/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "linker/arm64/relative_patcher_arm64.h" #include "arch/arm64/asm_support_arm64.h" #include "arch/arm64/instruction_set_features_arm64.h" #include "art_method.h" #include "base/bit_utils.h" #include "compiled_method.h" #include "driver/compiler_driver.h" #include "entrypoints/quick/quick_entrypoints_enum.h" #include "linker/output_stream.h" #include "lock_word.h" #include "mirror/object.h" #include "mirror/array-inl.h" #include "oat.h" #include "oat_quick_method_header.h" #include "read_barrier.h" #include "utils/arm64/assembler_arm64.h" namespace art { namespace linker { namespace { // Maximum positive and negative displacement for method call measured from the patch location. // (Signed 28 bit displacement with the last two bits 0 has range [-2^27, 2^27-4] measured from // the ARM64 PC pointing to the BL.) constexpr uint32_t kMaxMethodCallPositiveDisplacement = (1u << 27) - 4u; constexpr uint32_t kMaxMethodCallNegativeDisplacement = (1u << 27); // Maximum positive and negative displacement for a conditional branch measured from the patch // location. (Signed 21 bit displacement with the last two bits 0 has range [-2^20, 2^20-4] // measured from the ARM64 PC pointing to the B.cond.) constexpr uint32_t kMaxBcondPositiveDisplacement = (1u << 20) - 4u; constexpr uint32_t kMaxBcondNegativeDisplacement = (1u << 20); // The ADRP thunk for erratum 843419 is 2 instructions, i.e. 8 bytes. constexpr uint32_t kAdrpThunkSize = 8u; inline bool IsAdrpPatch(const LinkerPatch& patch) { switch (patch.GetType()) { case LinkerPatch::Type::kCall: case LinkerPatch::Type::kCallRelative: case LinkerPatch::Type::kBakerReadBarrierBranch: return false; case LinkerPatch::Type::kMethodRelative: case LinkerPatch::Type::kMethodBssEntry: case LinkerPatch::Type::kTypeRelative: case LinkerPatch::Type::kTypeBssEntry: case LinkerPatch::Type::kStringRelative: case LinkerPatch::Type::kStringBssEntry: return patch.LiteralOffset() == patch.PcInsnOffset(); } } inline uint32_t MaxExtraSpace(size_t num_adrp, size_t code_size) { if (num_adrp == 0u) { return 0u; } uint32_t alignment_bytes = CompiledMethod::AlignCode(code_size, kArm64) - code_size; return kAdrpThunkSize * num_adrp + alignment_bytes; } } // anonymous namespace Arm64RelativePatcher::Arm64RelativePatcher(RelativePatcherTargetProvider* provider, const Arm64InstructionSetFeatures* features) : ArmBaseRelativePatcher(provider, kArm64), fix_cortex_a53_843419_(features->NeedFixCortexA53_843419()), reserved_adrp_thunks_(0u), processed_adrp_thunks_(0u) { if (fix_cortex_a53_843419_) { adrp_thunk_locations_.reserve(16u); current_method_thunks_.reserve(16u * kAdrpThunkSize); } } uint32_t Arm64RelativePatcher::ReserveSpace(uint32_t offset, const CompiledMethod* compiled_method, MethodReference method_ref) { if (!fix_cortex_a53_843419_) { DCHECK(adrp_thunk_locations_.empty()); return ReserveSpaceInternal(offset, compiled_method, method_ref, 0u); } // Add thunks for previous method if any. if (reserved_adrp_thunks_ != adrp_thunk_locations_.size()) { size_t num_adrp_thunks = adrp_thunk_locations_.size() - reserved_adrp_thunks_; offset = CompiledMethod::AlignCode(offset, kArm64) + kAdrpThunkSize * num_adrp_thunks; reserved_adrp_thunks_ = adrp_thunk_locations_.size(); } // Count the number of ADRP insns as the upper bound on the number of thunks needed // and use it to reserve space for other linker patches. size_t num_adrp = 0u; DCHECK(compiled_method != nullptr); for (const LinkerPatch& patch : compiled_method->GetPatches()) { if (IsAdrpPatch(patch)) { ++num_adrp; } } ArrayRef code = compiled_method->GetQuickCode(); uint32_t max_extra_space = MaxExtraSpace(num_adrp, code.size()); offset = ReserveSpaceInternal(offset, compiled_method, method_ref, max_extra_space); if (num_adrp == 0u) { return offset; } // Now that we have the actual offset where the code will be placed, locate the ADRP insns // that actually require the thunk. uint32_t quick_code_offset = compiled_method->AlignCode(offset + sizeof(OatQuickMethodHeader)); uint32_t thunk_offset = compiled_method->AlignCode(quick_code_offset + code.size()); DCHECK(compiled_method != nullptr); for (const LinkerPatch& patch : compiled_method->GetPatches()) { if (IsAdrpPatch(patch)) { uint32_t patch_offset = quick_code_offset + patch.LiteralOffset(); if (NeedsErratum843419Thunk(code, patch.LiteralOffset(), patch_offset)) { adrp_thunk_locations_.emplace_back(patch_offset, thunk_offset); thunk_offset += kAdrpThunkSize; } } } return offset; } uint32_t Arm64RelativePatcher::ReserveSpaceEnd(uint32_t offset) { if (!fix_cortex_a53_843419_) { DCHECK(adrp_thunk_locations_.empty()); } else { // Add thunks for the last method if any. if (reserved_adrp_thunks_ != adrp_thunk_locations_.size()) { size_t num_adrp_thunks = adrp_thunk_locations_.size() - reserved_adrp_thunks_; offset = CompiledMethod::AlignCode(offset, kArm64) + kAdrpThunkSize * num_adrp_thunks; reserved_adrp_thunks_ = adrp_thunk_locations_.size(); } } return ArmBaseRelativePatcher::ReserveSpaceEnd(offset); } uint32_t Arm64RelativePatcher::WriteThunks(OutputStream* out, uint32_t offset) { if (fix_cortex_a53_843419_) { if (!current_method_thunks_.empty()) { uint32_t aligned_offset = CompiledMethod::AlignCode(offset, kArm64); if (kIsDebugBuild) { CHECK_ALIGNED(current_method_thunks_.size(), kAdrpThunkSize); size_t num_thunks = current_method_thunks_.size() / kAdrpThunkSize; CHECK_LE(num_thunks, processed_adrp_thunks_); for (size_t i = 0u; i != num_thunks; ++i) { const auto& entry = adrp_thunk_locations_[processed_adrp_thunks_ - num_thunks + i]; CHECK_EQ(entry.second, aligned_offset + i * kAdrpThunkSize); } } uint32_t aligned_code_delta = aligned_offset - offset; if (aligned_code_delta != 0u && !WriteCodeAlignment(out, aligned_code_delta)) { return 0u; } if (!WriteMiscThunk(out, ArrayRef(current_method_thunks_))) { return 0u; } offset = aligned_offset + current_method_thunks_.size(); current_method_thunks_.clear(); } } return ArmBaseRelativePatcher::WriteThunks(out, offset); } void Arm64RelativePatcher::PatchCall(std::vector* code, uint32_t literal_offset, uint32_t patch_offset, uint32_t target_offset) { DCHECK_LE(literal_offset + 4u, code->size()); DCHECK_EQ(literal_offset & 3u, 0u); DCHECK_EQ(patch_offset & 3u, 0u); DCHECK_EQ(target_offset & 3u, 0u); uint32_t displacement = CalculateMethodCallDisplacement(patch_offset, target_offset & ~1u); DCHECK_EQ(displacement & 3u, 0u); DCHECK((displacement >> 27) == 0u || (displacement >> 27) == 31u); // 28-bit signed. uint32_t insn = (displacement & 0x0fffffffu) >> 2; insn |= 0x94000000; // BL // Check that we're just overwriting an existing BL. DCHECK_EQ(GetInsn(code, literal_offset) & 0xfc000000u, 0x94000000u); // Write the new BL. SetInsn(code, literal_offset, insn); } void Arm64RelativePatcher::PatchPcRelativeReference(std::vector* code, const LinkerPatch& patch, uint32_t patch_offset, uint32_t target_offset) { DCHECK_EQ(patch_offset & 3u, 0u); DCHECK_EQ(target_offset & 3u, 0u); uint32_t literal_offset = patch.LiteralOffset(); uint32_t insn = GetInsn(code, literal_offset); uint32_t pc_insn_offset = patch.PcInsnOffset(); uint32_t disp = target_offset - ((patch_offset - literal_offset + pc_insn_offset) & ~0xfffu); bool wide = (insn & 0x40000000) != 0; uint32_t shift = wide ? 3u : 2u; if (literal_offset == pc_insn_offset) { // Check it's an ADRP with imm == 0 (unset). DCHECK_EQ((insn & 0xffffffe0u), 0x90000000u) << literal_offset << ", " << pc_insn_offset << ", 0x" << std::hex << insn; if (fix_cortex_a53_843419_ && processed_adrp_thunks_ != adrp_thunk_locations_.size() && adrp_thunk_locations_[processed_adrp_thunks_].first == patch_offset) { DCHECK(NeedsErratum843419Thunk(ArrayRef(*code), literal_offset, patch_offset)); uint32_t thunk_offset = adrp_thunk_locations_[processed_adrp_thunks_].second; uint32_t adrp_disp = target_offset - (thunk_offset & ~0xfffu); uint32_t adrp = PatchAdrp(insn, adrp_disp); uint32_t out_disp = thunk_offset - patch_offset; DCHECK_EQ(out_disp & 3u, 0u); DCHECK((out_disp >> 27) == 0u || (out_disp >> 27) == 31u); // 28-bit signed. insn = (out_disp & 0x0fffffffu) >> shift; insn |= 0x14000000; // B uint32_t back_disp = -out_disp; DCHECK_EQ(back_disp & 3u, 0u); DCHECK((back_disp >> 27) == 0u || (back_disp >> 27) == 31u); // 28-bit signed. uint32_t b_back = (back_disp & 0x0fffffffu) >> 2; b_back |= 0x14000000; // B size_t thunks_code_offset = current_method_thunks_.size(); current_method_thunks_.resize(thunks_code_offset + kAdrpThunkSize); SetInsn(¤t_method_thunks_, thunks_code_offset, adrp); SetInsn(¤t_method_thunks_, thunks_code_offset + 4u, b_back); static_assert(kAdrpThunkSize == 2 * 4u, "thunk has 2 instructions"); processed_adrp_thunks_ += 1u; } else { insn = PatchAdrp(insn, disp); } // Write the new ADRP (or B to the erratum 843419 thunk). SetInsn(code, literal_offset, insn); } else { if ((insn & 0xfffffc00) == 0x91000000) { // ADD immediate, 64-bit with imm12 == 0 (unset). if (!kEmitCompilerReadBarrier) { DCHECK(patch.GetType() == LinkerPatch::Type::kMethodRelative || patch.GetType() == LinkerPatch::Type::kTypeRelative || patch.GetType() == LinkerPatch::Type::kStringRelative) << patch.GetType(); } else { // With the read barrier (non-Baker) enabled, it could be kStringBssEntry or kTypeBssEntry. DCHECK(patch.GetType() == LinkerPatch::Type::kMethodRelative || patch.GetType() == LinkerPatch::Type::kTypeRelative || patch.GetType() == LinkerPatch::Type::kStringRelative || patch.GetType() == LinkerPatch::Type::kTypeBssEntry || patch.GetType() == LinkerPatch::Type::kStringBssEntry) << patch.GetType(); } shift = 0u; // No shift for ADD. } else { // LDR/STR 32-bit or 64-bit with imm12 == 0 (unset). DCHECK(patch.GetType() == LinkerPatch::Type::kMethodBssEntry || patch.GetType() == LinkerPatch::Type::kTypeBssEntry || patch.GetType() == LinkerPatch::Type::kStringBssEntry) << patch.GetType(); DCHECK_EQ(insn & 0xbfbffc00, 0xb9000000) << std::hex << insn; } if (kIsDebugBuild) { uint32_t adrp = GetInsn(code, pc_insn_offset); if ((adrp & 0x9f000000u) != 0x90000000u) { CHECK(fix_cortex_a53_843419_); CHECK_EQ(adrp & 0xfc000000u, 0x14000000u); // B CHECK_ALIGNED(current_method_thunks_.size(), kAdrpThunkSize); size_t num_thunks = current_method_thunks_.size() / kAdrpThunkSize; CHECK_LE(num_thunks, processed_adrp_thunks_); uint32_t b_offset = patch_offset - literal_offset + pc_insn_offset; for (size_t i = processed_adrp_thunks_ - num_thunks; ; ++i) { CHECK_NE(i, processed_adrp_thunks_); if (adrp_thunk_locations_[i].first == b_offset) { size_t idx = num_thunks - (processed_adrp_thunks_ - i); adrp = GetInsn(¤t_method_thunks_, idx * kAdrpThunkSize); break; } } } CHECK_EQ(adrp & 0x9f00001fu, // Check that pc_insn_offset points 0x90000000 | ((insn >> 5) & 0x1fu)); // to ADRP with matching register. } uint32_t imm12 = (disp & 0xfffu) >> shift; insn = (insn & ~(0xfffu << 10)) | (imm12 << 10); SetInsn(code, literal_offset, insn); } } void Arm64RelativePatcher::PatchBakerReadBarrierBranch(std::vector* code, const LinkerPatch& patch, uint32_t patch_offset) { DCHECK_ALIGNED(patch_offset, 4u); uint32_t literal_offset = patch.LiteralOffset(); DCHECK_ALIGNED(literal_offset, 4u); DCHECK_LT(literal_offset, code->size()); uint32_t insn = GetInsn(code, literal_offset); DCHECK_EQ(insn & 0xffffffe0u, 0xb5000000); // CBNZ Xt, +0 (unpatched) ThunkKey key = GetBakerThunkKey(patch); if (kIsDebugBuild) { const uint32_t encoded_data = key.GetCustomValue1(); BakerReadBarrierKind kind = BakerReadBarrierKindField::Decode(encoded_data); // Check that the next instruction matches the expected LDR. switch (kind) { case BakerReadBarrierKind::kField: { DCHECK_GE(code->size() - literal_offset, 8u); uint32_t next_insn = GetInsn(code, literal_offset + 4u); // LDR (immediate) with correct base_reg. CheckValidReg(next_insn & 0x1fu); // Check destination register. const uint32_t base_reg = BakerReadBarrierFirstRegField::Decode(encoded_data); CHECK_EQ(next_insn & 0xffc003e0u, 0xb9400000u | (base_reg << 5)); break; } case BakerReadBarrierKind::kArray: { DCHECK_GE(code->size() - literal_offset, 8u); uint32_t next_insn = GetInsn(code, literal_offset + 4u); // LDR (register) with the correct base_reg, size=10 (32-bit), option=011 (extend = LSL), // and S=1 (shift amount = 2 for 32-bit version), i.e. LDR Wt, [Xn, Xm, LSL #2]. CheckValidReg(next_insn & 0x1fu); // Check destination register. const uint32_t base_reg = BakerReadBarrierFirstRegField::Decode(encoded_data); CHECK_EQ(next_insn & 0xffe0ffe0u, 0xb8607800u | (base_reg << 5)); CheckValidReg((next_insn >> 16) & 0x1f); // Check index register break; } case BakerReadBarrierKind::kGcRoot: { DCHECK_GE(literal_offset, 4u); uint32_t prev_insn = GetInsn(code, literal_offset - 4u); // LDR (immediate) with correct root_reg. const uint32_t root_reg = BakerReadBarrierFirstRegField::Decode(encoded_data); CHECK_EQ(prev_insn & 0xffc0001fu, 0xb9400000u | root_reg); break; } default: LOG(FATAL) << "Unexpected kind: " << static_cast(kind); UNREACHABLE(); } } uint32_t target_offset = GetThunkTargetOffset(key, patch_offset); DCHECK_ALIGNED(target_offset, 4u); uint32_t disp = target_offset - patch_offset; DCHECK((disp >> 20) == 0u || (disp >> 20) == 4095u); // 21-bit signed. insn |= (disp << (5 - 2)) & 0x00ffffe0u; // Shift bits 2-20 to 5-23. SetInsn(code, literal_offset, insn); } #define __ assembler.GetVIXLAssembler()-> static void EmitGrayCheckAndFastPath(arm64::Arm64Assembler& assembler, vixl::aarch64::Register base_reg, vixl::aarch64::MemOperand& lock_word, vixl::aarch64::Label* slow_path) { using namespace vixl::aarch64; // NOLINT(build/namespaces) // Load the lock word containing the rb_state. __ Ldr(ip0.W(), lock_word); // Given the numeric representation, it's enough to check the low bit of the rb_state. static_assert(ReadBarrier::WhiteState() == 0, "Expecting white to have value 0"); static_assert(ReadBarrier::GrayState() == 1, "Expecting gray to have value 1"); __ Tbnz(ip0.W(), LockWord::kReadBarrierStateShift, slow_path); static_assert( BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET == BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET, "Field and array LDR offsets must be the same to reuse the same code."); // Adjust the return address back to the LDR (1 instruction; 2 for heap poisoning). static_assert(BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET == (kPoisonHeapReferences ? -8 : -4), "Field LDR must be 1 instruction (4B) before the return address label; " " 2 instructions (8B) for heap poisoning."); __ Add(lr, lr, BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET); // Introduce a dependency on the lock_word including rb_state, // to prevent load-load reordering, and without using // a memory barrier (which would be more expensive). __ Add(base_reg, base_reg, Operand(ip0, LSR, 32)); __ Br(lr); // And return back to the function. // Note: The fake dependency is unnecessary for the slow path. } // Load the read barrier introspection entrypoint in register `entrypoint`. static void LoadReadBarrierMarkIntrospectionEntrypoint(arm64::Arm64Assembler& assembler, vixl::aarch64::Register entrypoint) { using vixl::aarch64::MemOperand; using vixl::aarch64::ip0; // Thread Register. const vixl::aarch64::Register tr = vixl::aarch64::x19; // entrypoint = Thread::Current()->pReadBarrierMarkReg16, i.e. pReadBarrierMarkIntrospection. DCHECK_EQ(ip0.GetCode(), 16u); const int32_t entry_point_offset = Thread::ReadBarrierMarkEntryPointsOffset(ip0.GetCode()); __ Ldr(entrypoint, MemOperand(tr, entry_point_offset)); } void Arm64RelativePatcher::CompileBakerReadBarrierThunk(arm64::Arm64Assembler& assembler, uint32_t encoded_data) { using namespace vixl::aarch64; // NOLINT(build/namespaces) BakerReadBarrierKind kind = BakerReadBarrierKindField::Decode(encoded_data); switch (kind) { case BakerReadBarrierKind::kField: { // Check if the holder is gray and, if not, add fake dependency to the base register // and return to the LDR instruction to load the reference. Otherwise, use introspection // to load the reference and call the entrypoint (in IP1) that performs further checks // on the reference and marks it if needed. auto base_reg = Register::GetXRegFromCode(BakerReadBarrierFirstRegField::Decode(encoded_data)); CheckValidReg(base_reg.GetCode()); auto holder_reg = Register::GetXRegFromCode(BakerReadBarrierSecondRegField::Decode(encoded_data)); CheckValidReg(holder_reg.GetCode()); UseScratchRegisterScope temps(assembler.GetVIXLAssembler()); temps.Exclude(ip0, ip1); // If base_reg differs from holder_reg, the offset was too large and we must have // emitted an explicit null check before the load. Otherwise, we need to null-check // the holder as we do not necessarily do that check before going to the thunk. vixl::aarch64::Label throw_npe; if (holder_reg.Is(base_reg)) { __ Cbz(holder_reg.W(), &throw_npe); } vixl::aarch64::Label slow_path; MemOperand lock_word(holder_reg, mirror::Object::MonitorOffset().Int32Value()); EmitGrayCheckAndFastPath(assembler, base_reg, lock_word, &slow_path); __ Bind(&slow_path); MemOperand ldr_address(lr, BAKER_MARK_INTROSPECTION_FIELD_LDR_OFFSET); __ Ldr(ip0.W(), ldr_address); // Load the LDR (immediate) unsigned offset. LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1); __ Ubfx(ip0.W(), ip0.W(), 10, 12); // Extract the offset. __ Ldr(ip0.W(), MemOperand(base_reg, ip0, LSL, 2)); // Load the reference. // Do not unpoison. With heap poisoning enabled, the entrypoint expects a poisoned reference. __ Br(ip1); // Jump to the entrypoint. if (holder_reg.Is(base_reg)) { // Add null check slow path. The stack map is at the address pointed to by LR. __ Bind(&throw_npe); int32_t offset = GetThreadOffset(kQuickThrowNullPointer).Int32Value(); __ Ldr(ip0, MemOperand(/* Thread* */ vixl::aarch64::x19, offset)); __ Br(ip0); } break; } case BakerReadBarrierKind::kArray: { auto base_reg = Register::GetXRegFromCode(BakerReadBarrierFirstRegField::Decode(encoded_data)); CheckValidReg(base_reg.GetCode()); DCHECK_EQ(kInvalidEncodedReg, BakerReadBarrierSecondRegField::Decode(encoded_data)); UseScratchRegisterScope temps(assembler.GetVIXLAssembler()); temps.Exclude(ip0, ip1); vixl::aarch64::Label slow_path; int32_t data_offset = mirror::Array::DataOffset(Primitive::ComponentSize(Primitive::kPrimNot)).Int32Value(); MemOperand lock_word(base_reg, mirror::Object::MonitorOffset().Int32Value() - data_offset); DCHECK_LT(lock_word.GetOffset(), 0); EmitGrayCheckAndFastPath(assembler, base_reg, lock_word, &slow_path); __ Bind(&slow_path); MemOperand ldr_address(lr, BAKER_MARK_INTROSPECTION_ARRAY_LDR_OFFSET); __ Ldr(ip0.W(), ldr_address); // Load the LDR (register) unsigned offset. LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1); __ Ubfx(ip0, ip0, 16, 6); // Extract the index register, plus 32 (bit 21 is set). __ Bfi(ip1, ip0, 3, 6); // Insert ip0 to the entrypoint address to create // a switch case target based on the index register. __ Mov(ip0, base_reg); // Move the base register to ip0. __ Br(ip1); // Jump to the entrypoint's array switch case. break; } case BakerReadBarrierKind::kGcRoot: { // Check if the reference needs to be marked and if so (i.e. not null, not marked yet // and it does not have a forwarding address), call the correct introspection entrypoint; // otherwise return the reference (or the extracted forwarding address). // There is no gray bit check for GC roots. auto root_reg = Register::GetWRegFromCode(BakerReadBarrierFirstRegField::Decode(encoded_data)); CheckValidReg(root_reg.GetCode()); DCHECK_EQ(kInvalidEncodedReg, BakerReadBarrierSecondRegField::Decode(encoded_data)); UseScratchRegisterScope temps(assembler.GetVIXLAssembler()); temps.Exclude(ip0, ip1); vixl::aarch64::Label return_label, not_marked, forwarding_address; __ Cbz(root_reg, &return_label); MemOperand lock_word(root_reg.X(), mirror::Object::MonitorOffset().Int32Value()); __ Ldr(ip0.W(), lock_word); __ Tbz(ip0.W(), LockWord::kMarkBitStateShift, ¬_marked); __ Bind(&return_label); __ Br(lr); __ Bind(¬_marked); __ Tst(ip0.W(), Operand(ip0.W(), LSL, 1)); __ B(&forwarding_address, mi); LoadReadBarrierMarkIntrospectionEntrypoint(assembler, ip1); // Adjust the art_quick_read_barrier_mark_introspection address in IP1 to // art_quick_read_barrier_mark_introspection_gc_roots. __ Add(ip1, ip1, Operand(BAKER_MARK_INTROSPECTION_GC_ROOT_ENTRYPOINT_OFFSET)); __ Mov(ip0.W(), root_reg); __ Br(ip1); __ Bind(&forwarding_address); __ Lsl(root_reg, ip0.W(), LockWord::kForwardingAddressShift); __ Br(lr); break; } default: LOG(FATAL) << "Unexpected kind: " << static_cast(kind); UNREACHABLE(); } } std::vector Arm64RelativePatcher::CompileThunk(const ThunkKey& key) { ArenaPool pool; ArenaAllocator arena(&pool); arm64::Arm64Assembler assembler(&arena); switch (key.GetType()) { case ThunkType::kMethodCall: { // The thunk just uses the entry point in the ArtMethod. This works even for calls // to the generic JNI and interpreter trampolines. Offset offset(ArtMethod::EntryPointFromQuickCompiledCodeOffset( kArm64PointerSize).Int32Value()); assembler.JumpTo(ManagedRegister(arm64::X0), offset, ManagedRegister(arm64::IP0)); break; } case ThunkType::kBakerReadBarrier: { CompileBakerReadBarrierThunk(assembler, key.GetCustomValue1()); break; } } // Ensure we emit the literal pool. assembler.FinalizeCode(); std::vector thunk_code(assembler.CodeSize()); MemoryRegion code(thunk_code.data(), thunk_code.size()); assembler.FinalizeInstructions(code); return thunk_code; } #undef __ uint32_t Arm64RelativePatcher::MaxPositiveDisplacement(const ThunkKey& key) { switch (key.GetType()) { case ThunkType::kMethodCall: return kMaxMethodCallPositiveDisplacement; case ThunkType::kBakerReadBarrier: return kMaxBcondPositiveDisplacement; } } uint32_t Arm64RelativePatcher::MaxNegativeDisplacement(const ThunkKey& key) { switch (key.GetType()) { case ThunkType::kMethodCall: return kMaxMethodCallNegativeDisplacement; case ThunkType::kBakerReadBarrier: return kMaxBcondNegativeDisplacement; } } uint32_t Arm64RelativePatcher::PatchAdrp(uint32_t adrp, uint32_t disp) { return (adrp & 0x9f00001fu) | // Clear offset bits, keep ADRP with destination reg. // Bottom 12 bits are ignored, the next 2 lowest bits are encoded in bits 29-30. ((disp & 0x00003000u) << (29 - 12)) | // The next 16 bits are encoded in bits 5-22. ((disp & 0xffffc000u) >> (12 + 2 - 5)) | // Since the target_offset is based on the beginning of the oat file and the // image space precedes the oat file, the target_offset into image space will // be negative yet passed as uint32_t. Therefore we limit the displacement // to +-2GiB (rather than the maximim +-4GiB) and determine the sign bit from // the highest bit of the displacement. This is encoded in bit 23. ((disp & 0x80000000u) >> (31 - 23)); } bool Arm64RelativePatcher::NeedsErratum843419Thunk(ArrayRef code, uint32_t literal_offset, uint32_t patch_offset) { DCHECK_EQ(patch_offset & 0x3u, 0u); if ((patch_offset & 0xff8) == 0xff8) { // ...ff8 or ...ffc uint32_t adrp = GetInsn(code, literal_offset); DCHECK_EQ(adrp & 0x9f000000, 0x90000000); uint32_t next_offset = patch_offset + 4u; uint32_t next_insn = GetInsn(code, literal_offset + 4u); // Below we avoid patching sequences where the adrp is followed by a load which can easily // be proved to be aligned. // First check if the next insn is the LDR using the result of the ADRP. // LDR , [, #pimm], where == ADRP destination reg. if ((next_insn & 0xffc00000) == 0xb9400000 && (((next_insn >> 5) ^ adrp) & 0x1f) == 0) { return false; } // And since LinkerPatch::Type::k{Method,Type,String}Relative is using the result // of the ADRP for an ADD immediate, check for that as well. We generalize a bit // to include ADD/ADDS/SUB/SUBS immediate that either uses the ADRP destination // or stores the result to a different register. if ((next_insn & 0x1f000000) == 0x11000000 && ((((next_insn >> 5) ^ adrp) & 0x1f) == 0 || ((next_insn ^ adrp) & 0x1f) != 0)) { return false; } // LDR ,