/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_RUNTIME_GC_COLLECTOR_CONCURRENT_COPYING_INL_H_ #define ART_RUNTIME_GC_COLLECTOR_CONCURRENT_COPYING_INL_H_ #include "concurrent_copying.h" #include "gc/accounting/atomic_stack.h" #include "gc/accounting/space_bitmap-inl.h" #include "gc/heap.h" #include "gc/space/region_space.h" #include "lock_word.h" #include "mirror/object-readbarrier-inl.h" namespace art { namespace gc { namespace collector { inline mirror::Object* ConcurrentCopying::MarkUnevacFromSpaceRegion( mirror::Object* ref, accounting::ContinuousSpaceBitmap* bitmap) { // For the Baker-style RB, in a rare case, we could incorrectly change the object from white // to gray even though the object has already been marked through. This happens if a mutator // thread gets preempted before the AtomicSetReadBarrierState below, GC marks through the // object (changes it from white to gray and back to white), and the thread runs and // incorrectly changes it from white to gray. If this happens, the object will get added to the // mark stack again and get changed back to white after it is processed. if (kUseBakerReadBarrier) { // Test the bitmap first to avoid graying an object that has already been marked through most // of the time. if (bitmap->Test(ref)) { return ref; } } // This may or may not succeed, which is ok because the object may already be gray. bool success = false; if (kUseBakerReadBarrier) { // GC will mark the bitmap when popping from mark stack. If only the GC is touching the bitmap // we can avoid an expensive CAS. // For the baker case, an object is marked if either the mark bit marked or the bitmap bit is // set. success = ref->AtomicSetReadBarrierState(ReadBarrier::WhiteState(), ReadBarrier::GrayState()); } else { success = !bitmap->AtomicTestAndSet(ref); } if (success) { // Newly marked. if (kUseBakerReadBarrier) { DCHECK_EQ(ref->GetReadBarrierState(), ReadBarrier::GrayState()); } PushOntoMarkStack(ref); } return ref; } template inline mirror::Object* ConcurrentCopying::MarkImmuneSpace(mirror::Object* ref) { if (kUseBakerReadBarrier) { // The GC-running thread doesn't (need to) gray immune objects except when updating thread roots // in the thread flip on behalf of suspended threads (when gc_grays_immune_objects_ is // true). Also, a mutator doesn't (need to) gray an immune object after GC has updated all // immune space objects (when updated_all_immune_objects_ is true). if (kIsDebugBuild) { if (Thread::Current() == thread_running_gc_) { DCHECK(!kGrayImmuneObject || updated_all_immune_objects_.LoadRelaxed() || gc_grays_immune_objects_); } else { DCHECK(kGrayImmuneObject); } } if (!kGrayImmuneObject || updated_all_immune_objects_.LoadRelaxed()) { return ref; } // This may or may not succeed, which is ok because the object may already be gray. bool success = ref->AtomicSetReadBarrierState(ReadBarrier::WhiteState(), ReadBarrier::GrayState()); if (success) { MutexLock mu(Thread::Current(), immune_gray_stack_lock_); immune_gray_stack_.push_back(ref); } } return ref; } template inline mirror::Object* ConcurrentCopying::Mark(mirror::Object* from_ref, mirror::Object* holder, MemberOffset offset) { if (from_ref == nullptr) { return nullptr; } DCHECK(heap_->collector_type_ == kCollectorTypeCC); if (kFromGCThread) { DCHECK(is_active_); DCHECK_EQ(Thread::Current(), thread_running_gc_); } else if (UNLIKELY(kUseBakerReadBarrier && !is_active_)) { // In the lock word forward address state, the read barrier bits // in the lock word are part of the stored forwarding address and // invalid. This is usually OK as the from-space copy of objects // aren't accessed by mutators due to the to-space // invariant. However, during the dex2oat image writing relocation // and the zygote compaction, objects can be in the forward // address state (to store the forward/relocation addresses) and // they can still be accessed and the invalid read barrier bits // are consulted. If they look like gray but aren't really, the // read barriers slow path can trigger when it shouldn't. To guard // against this, return here if the CC collector isn't running. return from_ref; } DCHECK(region_space_ != nullptr) << "Read barrier slow path taken when CC isn't running?"; space::RegionSpace::RegionType rtype = region_space_->GetRegionType(from_ref); switch (rtype) { case space::RegionSpace::RegionType::kRegionTypeToSpace: // It's already marked. return from_ref; case space::RegionSpace::RegionType::kRegionTypeFromSpace: { mirror::Object* to_ref = GetFwdPtr(from_ref); if (to_ref == nullptr) { // It isn't marked yet. Mark it by copying it to the to-space. to_ref = Copy(from_ref, holder, offset); } DCHECK(region_space_->IsInToSpace(to_ref) || heap_->non_moving_space_->HasAddress(to_ref)) << "from_ref=" << from_ref << " to_ref=" << to_ref; return to_ref; } case space::RegionSpace::RegionType::kRegionTypeUnevacFromSpace: { return MarkUnevacFromSpaceRegion(from_ref, region_space_bitmap_); } case space::RegionSpace::RegionType::kRegionTypeNone: if (immune_spaces_.ContainsObject(from_ref)) { return MarkImmuneSpace(from_ref); } else { return MarkNonMoving(from_ref, holder, offset); } default: UNREACHABLE(); } } inline mirror::Object* ConcurrentCopying::MarkFromReadBarrier(mirror::Object* from_ref) { mirror::Object* ret; // We can get here before marking starts since we gray immune objects before the marking phase. if (from_ref == nullptr || !Thread::Current()->GetIsGcMarking()) { return from_ref; } // TODO: Consider removing this check when we are done investigating slow paths. b/30162165 if (UNLIKELY(mark_from_read_barrier_measurements_)) { ret = MarkFromReadBarrierWithMeasurements(from_ref); } else { ret = Mark(from_ref); } // Only set the mark bit for baker barrier. if (kUseBakerReadBarrier && LIKELY(!rb_mark_bit_stack_full_ && ret->AtomicSetMarkBit(0, 1))) { // If the mark stack is full, we may temporarily go to mark and back to unmarked. Seeing both // values are OK since the only race is doing an unnecessary Mark. if (!rb_mark_bit_stack_->AtomicPushBack(ret)) { // Mark stack is full, set the bit back to zero. CHECK(ret->AtomicSetMarkBit(1, 0)); // Set rb_mark_bit_stack_full_, this is racy but OK since AtomicPushBack is thread safe. rb_mark_bit_stack_full_ = true; } } return ret; } inline mirror::Object* ConcurrentCopying::GetFwdPtr(mirror::Object* from_ref) { DCHECK(region_space_->IsInFromSpace(from_ref)); LockWord lw = from_ref->GetLockWord(false); if (lw.GetState() == LockWord::kForwardingAddress) { mirror::Object* fwd_ptr = reinterpret_cast(lw.ForwardingAddress()); DCHECK(fwd_ptr != nullptr); return fwd_ptr; } else { return nullptr; } } inline bool ConcurrentCopying::IsMarkedInUnevacFromSpace(mirror::Object* from_ref) { // Use load acquire on the read barrier pointer to ensure that we never see a white read barrier // state with an unmarked bit due to reordering. DCHECK(region_space_->IsInUnevacFromSpace(from_ref)); if (kUseBakerReadBarrier && from_ref->GetReadBarrierStateAcquire() == ReadBarrier::GrayState()) { return true; } return region_space_bitmap_->Test(from_ref); } } // namespace collector } // namespace gc } // namespace art #endif // ART_RUNTIME_GC_COLLECTOR_CONCURRENT_COPYING_INL_H_