKs or FATAL here, abort_lock_ is not setup yet. */ \
|
|
fprintf(stderr, "New local level %d is not less than current level %d\n", \
|
|
new_level, current_lock_level); \
|
|
exit(1); \
|
|
} \
|
|
current_lock_level = new_level;
|
|
|
|
UPDATE_CURRENT_LOCK_LEVEL(kUserCodeSuspensionLock);
|
|
DCHECK(user_code_suspension_lock_ == nullptr);
|
|
user_code_suspension_lock_ = new Mutex("user code suspension lock", current_lock_level);
|
|
|
|
UPDATE_CURRENT_LOCK_LEVEL(kMutatorLock);
|
|
DCHECK(mutator_lock_ == nullptr);
|
|
mutator_lock_ = new MutatorMutex("mutator lock", current_lock_level);
|
|
|
|
UPDATE_CURRENT_LOCK_LEVEL(kHeapBitmapLock);
|
|
DCHECK(heap_bitmap_lock_ == nullptr);
|
|
heap_bitmap_lock_ = new ReaderWriterMutex("heap bitmap lock", current_lock_level);
|
|
|
|
UPDATE_CURRENT_LOCK_LEVEL(kTraceLock);
|
|
DCHECK(trace_lock_ == nullptr);
|
|
trace_lock_ = new Mutex("trace lock", current_lock_level);
|
|
|
|
UPDATE_CURRENT_LOCK_LEVEL(kRuntimeShutdownLock);
|
|
DCHECK(runtime_shutdown_lock_ == nullptr);
|
|
runtime_shutdown_lock_ = new Mutex("runtime shutdown lock", current_lock_level);
|
|
|
|
UPDATE_CURRENT_LOCK_LEVEL(kProfilerLock);
|
|
DCHECK(profiler_lock_ == nullptr);
|
|
profiler_lock_ = new Mutex("profiler lock", current_lock_level);
|
|
|
|
UPDATE_CURRENT_LOCK_LEVEL(kDeoptimizationLock);
|
|
DCHECK(deoptimization_lock_ == nullptr);
|
|
deoptimization_lock_ = new Mutex("Deoptimization lock", current_lock_level);
|
|
|
|
UPDATE_CURRENT_LOCK_LEVEL(kAllocTrackerLock);
|
|
DCHECK(alloc_tracker_lock_ == nullptr);
|
|
alloc_tracker_lock_ = new Mutex("AllocTracker lock", current_lock_level);
|
|
|
|
UPDATE_CURRENT_LOCK_LEVEL(kThreadListLock);
|
|
DCHECK(thread_list_lock_ == nullptr);
|
|
thread_list_lock_ = new Mutex("thread list lock", current_lock_level);
|
|
|
|
UPDATE_CURRENT_LOCK_LEVEL(kJniLoadLibraryLock);
|
|
DCHECK(jni_libraries_lock_ == nullptr);
|
|
jni_libraries_lock_ = new Mutex("JNI shared libraries map lock", current_lock_level);
|
|
|
|
UPDATE_CURRENT_LOCK_LEVEL(kBreakpointLock);
|
|
DCHECK(breakpoint_lock_ == nullptr);
|
|
breakpoint_lock_ = new ReaderWriterMutex("breakpoint lock", current_lock_level);
|
|
|
|
UPDATE_CURRENT_LOCK_LEVEL(kCHALock);
|
|
DCHECK(cha_lock_ == nullptr);
|
|
cha_lock_ = new Mutex("CHA lock", current_lock_level);
|
|
|
|
UPDATE_CURRENT_LOCK_LEVEL(kClassLinkerClassesLock);
|
|
DCHECK(classlinker_classes_lock_ == nullptr);
|
|
classlinker_classes_lock_ = new ReaderWriterMutex("ClassLinker classes lock",
|
|
current_lock_level);
|
|
|
|
UPDATE_CURRENT_LOCK_LEVEL(kMonitorPoolLock);
|
|
DCHECK(allocated_monitor_ids_lock_ == nullptr);
|
|
allocated_monitor_ids_lock_ = new Mutex("allocated monitor ids lock", current_lock_level);
|
|
|
|
UPDATE_CURRENT_LOCK_LEVEL(kAllocatedThreadIdsLock);
|
|
DCHECK(allocated_thread_ids_lock_ == nullptr);
|
|
allocated_thread_ids_lock_ = new Mutex("allocated thread ids lock", current_lock_level);
|
|
|
|
if (kRuntimeISA == kX86 || kRuntimeISA == kX86_64) {
|
|
UPDATE_CURRENT_LOCK_LEVEL(kModifyLdtLock);
|
|
DCHECK(modify_ldt_lock_ == nullptr);
|
|
modify_ldt_lock_ = new Mutex("modify_ldt lock", current_lock_level);
|
|
}
|
|
|
|
UPDATE_CURRENT_LOCK_LEVEL(kDexLock);
|
|
DCHECK(dex_lock_ == nullptr);
|
|
dex_lock_ = new ReaderWriterMutex("ClassLinker dex lock", current_lock_level);
|
|
|
|
UPDATE_CURRENT_LOCK_LEVEL(kOatFileManagerLock);
|
|
DCHECK(oat_file_manager_lock_ == nullptr);
|
|
oat_file_manager_lock_ = new ReaderWriterMutex("OatFile manager lock", current_lock_level);
|
|
|
|
UPDATE_CURRENT_LOCK_LEVEL(kVerifierDepsLock);
|
|
DCHECK(verifier_deps_lock_ == nullptr);
|
|
verifier_deps_lock_ = new ReaderWriterMutex("verifier deps lock", current_lock_level);
|
|
|
|
UPDATE_CURRENT_LOCK_LEVEL(kHostDlOpenHandlesLock);
|
|
DCHECK(host_dlopen_handles_lock_ == nullptr);
|
|
host_dlopen_handles_lock_ = new Mutex("host dlopen handles lock", current_lock_level);
|
|
|
|
UPDATE_CURRENT_LOCK_LEVEL(kInternTableLock);
|
|
DCHECK(intern_table_lock_ == nullptr);
|
|
intern_table_lock_ = new Mutex("InternTable lock", current_lock_level);
|
|
|
|
UPDATE_CURRENT_LOCK_LEVEL(kReferenceProcessorLock);
|
|
DCHECK(reference_processor_lock_ == nullptr);
|
|
reference_processor_lock_ = new Mutex("ReferenceProcessor lock", current_lock_level);
|
|
|
|
UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueueClearedReferencesLock);
|
|
DCHECK(reference_queue_cleared_references_lock_ == nullptr);
|
|
reference_queue_cleared_references_lock_ = new Mutex("ReferenceQueue cleared references lock", current_lock_level);
|
|
|
|
UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueueWeakReferencesLock);
|
|
DCHECK(reference_queue_weak_references_lock_ == nullptr);
|
|
reference_queue_weak_references_lock_ = new Mutex("ReferenceQueue cleared references lock", current_lock_level);
|
|
|
|
UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueueFinalizerReferencesLock);
|
|
DCHECK(reference_queue_finalizer_references_lock_ == nullptr);
|
|
reference_queue_finalizer_references_lock_ = new Mutex("ReferenceQueue finalizer references lock", current_lock_level);
|
|
|
|
UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueuePhantomReferencesLock);
|
|
DCHECK(reference_queue_phantom_references_lock_ == nullptr);
|
|
reference_queue_phantom_references_lock_ = new Mutex("ReferenceQueue phantom references lock", current_lock_level);
|
|
|
|
UPDATE_CURRENT_LOCK_LEVEL(kReferenceQueueSoftReferencesLock);
|
|
DCHECK(reference_queue_soft_references_lock_ == nullptr);
|
|
reference_queue_soft_references_lock_ = new Mutex("ReferenceQueue soft references lock", current_lock_level);
|
|
|
|
UPDATE_CURRENT_LOCK_LEVEL(kJniGlobalsLock);
|
|
DCHECK(jni_globals_lock_ == nullptr);
|
|
jni_globals_lock_ =
|
|
new ReaderWriterMutex("JNI global reference table lock", current_lock_level);
|
|
|
|
UPDATE_CURRENT_LOCK_LEVEL(kJniWeakGlobalsLock);
|
|
DCHECK(jni_weak_globals_lock_ == nullptr);
|
|
jni_weak_globals_lock_ = new Mutex("JNI weak global reference table lock", current_lock_level);
|
|
|
|
UPDATE_CURRENT_LOCK_LEVEL(kJniFunctionTableLock);
|
|
DCHECK(jni_function_table_lock_ == nullptr);
|
|
jni_function_table_lock_ = new Mutex("JNI function table lock", current_lock_level);
|
|
|
|
UPDATE_CURRENT_LOCK_LEVEL(kAbortLock);
|
|
DCHECK(abort_lock_ == nullptr);
|
|
abort_lock_ = new Mutex("abort lock", current_lock_level, true);
|
|
|
|
UPDATE_CURRENT_LOCK_LEVEL(kThreadSuspendCountLock);
|
|
DCHECK(thread_suspend_count_lock_ == nullptr);
|
|
thread_suspend_count_lock_ = new Mutex("thread suspend count lock", current_lock_level);
|
|
|
|
UPDATE_CURRENT_LOCK_LEVEL(kUnexpectedSignalLock);
|
|
DCHECK(unexpected_signal_lock_ == nullptr);
|
|
unexpected_signal_lock_ = new Mutex("unexpected signal lock", current_lock_level, true);
|
|
|
|
UPDATE_CURRENT_LOCK_LEVEL(kLoggingLock);
|
|
DCHECK(logging_lock_ == nullptr);
|
|
logging_lock_ = new Mutex("logging lock", current_lock_level, true);
|
|
|
|
#undef UPDATE_CURRENT_LOCK_LEVEL
|
|
|
|
// List of mutexes that we may hold when accessing a weak ref.
|
|
AddToExpectedMutexesOnWeakRefAccess(dex_lock_, /*need_lock*/ false);
|
|
AddToExpectedMutexesOnWeakRefAccess(classlinker_classes_lock_, /*need_lock*/ false);
|
|
AddToExpectedMutexesOnWeakRefAccess(jni_libraries_lock_, /*need_lock*/ false);
|
|
|
|
InitConditions();
|
|
}
|
|
}
|
|
|
|
void Locks::InitConditions() {
|
|
thread_exit_cond_ = new ConditionVariable("thread exit condition variable", *thread_list_lock_);
|
|
}
|
|
|
|
void Locks::SetClientCallback(ClientCallback* safe_to_call_abort_cb) {
|
|
safe_to_call_abort_callback.StoreRelease(safe_to_call_abort_cb);
|
|
}
|
|
|
|
// Helper to allow checking shutdown while ignoring locking requirements.
|
|
bool Locks::IsSafeToCallAbortRacy() {
|
|
Locks::ClientCallback* safe_to_call_abort_cb = safe_to_call_abort_callback.LoadAcquire();
|
|
return safe_to_call_abort_cb != nullptr && safe_to_call_abort_cb();
|
|
}
|
|
|
|
void Locks::AddToExpectedMutexesOnWeakRefAccess(BaseMutex* mutex, bool need_lock) {
|
|
if (need_lock) {
|
|
ScopedExpectedMutexesOnWeakRefAccessLock mu(mutex);
|
|
mutex->SetShouldRespondToEmptyCheckpointRequest(true);
|
|
expected_mutexes_on_weak_ref_access_.push_back(mutex);
|
|
} else {
|
|
mutex->SetShouldRespondToEmptyCheckpointRequest(true);
|
|
expected_mutexes_on_weak_ref_access_.push_back(mutex);
|
|
}
|
|
}
|
|
|
|
void Locks::RemoveFromExpectedMutexesOnWeakRefAccess(BaseMutex* mutex, bool need_lock) {
|
|
if (need_lock) {
|
|
ScopedExpectedMutexesOnWeakRefAccessLock mu(mutex);
|
|
mutex->SetShouldRespondToEmptyCheckpointRequest(false);
|
|
std::vector<BaseMutex*>& list = expected_mutexes_on_weak_ref_access_;
|
|
auto it = std::find(list.begin(), list.end(), mutex);
|
|
DCHECK(it != list.end());
|
|
list.erase(it);
|
|
} else {
|
|
mutex->SetShouldRespondToEmptyCheckpointRequest(false);
|
|
std::vector<BaseMutex*>& list = expected_mutexes_on_weak_ref_access_;
|
|
auto it = std::find(list.begin(), list.end(), mutex);
|
|
DCHECK(it != list.end());
|
|
list.erase(it);
|
|
}
|
|
}
|
|
|
|
bool Locks::IsExpectedOnWeakRefAccess(BaseMutex* mutex) {
|
|
ScopedExpectedMutexesOnWeakRefAccessLock mu(mutex);
|
|
std::vector<BaseMutex*>& list = expected_mutexes_on_weak_ref_access_;
|
|
return std::find(list.begin(), list.end(), mutex) != list.end();
|
|
}
|
|
|
|
} // namespace art
|