/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include #include #include #include #include #include #include #include #include #include "Check.h" #include "Machine.h" #include "Ucontext.h" #include "User.h" namespace unwindstack { template bool RegsImpl::GetReturnAddressFromDefault(Memory* memory, uint64_t* value) { switch (return_loc_.type) { case LOCATION_REGISTER: CHECK(return_loc_.value < total_regs_); *value = regs_[return_loc_.value]; return true; case LOCATION_SP_OFFSET: AddressType return_value; if (!memory->Read(sp_ + return_loc_.value, &return_value, sizeof(return_value))) { return false; } *value = return_value; return true; case LOCATION_UNKNOWN: default: return false; } } RegsArm::RegsArm() : RegsImpl(ARM_REG_LAST, ARM_REG_SP, Location(LOCATION_REGISTER, ARM_REG_LR)) {} uint64_t RegsArm::GetAdjustedPc(uint64_t rel_pc, Elf* elf) { if (!elf->valid()) { return rel_pc; } uint64_t load_bias = elf->interface()->load_bias(); if (rel_pc < load_bias) { return rel_pc; } uint64_t adjusted_rel_pc = rel_pc - load_bias; if (adjusted_rel_pc < 5) { return rel_pc; } if (adjusted_rel_pc & 1) { // This is a thumb instruction, it could be 2 or 4 bytes. uint32_t value; if (rel_pc < 5 || !elf->memory()->Read(adjusted_rel_pc - 5, &value, sizeof(value)) || (value & 0xe000f000) != 0xe000f000) { return rel_pc - 2; } } return rel_pc - 4; } void RegsArm::SetFromRaw() { set_pc(regs_[ARM_REG_PC]); set_sp(regs_[ARM_REG_SP]); } RegsArm64::RegsArm64() : RegsImpl(ARM64_REG_LAST, ARM64_REG_SP, Location(LOCATION_REGISTER, ARM64_REG_LR)) {} uint64_t RegsArm64::GetAdjustedPc(uint64_t rel_pc, Elf* elf) { if (!elf->valid()) { return rel_pc; } if (rel_pc < 4) { return rel_pc; } return rel_pc - 4; } void RegsArm64::SetFromRaw() { set_pc(regs_[ARM64_REG_PC]); set_sp(regs_[ARM64_REG_SP]); } RegsX86::RegsX86() : RegsImpl(X86_REG_LAST, X86_REG_SP, Location(LOCATION_SP_OFFSET, -4)) {} uint64_t RegsX86::GetAdjustedPc(uint64_t rel_pc, Elf* elf) { if (!elf->valid()) { return rel_pc; } if (rel_pc == 0) { return 0; } return rel_pc - 1; } void RegsX86::SetFromRaw() { set_pc(regs_[X86_REG_PC]); set_sp(regs_[X86_REG_SP]); } RegsX86_64::RegsX86_64() : RegsImpl(X86_64_REG_LAST, X86_64_REG_SP, Location(LOCATION_SP_OFFSET, -8)) {} uint64_t RegsX86_64::GetAdjustedPc(uint64_t rel_pc, Elf* elf) { if (!elf->valid()) { return rel_pc; } if (rel_pc == 0) { return 0; } return rel_pc - 1; } void RegsX86_64::SetFromRaw() { set_pc(regs_[X86_64_REG_PC]); set_sp(regs_[X86_64_REG_SP]); } static Regs* ReadArm(void* remote_data) { arm_user_regs* user = reinterpret_cast(remote_data); RegsArm* regs = new RegsArm(); memcpy(regs->RawData(), &user->regs[0], ARM_REG_LAST * sizeof(uint32_t)); regs->SetFromRaw(); return regs; } static Regs* ReadArm64(void* remote_data) { arm64_user_regs* user = reinterpret_cast(remote_data); RegsArm64* regs = new RegsArm64(); memcpy(regs->RawData(), &user->regs[0], (ARM64_REG_R31 + 1) * sizeof(uint64_t)); uint64_t* reg_data = reinterpret_cast(regs->RawData()); reg_data[ARM64_REG_PC] = user->pc; reg_data[ARM64_REG_SP] = user->sp; regs->SetFromRaw(); return regs; } static Regs* ReadX86(void* remote_data) { x86_user_regs* user = reinterpret_cast(remote_data); RegsX86* regs = new RegsX86(); (*regs)[X86_REG_EAX] = user->eax; (*regs)[X86_REG_EBX] = user->ebx; (*regs)[X86_REG_ECX] = user->ecx; (*regs)[X86_REG_EDX] = user->edx; (*regs)[X86_REG_EBP] = user->ebp; (*regs)[X86_REG_EDI] = user->edi; (*regs)[X86_REG_ESI] = user->esi; (*regs)[X86_REG_ESP] = user->esp; (*regs)[X86_REG_EIP] = user->eip; regs->SetFromRaw(); return regs; } static Regs* ReadX86_64(void* remote_data) { x86_64_user_regs* user = reinterpret_cast(remote_data); RegsX86_64* regs = new RegsX86_64(); (*regs)[X86_64_REG_RAX] = user->rax; (*regs)[X86_64_REG_RBX] = user->rbx; (*regs)[X86_64_REG_RCX] = user->rcx; (*regs)[X86_64_REG_RDX] = user->rdx; (*regs)[X86_64_REG_R8] = user->r8; (*regs)[X86_64_REG_R9] = user->r9; (*regs)[X86_64_REG_R10] = user->r10; (*regs)[X86_64_REG_R11] = user->r11; (*regs)[X86_64_REG_R12] = user->r12; (*regs)[X86_64_REG_R13] = user->r13; (*regs)[X86_64_REG_R14] = user->r14; (*regs)[X86_64_REG_R15] = user->r15; (*regs)[X86_64_REG_RDI] = user->rdi; (*regs)[X86_64_REG_RSI] = user->rsi; (*regs)[X86_64_REG_RBP] = user->rbp; (*regs)[X86_64_REG_RSP] = user->rsp; (*regs)[X86_64_REG_RIP] = user->rip; regs->SetFromRaw(); return regs; } // This function assumes that reg_data is already aligned to a 64 bit value. // If not this could crash with an unaligned access. Regs* Regs::RemoteGet(pid_t pid, uint32_t* machine_type) { // Make the buffer large enough to contain the largest registers type. std::vector buffer(MAX_USER_REGS_SIZE / sizeof(uint64_t)); struct iovec io; io.iov_base = buffer.data(); io.iov_len = buffer.size() * sizeof(uint64_t); if (ptrace(PTRACE_GETREGSET, pid, NT_PRSTATUS, reinterpret_cast(&io)) == -1) { return nullptr; } switch (io.iov_len) { case sizeof(x86_user_regs): *machine_type = EM_386; return ReadX86(buffer.data()); case sizeof(x86_64_user_regs): *machine_type = EM_X86_64; return ReadX86_64(buffer.data()); case sizeof(arm_user_regs): *machine_type = EM_ARM; return ReadArm(buffer.data()); case sizeof(arm64_user_regs): *machine_type = EM_AARCH64; return ReadArm64(buffer.data()); } return nullptr; } static Regs* CreateFromArmUcontext(void* ucontext) { arm_ucontext_t* arm_ucontext = reinterpret_cast(ucontext); RegsArm* regs = new RegsArm(); memcpy(regs->RawData(), &arm_ucontext->uc_mcontext.regs[0], ARM_REG_LAST * sizeof(uint32_t)); regs->SetFromRaw(); return regs; } static Regs* CreateFromArm64Ucontext(void* ucontext) { arm64_ucontext_t* arm64_ucontext = reinterpret_cast(ucontext); RegsArm64* regs = new RegsArm64(); memcpy(regs->RawData(), &arm64_ucontext->uc_mcontext.regs[0], ARM64_REG_LAST * sizeof(uint64_t)); regs->SetFromRaw(); return regs; } void RegsX86::SetFromUcontext(x86_ucontext_t* ucontext) { // Put the registers in the expected order. regs_[X86_REG_EDI] = ucontext->uc_mcontext.edi; regs_[X86_REG_ESI] = ucontext->uc_mcontext.esi; regs_[X86_REG_EBP] = ucontext->uc_mcontext.ebp; regs_[X86_REG_ESP] = ucontext->uc_mcontext.esp; regs_[X86_REG_EBX] = ucontext->uc_mcontext.ebx; regs_[X86_REG_EDX] = ucontext->uc_mcontext.edx; regs_[X86_REG_ECX] = ucontext->uc_mcontext.ecx; regs_[X86_REG_EAX] = ucontext->uc_mcontext.eax; regs_[X86_REG_EIP] = ucontext->uc_mcontext.eip; SetFromRaw(); } static Regs* CreateFromX86Ucontext(void* ucontext) { x86_ucontext_t* x86_ucontext = reinterpret_cast(ucontext); RegsX86* regs = new RegsX86(); regs->SetFromUcontext(x86_ucontext); return regs; } void RegsX86_64::SetFromUcontext(x86_64_ucontext_t* ucontext) { // R8-R15 memcpy(®s_[X86_64_REG_R8], &ucontext->uc_mcontext.r8, 8 * sizeof(uint64_t)); // Rest of the registers. regs_[X86_64_REG_RDI] = ucontext->uc_mcontext.rdi; regs_[X86_64_REG_RSI] = ucontext->uc_mcontext.rsi; regs_[X86_64_REG_RBP] = ucontext->uc_mcontext.rbp; regs_[X86_64_REG_RBX] = ucontext->uc_mcontext.rbx; regs_[X86_64_REG_RDX] = ucontext->uc_mcontext.rdx; regs_[X86_64_REG_RAX] = ucontext->uc_mcontext.rax; regs_[X86_64_REG_RCX] = ucontext->uc_mcontext.rcx; regs_[X86_64_REG_RSP] = ucontext->uc_mcontext.rsp; regs_[X86_64_REG_RIP] = ucontext->uc_mcontext.rip; SetFromRaw(); } static Regs* CreateFromX86_64Ucontext(void* ucontext) { x86_64_ucontext_t* x86_64_ucontext = reinterpret_cast(ucontext); RegsX86_64* regs = new RegsX86_64(); regs->SetFromUcontext(x86_64_ucontext); return regs; } Regs* Regs::CreateFromUcontext(uint32_t machine_type, void* ucontext) { switch (machine_type) { case EM_386: return CreateFromX86Ucontext(ucontext); case EM_X86_64: return CreateFromX86_64Ucontext(ucontext); case EM_ARM: return CreateFromArmUcontext(ucontext); case EM_AARCH64: return CreateFromArm64Ucontext(ucontext); } return nullptr; } uint32_t Regs::GetMachineType() { #if defined(__arm__) return EM_ARM; #elif defined(__aarch64__) return EM_AARCH64; #elif defined(__i386__) return EM_386; #elif defined(__x86_64__) return EM_X86_64; #else abort(); #endif } Regs* Regs::CreateFromLocal() { Regs* regs; #if defined(__arm__) regs = new RegsArm(); #elif defined(__aarch64__) regs = new RegsArm64(); #elif defined(__i386__) regs = new RegsX86(); #elif defined(__x86_64__) regs = new RegsX86_64(); #else abort(); #endif return regs; } bool RegsArm::StepIfSignalHandler(uint64_t rel_pc, Elf* elf, Memory* process_memory) { uint32_t data; Memory* elf_memory = elf->memory(); // Read from elf memory since it is usually more expensive to read from // process memory. if (!elf_memory->Read(rel_pc, &data, sizeof(data))) { return false; } uint64_t offset = 0; if (data == 0xe3a07077 || data == 0xef900077 || data == 0xdf002777) { // non-RT sigreturn call. // __restore: // // Form 1 (arm): // 0x77 0x70 mov r7, #0x77 // 0xa0 0xe3 svc 0x00000000 // // Form 2 (arm): // 0x77 0x00 0x90 0xef svc 0x00900077 // // Form 3 (thumb): // 0x77 0x27 movs r7, #77 // 0x00 0xdf svc 0 if (!process_memory->Read(sp(), &data, sizeof(data))) { return false; } if (data == 0x5ac3c35a) { // SP + uc_mcontext offset + r0 offset. offset = sp() + 0x14 + 0xc; } else { // SP + r0 offset offset = sp() + 0xc; } } else if (data == 0xe3a070ad || data == 0xef9000ad || data == 0xdf0027ad) { // RT sigreturn call. // __restore_rt: // // Form 1 (arm): // 0xad 0x70 mov r7, #0xad // 0xa0 0xe3 svc 0x00000000 // // Form 2 (arm): // 0xad 0x00 0x90 0xef svc 0x009000ad // // Form 3 (thumb): // 0xad 0x27 movs r7, #ad // 0x00 0xdf svc 0 if (!process_memory->Read(sp(), &data, sizeof(data))) { return false; } if (data == sp() + 8) { // SP + 8 + sizeof(siginfo_t) + uc_mcontext_offset + r0 offset offset = sp() + 8 + 0x80 + 0x14 + 0xc; } else { // SP + sizeof(siginfo_t) + uc_mcontext_offset + r0 offset offset = sp() + 0x80 + 0x14 + 0xc; } } if (offset == 0) { return false; } if (!process_memory->Read(offset, regs_.data(), sizeof(uint32_t) * ARM_REG_LAST)) { return false; } SetFromRaw(); return true; } bool RegsArm64::StepIfSignalHandler(uint64_t rel_pc, Elf* elf, Memory* process_memory) { uint64_t data; Memory* elf_memory = elf->memory(); // Read from elf memory since it is usually more expensive to read from // process memory. if (!elf_memory->Read(rel_pc, &data, sizeof(data))) { return false; } // Look for the kernel sigreturn function. // __kernel_rt_sigreturn: // 0xd2801168 mov x8, #0x8b // 0xd4000001 svc #0x0 if (data != 0xd4000001d2801168ULL) { return false; } // SP + sizeof(siginfo_t) + uc_mcontext offset + X0 offset. if (!process_memory->Read(sp() + 0x80 + 0xb0 + 0x08, regs_.data(), sizeof(uint64_t) * ARM64_REG_LAST)) { return false; } SetFromRaw(); return true; } bool RegsX86::StepIfSignalHandler(uint64_t rel_pc, Elf* elf, Memory* process_memory) { uint64_t data; Memory* elf_memory = elf->memory(); // Read from elf memory since it is usually more expensive to read from // process memory. if (!elf_memory->Read(rel_pc, &data, sizeof(data))) { return false; } if (data == 0x80cd00000077b858ULL) { // Without SA_SIGINFO set, the return sequence is: // // __restore: // 0x58 pop %eax // 0xb8 0x77 0x00 0x00 0x00 movl 0x77,%eax // 0xcd 0x80 int 0x80 // // SP points at arguments: // int signum // struct sigcontext (same format as mcontext) struct x86_mcontext_t context; if (!process_memory->Read(sp() + 4, &context, sizeof(context))) { return false; } regs_[X86_REG_EBP] = context.ebp; regs_[X86_REG_ESP] = context.esp; regs_[X86_REG_EBX] = context.ebx; regs_[X86_REG_EDX] = context.edx; regs_[X86_REG_ECX] = context.ecx; regs_[X86_REG_EAX] = context.eax; regs_[X86_REG_EIP] = context.eip; SetFromRaw(); return true; } else if ((data & 0x00ffffffffffffffULL) == 0x0080cd000000adb8ULL) { // With SA_SIGINFO set, the return sequence is: // // __restore_rt: // 0xb8 0xad 0x00 0x00 0x00 movl 0xad,%eax // 0xcd 0x80 int 0x80 // // SP points at arguments: // int signum // siginfo* // ucontext* // Get the location of the sigcontext data. uint32_t ptr; if (!process_memory->Read(sp() + 8, &ptr, sizeof(ptr))) { return false; } // Only read the portion of the data structure we care about. x86_ucontext_t x86_ucontext; if (!process_memory->Read(ptr + 0x14, &x86_ucontext.uc_mcontext, sizeof(x86_mcontext_t))) { return false; } SetFromUcontext(&x86_ucontext); return true; } return false; } bool RegsX86_64::StepIfSignalHandler(uint64_t rel_pc, Elf* elf, Memory* process_memory) { uint64_t data; Memory* elf_memory = elf->memory(); // Read from elf memory since it is usually more expensive to read from // process memory. if (!elf_memory->Read(rel_pc, &data, sizeof(data)) || data != 0x0f0000000fc0c748) { return false; } uint16_t data2; if (!elf_memory->Read(rel_pc + 8, &data2, sizeof(data2)) || data2 != 0x0f05) { return false; } // __restore_rt: // 0x48 0xc7 0xc0 0x0f 0x00 0x00 0x00 mov $0xf,%rax // 0x0f 0x05 syscall // 0x0f nopl 0x0($rax) // Read the mcontext data from the stack. // sp points to the ucontext data structure, read only the mcontext part. x86_64_ucontext_t x86_64_ucontext; if (!process_memory->Read(sp() + 0x28, &x86_64_ucontext.uc_mcontext, sizeof(x86_64_mcontext_t))) { return false; } SetFromUcontext(&x86_64_ucontext); return true; } } // namespace unwindstack