/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "optimizing_compiler.h" #include #include #include #include #include "android-base/strings.h" #ifdef ART_ENABLE_CODEGEN_arm64 #include "instruction_simplifier_arm64.h" #endif #ifdef ART_ENABLE_CODEGEN_mips #include "pc_relative_fixups_mips.h" #endif #ifdef ART_ENABLE_CODEGEN_x86 #include "pc_relative_fixups_x86.h" #endif #if defined(ART_ENABLE_CODEGEN_x86) || defined(ART_ENABLE_CODEGEN_x86_64) #include "x86_memory_gen.h" #endif #include "art_method-inl.h" #include "base/arena_allocator.h" #include "base/arena_containers.h" #include "base/dumpable.h" #include "base/macros.h" #include "base/mutex.h" #include "base/timing_logger.h" #include "bounds_check_elimination.h" #include "builder.h" #include "cha_guard_optimization.h" #include "code_generator.h" #include "code_sinking.h" #include "compiled_method.h" #include "compiler.h" #include "constant_folding.h" #include "dead_code_elimination.h" #include "debug/elf_debug_writer.h" #include "debug/method_debug_info.h" #include "dex/verification_results.h" #include "dex/verified_method.h" #include "dex_file_types.h" #include "driver/compiler_driver-inl.h" #include "driver/compiler_options.h" #include "driver/dex_compilation_unit.h" #include "elf_writer_quick.h" #include "graph_checker.h" #include "graph_visualizer.h" #include "gvn.h" #include "induction_var_analysis.h" #include "inliner.h" #include "instruction_simplifier.h" #include "instruction_simplifier_arm.h" #include "intrinsics.h" #include "jit/debugger_interface.h" #include "jit/jit.h" #include "jit/jit_code_cache.h" #include "jit/jit_logger.h" #include "jni/quick/jni_compiler.h" #include "licm.h" #include "load_store_analysis.h" #include "load_store_elimination.h" #include "loop_optimization.h" #include "nodes.h" #include "oat_quick_method_header.h" #include "prepare_for_register_allocation.h" #include "reference_type_propagation.h" #include "register_allocator_linear_scan.h" #include "select_generator.h" #include "scheduler.h" #include "sharpening.h" #include "side_effects_analysis.h" #include "ssa_builder.h" #include "ssa_liveness_analysis.h" #include "ssa_phi_elimination.h" #include "utils/assembler.h" #include "verifier/verifier_compiler_binding.h" namespace art { static constexpr size_t kArenaAllocatorMemoryReportThreshold = 8 * MB; static constexpr const char* kPassNameSeparator = "$"; /** * Used by the code generator, to allocate the code in a vector. */ class CodeVectorAllocator FINAL : public CodeAllocator { public: explicit CodeVectorAllocator(ArenaAllocator* arena) : memory_(arena->Adapter(kArenaAllocCodeBuffer)), size_(0) {} virtual uint8_t* Allocate(size_t size) { size_ = size; memory_.resize(size); return &memory_[0]; } size_t GetSize() const { return size_; } const ArenaVector& GetMemory() const { return memory_; } uint8_t* GetData() { return memory_.data(); } private: ArenaVector memory_; size_t size_; DISALLOW_COPY_AND_ASSIGN(CodeVectorAllocator); }; /** * Filter to apply to the visualizer. Methods whose name contain that filter will * be dumped. */ static constexpr const char kStringFilter[] = ""; class PassScope; class PassObserver : public ValueObject { public: PassObserver(HGraph* graph, CodeGenerator* codegen, std::ostream* visualizer_output, CompilerDriver* compiler_driver, Mutex& dump_mutex) : graph_(graph), cached_method_name_(), timing_logger_enabled_(compiler_driver->GetDumpPasses()), timing_logger_(timing_logger_enabled_ ? GetMethodName() : "", true, true), disasm_info_(graph->GetArena()), visualizer_oss_(), visualizer_output_(visualizer_output), visualizer_enabled_(!compiler_driver->GetCompilerOptions().GetDumpCfgFileName().empty()), visualizer_(&visualizer_oss_, graph, *codegen), visualizer_dump_mutex_(dump_mutex), graph_in_bad_state_(false) { if (timing_logger_enabled_ || visualizer_enabled_) { if (!IsVerboseMethod(compiler_driver, GetMethodName())) { timing_logger_enabled_ = visualizer_enabled_ = false; } if (visualizer_enabled_) { visualizer_.PrintHeader(GetMethodName()); codegen->SetDisassemblyInformation(&disasm_info_); } } } ~PassObserver() { if (timing_logger_enabled_) { LOG(INFO) << "TIMINGS " << GetMethodName(); LOG(INFO) << Dumpable(timing_logger_); } DCHECK(visualizer_oss_.str().empty()); } void DumpDisassembly() REQUIRES(!visualizer_dump_mutex_) { if (visualizer_enabled_) { visualizer_.DumpGraphWithDisassembly(); FlushVisualizer(); } } void SetGraphInBadState() { graph_in_bad_state_ = true; } const char* GetMethodName() { // PrettyMethod() is expensive, so we delay calling it until we actually have to. if (cached_method_name_.empty()) { cached_method_name_ = graph_->GetDexFile().PrettyMethod(graph_->GetMethodIdx()); } return cached_method_name_.c_str(); } private: void StartPass(const char* pass_name) REQUIRES(!visualizer_dump_mutex_) { VLOG(compiler) << "Starting pass: " << pass_name; // Dump graph first, then start timer. if (visualizer_enabled_) { visualizer_.DumpGraph(pass_name, /* is_after_pass */ false, graph_in_bad_state_); FlushVisualizer(); } if (timing_logger_enabled_) { timing_logger_.StartTiming(pass_name); } } void FlushVisualizer() REQUIRES(!visualizer_dump_mutex_) { MutexLock mu(Thread::Current(), visualizer_dump_mutex_); *visualizer_output_ << visualizer_oss_.str(); visualizer_output_->flush(); visualizer_oss_.str(""); visualizer_oss_.clear(); } void EndPass(const char* pass_name) REQUIRES(!visualizer_dump_mutex_) { // Pause timer first, then dump graph. if (timing_logger_enabled_) { timing_logger_.EndTiming(); } if (visualizer_enabled_) { visualizer_.DumpGraph(pass_name, /* is_after_pass */ true, graph_in_bad_state_); FlushVisualizer(); } // Validate the HGraph if running in debug mode. if (kIsDebugBuild) { if (!graph_in_bad_state_) { GraphChecker checker(graph_); checker.Run(); if (!checker.IsValid()) { LOG(FATAL) << "Error after " << pass_name << ": " << Dumpable(checker); } } } } static bool IsVerboseMethod(CompilerDriver* compiler_driver, const char* method_name) { // Test an exact match to --verbose-methods. If verbose-methods is set, this overrides an // empty kStringFilter matching all methods. if (compiler_driver->GetCompilerOptions().HasVerboseMethods()) { return compiler_driver->GetCompilerOptions().IsVerboseMethod(method_name); } // Test the kStringFilter sub-string. constexpr helper variable to silence unreachable-code // warning when the string is empty. constexpr bool kStringFilterEmpty = arraysize(kStringFilter) <= 1; if (kStringFilterEmpty || strstr(method_name, kStringFilter) != nullptr) { return true; } return false; } HGraph* const graph_; std::string cached_method_name_; bool timing_logger_enabled_; TimingLogger timing_logger_; DisassemblyInformation disasm_info_; std::ostringstream visualizer_oss_; std::ostream* visualizer_output_; bool visualizer_enabled_; HGraphVisualizer visualizer_; Mutex& visualizer_dump_mutex_; // Flag to be set by the compiler if the pass failed and the graph is not // expected to validate. bool graph_in_bad_state_; friend PassScope; DISALLOW_COPY_AND_ASSIGN(PassObserver); }; class PassScope : public ValueObject { public: PassScope(const char *pass_name, PassObserver* pass_observer) : pass_name_(pass_name), pass_observer_(pass_observer) { pass_observer_->StartPass(pass_name_); } ~PassScope() { pass_observer_->EndPass(pass_name_); } private: const char* const pass_name_; PassObserver* const pass_observer_; }; class OptimizingCompiler FINAL : public Compiler { public: explicit OptimizingCompiler(CompilerDriver* driver); ~OptimizingCompiler() OVERRIDE; bool CanCompileMethod(uint32_t method_idx, const DexFile& dex_file) const OVERRIDE; CompiledMethod* Compile(const DexFile::CodeItem* code_item, uint32_t access_flags, InvokeType invoke_type, uint16_t class_def_idx, uint32_t method_idx, Handle class_loader, const DexFile& dex_file, Handle dex_cache) const OVERRIDE; CompiledMethod* JniCompile(uint32_t access_flags, uint32_t method_idx, const DexFile& dex_file, JniOptimizationFlags optimization_flags) const OVERRIDE { return ArtQuickJniCompileMethod(GetCompilerDriver(), access_flags, method_idx, dex_file, optimization_flags); } uintptr_t GetEntryPointOf(ArtMethod* method) const OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_) { return reinterpret_cast(method->GetEntryPointFromQuickCompiledCodePtrSize( InstructionSetPointerSize(GetCompilerDriver()->GetInstructionSet()))); } void Init() OVERRIDE; void UnInit() const OVERRIDE; void MaybeRecordStat(MethodCompilationStat compilation_stat) const { if (compilation_stats_.get() != nullptr) { compilation_stats_->RecordStat(compilation_stat); } } bool JitCompile(Thread* self, jit::JitCodeCache* code_cache, ArtMethod* method, bool osr, jit::JitLogger* jit_logger) OVERRIDE REQUIRES_SHARED(Locks::mutator_lock_); private: void RunOptimizations(HGraph* graph, CodeGenerator* codegen, CompilerDriver* driver, const DexCompilationUnit& dex_compilation_unit, PassObserver* pass_observer, VariableSizedHandleScope* handles) const; void RunOptimizations(HOptimization* optimizations[], size_t length, PassObserver* pass_observer) const; private: // Create a 'CompiledMethod' for an optimized graph. CompiledMethod* Emit(ArenaAllocator* arena, CodeVectorAllocator* code_allocator, CodeGenerator* codegen, CompilerDriver* driver, const DexFile::CodeItem* item) const; // Try compiling a method and return the code generator used for // compiling it. // This method: // 1) Builds the graph. Returns null if it failed to build it. // 2) Transforms the graph to SSA. Returns null if it failed. // 3) Runs optimizations on the graph, including register allocator. // 4) Generates code with the `code_allocator` provided. CodeGenerator* TryCompile(ArenaAllocator* arena, CodeVectorAllocator* code_allocator, const DexFile::CodeItem* code_item, uint32_t access_flags, InvokeType invoke_type, uint16_t class_def_idx, uint32_t method_idx, Handle class_loader, const DexFile& dex_file, Handle dex_cache, ArtMethod* method, bool osr, VariableSizedHandleScope* handles) const; void MaybeRunInliner(HGraph* graph, CodeGenerator* codegen, CompilerDriver* driver, const DexCompilationUnit& dex_compilation_unit, PassObserver* pass_observer, VariableSizedHandleScope* handles) const; void RunArchOptimizations(InstructionSet instruction_set, HGraph* graph, CodeGenerator* codegen, PassObserver* pass_observer) const; std::unique_ptr compilation_stats_; std::unique_ptr visualizer_output_; mutable Mutex dump_mutex_; // To synchronize visualizer writing. DISALLOW_COPY_AND_ASSIGN(OptimizingCompiler); }; static const int kMaximumCompilationTimeBeforeWarning = 100; /* ms */ OptimizingCompiler::OptimizingCompiler(CompilerDriver* driver) : Compiler(driver, kMaximumCompilationTimeBeforeWarning), dump_mutex_("Visualizer dump lock") {} void OptimizingCompiler::Init() { // Enable C1visualizer output. Must be done in Init() because the compiler // driver is not fully initialized when passed to the compiler's constructor. CompilerDriver* driver = GetCompilerDriver(); const std::string cfg_file_name = driver->GetCompilerOptions().GetDumpCfgFileName(); if (!cfg_file_name.empty()) { std::ios_base::openmode cfg_file_mode = driver->GetCompilerOptions().GetDumpCfgAppend() ? std::ofstream::app : std::ofstream::out; visualizer_output_.reset(new std::ofstream(cfg_file_name, cfg_file_mode)); } if (driver->GetDumpStats()) { compilation_stats_.reset(new OptimizingCompilerStats()); } } void OptimizingCompiler::UnInit() const { } OptimizingCompiler::~OptimizingCompiler() { if (compilation_stats_.get() != nullptr) { compilation_stats_->Log(); } } bool OptimizingCompiler::CanCompileMethod(uint32_t method_idx ATTRIBUTE_UNUSED, const DexFile& dex_file ATTRIBUTE_UNUSED) const { return true; } static bool IsInstructionSetSupported(InstructionSet instruction_set) { return (instruction_set == kArm && !kArm32QuickCodeUseSoftFloat) || instruction_set == kArm64 || (instruction_set == kThumb2 && !kArm32QuickCodeUseSoftFloat) || instruction_set == kMips || instruction_set == kMips64 || instruction_set == kX86 || instruction_set == kX86_64; } // Strip pass name suffix to get optimization name. static std::string ConvertPassNameToOptimizationName(const std::string& pass_name) { size_t pos = pass_name.find(kPassNameSeparator); return pos == std::string::npos ? pass_name : pass_name.substr(0, pos); } static HOptimization* BuildOptimization( const std::string& pass_name, ArenaAllocator* arena, HGraph* graph, OptimizingCompilerStats* stats, CodeGenerator* codegen, CompilerDriver* driver, const DexCompilationUnit& dex_compilation_unit, VariableSizedHandleScope* handles, SideEffectsAnalysis* most_recent_side_effects, HInductionVarAnalysis* most_recent_induction, LoadStoreAnalysis* most_recent_lsa) { std::string opt_name = ConvertPassNameToOptimizationName(pass_name); if (opt_name == BoundsCheckElimination::kBoundsCheckEliminationPassName) { CHECK(most_recent_side_effects != nullptr && most_recent_induction != nullptr); return new (arena) BoundsCheckElimination(graph, *most_recent_side_effects, most_recent_induction); } else if (opt_name == GVNOptimization::kGlobalValueNumberingPassName) { CHECK(most_recent_side_effects != nullptr); return new (arena) GVNOptimization(graph, *most_recent_side_effects, pass_name.c_str()); } else if (opt_name == HConstantFolding::kConstantFoldingPassName) { return new (arena) HConstantFolding(graph, pass_name.c_str()); } else if (opt_name == HDeadCodeElimination::kDeadCodeEliminationPassName) { return new (arena) HDeadCodeElimination(graph, stats, pass_name.c_str()); } else if (opt_name == HInliner::kInlinerPassName) { size_t number_of_dex_registers = dex_compilation_unit.GetCodeItem()->registers_size_; return new (arena) HInliner(graph, // outer_graph graph, // outermost_graph codegen, dex_compilation_unit, // outer_compilation_unit dex_compilation_unit, // outermost_compilation_unit driver, handles, stats, number_of_dex_registers, /* total_number_of_instructions */ 0, /* parent */ nullptr); } else if (opt_name == HSharpening::kSharpeningPassName) { return new (arena) HSharpening(graph, codegen, dex_compilation_unit, driver, handles); } else if (opt_name == HSelectGenerator::kSelectGeneratorPassName) { return new (arena) HSelectGenerator(graph, stats); } else if (opt_name == HInductionVarAnalysis::kInductionPassName) { return new (arena) HInductionVarAnalysis(graph); } else if (opt_name == InstructionSimplifier::kInstructionSimplifierPassName) { return new (arena) InstructionSimplifier(graph, codegen, driver, stats, pass_name.c_str()); } else if (opt_name == IntrinsicsRecognizer::kIntrinsicsRecognizerPassName) { return new (arena) IntrinsicsRecognizer(graph, stats); } else if (opt_name == LICM::kLoopInvariantCodeMotionPassName) { CHECK(most_recent_side_effects != nullptr); return new (arena) LICM(graph, *most_recent_side_effects, stats); } else if (opt_name == LoadStoreAnalysis::kLoadStoreAnalysisPassName) { return new (arena) LoadStoreAnalysis(graph); } else if (opt_name == LoadStoreElimination::kLoadStoreEliminationPassName) { CHECK(most_recent_side_effects != nullptr); CHECK(most_recent_lsa != nullptr); return new (arena) LoadStoreElimination(graph, *most_recent_side_effects, *most_recent_lsa); } else if (opt_name == SideEffectsAnalysis::kSideEffectsAnalysisPassName) { return new (arena) SideEffectsAnalysis(graph); } else if (opt_name == HLoopOptimization::kLoopOptimizationPassName) { return new (arena) HLoopOptimization(graph, driver, most_recent_induction); } else if (opt_name == CHAGuardOptimization::kCHAGuardOptimizationPassName) { return new (arena) CHAGuardOptimization(graph); } else if (opt_name == CodeSinking::kCodeSinkingPassName) { return new (arena) CodeSinking(graph, stats); #ifdef ART_ENABLE_CODEGEN_arm } else if (opt_name == arm::InstructionSimplifierArm::kInstructionSimplifierArmPassName) { return new (arena) arm::InstructionSimplifierArm(graph, stats); #endif #ifdef ART_ENABLE_CODEGEN_arm64 } else if (opt_name == arm64::InstructionSimplifierArm64::kInstructionSimplifierArm64PassName) { return new (arena) arm64::InstructionSimplifierArm64(graph, stats); #endif #ifdef ART_ENABLE_CODEGEN_mips } else if (opt_name == mips::PcRelativeFixups::kPcRelativeFixupsMipsPassName) { return new (arena) mips::PcRelativeFixups(graph, codegen, stats); #endif #ifdef ART_ENABLE_CODEGEN_x86 } else if (opt_name == x86::PcRelativeFixups::kPcRelativeFixupsX86PassName) { return new (arena) x86::PcRelativeFixups(graph, codegen, stats); } else if (opt_name == x86::X86MemoryOperandGeneration::kX86MemoryOperandGenerationPassName) { return new (arena) x86::X86MemoryOperandGeneration(graph, codegen, stats); #endif } return nullptr; } static ArenaVector BuildOptimizations( const std::vector& pass_names, ArenaAllocator* arena, HGraph* graph, OptimizingCompilerStats* stats, CodeGenerator* codegen, CompilerDriver* driver, const DexCompilationUnit& dex_compilation_unit, VariableSizedHandleScope* handles) { // Few HOptimizations constructors require SideEffectsAnalysis or HInductionVarAnalysis // instances. This method assumes that each of them expects the nearest instance preceeding it // in the pass name list. SideEffectsAnalysis* most_recent_side_effects = nullptr; HInductionVarAnalysis* most_recent_induction = nullptr; LoadStoreAnalysis* most_recent_lsa = nullptr; ArenaVector ret(arena->Adapter()); for (const std::string& pass_name : pass_names) { HOptimization* opt = BuildOptimization( pass_name, arena, graph, stats, codegen, driver, dex_compilation_unit, handles, most_recent_side_effects, most_recent_induction, most_recent_lsa); CHECK(opt != nullptr) << "Couldn't build optimization: \"" << pass_name << "\""; ret.push_back(opt); std::string opt_name = ConvertPassNameToOptimizationName(pass_name); if (opt_name == SideEffectsAnalysis::kSideEffectsAnalysisPassName) { most_recent_side_effects = down_cast(opt); } else if (opt_name == HInductionVarAnalysis::kInductionPassName) { most_recent_induction = down_cast(opt); } else if (opt_name == LoadStoreAnalysis::kLoadStoreAnalysisPassName) { most_recent_lsa = down_cast(opt); } } return ret; } void OptimizingCompiler::RunOptimizations(HOptimization* optimizations[], size_t length, PassObserver* pass_observer) const { for (size_t i = 0; i < length; ++i) { PassScope scope(optimizations[i]->GetPassName(), pass_observer); optimizations[i]->Run(); } } void OptimizingCompiler::MaybeRunInliner(HGraph* graph, CodeGenerator* codegen, CompilerDriver* driver, const DexCompilationUnit& dex_compilation_unit, PassObserver* pass_observer, VariableSizedHandleScope* handles) const { OptimizingCompilerStats* stats = compilation_stats_.get(); const CompilerOptions& compiler_options = driver->GetCompilerOptions(); bool should_inline = (compiler_options.GetInlineMaxCodeUnits() > 0); if (!should_inline) { return; } size_t number_of_dex_registers = dex_compilation_unit.GetCodeItem()->registers_size_; HInliner* inliner = new (graph->GetArena()) HInliner( graph, // outer_graph graph, // outermost_graph codegen, dex_compilation_unit, // outer_compilation_unit dex_compilation_unit, // outermost_compilation_unit driver, handles, stats, number_of_dex_registers, /* total_number_of_instructions */ 0, /* parent */ nullptr); HOptimization* optimizations[] = { inliner }; RunOptimizations(optimizations, arraysize(optimizations), pass_observer); } void OptimizingCompiler::RunArchOptimizations(InstructionSet instruction_set, HGraph* graph, CodeGenerator* codegen, PassObserver* pass_observer) const { UNUSED(codegen); // To avoid compilation error when compiling for svelte OptimizingCompilerStats* stats = compilation_stats_.get(); ArenaAllocator* arena = graph->GetArena(); switch (instruction_set) { #if defined(ART_ENABLE_CODEGEN_arm) case kThumb2: case kArm: { arm::InstructionSimplifierArm* simplifier = new (arena) arm::InstructionSimplifierArm(graph, stats); SideEffectsAnalysis* side_effects = new (arena) SideEffectsAnalysis(graph); GVNOptimization* gvn = new (arena) GVNOptimization(graph, *side_effects, "GVN$after_arch"); HInstructionScheduling* scheduling = new (arena) HInstructionScheduling(graph, instruction_set, codegen); HOptimization* arm_optimizations[] = { simplifier, side_effects, gvn, scheduling, }; RunOptimizations(arm_optimizations, arraysize(arm_optimizations), pass_observer); break; } #endif #ifdef ART_ENABLE_CODEGEN_arm64 case kArm64: { arm64::InstructionSimplifierArm64* simplifier = new (arena) arm64::InstructionSimplifierArm64(graph, stats); SideEffectsAnalysis* side_effects = new (arena) SideEffectsAnalysis(graph); GVNOptimization* gvn = new (arena) GVNOptimization(graph, *side_effects, "GVN$after_arch"); HInstructionScheduling* scheduling = new (arena) HInstructionScheduling(graph, instruction_set); HOptimization* arm64_optimizations[] = { simplifier, side_effects, gvn, scheduling, }; RunOptimizations(arm64_optimizations, arraysize(arm64_optimizations), pass_observer); break; } #endif #ifdef ART_ENABLE_CODEGEN_mips case kMips: { mips::PcRelativeFixups* pc_relative_fixups = new (arena) mips::PcRelativeFixups(graph, codegen, stats); HOptimization* mips_optimizations[] = { pc_relative_fixups, }; RunOptimizations(mips_optimizations, arraysize(mips_optimizations), pass_observer); break; } #endif #ifdef ART_ENABLE_CODEGEN_x86 case kX86: { x86::PcRelativeFixups* pc_relative_fixups = new (arena) x86::PcRelativeFixups(graph, codegen, stats); x86::X86MemoryOperandGeneration* memory_gen = new (arena) x86::X86MemoryOperandGeneration(graph, codegen, stats); HOptimization* x86_optimizations[] = { pc_relative_fixups, memory_gen }; RunOptimizations(x86_optimizations, arraysize(x86_optimizations), pass_observer); break; } #endif #ifdef ART_ENABLE_CODEGEN_x86_64 case kX86_64: { x86::X86MemoryOperandGeneration* memory_gen = new (arena) x86::X86MemoryOperandGeneration(graph, codegen, stats); HOptimization* x86_64_optimizations[] = { memory_gen }; RunOptimizations(x86_64_optimizations, arraysize(x86_64_optimizations), pass_observer); break; } #endif default: break; } } NO_INLINE // Avoid increasing caller's frame size by large stack-allocated objects. static void AllocateRegisters(HGraph* graph, CodeGenerator* codegen, PassObserver* pass_observer, RegisterAllocator::Strategy strategy) { { PassScope scope(PrepareForRegisterAllocation::kPrepareForRegisterAllocationPassName, pass_observer); PrepareForRegisterAllocation(graph).Run(); } SsaLivenessAnalysis liveness(graph, codegen); { PassScope scope(SsaLivenessAnalysis::kLivenessPassName, pass_observer); liveness.Analyze(); } { PassScope scope(RegisterAllocator::kRegisterAllocatorPassName, pass_observer); RegisterAllocator::Create(graph->GetArena(), codegen, liveness, strategy)->AllocateRegisters(); } } void OptimizingCompiler::RunOptimizations(HGraph* graph, CodeGenerator* codegen, CompilerDriver* driver, const DexCompilationUnit& dex_compilation_unit, PassObserver* pass_observer, VariableSizedHandleScope* handles) const { OptimizingCompilerStats* stats = compilation_stats_.get(); ArenaAllocator* arena = graph->GetArena(); if (driver->GetCompilerOptions().GetPassesToRun() != nullptr) { ArenaVector optimizations = BuildOptimizations( *driver->GetCompilerOptions().GetPassesToRun(), arena, graph, stats, codegen, driver, dex_compilation_unit, handles); RunOptimizations(&optimizations[0], optimizations.size(), pass_observer); return; } HDeadCodeElimination* dce1 = new (arena) HDeadCodeElimination( graph, stats, "dead_code_elimination$initial"); HDeadCodeElimination* dce2 = new (arena) HDeadCodeElimination( graph, stats, "dead_code_elimination$after_inlining"); HDeadCodeElimination* dce3 = new (arena) HDeadCodeElimination( graph, stats, "dead_code_elimination$final"); HConstantFolding* fold1 = new (arena) HConstantFolding(graph, "constant_folding"); InstructionSimplifier* simplify1 = new (arena) InstructionSimplifier( graph, codegen, driver, stats); HSelectGenerator* select_generator = new (arena) HSelectGenerator(graph, stats); HConstantFolding* fold2 = new (arena) HConstantFolding( graph, "constant_folding$after_inlining"); HConstantFolding* fold3 = new (arena) HConstantFolding(graph, "constant_folding$after_bce"); SideEffectsAnalysis* side_effects1 = new (arena) SideEffectsAnalysis( graph, "side_effects$before_gvn"); SideEffectsAnalysis* side_effects2 = new (arena) SideEffectsAnalysis( graph, "side_effects$before_lse"); GVNOptimization* gvn = new (arena) GVNOptimization(graph, *side_effects1); LICM* licm = new (arena) LICM(graph, *side_effects1, stats); HInductionVarAnalysis* induction = new (arena) HInductionVarAnalysis(graph); BoundsCheckElimination* bce = new (arena) BoundsCheckElimination(graph, *side_effects1, induction); HLoopOptimization* loop = new (arena) HLoopOptimization(graph, driver, induction); LoadStoreAnalysis* lsa = new (arena) LoadStoreAnalysis(graph); LoadStoreElimination* lse = new (arena) LoadStoreElimination(graph, *side_effects2, *lsa); HSharpening* sharpening = new (arena) HSharpening( graph, codegen, dex_compilation_unit, driver, handles); InstructionSimplifier* simplify2 = new (arena) InstructionSimplifier( graph, codegen, driver, stats, "instruction_simplifier$after_inlining"); InstructionSimplifier* simplify3 = new (arena) InstructionSimplifier( graph, codegen, driver, stats, "instruction_simplifier$after_bce"); InstructionSimplifier* simplify4 = new (arena) InstructionSimplifier( graph, codegen, driver, stats, "instruction_simplifier$before_codegen"); IntrinsicsRecognizer* intrinsics = new (arena) IntrinsicsRecognizer(graph, stats); CHAGuardOptimization* cha_guard = new (arena) CHAGuardOptimization(graph); CodeSinking* code_sinking = new (arena) CodeSinking(graph, stats); HOptimization* optimizations1[] = { intrinsics, sharpening, fold1, simplify1, dce1, }; RunOptimizations(optimizations1, arraysize(optimizations1), pass_observer); MaybeRunInliner(graph, codegen, driver, dex_compilation_unit, pass_observer, handles); HOptimization* optimizations2[] = { // SelectGenerator depends on the InstructionSimplifier removing // redundant suspend checks to recognize empty blocks. select_generator, fold2, // TODO: if we don't inline we can also skip fold2. simplify2, dce2, side_effects1, gvn, licm, induction, bce, loop, fold3, // evaluates code generated by dynamic bce simplify3, side_effects2, lsa, lse, cha_guard, dce3, code_sinking, // The codegen has a few assumptions that only the instruction simplifier // can satisfy. For example, the code generator does not expect to see a // HTypeConversion from a type to the same type. simplify4, }; RunOptimizations(optimizations2, arraysize(optimizations2), pass_observer); RunArchOptimizations(driver->GetInstructionSet(), graph, codegen, pass_observer); } static ArenaVector EmitAndSortLinkerPatches(CodeGenerator* codegen) { ArenaVector linker_patches(codegen->GetGraph()->GetArena()->Adapter()); codegen->EmitLinkerPatches(&linker_patches); // Sort patches by literal offset. Required for .oat_patches encoding. std::sort(linker_patches.begin(), linker_patches.end(), [](const LinkerPatch& lhs, const LinkerPatch& rhs) { return lhs.LiteralOffset() < rhs.LiteralOffset(); }); return linker_patches; } CompiledMethod* OptimizingCompiler::Emit(ArenaAllocator* arena, CodeVectorAllocator* code_allocator, CodeGenerator* codegen, CompilerDriver* compiler_driver, const DexFile::CodeItem* code_item) const { ArenaVector linker_patches = EmitAndSortLinkerPatches(codegen); ArenaVector stack_map(arena->Adapter(kArenaAllocStackMaps)); ArenaVector method_info(arena->Adapter(kArenaAllocStackMaps)); size_t stack_map_size = 0; size_t method_info_size = 0; codegen->ComputeStackMapAndMethodInfoSize(&stack_map_size, &method_info_size); stack_map.resize(stack_map_size); method_info.resize(method_info_size); codegen->BuildStackMaps(MemoryRegion(stack_map.data(), stack_map.size()), MemoryRegion(method_info.data(), method_info.size()), *code_item); CompiledMethod* compiled_method = CompiledMethod::SwapAllocCompiledMethod( compiler_driver, codegen->GetInstructionSet(), ArrayRef(code_allocator->GetMemory()), // Follow Quick's behavior and set the frame size to zero if it is // considered "empty" (see the definition of // art::CodeGenerator::HasEmptyFrame). codegen->HasEmptyFrame() ? 0 : codegen->GetFrameSize(), codegen->GetCoreSpillMask(), codegen->GetFpuSpillMask(), ArrayRef(method_info), ArrayRef(stack_map), ArrayRef(*codegen->GetAssembler()->cfi().data()), ArrayRef(linker_patches)); return compiled_method; } CodeGenerator* OptimizingCompiler::TryCompile(ArenaAllocator* arena, CodeVectorAllocator* code_allocator, const DexFile::CodeItem* code_item, uint32_t access_flags, InvokeType invoke_type, uint16_t class_def_idx, uint32_t method_idx, Handle class_loader, const DexFile& dex_file, Handle dex_cache, ArtMethod* method, bool osr, VariableSizedHandleScope* handles) const { MaybeRecordStat(MethodCompilationStat::kAttemptCompilation); CompilerDriver* compiler_driver = GetCompilerDriver(); InstructionSet instruction_set = compiler_driver->GetInstructionSet(); // Always use the Thumb-2 assembler: some runtime functionality // (like implicit stack overflow checks) assume Thumb-2. DCHECK_NE(instruction_set, kArm); // Do not attempt to compile on architectures we do not support. if (!IsInstructionSetSupported(instruction_set)) { MaybeRecordStat(MethodCompilationStat::kNotCompiledUnsupportedIsa); return nullptr; } if (Compiler::IsPathologicalCase(*code_item, method_idx, dex_file)) { MaybeRecordStat(MethodCompilationStat::kNotCompiledPathological); return nullptr; } // Implementation of the space filter: do not compile a code item whose size in // code units is bigger than 128. static constexpr size_t kSpaceFilterOptimizingThreshold = 128; const CompilerOptions& compiler_options = compiler_driver->GetCompilerOptions(); if ((compiler_options.GetCompilerFilter() == CompilerFilter::kSpace) && (code_item->insns_size_in_code_units_ > kSpaceFilterOptimizingThreshold)) { MaybeRecordStat(MethodCompilationStat::kNotCompiledSpaceFilter); return nullptr; } ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); DexCompilationUnit dex_compilation_unit( class_loader, class_linker, dex_file, code_item, class_def_idx, method_idx, access_flags, /* verified_method */ nullptr, dex_cache); HGraph* graph = new (arena) HGraph( arena, dex_file, method_idx, compiler_driver->GetInstructionSet(), kInvalidInvokeType, compiler_driver->GetCompilerOptions().GetDebuggable(), osr); const uint8_t* interpreter_metadata = nullptr; if (method == nullptr) { ScopedObjectAccess soa(Thread::Current()); method = compiler_driver->ResolveMethod( soa, dex_cache, class_loader, &dex_compilation_unit, method_idx, invoke_type); } // For AOT compilation, we may not get a method, for example if its class is erroneous. // JIT should always have a method. DCHECK(Runtime::Current()->IsAotCompiler() || method != nullptr); if (method != nullptr) { graph->SetArtMethod(method); ScopedObjectAccess soa(Thread::Current()); interpreter_metadata = method->GetQuickenedInfo(class_linker->GetImagePointerSize()); } std::unique_ptr codegen( CodeGenerator::Create(graph, instruction_set, *compiler_driver->GetInstructionSetFeatures(), compiler_driver->GetCompilerOptions(), compilation_stats_.get())); if (codegen.get() == nullptr) { MaybeRecordStat(MethodCompilationStat::kNotCompiledNoCodegen); return nullptr; } codegen->GetAssembler()->cfi().SetEnabled( compiler_driver->GetCompilerOptions().GenerateAnyDebugInfo()); PassObserver pass_observer(graph, codegen.get(), visualizer_output_.get(), compiler_driver, dump_mutex_); { VLOG(compiler) << "Building " << pass_observer.GetMethodName(); PassScope scope(HGraphBuilder::kBuilderPassName, &pass_observer); HGraphBuilder builder(graph, &dex_compilation_unit, &dex_compilation_unit, &dex_file, *code_item, compiler_driver, codegen.get(), compilation_stats_.get(), interpreter_metadata, dex_cache, handles); GraphAnalysisResult result = builder.BuildGraph(); if (result != kAnalysisSuccess) { switch (result) { case kAnalysisSkipped: MaybeRecordStat(MethodCompilationStat::kNotCompiledSkipped); break; case kAnalysisInvalidBytecode: MaybeRecordStat(MethodCompilationStat::kNotCompiledInvalidBytecode); break; case kAnalysisFailThrowCatchLoop: MaybeRecordStat(MethodCompilationStat::kNotCompiledThrowCatchLoop); break; case kAnalysisFailAmbiguousArrayOp: MaybeRecordStat(MethodCompilationStat::kNotCompiledAmbiguousArrayOp); break; case kAnalysisSuccess: UNREACHABLE(); } pass_observer.SetGraphInBadState(); return nullptr; } } RunOptimizations(graph, codegen.get(), compiler_driver, dex_compilation_unit, &pass_observer, handles); RegisterAllocator::Strategy regalloc_strategy = compiler_options.GetRegisterAllocationStrategy(); AllocateRegisters(graph, codegen.get(), &pass_observer, regalloc_strategy); codegen->Compile(code_allocator); pass_observer.DumpDisassembly(); return codegen.release(); } CompiledMethod* OptimizingCompiler::Compile(const DexFile::CodeItem* code_item, uint32_t access_flags, InvokeType invoke_type, uint16_t class_def_idx, uint32_t method_idx, Handle jclass_loader, const DexFile& dex_file, Handle dex_cache) const { CompilerDriver* compiler_driver = GetCompilerDriver(); CompiledMethod* method = nullptr; DCHECK(Runtime::Current()->IsAotCompiler()); const VerifiedMethod* verified_method = compiler_driver->GetVerifiedMethod(&dex_file, method_idx); DCHECK(!verified_method->HasRuntimeThrow()); if (compiler_driver->IsMethodVerifiedWithoutFailures(method_idx, class_def_idx, dex_file) || verifier::CanCompilerHandleVerificationFailure( verified_method->GetEncounteredVerificationFailures())) { ArenaAllocator arena(Runtime::Current()->GetArenaPool()); CodeVectorAllocator code_allocator(&arena); std::unique_ptr codegen; { ScopedObjectAccess soa(Thread::Current()); VariableSizedHandleScope handles(soa.Self()); // Go to native so that we don't block GC during compilation. ScopedThreadSuspension sts(soa.Self(), kNative); codegen.reset( TryCompile(&arena, &code_allocator, code_item, access_flags, invoke_type, class_def_idx, method_idx, jclass_loader, dex_file, dex_cache, nullptr, /* osr */ false, &handles)); } if (codegen.get() != nullptr) { MaybeRecordStat(MethodCompilationStat::kCompiled); method = Emit(&arena, &code_allocator, codegen.get(), compiler_driver, code_item); if (kArenaAllocatorCountAllocations) { if (arena.BytesAllocated() > kArenaAllocatorMemoryReportThreshold) { MemStats mem_stats(arena.GetMemStats()); LOG(INFO) << dex_file.PrettyMethod(method_idx) << " " << Dumpable(mem_stats); } } } } else { if (compiler_driver->GetCompilerOptions().VerifyAtRuntime()) { MaybeRecordStat(MethodCompilationStat::kNotCompiledVerifyAtRuntime); } else { MaybeRecordStat(MethodCompilationStat::kNotCompiledVerificationError); } } if (kIsDebugBuild && IsCompilingWithCoreImage() && IsInstructionSetSupported(compiler_driver->GetInstructionSet())) { // For testing purposes, we put a special marker on method names // that should be compiled with this compiler (when the // instruction set is supported). This makes sure we're not // regressing. std::string method_name = dex_file.PrettyMethod(method_idx); bool shouldCompile = method_name.find("$opt$") != std::string::npos; DCHECK((method != nullptr) || !shouldCompile) << "Didn't compile " << method_name; } return method; } Compiler* CreateOptimizingCompiler(CompilerDriver* driver) { return new OptimizingCompiler(driver); } bool IsCompilingWithCoreImage() { const std::string& image = Runtime::Current()->GetImageLocation(); // TODO: This is under-approximating... if (android::base::EndsWith(image, "core.art") || android::base::EndsWith(image, "core-optimizing.art")) { return true; } return false; } bool EncodeArtMethodInInlineInfo(ArtMethod* method ATTRIBUTE_UNUSED) { // Note: the runtime is null only for unit testing. return Runtime::Current() == nullptr || !Runtime::Current()->IsAotCompiler(); } bool CanEncodeInlinedMethodInStackMap(const DexFile& caller_dex_file, ArtMethod* callee) { if (!Runtime::Current()->IsAotCompiler()) { // JIT can always encode methods in stack maps. return true; } if (IsSameDexFile(caller_dex_file, *callee->GetDexFile())) { return true; } // TODO(ngeoffray): Support more AOT cases for inlining: // - methods in multidex // - methods in boot image for on-device non-PIC compilation. return false; } bool OptimizingCompiler::JitCompile(Thread* self, jit::JitCodeCache* code_cache, ArtMethod* method, bool osr, jit::JitLogger* jit_logger) { StackHandleScope<3> hs(self); Handle class_loader(hs.NewHandle( method->GetDeclaringClass()->GetClassLoader())); Handle dex_cache(hs.NewHandle(method->GetDexCache())); DCHECK(method->IsCompilable()); const DexFile* dex_file = method->GetDexFile(); const uint16_t class_def_idx = method->GetClassDefIndex(); const DexFile::CodeItem* code_item = dex_file->GetCodeItem(method->GetCodeItemOffset()); const uint32_t method_idx = method->GetDexMethodIndex(); const uint32_t access_flags = method->GetAccessFlags(); const InvokeType invoke_type = method->GetInvokeType(); ArenaAllocator arena(Runtime::Current()->GetJitArenaPool()); CodeVectorAllocator code_allocator(&arena); VariableSizedHandleScope handles(self); std::unique_ptr codegen; { // Go to native so that we don't block GC during compilation. ScopedThreadSuspension sts(self, kNative); codegen.reset( TryCompile(&arena, &code_allocator, code_item, access_flags, invoke_type, class_def_idx, method_idx, class_loader, *dex_file, dex_cache, method, osr, &handles)); if (codegen.get() == nullptr) { return false; } if (kArenaAllocatorCountAllocations) { if (arena.BytesAllocated() > kArenaAllocatorMemoryReportThreshold) { MemStats mem_stats(arena.GetMemStats()); LOG(INFO) << dex_file->PrettyMethod(method_idx) << " " << Dumpable(mem_stats); } } } size_t stack_map_size = 0; size_t method_info_size = 0; codegen->ComputeStackMapAndMethodInfoSize(&stack_map_size, &method_info_size); size_t number_of_roots = codegen->GetNumberOfJitRoots(); ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); // We allocate an object array to ensure the JIT roots that we will collect in EmitJitRoots // will be visible by the GC between EmitLiterals and CommitCode. Once CommitCode is // executed, this array is not needed. Handle> roots( hs.NewHandle(mirror::ObjectArray::Alloc( self, class_linker->GetClassRoot(ClassLinker::kObjectArrayClass), number_of_roots))); if (roots == nullptr) { // Out of memory, just clear the exception to avoid any Java exception uncaught problems. DCHECK(self->IsExceptionPending()); self->ClearException(); return false; } uint8_t* stack_map_data = nullptr; uint8_t* method_info_data = nullptr; uint8_t* roots_data = nullptr; uint32_t data_size = code_cache->ReserveData(self, stack_map_size, method_info_size, number_of_roots, method, &stack_map_data, &method_info_data, &roots_data); if (stack_map_data == nullptr || roots_data == nullptr) { return false; } MaybeRecordStat(MethodCompilationStat::kCompiled); codegen->BuildStackMaps(MemoryRegion(stack_map_data, stack_map_size), MemoryRegion(method_info_data, method_info_size), *code_item); codegen->EmitJitRoots(code_allocator.GetData(), roots, roots_data); const void* code = code_cache->CommitCode( self, method, stack_map_data, method_info_data, roots_data, codegen->HasEmptyFrame() ? 0 : codegen->GetFrameSize(), codegen->GetCoreSpillMask(), codegen->GetFpuSpillMask(), code_allocator.GetMemory().data(), code_allocator.GetSize(), data_size, osr, roots, codegen->GetGraph()->HasShouldDeoptimizeFlag(), codegen->GetGraph()->GetCHASingleImplementationList()); if (code == nullptr) { code_cache->ClearData(self, stack_map_data, roots_data); return false; } const CompilerOptions& compiler_options = GetCompilerDriver()->GetCompilerOptions(); if (compiler_options.GetGenerateDebugInfo()) { const auto* method_header = reinterpret_cast(code); const uintptr_t code_address = reinterpret_cast(method_header->GetCode()); debug::MethodDebugInfo info = debug::MethodDebugInfo(); info.trampoline_name = nullptr; info.dex_file = dex_file; info.class_def_index = class_def_idx; info.dex_method_index = method_idx; info.access_flags = access_flags; info.code_item = code_item; info.isa = codegen->GetInstructionSet(); info.deduped = false; info.is_native_debuggable = compiler_options.GetNativeDebuggable(); info.is_optimized = true; info.is_code_address_text_relative = false; info.code_address = code_address; info.code_size = code_allocator.GetSize(); info.frame_size_in_bytes = method_header->GetFrameSizeInBytes(); info.code_info = stack_map_size == 0 ? nullptr : stack_map_data; info.cfi = ArrayRef(*codegen->GetAssembler()->cfi().data()); std::vector elf_file = debug::WriteDebugElfFileForMethods( GetCompilerDriver()->GetInstructionSet(), GetCompilerDriver()->GetInstructionSetFeatures(), ArrayRef(&info, 1)); CreateJITCodeEntryForAddress(code_address, std::move(elf_file)); } Runtime::Current()->GetJit()->AddMemoryUsage(method, arena.BytesUsed()); if (jit_logger != nullptr) { jit_logger->WriteLog(code, code_allocator.GetSize(), method); } return true; } } // namespace art