336 lines
12 KiB
C++
336 lines
12 KiB
C++
/*
|
|
* Copyright (C) 2008 The Android Open Source Project
|
|
*
|
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
|
* you may not use this file except in compliance with the License.
|
|
* You may obtain a copy of the License at
|
|
*
|
|
* http://www.apache.org/licenses/LICENSE-2.0
|
|
*
|
|
* Unless required by applicable law or agreed to in writing, software
|
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
* See the License for the specific language governing permissions and
|
|
* limitations under the License.
|
|
*/
|
|
|
|
#ifndef ART_RUNTIME_ATOMIC_H_
|
|
#define ART_RUNTIME_ATOMIC_H_
|
|
|
|
#include <stdint.h>
|
|
#include <atomic>
|
|
#include <limits>
|
|
#include <vector>
|
|
|
|
#include "arch/instruction_set.h"
|
|
#include "base/logging.h"
|
|
#include "base/macros.h"
|
|
|
|
namespace art {
|
|
|
|
class Mutex;
|
|
|
|
// QuasiAtomic encapsulates two separate facilities that we are
|
|
// trying to move away from: "quasiatomic" 64 bit operations
|
|
// and custom memory fences. For the time being, they remain
|
|
// exposed. Clients should be converted to use either class Atomic
|
|
// below whenever possible, and should eventually use C++11 atomics.
|
|
// The two facilities that do not have a good C++11 analog are
|
|
// ThreadFenceForConstructor and Atomic::*JavaData.
|
|
//
|
|
// NOTE: Two "quasiatomic" operations on the exact same memory address
|
|
// are guaranteed to operate atomically with respect to each other,
|
|
// but no guarantees are made about quasiatomic operations mixed with
|
|
// non-quasiatomic operations on the same address, nor about
|
|
// quasiatomic operations that are performed on partially-overlapping
|
|
// memory.
|
|
class QuasiAtomic {
|
|
static constexpr bool NeedSwapMutexes(InstructionSet isa) {
|
|
// TODO - mips64 still need this for Cas64 ???
|
|
return (isa == kMips) || (isa == kMips64);
|
|
}
|
|
|
|
public:
|
|
static void Startup();
|
|
|
|
static void Shutdown();
|
|
|
|
// Reads the 64-bit value at "addr" without tearing.
|
|
static int64_t Read64(volatile const int64_t* addr) {
|
|
if (!NeedSwapMutexes(kRuntimeISA)) {
|
|
int64_t value;
|
|
#if defined(__LP64__)
|
|
value = *addr;
|
|
#else
|
|
#if defined(__arm__)
|
|
#if defined(__ARM_FEATURE_LPAE)
|
|
// With LPAE support (such as Cortex-A15) then ldrd is defined not to tear.
|
|
__asm__ __volatile__("@ QuasiAtomic::Read64\n"
|
|
"ldrd %0, %H0, %1"
|
|
: "=r" (value)
|
|
: "m" (*addr));
|
|
#else
|
|
// Exclusive loads are defined not to tear, clearing the exclusive state isn't necessary.
|
|
__asm__ __volatile__("@ QuasiAtomic::Read64\n"
|
|
"ldrexd %0, %H0, %1"
|
|
: "=r" (value)
|
|
: "Q" (*addr));
|
|
#endif
|
|
#elif defined(__i386__)
|
|
__asm__ __volatile__(
|
|
"movq %1, %0\n"
|
|
: "=x" (value)
|
|
: "m" (*addr));
|
|
#else
|
|
LOG(FATAL) << "Unsupported architecture";
|
|
#endif
|
|
#endif // defined(__LP64__)
|
|
return value;
|
|
} else {
|
|
return SwapMutexRead64(addr);
|
|
}
|
|
}
|
|
|
|
// Writes to the 64-bit value at "addr" without tearing.
|
|
static void Write64(volatile int64_t* addr, int64_t value) {
|
|
if (!NeedSwapMutexes(kRuntimeISA)) {
|
|
#if defined(__LP64__)
|
|
*addr = value;
|
|
#else
|
|
#if defined(__arm__)
|
|
#if defined(__ARM_FEATURE_LPAE)
|
|
// If we know that ARM architecture has LPAE (such as Cortex-A15) strd is defined not to tear.
|
|
__asm__ __volatile__("@ QuasiAtomic::Write64\n"
|
|
"strd %1, %H1, %0"
|
|
: "=m"(*addr)
|
|
: "r" (value));
|
|
#else
|
|
// The write is done as a swap so that the cache-line is in the exclusive state for the store.
|
|
int64_t prev;
|
|
int status;
|
|
do {
|
|
__asm__ __volatile__("@ QuasiAtomic::Write64\n"
|
|
"ldrexd %0, %H0, %2\n"
|
|
"strexd %1, %3, %H3, %2"
|
|
: "=&r" (prev), "=&r" (status), "+Q"(*addr)
|
|
: "r" (value)
|
|
: "cc");
|
|
} while (UNLIKELY(status != 0));
|
|
#endif
|
|
#elif defined(__i386__)
|
|
__asm__ __volatile__(
|
|
"movq %1, %0"
|
|
: "=m" (*addr)
|
|
: "x" (value));
|
|
#else
|
|
LOG(FATAL) << "Unsupported architecture";
|
|
#endif
|
|
#endif // defined(__LP64__)
|
|
} else {
|
|
SwapMutexWrite64(addr, value);
|
|
}
|
|
}
|
|
|
|
// Atomically compare the value at "addr" to "old_value", if equal replace it with "new_value"
|
|
// and return true. Otherwise, don't swap, and return false.
|
|
// This is fully ordered, i.e. it has C++11 memory_order_seq_cst
|
|
// semantics (assuming all other accesses use a mutex if this one does).
|
|
// This has "strong" semantics; if it fails then it is guaranteed that
|
|
// at some point during the execution of Cas64, *addr was not equal to
|
|
// old_value.
|
|
static bool Cas64(int64_t old_value, int64_t new_value, volatile int64_t* addr) {
|
|
if (!NeedSwapMutexes(kRuntimeISA)) {
|
|
return __sync_bool_compare_and_swap(addr, old_value, new_value);
|
|
} else {
|
|
return SwapMutexCas64(old_value, new_value, addr);
|
|
}
|
|
}
|
|
|
|
// Does the architecture provide reasonable atomic long operations or do we fall back on mutexes?
|
|
static bool LongAtomicsUseMutexes(InstructionSet isa) {
|
|
return NeedSwapMutexes(isa);
|
|
}
|
|
|
|
static void ThreadFenceAcquire() {
|
|
std::atomic_thread_fence(std::memory_order_acquire);
|
|
}
|
|
|
|
static void ThreadFenceRelease() {
|
|
std::atomic_thread_fence(std::memory_order_release);
|
|
}
|
|
|
|
static void ThreadFenceForConstructor() {
|
|
#if defined(__aarch64__)
|
|
__asm__ __volatile__("dmb ishst" : : : "memory");
|
|
#else
|
|
std::atomic_thread_fence(std::memory_order_release);
|
|
#endif
|
|
}
|
|
|
|
static void ThreadFenceSequentiallyConsistent() {
|
|
std::atomic_thread_fence(std::memory_order_seq_cst);
|
|
}
|
|
|
|
private:
|
|
static Mutex* GetSwapMutex(const volatile int64_t* addr);
|
|
static int64_t SwapMutexRead64(volatile const int64_t* addr);
|
|
static void SwapMutexWrite64(volatile int64_t* addr, int64_t val);
|
|
static bool SwapMutexCas64(int64_t old_value, int64_t new_value, volatile int64_t* addr);
|
|
|
|
// We stripe across a bunch of different mutexes to reduce contention.
|
|
static constexpr size_t kSwapMutexCount = 32;
|
|
static std::vector<Mutex*>* gSwapMutexes;
|
|
|
|
DISALLOW_COPY_AND_ASSIGN(QuasiAtomic);
|
|
};
|
|
|
|
template<typename T>
|
|
class PACKED(sizeof(T)) Atomic : public std::atomic<T> {
|
|
public:
|
|
Atomic<T>() : std::atomic<T>(T()) { }
|
|
|
|
explicit Atomic<T>(T value) : std::atomic<T>(value) { }
|
|
|
|
// Load from memory without ordering or synchronization constraints.
|
|
T LoadRelaxed() const {
|
|
return this->load(std::memory_order_relaxed);
|
|
}
|
|
|
|
// Load from memory with acquire ordering.
|
|
T LoadAcquire() const {
|
|
return this->load(std::memory_order_acquire);
|
|
}
|
|
|
|
// Word tearing allowed, but may race.
|
|
// TODO: Optimize?
|
|
// There has been some discussion of eventually disallowing word
|
|
// tearing for Java data loads.
|
|
T LoadJavaData() const {
|
|
return this->load(std::memory_order_relaxed);
|
|
}
|
|
|
|
// Load from memory with a total ordering.
|
|
// Corresponds exactly to a Java volatile load.
|
|
T LoadSequentiallyConsistent() const {
|
|
return this->load(std::memory_order_seq_cst);
|
|
}
|
|
|
|
// Store to memory without ordering or synchronization constraints.
|
|
void StoreRelaxed(T desired) {
|
|
this->store(desired, std::memory_order_relaxed);
|
|
}
|
|
|
|
// Word tearing allowed, but may race.
|
|
void StoreJavaData(T desired) {
|
|
this->store(desired, std::memory_order_relaxed);
|
|
}
|
|
|
|
// Store to memory with release ordering.
|
|
void StoreRelease(T desired) {
|
|
this->store(desired, std::memory_order_release);
|
|
}
|
|
|
|
// Store to memory with a total ordering.
|
|
void StoreSequentiallyConsistent(T desired) {
|
|
this->store(desired, std::memory_order_seq_cst);
|
|
}
|
|
|
|
// Atomically replace the value with desired value.
|
|
T ExchangeRelaxed(T desired_value) {
|
|
return this->exchange(desired_value, std::memory_order_relaxed);
|
|
}
|
|
|
|
// Atomically replace the value with desired value if it matches the expected value.
|
|
// Participates in total ordering of atomic operations.
|
|
bool CompareExchangeStrongSequentiallyConsistent(T expected_value, T desired_value) {
|
|
return this->compare_exchange_strong(expected_value, desired_value, std::memory_order_seq_cst);
|
|
}
|
|
|
|
// The same, except it may fail spuriously.
|
|
bool CompareExchangeWeakSequentiallyConsistent(T expected_value, T desired_value) {
|
|
return this->compare_exchange_weak(expected_value, desired_value, std::memory_order_seq_cst);
|
|
}
|
|
|
|
// Atomically replace the value with desired value if it matches the expected value. Doesn't
|
|
// imply ordering or synchronization constraints.
|
|
bool CompareExchangeStrongRelaxed(T expected_value, T desired_value) {
|
|
return this->compare_exchange_strong(expected_value, desired_value, std::memory_order_relaxed);
|
|
}
|
|
|
|
// Atomically replace the value with desired value if it matches the expected value. Prior writes
|
|
// to other memory locations become visible to the threads that do a consume or an acquire on the
|
|
// same location.
|
|
bool CompareExchangeStrongRelease(T expected_value, T desired_value) {
|
|
return this->compare_exchange_strong(expected_value, desired_value, std::memory_order_release);
|
|
}
|
|
|
|
// The same, except it may fail spuriously.
|
|
bool CompareExchangeWeakRelaxed(T expected_value, T desired_value) {
|
|
return this->compare_exchange_weak(expected_value, desired_value, std::memory_order_relaxed);
|
|
}
|
|
|
|
// Atomically replace the value with desired value if it matches the expected value. Prior writes
|
|
// made to other memory locations by the thread that did the release become visible in this
|
|
// thread.
|
|
bool CompareExchangeWeakAcquire(T expected_value, T desired_value) {
|
|
return this->compare_exchange_weak(expected_value, desired_value, std::memory_order_acquire);
|
|
}
|
|
|
|
// Atomically replace the value with desired value if it matches the expected value. prior writes
|
|
// to other memory locations become visible to the threads that do a consume or an acquire on the
|
|
// same location.
|
|
bool CompareExchangeWeakRelease(T expected_value, T desired_value) {
|
|
return this->compare_exchange_weak(expected_value, desired_value, std::memory_order_release);
|
|
}
|
|
|
|
T FetchAndAddSequentiallyConsistent(const T value) {
|
|
return this->fetch_add(value, std::memory_order_seq_cst); // Return old_value.
|
|
}
|
|
|
|
T FetchAndAddRelaxed(const T value) {
|
|
return this->fetch_add(value, std::memory_order_relaxed); // Return old_value.
|
|
}
|
|
|
|
T FetchAndSubSequentiallyConsistent(const T value) {
|
|
return this->fetch_sub(value, std::memory_order_seq_cst); // Return old value.
|
|
}
|
|
|
|
T FetchAndSubRelaxed(const T value) {
|
|
return this->fetch_sub(value, std::memory_order_relaxed); // Return old value.
|
|
}
|
|
|
|
T FetchAndOrSequentiallyConsistent(const T value) {
|
|
return this->fetch_or(value, std::memory_order_seq_cst); // Return old_value.
|
|
}
|
|
|
|
T FetchAndAndSequentiallyConsistent(const T value) {
|
|
return this->fetch_and(value, std::memory_order_seq_cst); // Return old_value.
|
|
}
|
|
|
|
volatile T* Address() {
|
|
return reinterpret_cast<T*>(this);
|
|
}
|
|
|
|
static T MaxValue() {
|
|
return std::numeric_limits<T>::max();
|
|
}
|
|
};
|
|
|
|
typedef Atomic<int32_t> AtomicInteger;
|
|
|
|
static_assert(sizeof(AtomicInteger) == sizeof(int32_t), "Weird AtomicInteger size");
|
|
static_assert(alignof(AtomicInteger) == alignof(int32_t),
|
|
"AtomicInteger alignment differs from that of underlyingtype");
|
|
static_assert(sizeof(Atomic<int64_t>) == sizeof(int64_t), "Weird Atomic<int64> size");
|
|
|
|
// Assert the alignment of 64-bit integers is 64-bit. This isn't true on certain 32-bit
|
|
// architectures (e.g. x86-32) but we know that 64-bit integers here are arranged to be 8-byte
|
|
// aligned.
|
|
#if defined(__LP64__)
|
|
static_assert(alignof(Atomic<int64_t>) == alignof(int64_t),
|
|
"Atomic<int64> alignment differs from that of underlying type");
|
|
#endif
|
|
|
|
} // namespace art
|
|
|
|
#endif // ART_RUNTIME_ATOMIC_H_
|