upload android base code part6

This commit is contained in:
August 2018-08-08 17:48:24 +08:00
parent 421e214c7d
commit 4e516ec6ed
35396 changed files with 9188716 additions and 0 deletions

View file

@ -0,0 +1,53 @@
// ========================================================
// Static and shared library
// ========================================================
cc_library {
name: "liblogwrap",
srcs: ["logwrap.c"],
shared_libs: [
"libcutils",
"liblog",
],
export_include_dirs: ["include"],
local_include_dirs: ["include"],
cflags: [
"-Werror",
],
}
// ========================================================
// Executable
// ========================================================
cc_binary {
name: "logwrapper",
srcs: ["logwrapper.c"],
static_libs: [
"liblog",
"liblogwrap",
"libcutils",
],
cflags: [
"-Werror",
],
}
// ========================================================
// Benchmark
// ========================================================
cc_benchmark {
name: "android_fork_execvp_ext_benchmark",
srcs: [
"android_fork_execvp_ext_benchmark.cpp",
],
shared_libs: [
"libbase",
"libcutils",
"liblog",
"liblogwrap",
],
cflags: [
"-Werror",
]
}

View file

@ -0,0 +1,190 @@
Copyright (c) 2005-2008, The Android Open Source Project
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS

View file

@ -0,0 +1,34 @@
/*
* Copyright (C) 2017 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "logwrap/logwrap.h"
#include <android-base/logging.h>
#include <benchmark/benchmark.h>
static void BM_android_fork_execvp_ext(benchmark::State& state) {
const char* argv[] = {"/system/bin/echo", "hello", "world"};
const int argc = 3;
while (state.KeepRunning()) {
int rc = android_fork_execvp_ext(
argc, (char**)argv, NULL /* status */, false /* ignore_int_quit */, LOG_NONE,
false /* abbreviated */, NULL /* file_path */, NULL /* opts */, 0 /* opts_len */);
CHECK_EQ(0, rc);
}
}
BENCHMARK(BM_android_fork_execvp_ext);
BENCHMARK_MAIN();

View file

@ -0,0 +1,93 @@
/* system/core/include/logwrap/logwrap.h
*
* Copyright 2013, The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef __LIBS_LOGWRAP_H
#define __LIBS_LOGWRAP_H
#include <stdbool.h>
#include <stdint.h>
__BEGIN_DECLS
/*
* Run a command while logging its stdout and stderr
*
* WARNING: while this function is running it will clear all SIGCHLD handlers
* if you rely on SIGCHLD in the caller there is a chance zombies will be
* created if you're not calling waitpid after calling this. This function will
* log a warning when it clears SIGCHLD for processes other than the child it
* created.
*
* Arguments:
* argc: the number of elements in argv
* argv: an array of strings containing the command to be executed and its
* arguments as separate strings. argv does not need to be
* NULL-terminated
* status: the equivalent child status as populated by wait(status). This
* value is only valid when logwrap successfully completes. If NULL
* the return value of the child will be the function's return value.
* ignore_int_quit: set to true if you want to completely ignore SIGINT and
* SIGQUIT while logwrap is running. This may force the end-user to
* send a signal twice to signal the caller (once for the child, and
* once for the caller)
* log_target: Specify where to log the output of the child, either LOG_NONE,
* LOG_ALOG (for the Android system log), LOG_KLOG (for the kernel
* log), or LOG_FILE (and you need to specify a pathname in the
* file_path argument, otherwise pass NULL). These are bit fields,
* and can be OR'ed together to log to multiple places.
* abbreviated: If true, capture up to the first 100 lines and last 4K of
* output from the child. The abbreviated output is not dumped to
* the specified log until the child has exited.
* file_path: if log_target has the LOG_FILE bit set, then this parameter
* must be set to the pathname of the file to log to.
* unused_opts: currently unused.
* unused_opts_len: currently unused.
*
* Return value:
* 0 when logwrap successfully run the child process and captured its status
* -1 when an internal error occurred
* -ECHILD if status is NULL and the child didn't exit properly
* the return value of the child if it exited properly and status is NULL
*
*/
/* Values for the log_target parameter android_fork_execvp_ext() */
#define LOG_NONE 0
#define LOG_ALOG 1
#define LOG_KLOG 2
#define LOG_FILE 4
// TODO: Remove unused_opts / unused_opts_len in a followup change.
int android_fork_execvp_ext(int argc, char* argv[], int *status, bool ignore_int_quit,
int log_target, bool abbreviated, char *file_path, void* unused_opts,
int unused_opts_len);
/* Similar to above, except abbreviated logging is not available, and if logwrap
* is true, logging is to the Android system log, and if false, there is no
* logging.
*/
static inline int android_fork_execvp(int argc, char* argv[], int *status,
bool ignore_int_quit, bool logwrap)
{
return android_fork_execvp_ext(argc, argv, status, ignore_int_quit,
(logwrap ? LOG_ALOG : LOG_NONE), false, NULL,
NULL, 0);
}
__END_DECLS
#endif /* __LIBS_LOGWRAP_H */

View file

@ -0,0 +1,569 @@
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <errno.h>
#include <fcntl.h>
#include <libgen.h>
#include <poll.h>
#include <pthread.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/socket.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <unistd.h>
#include <cutils/klog.h>
#include <log/log.h>
#include <logwrap/logwrap.h>
#include <private/android_filesystem_config.h>
#define ARRAY_SIZE(x) (sizeof(x) / sizeof(*(x)))
#define MIN(a,b) (((a)<(b))?(a):(b))
static pthread_mutex_t fd_mutex = PTHREAD_MUTEX_INITIALIZER;
#define ERROR(fmt, args...) \
do { \
fprintf(stderr, fmt, ## args); \
ALOG(LOG_ERROR, "logwrapper", fmt, ## args); \
} while(0)
#define FATAL_CHILD(fmt, args...) \
do { \
ERROR(fmt, ## args); \
_exit(-1); \
} while(0)
#define MAX_KLOG_TAG 16
/* This is a simple buffer that holds up to the first beginning_buf->buf_size
* bytes of output from a command.
*/
#define BEGINNING_BUF_SIZE 0x1000
struct beginning_buf {
char *buf;
size_t alloc_len;
/* buf_size is the usable space, which is one less than the allocated size */
size_t buf_size;
size_t used_len;
};
/* This is a circular buf that holds up to the last ending_buf->buf_size bytes
* of output from a command after the first beginning_buf->buf_size bytes
* (which are held in beginning_buf above).
*/
#define ENDING_BUF_SIZE 0x1000
struct ending_buf {
char *buf;
ssize_t alloc_len;
/* buf_size is the usable space, which is one less than the allocated size */
ssize_t buf_size;
ssize_t used_len;
/* read and write offsets into the circular buffer */
int read;
int write;
};
/* A structure to hold all the abbreviated buf data */
struct abbr_buf {
struct beginning_buf b_buf;
struct ending_buf e_buf;
int beginning_buf_full;
};
/* Collect all the various bits of info needed for logging in one place. */
struct log_info {
int log_target;
char klog_fmt[MAX_KLOG_TAG * 2];
char *btag;
bool abbreviated;
FILE *fp;
struct abbr_buf a_buf;
};
/* Forware declaration */
static void add_line_to_abbr_buf(struct abbr_buf *a_buf, char *linebuf, int linelen);
/* Return 0 on success, and 1 when full */
static int add_line_to_linear_buf(struct beginning_buf *b_buf,
char *line, ssize_t line_len)
{
int full = 0;
if ((line_len + b_buf->used_len) > b_buf->buf_size) {
full = 1;
} else {
/* Add to the end of the buf */
memcpy(b_buf->buf + b_buf->used_len, line, line_len);
b_buf->used_len += line_len;
}
return full;
}
static void add_line_to_circular_buf(struct ending_buf *e_buf,
char *line, ssize_t line_len)
{
ssize_t free_len;
ssize_t needed_space;
int cnt;
if (e_buf->buf == NULL) {
return;
}
if (line_len > e_buf->buf_size) {
return;
}
free_len = e_buf->buf_size - e_buf->used_len;
if (line_len > free_len) {
/* remove oldest entries at read, and move read to make
* room for the new string */
needed_space = line_len - free_len;
e_buf->read = (e_buf->read + needed_space) % e_buf->buf_size;
e_buf->used_len -= needed_space;
}
/* Copy the line into the circular buffer, dealing with possible
* wraparound.
*/
cnt = MIN(line_len, e_buf->buf_size - e_buf->write);
memcpy(e_buf->buf + e_buf->write, line, cnt);
if (cnt < line_len) {
memcpy(e_buf->buf, line + cnt, line_len - cnt);
}
e_buf->used_len += line_len;
e_buf->write = (e_buf->write + line_len) % e_buf->buf_size;
}
/* Log directly to the specified log */
static void do_log_line(struct log_info *log_info, char *line) {
if (log_info->log_target & LOG_KLOG) {
klog_write(6, log_info->klog_fmt, line);
}
if (log_info->log_target & LOG_ALOG) {
ALOG(LOG_INFO, log_info->btag, "%s", line);
}
if (log_info->log_target & LOG_FILE) {
fprintf(log_info->fp, "%s\n", line);
}
}
/* Log to either the abbreviated buf, or directly to the specified log
* via do_log_line() above.
*/
static void log_line(struct log_info *log_info, char *line, int len) {
if (log_info->abbreviated) {
add_line_to_abbr_buf(&log_info->a_buf, line, len);
} else {
do_log_line(log_info, line);
}
}
/*
* The kernel will take a maximum of 1024 bytes in any single write to
* the kernel logging device file, so find and print each line one at
* a time. The allocated size for buf should be at least 1 byte larger
* than buf_size (the usable size of the buffer) to make sure there is
* room to temporarily stuff a null byte to terminate a line for logging.
*/
static void print_buf_lines(struct log_info *log_info, char *buf, int buf_size)
{
char *line_start;
char c;
int i;
line_start = buf;
for (i = 0; i < buf_size; i++) {
if (*(buf + i) == '\n') {
/* Found a line ending, print the line and compute new line_start */
/* Save the next char and replace with \0 */
c = *(buf + i + 1);
*(buf + i + 1) = '\0';
do_log_line(log_info, line_start);
/* Restore the saved char */
*(buf + i + 1) = c;
line_start = buf + i + 1;
} else if (*(buf + i) == '\0') {
/* The end of the buffer, print the last bit */
do_log_line(log_info, line_start);
break;
}
}
/* If the buffer was completely full, and didn't end with a newline, just
* ignore the partial last line.
*/
}
static void init_abbr_buf(struct abbr_buf *a_buf) {
char *new_buf;
memset(a_buf, 0, sizeof(struct abbr_buf));
new_buf = malloc(BEGINNING_BUF_SIZE);
if (new_buf) {
a_buf->b_buf.buf = new_buf;
a_buf->b_buf.alloc_len = BEGINNING_BUF_SIZE;
a_buf->b_buf.buf_size = BEGINNING_BUF_SIZE - 1;
}
new_buf = malloc(ENDING_BUF_SIZE);
if (new_buf) {
a_buf->e_buf.buf = new_buf;
a_buf->e_buf.alloc_len = ENDING_BUF_SIZE;
a_buf->e_buf.buf_size = ENDING_BUF_SIZE - 1;
}
}
static void free_abbr_buf(struct abbr_buf *a_buf) {
free(a_buf->b_buf.buf);
free(a_buf->e_buf.buf);
}
static void add_line_to_abbr_buf(struct abbr_buf *a_buf, char *linebuf, int linelen) {
if (!a_buf->beginning_buf_full) {
a_buf->beginning_buf_full =
add_line_to_linear_buf(&a_buf->b_buf, linebuf, linelen);
}
if (a_buf->beginning_buf_full) {
add_line_to_circular_buf(&a_buf->e_buf, linebuf, linelen);
}
}
static void print_abbr_buf(struct log_info *log_info) {
struct abbr_buf *a_buf = &log_info->a_buf;
/* Add the abbreviated output to the kernel log */
if (a_buf->b_buf.alloc_len) {
print_buf_lines(log_info, a_buf->b_buf.buf, a_buf->b_buf.used_len);
}
/* Print an ellipsis to indicate that the buffer has wrapped or
* is full, and some data was not logged.
*/
if (a_buf->e_buf.used_len == a_buf->e_buf.buf_size) {
do_log_line(log_info, "...\n");
}
if (a_buf->e_buf.used_len == 0) {
return;
}
/* Simplest way to print the circular buffer is allocate a second buf
* of the same size, and memcpy it so it's a simple linear buffer,
* and then cal print_buf_lines on it */
if (a_buf->e_buf.read < a_buf->e_buf.write) {
/* no wrap around, just print it */
print_buf_lines(log_info, a_buf->e_buf.buf + a_buf->e_buf.read,
a_buf->e_buf.used_len);
} else {
/* The circular buffer will always have at least 1 byte unused,
* so by allocating alloc_len here we will have at least
* 1 byte of space available as required by print_buf_lines().
*/
char * nbuf = malloc(a_buf->e_buf.alloc_len);
if (!nbuf) {
return;
}
int first_chunk_len = a_buf->e_buf.buf_size - a_buf->e_buf.read;
memcpy(nbuf, a_buf->e_buf.buf + a_buf->e_buf.read, first_chunk_len);
/* copy second chunk */
memcpy(nbuf + first_chunk_len, a_buf->e_buf.buf, a_buf->e_buf.write);
print_buf_lines(log_info, nbuf, first_chunk_len + a_buf->e_buf.write);
free(nbuf);
}
}
static int parent(const char *tag, int parent_read, pid_t pid,
int *chld_sts, int log_target, bool abbreviated, char *file_path) {
int status = 0;
char buffer[4096];
struct pollfd poll_fds[] = {
[0] = {
.fd = parent_read,
.events = POLLIN,
},
};
int rc = 0;
int fd;
struct log_info log_info;
int a = 0; // start index of unprocessed data
int b = 0; // end index of unprocessed data
int sz;
bool found_child = false;
char tmpbuf[256];
log_info.btag = basename(tag);
if (!log_info.btag) {
log_info.btag = (char*) tag;
}
if (abbreviated && (log_target == LOG_NONE)) {
abbreviated = 0;
}
if (abbreviated) {
init_abbr_buf(&log_info.a_buf);
}
if (log_target & LOG_KLOG) {
snprintf(log_info.klog_fmt, sizeof(log_info.klog_fmt),
"<6>%.*s: %%s\n", MAX_KLOG_TAG, log_info.btag);
}
if ((log_target & LOG_FILE) && !file_path) {
/* No file_path specified, clear the LOG_FILE bit */
log_target &= ~LOG_FILE;
}
if (log_target & LOG_FILE) {
fd = open(file_path, O_WRONLY | O_CREAT, 0664);
if (fd < 0) {
ERROR("Cannot log to file %s\n", file_path);
log_target &= ~LOG_FILE;
} else {
lseek(fd, 0, SEEK_END);
log_info.fp = fdopen(fd, "a");
}
}
log_info.log_target = log_target;
log_info.abbreviated = abbreviated;
while (!found_child) {
if (TEMP_FAILURE_RETRY(poll(poll_fds, ARRAY_SIZE(poll_fds), -1)) < 0) {
ERROR("poll failed\n");
rc = -1;
goto err_poll;
}
if (poll_fds[0].revents & POLLIN) {
sz = TEMP_FAILURE_RETRY(
read(parent_read, &buffer[b], sizeof(buffer) - 1 - b));
sz += b;
// Log one line at a time
for (b = 0; b < sz; b++) {
if (buffer[b] == '\r') {
if (abbreviated) {
/* The abbreviated logging code uses newline as
* the line separator. Lucikly, the pty layer
* helpfully cooks the output of the command
* being run and inserts a CR before NL. So
* I just change it to NL here when doing
* abbreviated logging.
*/
buffer[b] = '\n';
} else {
buffer[b] = '\0';
}
} else if (buffer[b] == '\n') {
buffer[b] = '\0';
log_line(&log_info, &buffer[a], b - a);
a = b + 1;
}
}
if (a == 0 && b == sizeof(buffer) - 1) {
// buffer is full, flush
buffer[b] = '\0';
log_line(&log_info, &buffer[a], b - a);
b = 0;
} else if (a != b) {
// Keep left-overs
b -= a;
memmove(buffer, &buffer[a], b);
a = 0;
} else {
a = 0;
b = 0;
}
}
if (poll_fds[0].revents & POLLHUP) {
int ret;
ret = TEMP_FAILURE_RETRY(waitpid(pid, &status, 0));
if (ret < 0) {
rc = errno;
ALOG(LOG_ERROR, "logwrap", "waitpid failed with %s\n", strerror(errno));
goto err_waitpid;
}
if (ret > 0) {
found_child = true;
}
}
}
if (chld_sts != NULL) {
*chld_sts = status;
} else {
if (WIFEXITED(status))
rc = WEXITSTATUS(status);
else
rc = -ECHILD;
}
// Flush remaining data
if (a != b) {
buffer[b] = '\0';
log_line(&log_info, &buffer[a], b - a);
}
/* All the output has been processed, time to dump the abbreviated output */
if (abbreviated) {
print_abbr_buf(&log_info);
}
if (WIFEXITED(status)) {
if (WEXITSTATUS(status)) {
snprintf(tmpbuf, sizeof(tmpbuf),
"%s terminated by exit(%d)\n", log_info.btag, WEXITSTATUS(status));
do_log_line(&log_info, tmpbuf);
}
} else {
if (WIFSIGNALED(status)) {
snprintf(tmpbuf, sizeof(tmpbuf),
"%s terminated by signal %d\n", log_info.btag, WTERMSIG(status));
do_log_line(&log_info, tmpbuf);
} else if (WIFSTOPPED(status)) {
snprintf(tmpbuf, sizeof(tmpbuf),
"%s stopped by signal %d\n", log_info.btag, WSTOPSIG(status));
do_log_line(&log_info, tmpbuf);
}
}
err_waitpid:
err_poll:
if (log_target & LOG_FILE) {
fclose(log_info.fp); /* Also closes underlying fd */
}
if (abbreviated) {
free_abbr_buf(&log_info.a_buf);
}
return rc;
}
static void child(int argc, char* argv[]) {
// create null terminated argv_child array
char* argv_child[argc + 1];
memcpy(argv_child, argv, argc * sizeof(char *));
argv_child[argc] = NULL;
if (execvp(argv_child[0], argv_child)) {
FATAL_CHILD("executing %s failed: %s\n", argv_child[0],
strerror(errno));
}
}
int android_fork_execvp_ext(int argc, char* argv[], int *status, bool ignore_int_quit,
int log_target, bool abbreviated, char *file_path,
void *unused_opts, int unused_opts_len) {
pid_t pid;
int parent_ptty;
int child_ptty;
struct sigaction intact;
struct sigaction quitact;
sigset_t blockset;
sigset_t oldset;
int rc = 0;
LOG_ALWAYS_FATAL_IF(unused_opts != NULL);
LOG_ALWAYS_FATAL_IF(unused_opts_len != 0);
rc = pthread_mutex_lock(&fd_mutex);
if (rc) {
ERROR("failed to lock signal_fd mutex\n");
goto err_lock;
}
/* Use ptty instead of socketpair so that STDOUT is not buffered */
parent_ptty = TEMP_FAILURE_RETRY(open("/dev/ptmx", O_RDWR));
if (parent_ptty < 0) {
ERROR("Cannot create parent ptty\n");
rc = -1;
goto err_open;
}
char child_devname[64];
if (grantpt(parent_ptty) || unlockpt(parent_ptty) ||
ptsname_r(parent_ptty, child_devname, sizeof(child_devname)) != 0) {
ERROR("Problem with /dev/ptmx\n");
rc = -1;
goto err_ptty;
}
child_ptty = TEMP_FAILURE_RETRY(open(child_devname, O_RDWR));
if (child_ptty < 0) {
ERROR("Cannot open child_ptty\n");
rc = -1;
goto err_child_ptty;
}
sigemptyset(&blockset);
sigaddset(&blockset, SIGINT);
sigaddset(&blockset, SIGQUIT);
pthread_sigmask(SIG_BLOCK, &blockset, &oldset);
pid = fork();
if (pid < 0) {
close(child_ptty);
ERROR("Failed to fork\n");
rc = -1;
goto err_fork;
} else if (pid == 0) {
pthread_mutex_unlock(&fd_mutex);
pthread_sigmask(SIG_SETMASK, &oldset, NULL);
close(parent_ptty);
dup2(child_ptty, 1);
dup2(child_ptty, 2);
close(child_ptty);
child(argc, argv);
} else {
close(child_ptty);
if (ignore_int_quit) {
struct sigaction ignact;
memset(&ignact, 0, sizeof(ignact));
ignact.sa_handler = SIG_IGN;
sigaction(SIGINT, &ignact, &intact);
sigaction(SIGQUIT, &ignact, &quitact);
}
rc = parent(argv[0], parent_ptty, pid, status, log_target,
abbreviated, file_path);
}
if (ignore_int_quit) {
sigaction(SIGINT, &intact, NULL);
sigaction(SIGQUIT, &quitact, NULL);
}
err_fork:
pthread_sigmask(SIG_SETMASK, &oldset, NULL);
err_child_ptty:
err_ptty:
close(parent_ptty);
err_open:
pthread_mutex_unlock(&fd_mutex);
err_lock:
return rc;
}

View file

@ -0,0 +1,97 @@
/*
* Copyright (C) 2008 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <sys/wait.h>
#include <unistd.h>
#include <cutils/klog.h>
#include <log/log.h>
#include <logwrap/logwrap.h>
void fatal(const char *msg) {
fprintf(stderr, "%s", msg);
ALOG(LOG_ERROR, "logwrapper", "%s", msg);
exit(-1);
}
void usage() {
fatal(
"Usage: logwrapper [-a] [-d] [-k] BINARY [ARGS ...]\n"
"\n"
"Forks and executes BINARY ARGS, redirecting stdout and stderr to\n"
"the Android logging system. Tag is set to BINARY, priority is\n"
"always LOG_INFO.\n"
"\n"
"-a: Causes logwrapper to do abbreviated logging.\n"
" This logs up to the first 4K and last 4K of the command\n"
" being run, and logs the output when the command exits\n"
"-d: Causes logwrapper to SIGSEGV when BINARY terminates\n"
" fault address is set to the status of wait()\n"
"-k: Causes logwrapper to log to the kernel log instead of\n"
" the Android system log\n");
}
int main(int argc, char* argv[]) {
int seg_fault_on_exit = 0;
int log_target = LOG_ALOG;
bool abbreviated = false;
int ch;
int status = 0xAAAA;
int rc;
while ((ch = getopt(argc, argv, "adk")) != -1) {
switch (ch) {
case 'a':
abbreviated = true;
break;
case 'd':
seg_fault_on_exit = 1;
break;
case 'k':
log_target = LOG_KLOG;
klog_set_level(6);
break;
case '?':
default:
usage();
}
}
argc -= optind;
argv += optind;
if (argc < 1) {
usage();
}
rc = android_fork_execvp_ext(argc, &argv[0], &status, true,
log_target, abbreviated, NULL, NULL, 0);
if (!rc) {
if (WIFEXITED(status))
rc = WEXITSTATUS(status);
else
rc = -ECHILD;
}
if (seg_fault_on_exit) {
uintptr_t fault_address = (uintptr_t) status;
*(int *) fault_address = 0; // causes SIGSEGV with fault_address = status
}
return rc;
}